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Abstract—Load instructions diminish processor performance in two ways. First, due to the continuously widening gap between CPU
and memory speed, the relative latency of load instructions grows constantly and already slows program execution. Second, memory
reads limit the available instruction-level parallelism because instructions that use the result of a load must wait for the memory access
to complete before they can start executing. Load-value predictors alleviate both problems by allowing the CPU to speculatively
continue processing without having to wait for load instructions, which can significantly improve the execution speed. While several
hybrid load-value predictors have been proposed and found to work well, no systematic study of such predictors exists. In this paper,
we investigate the performance of all hybrids that can be built out of a register value, a last value, a stride 2-delta, a last four value, and
a finite context method predictor. Our analysis shows that hybrids can deliver 25 percent more speedup than the best single-
component predictors. An examination of the individual components of hybrids revealed that predictors with a poor standalone
performance sometimes make excellent components in a hybrid, while combining well-performing individual predictors often does not
result in an effective hybrid. Our hybridization study identified the register value + stride 2-delta predictor as one of the best
two-component hybrids. It matches or exceeds the speedup of two-component hybrids from the literature in spite of its substantially
smaller and simpler design. Of all the predictors we studied, the register value + stride 2-delta + last four value hybrid performs best. It

yields a harmonic-mean speedup over the eight SPECint95 programs of 17.2 percent.

Index Terms—Value prediction, value locality, load-value predictor, hybrid predictor, performance metrics.

1 INTRODUCTION

ROCESSOR technology is advancing at a rapid pace. Over

the past two decades, CPU performance has roughly
doubled every 18 months. Unfortunately, memory latencies
have not improved as quickly. As a result, the speed gap
between CPU and memory is constantly growing and has
reached a point where it presents one of the biggest
performance bottlenecks. Load-value prediction is a relatively
new approach for improving the performance of micro-
processors by breaking dependence chains and hiding the
growing latencies. In this paper, we study which predictor
combinations yield the most effective, hybrid load-value
predictors.

Load instructions frequently fetch from predictable
addresses [12]. Moreover, the fetched values themselves
are often also predictable [17]. For instance, about half of all
the load instructions in the SPECint95 benchmark suite
retrieve the same value that they did the previous time they
executed. Such behavior, which has been demonstrated
explicitly on a number of architectures, is referred to as
value locality [10], [17]. Load-value locality can be exploited
to predict the result of a load instruction before it executes.

Correct load-value predictions enable the CPU to
continue processing the dependent instructions without
having to wait for the memory access to complete. Of
course, it is only known whether a prediction was correct
once the true value has been retrieved from memory, which
can take many cycles. Speculative execution allows the CPU
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to continue execution with a predicted value before the
prediction outcome is known. If it later turns out that the
prediction was correct, the speculative status is simply
dropped. If the prediction was incorrect, everything the
CPU did with the incorrect value has to be purged and
redone with the correct value.

Because branch predictors require a similar mechanism
to recover from mispredictions, most modern CPUs already
contain the necessary hardware to perform this kind of
speculation [10]. However, recovering from mispredictions
takes time and slows down the processor. Load-value
prediction is therefore only effective if most of the
predictions are correct.

Several distinct types of load-value locality have been
identified and predictors to exploit them have been
proposed [6], [10], [17], [25], [27], [28]. While the best
performing predictors in the current literature are all
hybrids [4], [20], [23], [28], no systematic study of such
predictors exists. The goal of this paper is to evaluate all
hybrids that can be built out of a register value, a last value,
a stride 2-delta, a last four value, and a finite context
method predictor to determine which components comple-
ment each other well and thus yield high-performing load-
value predictors.

Our study identified novel hybrids that are smaller,
simpler, and perform better than the best hybrids from the
literature. Cycle-accurate simulations of a modern 64-bit
RISC processor show that the new hybrids yield harmonic-
mean speedups over the eight SPECint95 programs of up to
18 percent.

We show that hybrids are able to deliver 25 percent more
speedup than the best single-component predictors and that
different components contribute independently to the over-
all performance. We infer that the existing, distinct types of
load-value locality can only be exploited effectively with
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TABLE 1
Load-Value Locality

predictability (%)
program reg Iv st2d ldv  fcm
compress 9.0 404 658 413 35.9
gcc 19.9 485 498 656 52.0
go 9.2 459 472 64.0 446
iipeg 9.4 475 477 541 454
li 143 434 504 638 604
m88ksim | 29.9 76.1 80.0 834 80.3
perl 19.8 50.7 514 80.6 70.9
vortex 178 657 653 786 66.9
average 16.2 523 572 664 57.0

multicomponent predictors (i.e., hybrids) in which each
component is tailored to a different kind of locality.

Our analysis also revealed some unexpected results. For
example, powerful individual components frequently do
not yield effective hybrids when combined, while some
components that perform rather poorly by themselves can
form strong coalitions with other components. To explain
this behavior, the load latency and the time to first use of the
predicted loads need to be taken into account. The
prediction rate and the number of correct predictions, on
the other hand, are sometimes inversely correlated with the
delivered speedup and are therefore not good performance
indicators. Moreover, some hybrids yield a lower perfor-
mance than their individual components because of negative
interference.

The remainder of this paper is organized as follows:
Section 2 introduces the five component predictors we
study, Section 3 presents the evaluation methods, Section 4
discusses the performance of the various hybrids, Section 5
summarizes related work, and Section 6 concludes the

paper.

2 Basic LoAD-VALUE PREDICTORS

It is almost impossible to predict a random load value
correctly. After all, a 32-bit word can hold over four billion
distinct values and a 64-bit word over 10" values. Even
with only 20 equally distributed values, the odds of picking
the correct value are merely five percent, which is probably
too low to be useful. This is why almost all proposed load-
value predictors make predictions based on context, that is,
based on recently loaded values.

Using context is promising because load values tend to
cluster, repeat, occur in iterating sequences, exhibit dis-
cernable patterns, and correlate with one another. Such
behavior is referred to as value locality (or predictability). To
illustrate the extent of exploitable load-value locality, we
present Table 1. The table lists five types of predictability
found in the eight benchmark programs we use throughout
this study. The numbers reflect the percentage of executed
load instructions that are predictable.

o The register value predictability (reg) indicates how
frequently the target register of a load instruction
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Generic Load-Value Predictor

address (PC) of
load instruction

n-bit

(PC>>2)%2 2" lines

n to 2" decoder

-~ 64-bit value

|predicted value|

Fig. 1. Basic structure of a context-based load-value predictor.

already contains the value that the load is about to
read.

o The last value predictability (Iv) shows how often a
load fetches a value that is identical to the previous
value fetched by the same load instruction.

e The stride 2-delta predictability (st2d) reflects how
frequently a load instruction loads a value that is
identical to the last value plus a stride. The stride,
which is the difference between the last and the
second to last loaded value, is only updated if a new
stride is encountered at least twice in a row.

e The last four value predictability (14v) indicates how
often a value is loaded that is identical to any one of
the last four values fetched by the same load
instruction.

e The finite context method predictability (fcm) shows
how frequently a value is loaded that is identical to
the value that followed the same sequence of last
four values when it was last encountered by any
load instruction in the program.

Note that the results for the finite context method are
implementation specific, that is, they depend on the hash
function and the table size. We used a direct-mapped, tag-
less, second-level table with 2,048 entries and a select-fold-
shift-xor hash function to obtain these results (see
Section 2.5). The finite context method is able to deliver
significantly higher predictabilities with much larger table
sizes [24], but we opted to show results for realistic
predictor sizes.

Depending on the program and the type of locality,
the load-value locality varies between nine and about
83 percent.

Because they retain information about recently loaded
values, all context-based load-value predictors share the
same general structure. In essence, they are caches that store
previously seen values and possibly other data. Each line in
the predictor retains information about one load instruction.
However, it is possible that more than one load is mapped
to the same line in the predictor. Fig. 1 shows the
organization of a generic load-value predictor. Because
our study is based on a 64-bit microprocessor, all predictors
predict 64-bit values.

Context-based load-value predictors operate as follows:
The predictions are computed out of the stored information.
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The function that computes the predicted value can be as
simple as the identity function (last value predictor) or as
complex as accessing a lookup table (finite context method
predictor). At any rate, making a prediction must be faster
than accessing the conventional memory since the predicted
value becomes obsolete as soon as the true load value is
available.

Whenever the memory system satisfies a load request,
the corresponding predictor line is updated with the true
load value and maybe other information. Approaches in
which not every load updates the predictor are possible but
are beyond the scope of this study. All load instructions,
whether they are predicted or not, access the memory and
therefore update the predictor. Note that the benefit of load-
value prediction does not come from removing load
instructions but from breaking dependencies and hiding
latencies, that is, from taking the load instructions out of the
critical path.

All the predictors used in this study are direct mapped,
meaning the n least significant bits of a load instruction’s
PC (that are not always zero) are used as an index into the
predictor to select one of the 2" predictor lines. Note that
load-value predictors are indexed using the PC of the load
instruction as opposed to conventional caches which use the
effective address. Hence, the index for a predictor with 2"
lines is computed as follows:

Z.ndem(P)Cyload_instr) = (Pcload_instr > 2)%211

This is one of the simplest and fastest meaningful hash
functions. Shifting right by two bit positions eliminates the
two least significant bits that are always zero because
instructions are word-aligned in the processor we use.
Utilizing a more complex hash function may result in less
aliasing but will most likely increase the critical-path length.
Since direct-mapping results in only a little aliasing, even
with moderate predictor sizes, this simple but effective hash
function is used throughout the literature [10], [11], [16],
[17], [25], [28].

In cache terminology, direct mapping implies the
presence of tags. However, predictors do not have to be
correct all the time and tags are therefore not mandatory.
Due to the small amount of aliasing, load-value predictors
often only incorporate partial tags or no tags at all to reduce
their size. If two or more load instructions alias (i.e., they
have the same index), they are forced to share a line in the
predictor and may evict each other’s information.

The generic load-value predictor from Fig. 1 can be
tailored to exploit different kinds of load-value locality by
selecting the kind of information that is retained and the
computation that is performed with this information. The
following sections describe possible implementations of five
basic load-value predictors that exploit last value, register
value, stride 2-delta, finite context method, and last four
value locality. The last section discusses confidence estima-
tors, which represent an important additional component in
hardware-based load-value predictors.

2.1 Last Value Predictor

The last value predictor [10], [17] always predicts that a load
instruction will load the same value that it did the previous

time it was executed. Hence, the only information that
needs to be stored in the predictor is the most recently
loaded value. Predictions retrieve this value and updates
store the true load value in the predictor to make it available
for the next prediction.

The last value predictor’s operation can formally be
described as follows, where the numeric subscripts indicate
the size in number of bits, “1d” refers to the load instruction
being predicted or updated, “p_value” is the predicted
value, and “u_value” is the update value. The first line,
which describes the predictor, lists the fields making up a
predictor line inside the curly brackets, followed by the
name of the predictor and the number of predictor lines. In
this case, the LV predictor’s lines contain a single field,
called “last_value,” that is 64 bits wide and there are 2" such
lines, where n is a positive integer.

predictor : {last_valuegs } LV[2"]

prediction : p_value = LV[index(PCy)].last_value
update : LV[index(PCyy)].last_value = u_value

The last value predictor is only able to predict sequences
of repeating values (e.g., 3, 3, 3, 3), which occur surprisingly
frequently, as Table 1 indicates. Such sequences stem from
load instructions that repeatedly load the same runtime
constant such as the starting address of a data structure or a
floating-point constant.

2.2 Register Value Predictor

The register value predictor [27] is even simpler than the last
value predictor. It always predicts that the target register of
the load instruction (the register that is about to receive the
loaded value) already contains the correct load value, i.e.,
that the load instruction is an NOP. No values have to be
stored in the predictor. However, in Section 2.6, we will see
that this predictor still needs to store some information to
work well.

predictor : {} Reg[2"]

prediction : p_value = CPU.register[target(1d)]
update : no operation

Which sequences of load values the register value
predictor can predict depends on the register allocator.
Since none of our benchmark programs were compiled with
load-value prediction in mind, any predictable sequences
are artifacts of the code generation process and do not
necessarily have a guiding principle behind them. It is,
however, possible to significantly improve the register
value predictability by modifying the register allocator [27].
Compiler support is also able to boost other types of value
locality [2].

2.3 Stride 2-Delta Predictor

The stride predictor [10] computes the predicted value and
is therefore able to predict never-before-seen values. In its
conventional form, this predictor stores the last value along
with the difference (called the stride) between the last and
the second to last loaded value. The stride is added to the
last value when a prediction is made to form the predicted
value. Once the true load value is available, the predictor’s
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stride field is updated to reflect the difference between the
last value (which is stored in the predictor) and the true
load value. Then, the last value in the predictor is
overwritten with the true load value. Since about 98 percent
of all observed strides fall within the range of —128 to 127
[23], eight bits per predictor line are sufficient to capture
almost all strides.

Unfortunately, the normal stride predictor makes two
mispredictions at every transition from one predictable
sequence to another. This is a problem in practice because
programs fetch a surprisingly large number of short
sequences of repeating values [3].

To remedy this shortcoming, a more sophisticated
version of this predictor has been proposed called the stride
2-delta predictor [24]. The 2-delta refers to the fact that this
predictor retains two strides. The first stride is identical to
the one found in the conventional stride predictor. The
second stride is only updated if the same stride has been
seen at least twice in a row. The second stride is used for
making predictions.

Of course, the second stride field also only needs to be eight
bits wide. In the pseudocode describing the stride 2-delta
predictor below, the function Isby_ 7(x) extracts the eight least
significant bits of x. Unless otherwise noted, all stride-
predictor results in this study refer to the stride 2-delta
predictor.

predictor : {last_valuegy, stridelg, stride2s} St2d[2"]

prediction : p_value = St2d[index(PCyq)].
last_value 4+ St2d[index(PCyq)].stride2
: temp = Isby_7(u_value — St2d[indez(PCy)].
last_value);
if (temp == St2d[index(PCyq)].stridel)
St2d[index(PCq)].stride2 = temp;
St2d[index(PCyq)].stridel = temp;
St2d[index(PCyq)].last_value = u_value

update

The stride 2-delta predictor can predict sequences of
repeating values that have a stride of zero. In addition, it
can predict sequences that exhibit genuine stride behavior
(e.g., -4, -2, 0, 2, 4). Such sequences are, however, not very
frequent [10], [24] because register allocation assigns
induction variables to registers, but they do occur, for
example, when a program uses global variables as counters.

2.4 Last Four Value Predictor

The last four value predictor [6], [16] is similar to the last
value predictor except every predictor line retains the four
most recently loaded values instead of only the most recent
value. Storing more than just the last value has been shown
to improve performance even when scaling predictors to
the same overall size [6]. The last four value predictor
essentially consists of four independent last value predic-
tors operating in parallel and a metapredictor that selects
which of the four predictions to use. The operation of the
metapredictor and the corresponding select function (see
below) are discussed in Section 2.6.

predictor : {value_lgy, value_24, value_3¢44, value_4g4 } LAV[2"]
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prediction : p_value = select(L4V[index(PCy)].value_1,
L4V[index(PCiq)].value_2,
L4V[index(PCq)].value_3,
L4V[index(PCyq)].value_4)
update : L4V[index(PCyq)].value 4 =
L4Viindex(PCiq)].value_3;
L4V[index(PCyq)].value_3 =
L4V]index(PCq)]-value_2;
L4V[index(PCy)].value_2 =
L4V[index(PCyq)].value_1;
L4Viindex(PCq)].value_1 = u_value

In addition to the sequences that the last value predictor
can predict, the last four value predictor is able to predict
sequences of alternating values (e.g., -1, 0, -1, 0, -1) or, more
generally, any repeating pattern of four or fewer values
(eg,1,2,3,1,2, 3,1, 2, 3). Such sequences occur more
frequently than true stride behavior [6], [16]. In particular,
alternating sequences of values arise relatively often when
variables toggle between two values.

2.5 Finite Context Method Predictor

The most sophisticated nonhybrid predictor we investigate
is the finite context method predictor [24], [25]. It retains the
last four loaded values in every predictor line. However,
since these values are only used to compute an index into
the predictor’s second level (a lookup table), they do not
have to be stored in their full length but can be stored in a
more compact, preprocessed form. The second level, a
2,048-entry cache, stores the values that follow every seen
sequence of last four values (modulo the table size). Since
the second level is shared, load instructions can commu-
nicate information to one another in this predictor. Hence,
after fetching an arbitrary sequence of load values, any load
instruction fetching the same sequence can be predicted
correctly as long as the predictor entries have not been
overwritten. For this study, we fix the size of the direct
mapped, tagless second-level table of the finite context
method predictor at 2,048 entries. The index into the second
level (the line) is computed as follows:

hash(val) = valg. 56 @ valss..4g © valyz. 40 © valzg_ 30 ©
valsy.o4 @ valys 16 @ valis. s @ valy_ o
index2(vall, val2, val3, vald) = hash(vall) & hash(val2)*2
@ hash(val3)*4 ® hash(vald)*8
line = index2(value_1, value_2, value_3, value_4)

The symbol “®” in the above formulae represents the
logical exclusive-or function. The index2 function is similar
to the select-fold-shift-xor hash-functions used in the
current literature for the finite context method predictor
[21], [23], [25]. It utilizes all 64 bits of the four load values
for computing the index. Furthermore, the values are
shifted relative to one another so that sequences of constant
values do not cancel each other out (i.e., always yield an
index of zero) when they are exclusively-ored.

Another benefit of the above function is that part of it
(i.e., hash(val)) can be evaluated before the information is
inserted into the first predictor level. Since hash(val) always
yields an eight-bit result, each line in the first level of the
predictor only needs to store four eight-bit values instead of
four 64-bit values, reducing the size of the finite context
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method predictor substantially. The following pseudocode
describes the resulting predictor. The symbol “<” indicates
composition.

levell : {hash_1s, hash_2g, hash_3g, hash 45} FCM1[2"]
level2 : {valuegs } FCM2[2048]

predictor : levelllevel2
prediction : line = FCM1[index(PCyq)].hash_1 &
FCM1[index(PCjq)].hash_2*2 &
FCM1[index(PCy)].hash_3*4 @
J

FCM1[index(PCy)].hash_4*8;
p_value = FCM2[line].value

line = FCM1[index(PCyq)].-hash_1 &
FCM1[index(PCyq)].hash_2*2 &
FCM1[index(PCy)].hash_3*4 @
FCMl1[index(PCq)].hash_4*8;
FCM2[line].value = u_value;
FCM1[index(PCyq)].hash 4 =
FCM1[index(PCyq)].hash_3;
FCM1[index(PCjq)].hash_3 =
FCM1[index(PCiq)].hash_2;
FCMI1[index(PCyq)].hash 2 =
FCM1[index(PCyq)].hash_1;
FCM1[index(PCyq)].hash_1 = hash(u_value)

Finite context method predictors can predict long,
reoccurring sequences of arbitrary values (e.g., 3,7, 4, 9, 2,
. 3,7,4,9, 2). These sequences arise, for instance, during
the repeated traversal of dynamic data structures. Note that
FCM predictors can also predict constant and alternating
sequences and sequences exhibiting stride behavior as long
as the sequences repeat and their lengths do not exceed the
size of the predictor’s second-level table [24].

update :

2.6 Confidence Estimation

A substantial fraction of the executed load instructions
cannot be correctly predicted with the currently known
prediction approaches. Attempting to predict these loads
will inevitably result in mispredictions. Because recovering
from mispredictions takes time, a high misprediction rate
can incur a slowdown that more than eradicates the
speedup from correct predictions. Hence, it is possible for
a load-value predictor to decelerate the processor instead of
speeding it up.

To keep the number of mispredictions at a minimum
while leaving the correct predictions intact, almost all load-
value predictors incorporate some form of confidence
estimator to identify predictions that are likely to be
incorrect so that they can be inhibited [1], [8], [17], [21],
[23], [25], [27], [28]. Inhibiting such predictions reduces the
number of mispredictions and the associated recovery cost
and, hence, improves the predictor’s overall performance.

One way of estimating the likelihood of a correct
prediction is to look for discernable patterns in the
predictability of a load instruction. The intuition is that
the recent behavior often indicates what will happen next.
For example, if a load was predictable every other time it
was executed in the recent past, there is a good chance that
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the outcome of the next prediction will be the same as the

outcome of the second to last prediction.
The SAg confidence estimator exploits such predictabil-

ity patterns [3]. It stores the predictability history of each
load in a bit-pattern in which the nth bit reflects the
predictability of the nth to last execution. Usually, a one
encodes a predictable value and a zero an unpredictable
value.

Whenever the memory returns a load value, this value is
compared with the predicted value (even if the prediction
was not used) and the outcome of this comparison is shifted
into the history, whereby the oldest bit is lost.

In order to use such histories as a measure of confidence,
it is essential to know which ones are frequently followed
by a correct prediction. The SAg confidence estimator uses
saturating counters to record the number of predictable
values that follow each possible history pattern. Predictions
are only allowed if the counter value associated with the
current prediction history is above a preset threshold. Thus,
the counters dynamically assign a confidence to each
history and continuously adjust which patterns should
trigger a prediction and which ones should not.

The following pseudocode describes the operation of the
SAg confidence estimator, which is named after the
structurally identical SAg branch predictor [29]. m denotes
the number of history bits in each line and x represents the
number of bits in each saturating counter.

levell : {history,, } SAgl[2"]
level2 : {county} SAg2[2™]
conf_estim : levell < level2
(SAg2[SAgl[index(PCiq)].history].
count >= threshold)
SAg2[SAgl[index(PCy)].history].count =
(predicted_value == true_value) ?
min(top — 1, SAg2[SAgl[index(PCy)].
history].count + 1) :
max(0, SAg2[SAgl[index(PCy)].
history].count-penalty);
SAgl[index(PCy)].history =
LSBy. m-1(SAglindex(PCyq)].history < 1)|
(predicted_value == true_value) 2 1: 0

prediction : predict =

update :

The threshold, top, penalty, and m values are parameters of
the SAg confidence estimator. The best setting for these
parameters depends with varying degrees on the load-value

predictor, the programs, and the recovery mechanism used.
Note that the first level of the SAg confidence estimator is

normally merged with the first level of the load-value
predictor. Therefore, load-value predictors with confidence
estimators have an additional field in each line, which is
why the Reg predictor is not completely storageless.

We can now explain the select function used in the last
four value predictor (Section 2.4). It simply picks the
component that reports the highest confidence, prioritizing
younger values in case of a tie.
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TABLE 2
Functional Unit and Memory Latencies (In Cycles)
Operation Latency

integer multiply 8-14
conditional move 2
other int and logical 1
floating point multiply 4
floating point divide 16
other floating point 4

L1 load-to-use 1

L2 load-to-use 12
memory load-to-use 80

3 EVALUATION METHODS

All measurements pertaining to this study are based on
the Alpha AXP architecture [9]. The performance of the
various load-value predictors is evaluated using the AINT
simulator [19] with a cycle-accurate, superscalar back-end
that runs native Alpha binaries. The simulator is config-
ured to emulate a high-performance microprocessor
similar to the Alpha 21264 [14]. It accurately models the
processor’s internal timing behavior, resource constraints,
and speculative execution, as well as the memory
hierarchy and latencies. Bus-contention is not modeled.

The simulated CPU is four-way superscalar, issues
instructions out-of-order from a 128-entry instruction
window, has a 32-entry load/store buffer, four integer
and two floating-point units, a 64KB two-way set associa-
tive L1 instruction-cache, a 64KB two-way set associative L1
data-cache, a 4MB unified direct-mapped L2 cache, a 4,096-
entry branch target buffer (BTB), and a 2,048-line hybrid
gshare-bimodal branch predictor. The caches have a block
size of 32 bytes. Table 2 summarizes the modeled latencies.

The six functional units are fully pipelined and each unit
can execute all operations in its class. Operating system
calls are executed but not simulated, which should not be a
problem since the benchmark programs we use perform
few operating system calls [26]. Loads can only execute
when all prior store addresses are known. Up to four load
instructions are able to issue per cycle. This CPU represents
the baseline processor. All reported speedups are relative to
this CPU, which does not contain a load-value predictor.

In the CPUs that include a load-value predictor,
predictions are initiated in the rename stage of the
instruction pipeline and have a two-cycle latency. Because
of the two levels of the SAg confidence estimator, all
investigated predictors are pipelined over two stages. To
support up to four predictor accesses per cycle, the
predictors are divided into four independent banks that
operate in parallel [3]. Each bank represents an independent
predictor one quarter the total size. Since the modeled CPU
fetches naturally aligned four-tuples of instructions, it is not
possible to fetch two load instructions during the same
cycle that go to the same predictor bank. Only one access
per bank is allowed per cycle. Updates have a lower priority
than predictions and are queued in an eight-entry FIFO
buffer (one per bank). When the buffer is full, further
updates are dropped, which rarely happens [3].
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The predictors are updated as soon as the true load value
becomes available (i.e.,, when the verification memory
access completes), predictions do not speculatively update
the predictor’s state, out-of-date predictions are made as
long as there are pending updates (for the same predictor
line), and out-of-order and wrong-path updates of the
predictor are accurately modeled in the simulator. Condi-
tional branches whose outcome depends on a predicted
load value may select the wrong path or be mispredicted
due to a load-value misprediction. All predictor updates are
final.

We study the performance of load-value predictors in the
presence of two different misprediction-recovery mechan-
isms. The simpler but less powerful refetch mechanism is the
one used for recovering from branch mispredictions [10].
When a misprediction is detected in this scheme, all the
instructions that follow the mispredicted instruction are
purged from the instruction window and the processor
state is reset to the point of the last nonspeculative
instruction. The CPU then continues processing instructions
by fetching the next instruction, that is, the instruction that
immediately follows the mispredicted load. Refetch recov-
ery incurs a cycle-penalty because it takes time to purge
instructions from the instruction window, to restore the
CPU'’s state, to refetch instructions, and to drain functional
units.

Unfortunately, in this scheme, instructions whose results
are correct are sometimes purged. For example, if instruc-
tion X is independent of an earlier load instruction L, an
out-of-order processor may execute X before the load has
completed. Because X is independent of L, its result does
not depend on the load value and will therefore be correct.
Consequently, purging X is not necessary even if L is
mispredicted.

In fact, mispredicting L does not even invalidate the
instructions that do depend on L (up to the first conditional
branch instruction whose target depends on L). In the worst
case, these instructions have executed with an incorrect
input value. If the affected instructions remain in the
instruction window, it suffices to reexecute them with the
correct input value [16]. Hence, after a misprediction, the
directly and indirectly dependent instructions only need to
be issued again. The second (or subsequent) execution will
produce the correct result because the input operands are
now correct. We refer to this misprediction recovery
mechanism as reexecute recovery.

While the reexecute mechanism avoids the unnecessary
purging of independent instructions and the overhead of
refetching already fetched instructions, it still incurs a
penalty for identifying the dependent instructions, chan-
ging their state, reexecuting them, and draining functional
units. However, the penalty is considerably smaller than the
refetch penalty.

3.1 Benchmarks

We use the eight SPECint95 programs [26] as our bench-
mark suite. These programs are well-understood, nonsyn-
thetic, and compute-intensive, which is ideal for processor
performance evaluations. The SPECint95 programs are
written in C and perform the following tasks:
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TABLE 3
Information about the SPECint95 Benchmark Suite

Information about the SPECint95 Benchmark Suite

static dynamic skipped simulated base |load miss-rate
program | insts loads %lds insts loads %lds | instrs instrs loads %lds | IPC | %L1 %lL2
compress| 22k 4k (17.9)]60,156 M 10,537 M (17.5)] 56G|300.0M 53.5M (17.8)]1.338|11.72 6.17
gce 337k 73k (21.6) 334 M 80M (23.9)] 00G|334.1M 79.7M (23.9)]1.510| 2.39 6.44
go 81k 16k (20.1)| 35971 M 8,764M (244)] 70G|3000M 721 M (24.0)|1.414] 1.62 1572
ijpeg 70k 14k (19.8)1 41,579 M 7,141 M (172)] 2.0G|300.0M 49.5M (16.5)]1.498 | 2.31 65.20
li 37k 7k (182)]|66,613M 17,792M (26.7)] 5.0G|300.0M 864 M (28.8)]1.911| 4.13 0.67
m88ksim | 51k 9k (17.4)]82,810M 14,849M (17.9)| 20G | 3000M 621 M (20.7)]1.258| 0.13 11.21
perl 105k 21k (20.3)]119,934M 6,207M (31.1 1.0G|3000M 935M (31.2)]1.567 | 0.00 46.87
vortex 161k 32k (20.0)]195791M 22471 M (23.5)] 7.0G|300.0M 71.0M (23.7)]2.922| 2.16 11.99
average |108k 22k (20.4)]50,399M 10,980M (21.8)] 3.7G | 304.3M 71.0M (23.3)|1.677| 3.06 20.53

e compress: compresses and decompresses a file in

memory.

gecc: C compiler that generates SPARC instructions.

go: artificial intelligence, plays the game of Go.

ijpeg: graphic compression and decompression.

li: Lisp interpreter.

m88ksim: Motorola 88000 chip simulator, runs a test

program.

e perl: manipulates strings (anagrams) and prime
numbers in Perl.

e vortex: an object-oriented database program.

Except for gcc, we use the reference inputs for all
programs. Only the varasm input is used with gcc because
our simulation infrastructure only supports one input per
program. To avoid possible side effects that may be
attributed to poor code quality, the peak versions of the
programs are utilized which were compiled with DEC
GEM-CC on a DEC Alpha 21164 using the highest
optimization level “-migrate -O5 -ifo.” The optimizations
include common subexpression elimination, split-lifetime
analysis, code scheduling, NOP insertion, code motion and
replication, loop unrolling, software pipelining, local and
global inlining, interfile optimizations, etc. In addition, the
binaries are statically linked to combine the global seg-
ments, which reduces the number of runtime constants that
are loaded.

The few floating-point load instructions contained in the
binaries are also predicted and loads to the zero-registers
(R31 and F31) as well as load-address instructions (LDA
and LDAH) are ignored since they do not read from the
memory.

Table 3 summarizes relevant information about the
SPECint95 programs. It shows the static number of
instructions and load instructions contained in the binaries,
the number of instructions and load instructions executed
during complete runs, the number of skipped instructions
before the detailed simulations are started (in billions), the
number of simulated (committed) instructions, and the
instructions per cycle (IPC) and the cache read miss-rates of
the baseline processor on the simulated segments. The
numbers in parentheses indicate the percentage of instruc-
tions that are loads. The static counts are in thousands and

the dynamic counts in millions. The averages are arithmetic
means.

Table 3 shows that all eight binaries contain several
thousand load instructions. Despite the high optimization
level, the percentage of load instructions is quite high.
About every fifth static instruction and every fifth executed
instruction is a load.

Each benchmark program is executed for about 300 mil-
lion instructions on the cycle-accurate simulator to keep the
simulation time reasonable. Before the detailed measure-
ments commence, the simulator skips over the initialization
code of each program. Doing so is important when only a
fraction of a program’s execution can be simulated because
the initialization is not usually representative of the general
program behavior [21]. No instructions are skipped with gcc
and it is executed for 334 million instructions since this
amounts to the complete compilation of the varasm input-
file. Each simulated segment contains more than 49 million
executed load instructions, which should be sufficient to
render any warm-up effects in the load-value predictors
negligible.

The fast-forward points were carefully hand-selected to
make the simulated segments as representative of the whole
programs as possible. We chose a segment length of 300
million instructions since this appears to be enough to
capture the “average” program behavior. Longer segments
do not yield significantly different results. Care was taken
to match the percentage of executed instructions that are
loads and, particularly, the predictability of the eight
segments with the respective numbers for the whole
program executions [3]. Only for /i and m88ksim was the
search for a representative segment was not very successful.
Fortunately, Ili’s segment exhibits too low a predictability
and m88ksim’s too high a predictability, making the average
over the eight programs very close to the average over the
complete execution of the entire benchmark suite.

With the exception of compress, the benchmark programs
do not have high L1 data-cache load miss-rates, making it
hard for a load-value predictor to be effective. Some of the
L2 load miss-rates are, on the other hand, quite large.
However, since the corresponding number of cache
accesses is very small (not shown), the large L2 miss-rates
do not have a significant impact on the performance.



TABLE 4
SAg Configurations Yielding
the Highest Harmonic-Mean Speedup

SAg confidence estimator
hist bits cntr top threshold penalty
FCM[ 10 16 15 11
S L4V 10 16 15 8
o Lv 10 16 13 5
® Reg 10 16 15 7
Sta2d 10 16 12 5
o FCM 10 8 6 3
3 Lav 10 8 7 3
2 LV 10 8 5 2
& Reg | 10 8 4 1
= St2d 10 8 5 1
4 RESULTS

To determine the performance of the five basic predictors
from Section 2, we outfitted them with SAg confidence
estimators (Section 2.6) and measured how much they
speed up the simulated CPU (Section 3). Note that we use
the harmonic-mean speedup over the eight SPECint95
programs as the performance metric throughout this paper.
For the sake of brevity, we cannot show the performance of
individual programs. However, it should be noted that the
speedup of a single program can be quite different from the
mean over the benchmark suite [3].

Based on previous studies [3], [5], we decided to use
10-bit histories in the confidence estimators and a top value
for the saturating counters of 16 for refetch recovery and
eight for reexecute. A global parameter-space search was
performed to find the optimal threshold and penalty values
for each predictor. Table 4 lists the resulting configurations.

Note that the penalties yielding the best performance
with a reexecute misprediction recovery mechanism are
lower than those for refetch, even when accounting for the
wider refetch counters. This is a direct reflection of the
lower misprediction penalty with reexecute.
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Fig. 2 shows the speedups delivered by the five
predictors for both recovery mechanisms. Each predictor
comprises 2,048 lines divided into four banks. The
FCM predictor has an additional 2,048 lines in the second
level, which is also divided into four banks. Note that the
five predictors differ considerably in their sizes.

As expected, all five predictors perform better with
reexecute than with refetch. The difference in speedup is
very small for the Reg predictor because it exhibits the most
regular predictability patterns of the five predictors, which
results in the most accurate confidence estimations and,
therefore, the smallest number of mispredictions.

The FCM predictor exhibits the largest difference
between refetch and reexecute. This predictor makes the
most mispredictions with refetch, resulting in a substantial
recovery cost that keeps the speedup low.

4.1 Metric Anomalies

In measuring the performance of the predictors, we noticed
several anomalies that suggest that the prediction rate does
not always characterize a predictor’s quality. While some of
the five predictors predict up to 45 percent of the
dynamically executed loads correctly, the Reg predictor
only correctly predicts between 11 and 15 percent of all the
loads. In spite of this very low prediction rate, it yields a
respectable speedup. One might correctly speculate that the
loads the Reg predictor is able to predict are somehow more
important than the loads the other four basic predictors
predict. The loads predicted by Reg have a substantially
longer average latency than the ones predicted by the other
predictors, as the shaded columns in Table 5 illustrate. For
example, the loads predicted by the Reg predictor have an
average latency of over 20 cycles both with refetch and
reexecute recovery, whereas the St2d’s loads only have a
latency of 12.5 cycles for refetch and about 15 for reexecute.

Evidently, the number of correctly predicted loads does
not adequately predict the delivered performance. Rather,
the latency of the predicted loads needs to be taken into
account.

16
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M re-execute

o 1.9 1.8 116
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Fig. 2. Refetch and reexecute speedup of five predictors.
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TABLE 5
Latency and Cycles to First Usage
of the Predicted Load Values

re-fetch re-execute
latency usage | latency usage

FCM 14.6 3.8 16.6 4.0
L4V 14.6 4.9 16.8 5.7
LV 15.2 5.0 17.2 57
Reg 20.4 3.9 20.2 4.9
Stad 12.7 3.0 15.4 3.2
average| 15.5 4.1 17.2 4.7

Table 6 demonstrates a more striking example of a metric
anomaly. It shows that, while the FCM makes fewer correct
predictions, more incorrect predictions, attempts fewer
predictions, and has a lower prediction rate and accuracy
than LV with reexecute, the FCM still outperforms the
LV speedup-wise. To ensure that this result is not an artifact
of the averaging of the speedups, we show the harmonic,
geometric, and arithmetic mean speedup as well as the
average IPC (instructions per cycle) improvement over the
eight SPECint95 programs. All four ways of averaging the
measured speedups yield the same result, i.e.,, FCM
performs better than LV. Since even the average load
latency (Table 5) is in favor of the LV, there has to be
another factor that influences the performance.

The nonshaded columns of Table 5 offer a possible
explanation. The average time to the first usage of a
predicted load value is much lower for the FCM (4.0 cycles)
than it is for the LV (5.7 cycles), meaning that the FCM’s
predictions are needed sooner and are therefore more
important than the LV’s. Hence, it looks like the time to the
first use of a predicted load value also needs to be
accounted for to properly establish a load-value predictor’s
performance.

4.2 Hybrid Performance

Combining multiple load-value predictors does not always
result in a predictor that can predict more load instructions
or make more accurate predictions. For example, the stride
2-delta predictor can make last-value predictions. Conse-
quently, combining it with a last-value predictor will
probably not yield a hybrid that is more effective than the
stride 2-delta predictor by itself.

Another reason why a combined predictor may not
perform better than its components is the selector, which
has to choose one of the multiple component predictors for
making a prediction and therefore represents a new source
of errors. We use the confidence estimators to guide the
selection process by selecting the component with the
highest confidence [21], [23]. (Note that the selected

component is only allowed to make a prediction if its
confidence is above the preset threshold.)

The components in the hybrid predictors discussed in
this section are prioritized to resolve selector ties. If only
one component reports the highest confidence, then that
component is selected, regardless of its priority. Since
changing the priority among the components of a hybrid
does not appear to affect the performance considerably [3],
we only investigate hybrids in which the components are
prioritized in the following, arbitrary order (from high
priority to low priority): Reg, LV, St2d, L4V, FCM.

To determine which predictors complement each other
well and yield good hybrids, we tested every possible
combination between a register value, last value, stride
2-delta, last four value, and finite context method
predictor. However, because the last four value predictor
is a strict superset of the last value predictor (assuming
the same number of lines and the same CE configura-
tion), we exclude hybrid combinations that include both
an LV and an L4V predictor. The performance of the
excluded hybrids is identical to the performance of the
same predictor without the (redundant) LV component.

Since our goal is to study which predictors complement
each other well, all components comprise 2,048 lines
regardless of the resulting hybrid’s overall size. We chose
this height because it results in reasonable predictor sizes
and performance. While the resulting size of some of the
hybrids is rather large, they can frequently be made smaller
by sharing state between their components [3], [4], [20].
Nevertheless, due to the varying predictor sizes, care must
be taken when using the performance numbers shown in
this section for interhybrid comparisons.

Fig. 3 shows the performance of all hybrid combinations
with a refetch misprediction recovery mechanism. The
predictors are sorted by increasing performance. The
hybrid’s names are character combinations in which each
letter or digit represents one component: r stands for
register value, [ for last value, s for stride 2-delta, 4 for last
four value, and f for finite context method predictor.

It is important to optimize the threshold and penalty
for each predictor and recovery mechanism individually
[21]. We did this for the five basic predictors, but it is
not practical to separately optimize the two parameters
for every hybrid. Instead, the threshold and penalty
values that yield the highest average speedup over the
included components are used as an approximation.
They are computed as follows: We evaluated the
speedup of the five basic predictors for a large number
of threshold and penalty pairs and recorded the results
in speedup maps [3]. A speedup map is a matrix with
different thresholds in one dimension and different
penalties in the other dimension. The matrix elements

TABLE 6
Various Metrics Showing Anomaly

% correct % no % wrong | prediction accuracy mean speedup over baseline (%)

predictions predictions predictions| rate (%) (%) harmonic geometric arithmetric IPC
FCM 34.71 61.34 3.95 38.66 89.78 11.88 14.89 18.55 14.60
LV 40.28 57.26 2.46 42.74 94.24 11.63 13.36 15.59 12.47




IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

Speedup over Baseline (%)

Predictor Combination

Fig. 3. Hybrid performance with refetch recovery.

are the speedups measured for the threshold and penalty
that intersect at that element. We then computed an
average map by forming the arithmetic mean of the
entries in the individual maps of each component in a
given hybrid (e.g., the register value predictor’s map and
the last value predictor’'s map for the Reg+ LV hybrid).
The highest speedup in the averaged map determined
the threshold and penalty value we used for each
hybrid. Note that this approach does not always yield
the best performance but is usually close. For example,
the St2d + FCM hybrid yields a speedup of 9.99 percent
with refetch and 13.09 percent with reexecute when
using the parameters from the averaged speedup map,
whereas truly optimizing the threshold and penalty
results in a speedup of 10.01 percent for refetch and
13.94 percent for reexecute. Table 7 shows the con-
fidence-estimator configurations derived from the aver-
aged speedup maps. All histories are 10 bits long and
the counters’ top values are fixed at 16 for refetch and
eight for reexecute.

Hybrids with more components tend to yield a higher
speedup than the ones with fewer components. However,
there are many notable exceptions. For instance, the
speedup of the best performing predictor with refetch
(Reg + St2d 4+ L4V) decreases when adding an FCM com-
ponent to it. Likewise, Reg + L4V, Reg + St2d, St2d 4+ L4V,
Reg + LV, Reg + LV + St2d, L4V, and LV + St2d all suffer
when an FCM component is included. Only the Reg, the

LV, and the St2d predictors benefit from an FCM. This is
clearly a result of the poor performance of the SAg
confidence estimator in connection with the FCM predictor.
It is possible that hybridizing an FCM with a different
confidence estimator would result in better performance.
Such an investigation is left for future work.

Aside from the FCM component, there also exist other
irregularities in the refetch speedups. For example, the
Reg + St2d predictor outperforms the Reg+ LV + St2d
predictor. The Reg+ L4V +FCM, the Reg+ LV +FCM,
and the Reg + LV predictors do not benefit from having an
St2d component added to them. Furthermore, the speedups
of the Reg+ St2d + FCM and the St2d + FCM predictors
decrease when adding an L4V component. The reason for
this counterintuitive behavior is negative interference.

Because adding a component to a hybrid makes the task
of the selector harder (there are more choices), it can happen
that the added predictability provided by the new
component is unable to offset the increased selector-related
losses. When this situation occurs, the hybrid’s components
interfere negatively with one another and lower the overall
performance. In previous papers, we provided performance
results for perfect selectors which show that the selector-
related losses can be substantial [3], [4], [6].

Note that some of the most effective hybrids are small and
have only two components (Reg + LV and Reg + St2d). The
remaining three of the five best combinations are significantly
larger because they include an L4V component. However,

TABLE 7
The Confidence-Estimator Parameters of the Hybrid Predictors
4 4 f I If Is Isf r r4 r4f f 1l rf rls risf rs rs4 rs4f rsf s s4 s4f sf
ra-fatah thresholdf 15 15 15 13 156 12 14 15 15 15 15 13 15 14 156 11 15 15 15 12 15 15 15
penalty } 8 11 11 5 9 5 6 7 8 10 10 8 9 5 7 7 7 7 7 5 7 7 7
re-exec reshodl 7 7 "6 5 6 5 5 4 7 6 6 6 5 5 5 5 6 5 5 5 6 6 5
penalty fy 3 3 3 2 3 1+ 2 1 3 3 3 1 2 2 2 1 1 2 2 1 1 2 2
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Fig. 4. Hybrid performance with reexecute recovery.

previous work by the authors illustrates how the size of the
Reg + St + L4V predictor can be reduced to only slightly
more than that of the Reg + St2d hybrid essentially without
loss of performance [4].

Eleven of the 12 best-performing hybrids include the
small register value predictor, indicating that the Reg
predictor is a very important component in a hybrid. This
result is particularly surprising because the Reg predictor
by itself performs rather poorly. Note that no profiling was
used to improve the register allocation, which can sig-
nificantly enhance the performance of this predictor [27],
yet the benefit from including a register value predictor is
already substantial.

Fig. 4 shows the performance of all hybrid combinations
with a reexecute misprediction recovery mechanism. Again,
the predictors are sorted by increasing performance.

Clearly, hybrid load-value predictors outperform even
the best single-component predictors. Nevertheless, it
should be noted that an oracle predictor that predicts every
executed load instruction correctly yields a harmonic-mean
speedup of 55.7 percent over SPECint95 (independent of the
misprediction-recovery method) [4]. The speedup of the
oracle is three times higher than the speedup of the best
reexecute hybrid we investigated and suggests significant
opportunity for novel prediction methods that exploit as of
yet undetected load-value locality. It is, however, unclear
how much of the remaining performance potential can be
realized because the fraction of truly unpredictable loads is
unknown.

There are also instances of negative interference with the
reexecute misprediction-recovery mechanism. Again, the
L4V component diminishes the performance when it is
included in the St2d + FCM predictor and the Reg + St2d
predictor suffers when an LV component is added. There is
one new case of negative interference that was not present
with refetch. Specifically, the St2d predictor outperforms
the LV + St2d hybrid with reexecute.

The negative interference related to the FCM component
does not exist with reexecute. In fact, seven of the eight best
performing hybrids include an FCM, six of them include an
St2d, and six include a Reg component. The best performing
refetch hybrid (Reg+ St2d + L4V) is among the four best
performing reexecute hybrids and is the only one of them
that does not include an FCM, which may be significant
because the FCM is a two-level predictor, whereas the other
four basic predictors comprise only one level (the SAg
confidence estimator, however, requires two levels).

When averaging the refetch and the reexecute speedups,
the Reg + St2d + L4V hybrid performs best by a consider-
able margin. The most effective two-component hybrid is
the Reg + L4V, which is closely followed by the Reg + St2d
hybrid. Finally, the best single-component predictor is L4V
trailed by the St2d predictor. Surprisingly, neither of the
four-component hybrids outperforms the best three-com-
ponent hybrid.

Table 8 and Table 9 show the results from Fig. 3 and
Fig. 4, respectively, in a different form. Both tables list the
hybrids and their speedups on the left. The numbers on the
right represent the speedup increase in percentage points
when adding the given components to the listed hybrids.

Evidently, both with refetch and reexecute, all the
hybrids that do not include a Reg component would benefit
considerably from having one. This is particularly surpris-
ing because the Reg predictor does not perform well in
isolation. Similarly, the Reg predictor benefits from any
other component. Only Reg, FCM, and the Reg+ FCM
hybrid benefit significantly from an LV component. These
three predictors also profit the most from having an St2d or
an L4V component added to them. As mentioned earlier,
most hybrids are slowed down by an FCM component with
refetch, whereas it is advantageous for most hybrids to have
an FCM with reexecute. Several predictors benefit from an
L4V component.
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TABLE 8
Refetch Speedup Benefit from Adding Components

Re-fetch Speedup Benefit of Adding Components to SAg Hybrids
hybrid speedup +r + +S +4 +f
r 7.4 5.1 5.3 6.0 1.2
| 10.2 2.2 0.7 1.6 0.2
rl 12.5 0.0 0.9 -0.4
S 10.5 211 0.4 2.0 0.2
rs 12.6 -0.1 0.9 -0.5
Is 10.9 5 1.6 1.2
rls 12.5 1.1 -0.4
4 11.8 55 0.0 0.7 -1.3
r4 13.4 0.0 0.2 -1.5
s4 12.6 1.0 0.0 -1.8
rs4 13.6 0.0 -1.7
f 6.6 2.0 3.9 4.2 4.0
rf 8.6 3.6 3.6 3.4
If 10.4 1.7/ 0.2 0.1
rlf 12.1 0.0 -0.2
sf 10.7 1.4 -0.1 0.0
rsf 12.1 0.0 -0.3
Isf 10.6 5 0.1
rlsf 12.1 -0.2
4f 10.5 1.4 0.0 0.2
raf 11.9 0.0 0.0
s4f 10.7 1.2 0.0
rs4f 11.9 0.0
TABLE 9

Reexecute Speedup Benefit from Adding Components

Re-execute Speedup Benefit of Adding Components to SAg Hybrids
hybrid speedup +r +l +S +4 +f
r 8.0 6.6 8.5 8.0 5.3
| 11.6 29 2.4 2.3 3.8
rl 14.5 1.1 1.4 2.1
S 14.2 2.2 -0.2 1.5 2.2
rs 16.4 -0.8 0.7 1.2
Is 14.0 1.6 {17 3.7
rls 15.6 1.6 2.2
4 13.9 2.1 0.0 1.8 1.
r4 16.0 0.0 1.2 1.0
s4 15.7 5 0.0 0.5
rs4 17.2 0.0 0.7
f 11.9 1.4 35 4.6 37
rf 13.3 3.3 4.4 3.7
If 15.4 1.2 il 0.2
rif 16.6 1.2 0.4
sf 16.4 7.2 0.0 -0.3
rsf 17.7 0.1 0.2
Isf 16.5 18] -0.3
rlsf 17.8 0.1
4f 15.6 5 0.0 0.6
r4f 17.0 0.0 0.9
s4f 16.2 1.8 0.0
rs4f 17.9 0.0

4.3 Performance Analysis

In an effort to determine why the register value predictor is
such a valuable addition to all hybrids while, for example,
the LV component generally is not, we investigated how
frequently each component in a hybrid can predict a load
value that none of the other components can, how often the
predictions from different components overlap, and how
often they interfere with one another. As pointed out in

Section 4.1, not every prediction is equally important (e.g.,
predicting a load that hits in the L1 data-cache is not as
important as predicting a load that has to go all the way to
main memory). Consequently, we study the speedup
contributions of the hybrids’” components rather than the
actual set of load instructions that each component can
predict to account for the dynamic importance of predicting
a specific load at a specific time.
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Fig. 5. Reexecute and refetch speedup contributions of two-component hybrids in percent.

4.3.1 Two-Component Hybrids

A hybrid component’s unique speedup contribution is the
part of the overall performance that is lost when the
component is removed. In other words, the component
must be present to deliver its unique performance con-
tribution. Conversely, in a two-component hybrid, the
shared contribution is common to both components, mean-
ing that either one is able to provide this contribution, but
the contribution does not increase if both components are
used together. Hence, only one of the two components is
necessary to deliver the shared performance contribution.

We compute the unique and shared speedup contribu-
tions in two-component hybrids as follows: Assuming that
predictor A yields a speedup of a, predictor B yields a
speedup of b, and the hybrid predictor A+ B yields a
speedup of ¢, then A contributes ¢ — b unique speedup, B
contributes ¢ — a unique speedup, and the shared contribu-
tion is a + b — c in the A + B hybrid.

We use Venn diagrams to visualize the different
contributions. For example, the top left Venn diagram in
Fig. 5 shows that with reexecute recovery, 20 percent of the
Reg + LV hybrid’s speedup stems uniquely from the Reg
component, 45.2 percent from the LV component, and the
shared contribution is 34.7 percent. (The true sum of the
three contributions is, of course, 100 percent, but sometimes
the rounding to one digit after the decimal point makes it

appear otherwise.) Fig. 5 shows the results for all two-
component hybrids (the L4V predictor is treated as a single
component).

The Reg+ LV hybrid exhibits the smallest shared
contribution of any two-component hybrid with both
misprediction recovery mechanisms. Clearly, the Reg
component complements the LV component well and vice
versa, implying that each of them is able to predict
important loads that the other cannot. In fact, Reg
complements any predictor well. The three predictors with
the smallest overlap all include a Reg component and are all
among the best performing refetch hybrids. The Reg + St2d
predictor, the most effective two-component hybrid, has the
second smallest overlap both with refetch and reexecute.
However, this inverse correlation between overlap and
speedup does not hold for reexecute. Furthermore, for both
recovery mechanisms, there are hybrids that perform well
in spite of a large shared contribution, for instance, the
St2d 4+ L4V and St2d + FCM predictors. This is an artifact
of the relative numbers given in Fig. 5. For well-performing
components, even a small relative contribution can be large
in absolute terms.

The hybrids LV + St2d, St2d + L4V, and L4V +FCM
exhibit large shared contributions and their components
therefore complement each other only poorly. The
LV component in the LV 4 St2d hybrid with reexecute
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Fig. 6. Reexecute and refetch speedup contributions of three-compo-
nent hybrids in percent.

and the FCM component in the L4V + FCM hybrid with
refetch show a negative individual contribution. This is
because, with reexecute, the St2d component performs
better than the LV + St2d hybrid and with refetch the
L4V component outperforms the L4V +FCM hybrid.
Hybridizing actually lowers the performance in these
cases and, thus, results in a negative unique contribution.
The reason is the aforementioned negative interference
between the involved components. Since single-compo-
nent predictors do not require a selector, whereas hybrids
do, the culprit for the lower performance must be the
imperfect selector. After all, the St2d component in the
LV 4+ St2d hybrid is identical to the single-component
St2d predictor that outperforms the hybrid.

With only one exception (St2d + L4V), refetch recovery
results in larger shared contributions than reexecute for the
same predictors. This probably means that the easily
predictable loads (i.e., loads that have very high confidences
associated with them) tend to be the loads that both
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components can predict. Such loads most likely fetch
runtime constants that are always last-value predictable [7].

Overall, the Reg predictor complements the other four
predictors exceptionally well, indicating that it can predict a
rather distinct set of load instructions. The next best
“partner” is the FCM predictor. The St2d predictor does
not complement the LV or the L4V predictor well because
all three predictors mostly predict last-value-predictable
loads.

The St2d 4+ L4V hybrid is similar to the last distinct four
value + stride predictor proposed by Wang and Franklin [28]
and St2d + FCM is the hybrid proposed by Rychlik et al.
[23], except it is not set-associative and uses a different
confidence estimator. Fig. 5 illustrates that the two pre-
dictors exhibit significant shared speedup. Together with
the performance results from Fig. 3 and Fig. 4, we find that,
for the studied predictor sizes, the smaller and simpler
Reg + St2d hybrid outperforms both the St2d + L4V and
the St2d + FCM predictors, illustrating the importance of
component analyses when designing hybrid load-value
predictors.

4.3.2 Three-Component Hybrids

Fig. 6 shows the shared and unique speedup contributions
(in percent of total predictor performance) of the three-
component hybrids. A set of seven equations has to be
solved to compute the seven values shown in each Venn
diagram. The numbers in the center of each diagram denote
the contribution that is shared between all three predictor
components, the other three overlapping regions represent
the shared contribution of pairs of components, and the
nonoverlapping sections list the unique speedup contribu-
tions. For example, in the top left Venn diagram (rs4), the
upper left oval lists the contribution of the Reg component,
the upper right oval the contribution of the St2d compo-
nent, and the oval at the bottom the contribution of the
L4V component.

Fig. 6 illustrates that the three components in the LV +
St2d + FCM and the St2d + L4V + FCM hybrids exhibit
large shared speedups. In both hybrids, over half of the
performance is shared among all three components. The
Reg + St2d + L4V and the Reg + LV + St2d predictors have
somewhat large shared contributions and the remaining
hybrids exhibit relatively little sharing in at least one of
their components. Note that Reg’s unique contribution is at
least seven percent in every case.

Again, the amount of sharing correlates reasonably with
the refetch performance, but there is no significant correla-
tion with the reexecute performance. Nevertheless, the
Venn diagrams expose components that do not contribute
any performance and components that hurt the perfor-
mance. Such components should be removed, which will
not lower the predictor’s performance but will make it
smaller, faster, and reduce the power consumption.

Because the four-component hybrids do not outperform
the best three-component hybrids with refetch and do not
significantly outperform the best three-component hybrids
with reexecute, we refrain from studying the speedup
contributions of the two four-component hybrids in detail.
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5 RELATED WORK

Two independent research efforts [10], [17] first recognized
that load instructions exhibit value locality and concluded
that there is potential for prediction. Lipasti et al. [17]
propose the last value predictor. Gabbay [10] proposes four
predictor schemes: a last value predictor, a stride predictor,
a register file predictor, and a sign-exponent-fraction (SEF)
predictor. The SEF predictor is only useful for predicting
IEEE floating-point loads. Tullsen and Seng [27] present the
register value predictor as we use it in this study. We found
their predictor to be a great complement for any other
component in hybrid predictors.

In their next paper, Lipasti and Shen [16] suggest making
predictions based on the last n values instead of just the last
value. Wang and Franklin [28] propose a last distinct four
value predictor as well as the first hybrid predictor, a
combination of their last distinct four value predictor and a
stride predictor. In previous work [3], [6], we show the last
four value predictor to be simpler but about as effective as
the last distinct four value predictor.

Sazeides and Smith [25] describe the finite context method
predictor. They found that this predictor performs very well
with large table sizes. Since we use a relatively small FCM
component in our hybrids, it is quite possible that a larger
such component would further improve the performance.
Goeman et al. [13] were able to substantially reduce the
FCM’s storage requirement by retaining strides instead of full
values in the first and second level. Rychlik et al. [23] use a
hybrid between a finite context method predictor and a stride
2-delta predictor in their study. Like Reinman and Calder
[21], they use the confidence estimators in the components of
their hybrids as selector, thus eliminating the need for extra
storage to guide the selection process. We use the same
approach.

Later, Rychlik et al. [22] augment their predictor with a
popular last value predictor and study updating only one
component at a time to increase the predictor’s capacity. We
tackled the capacity issue in previous work by investigating
approaches to shrink the predictor size without loss of
performance [4]. By compressing values and sharing
information between predictor components, we were able
to reduce the size of the Reg+ St2d + L4V to only about
twice the size of an LV predictor with the same number of
lines without negatively affecting the hybrid’s performance.
Pinuel et al. [20] present a hybrid between a last value, a
stride, and a finite context method predictor in which
information is also shared between components to keep the
predictor size small.

Reinman and Calder [21] examine a different kind of
hybrid that combines dependence prediction, value predic-
tion, address prediction, and memory renaming. They
conclude that, due to the small hardware requirement,
dependence prediction should be added to new processors
first even though value prediction provides a larger
performance improvement. Address prediction and mem-
ory renaming are shown to be inferior to dependence and
value prediction.

Lee et al. [15], [18] integrate their value predictor into the
trace cache and decouple the predictions from the instruc-
tion fetch stage to reduce the number of accesses to each
value prediction table. All predictors used in this study are
banked to limit the number of accesses to one per cycle and
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table. Similarly to their predictors, we buffer predictor
updates in queues [3].

6 SuMMARY AND CONCLUSIONS

This paper studies the performance of all hybrid load-value
predictors that can be built out of a register value, a last
value, a stride 2-delta, a last four value, and a finite context
method predictor. Our analysis shows that hybrids are able
to deliver substantially more speedup than the best single-
component predictors and that different components con-
tribute independently to the overall performance. We
conclude that multicomponent predictors, in which each
component is tailored to a different kind of load-value
locality, are necessary to effectively exploit the existing
value locality.

An investigation of the speedup contributions of
individual components revealed that the register value
predictor, which by itself performs only poorly, represents
the most valuable addition to any other studied component.
Conversely, combining well-performing predictors often
does not result in an effective hybrid. In fact, we found that
some predictor combinations perform worse than the
individual predictors. This happens when the extra compo-
nent causes more selector-related losses than the added
predictability can compensate for.

Our analysis shows that the prediction rate, accuracy,
and related metrics can sometimes be inversely correlated
with the true speedup, indicating that such metrics are poor
performance indicators. In particular, we found the latency
and the time to first use of the predicted loads to be of great
importance, emphasizing the need for cycle-accurate
simulations.

Our hybridization analysis identified the register value +
stride 2-delta predictor as one of the best two-component
hybrids. In spite of its substantially smaller and simpler
design, it matches or exceeds the speedup of two-component
hybrids from the literature. Of all the studied predictors, the
register value + stride 2-delta + last four value hybrid performs
best with refetch as well as when averaging the refetch and
reexecute speedups.

Among predictors with 2,048 lines, the best hybrids yield
harmonic-mean speedups over the eight SPECint95 pro-
grams of close to 18 percent and outperform the best single-
component predictors by over 25 percent. These perfor-
mance improvements are obtained with transparent load-
value predictors that require no changes to the instruction-
set architecture and can therefore be added to existing CPU
families as well as future processors. Furthermore, the
speedups stem from programs that were not compiled with
load-value prediction in mind. In future work, we intend to
study compiler optimizations to further improve the
performance of hybrid- and single-component load-value
predictors.
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