
 

FPC: A High-Speed Compressor for Double-Precision 

Floating-Point Data 

 

 Martin Burtscher Paruj Ratanaworabhan 

 Center for Grid and Distributed Computing Computer Systems Laboratory 

 The University of Texas at Austin Cornell University 

 burtscher@ices.utexas.edu paruj@csl.cornell.edu 

 

 

ABSTRACT 

Many scientific programs exchange large quantities of double-precision data between processing 

nodes and with mass storage devices. Data compression can reduce the number of bytes that 

need to be transferred and stored. However, data compression is only likely to be employed in 

high-end computing environments if it does not impede the throughput. This paper describes and 

evaluates FPC, a fast lossless compression algorithm for linear streams of 64-bit floating-point 

data. FPC works well on hard-to-compress scientific datasets and meets the throughput demands 

of high-performance systems. A comparison with five lossless compression schemes, BZIP2, 

DFCM, FSD, GZIP, and PLMI, on four architectures and thirteen datasets shows that FPC com-

presses and decompresses one to two orders of magnitude faster than the other algorithms at the 

same geometric-mean compression ratio. Moreover, FPC provides a guaranteed throughput as 

long as the prediction tables fit into the L1 data cache. For example, on a 1.6 GHz Itanium 2 

server, the throughput is 670 megabytes per second regardless of what data are being com-

pressed. 

 

Index Terms – data compression, prediction methods, data models, floating-point compression 

 

1. INTRODUCTION 

Many scientific applications produce and transfer large amounts of 64-bit floating-point data. 

Some exchange data between processing nodes and with mass storage devices after every simu-



 

 2

lation time step. In addition, scientific programs are usually checkpointed at regular intervals so 

that they can be restarted from the most recent checkpoint after a crash. Checkpoint data tend to 

be large and have to be saved to disk. 

Compression can reduce the amount of data that needs to be transferred and stored. If done 

fast enough, it can actually increase the throughput of the data exchanges. Of course, the chal-

lenge is to achieve a good compression ratio and a high compression and decompression speed at 

the same time. Additionally, the compression algorithm should be lossless and single pass. For 

example, checkpoint data cannot be lossy and neither can data from which certain derived quan-

tities will be computed. A single-pass algorithm is needed so that the data can be compressed and 

decompressed on the fly as it is generated and consumed, respectively. 

This paper presents and evaluates FPC, a lossless, single-pass, linear-time compression algo-

rithm. FPC targets streams of double-precision floating-point data with unknown internal struc-

ture, such as the data seen by the network or a storage device in scientific and high-performance 

computing systems. If the internal structure is known, e.g., a matrix or a linearized tree, then this 

extra information could be exploited to improve the compression ratio [23]. FPC delivers a good 

average compression ratio on hard-to-compress numeric data. Moreover, it employs a simple al-

gorithm that is very fast and easy to implement with integer operations. We found FPC to com-

press and decompress 2 to 300 times faster than the special-purpose floating-point compressors 

DFCM, FSD and PLMI and the general-purpose compressors BZIP2 and GZIP. 

The execution path (i.e., the control flow) through FPC’s code is independent of the input data 

and the compression ratio. Furthermore, in the steady state (i.e., after a short period of compul-

sory cache misses), all instructions in the algorithm have a fixed latency as long as the prediction 

tables fit into the L1 data cache. As a consequence, the number of machine cycles needed to 

compress/decompress a double value is constant, meaning that the time it takes to process a giv-

en block of data is known a priori. Hence, FPC provides a constant throughput guarantee when 

used with small enough table sizes. 

The remainder of this paper is organized as follows. Section 2 describes the FPC algorithm 

and its design in detail. Section 3 summarizes related work. Section 4 explains the evaluation 

methods. Section 5 presents performance results for FPC and five other compressors. Section 6 

concludes the paper with a summary and directions for future work. 



 

 3

2. THE FPC ALGORITHM 

2.1 Operation 

FPC compresses linear sequences of IEEE 754 double-precision floating-point values by sequen-

tially predicting each value, xoring the true value with the predicted value, and leading-zero 

compressing the result. As illustrated in Figure 1, it uses variants of an fcm [27] and a dfcm [14] 

value predictor to predict the doubles. Both predictors are effectively hash tables. The more ac-

curate of the two predictions, i.e., the one that shares more common most significant bits with the 

true value, is xored with the true value. The xor operation turns identical bits into zeros. Hence, 

if the predicted and the true value are close, the xor result has many leading zeros. FPC then 

counts the number of leading zero bytes, encodes the count in a three-bit value, and concatenates 

it with a single bit that specifies which of the two predictions was used. The resulting four-bit 

code and the nonzero residual bytes are written to the output. The latter are emitted verbatim 

without any encoding. 

 

 

Figure 1: FPC compression algorithm overview 

 

FPC outputs the compressed data in blocks. Each block starts with a header that specifies how 

many doubles the block encodes and how long it is (in bytes). The header is followed by the 

stream of four-bit codes, which in turn is followed by the stream of residual bytes. To maintain 

          64

fcm dfcm

          64           64

3f82 4… 3f51 9…

compare compare

predictor closer

code value

          1           64

leading

zero byte

counter

encoder

bita  cnta bitb  cntb residuala

  x      y   0      2 z

. . .

1+3 

residualb . . .

  0 to 8 bytes

7129 889b 0e5d
. . .

compressed

block

3f82 3b1e 0e32 f39d
. . .

uncompressed 1D

block of doubles

selector

doubleb

XOR

. . .



 

 4

byte granularity, which is more efficient than bit granularity, a pair of doubles is always 

processed together and the corresponding two four-bit codes are packed into a byte. In case an 

odd number of doubles needs to be compressed, a spurious double is encoded at the end. This 

spurious value is later eliminated using the count information from the header. Note that our first 

version of FPC [4] does not use blocks. We added them now because keeping the four-bit codes 

and the residual bytes separate instead of interleaving them makes FPC faster and potentially 

simplifies post-processing of the output (e.g., adding another compression stage). 

Decompression works as follows. It starts by reading the current four-bit code, decoding the 

three-bit field, reading the specified number of residual bytes, and zero-extending them to a full 

64-bit number. Based on the one-bit field, this number is xored with either the 64-bit fcm or dfcm 

prediction to recreate the original double. This lossless reconstruction is possible because xor is 

reversible. 

For performance reasons, FPC interprets all doubles as 64-bit integers and uses only integer 

arithmetic. Since there can be between zero and eight leading zero bytes, i.e., nine possibilities, 

not all of them can be encoded with a three-bit value. We decided not to support a leading zero 

count of four because it occurs only rarely (cf. Section 5.4). Consequently, all xor results with 

four leading zero bytes are treated like values with only three leading zero bytes and the fourth 

zero byte is emitted as part of the residual. 

Before compression and decompression, both predictor tables are initialized with zeros. After 

each prediction, they are updated with the true double value to ensure that they generate the same 

sequence of predictions during compression as they do during decompression. The following 

pseudo code demonstrates the operation of the fcm predictor. The table_size has to be a 

power of two. fcm is the hash table. 

 

unsigned long long true_value, fcm_prediction, fcm_hash, fcm[table_size]; 

... 

fcm_prediction = fcm[fcm_hash];  // prediction: read hash table entry 

fcm[fcm_hash] = true_value;      // update: write hash table entry 

fcm_hash = ((fcm_hash << 6) ^ (true_value >> 48)) & (table_size – 1); 

 



 

 5

Right shifting true_value (i.e., the current double expressed as a 64-bit integer) by 48 bits 

eliminates the often random mantissa bits. The remaining 16 bits are xored with the previous 

hash value to produce the new hash. However, the previous hash is first shifted by six bits to the 

left to gradually phase out bits from older values. The hash value (fcm_hash) therefore 

represents the sequence of most recently encountered doubles, and the hash table stores the 

double that follows this sequence. Hence, making an fcm prediction is tantamount to performing 

a table lookup to determine which value followed the last time a similar sequence of previous 

doubles was seen. 

The dfcm predictor operates in the same way. However, it predicts integer differences be-

tween consecutive values rather than absolute values, and the shift amounts in the hash function 

are different. 

 

unsigned long long last_value, dfcm_prediction, dfcm_hash, dfcm[table_size]; 

... 

dfcm_prediction = dfcm[dfcm_hash] + last_value; 

dfcm[dfcm_hash] = true_value – last_value; 

dfcm_hash = ((dfcm_hash << 2) ^ ((true_value – last_value) >> 40)) & 

  (table_size – 1); 

last_value = true_value; 

 

The complete C source code and a brief description of how to compile and use it are available 

at http://www.csl.cornell.edu/~burtscher/research/FPC/. The web site also contains links to our 

datasets as well as to a detailed discussion of the code and some of the optimization techniques it 

employs. 

 

2.2 Design 

FPC’s primary objective is to maximize the throughput while still delivering a competitive com-

pression ratio. Therefore, FPC does not include features that improve the compression ratio at a 

significant cost of speed. For example, we deemed extracting and handling the sign, exponent 

and mantissa separately to be too slow for throughput-oriented compression. Likewise, we ex-

cluded variable-length encoding at bit granularity as well as bit reversal because of their ineffi-



 

 6

ciency on modern CPUs. Furthermore, we replaced all floating-point arithmetic with integer 

arithmetic. Even though the former is more natural and sometimes results in better compression 

ratios, it is slower and, more importantly, may cause exceptions. 

Our previous experience with fast lossless compressors [3], [21], [26] demonstrated algo-

rithms that predict the data using value predictors and leading-zero compress the residual to be 

very fast while offering a good compression ratio. Hence, we based FPC on this approach. We 

considered both subtraction and xoring for the residual generation. Since subtraction with a two’s 

complement representation yields about a ten percent lower compression ratio and subtraction 

with a sign-magnitude representation a three to eight percent lower compression ratio as well as 

a lower processing speed, we abandoned subtraction and selected xor. 

 

2.2.1 Predictor Parameter Selection 

Value predictors have been researched extensively to predict the results of CPU machine instruc-

tions at runtime [24]. These predictors are designed to make billions of predictions per second in 

hardware. As a consequence, they employ simple and fast prediction algorithms. 

First, we had to determine which and how many (software) predictors to use. As one might 

expect, the more accurate prediction algorithms tend to be slower. Similarly, employing a larger 

number of predictors increases the probability of one of them being correct but lowers the 

throughput. We experimented with many combinations and configurations of four basic value 

predictors (a last value [24], a stride [11], a finite context method [27], and a differential finite 

context method predictor [14]) as well as variations thereof (including a last n value [6] and a 

stride 2-delta predictor [27]). 

Because a high processing speed was paramount in our design, we soon found two-predictor 

combinations to represent the best tradeoff for the following reasons. First, adding predictors in-

creases the runtime linearly but quickly yields diminishing returns on the gained compression 

ratio. Therefore, only few predictors should be used. Second, to achieve high performance, we 

had to operate at least at byte granularity. Consequently, we were faced with three-bit codes to 

express the number of leading zero bytes of the residual between the predicted and the true val-

ue. That left five bits to select one of 32 predictors, which was far beyond the number of predic-

tors we could reasonably employ. The only good alternative, which we ended up choosing, was 



 

 7

to utilize one bit to pick between two predictors. Concatenating this bit with the three-bit leading 

zero count resulted in a four-bit field, which can be combined with the four-bit field of the next 

prediction to form a byte. (Four-predictor combinations together with two-bit codes for express-

ing the leading zero counts result in poor compression ratios.) 

The next question was which two predictors to select. Initially, we evaluated single predictors 

with different configurations in isolation and paired up the best performers. However, this ap-

proach ended up combining predictors that largely made the same predictions. So we switched to 

evaluating predictor pairs rather than single predictors, i.e., we optimized the algorithm as a 

whole instead of its individual components. The result was a significant boost in compression 

ratio without loss in throughput. Note that the predictors making up the best pairs do not perform 

particularly well when used in isolation, but they complement each other nicely. 

The two-predictor experiments revealed that we should combine an fcm predictor with a dfcm 

predictor. That left us with determining good parameters for these predictors. For speed reasons 

and to prevent overfitting to our datasets, we opted to hardcode the parameters and use the same 

fixed set of parameters for all predictor sizes. To determine the best configuration, we evaluated 

the following ten thousand combinations of table sizes and shift amounts in the two hash func-

tions (cf. Section 2.1) on each dataset: 

  Number of table entries: 1024, 32768, 1048576 

  Left shift in fcm hash function: 1, 2, 3, 4, 5, 6, 7, 8 

  Right shift in fcm hash function: 8, 16, 24, 32, 40, 48, 56 

  Left shift in dfcm hash function: 1, 2, 3, 4, 5, 6, 7, 8 

  Right shift in dfcm hash function: 8, 16, 24, 32, 40, 48, 56 

Next, we performed a local search to refine the best right-shift amounts. Unfortunately, no 

clear winners could be identified because different datasets prefer different configurations and 

large predictors work well with settings that are suboptimal for small predictors and vice versa. 

In the end, we settled for the parameters listed in the previous section, which perform reasonable 

in most cases and work well in the mid range of table sizes. 

Because FPC runs at the same speed for all table sizes that fit into the L1 data cache but com-

presses better with larger tables, there is little reason to use it with very small tables (e.g., less 

than half of the L1 data cache size). Hence, we were not overly concerned with our parameter 



 

 8

choices resulting in poor compression at the low end. Nevertheless, the most important change to 

improve the compression ratio with small tables is to increase the right-shift amount in dfcm 

from forty to a value in the fifties. This change would increase the average compression ratio 

over our datasets by about three percent. At the high end, better hash functions are obtained by 

lowering the left-shift amount in fcm to between two and four, increasing the dfcm left-shift 

amount to between four and eight, and lowering the dfcm right-shift amount to 32. This change 

would increase the average compression ratio by one percent. 

 

3. RELATED WORK 

A large body of work related to lossy floating-point compression exists, in particular for the 

transmission and reproduction of audio and image data. Because some degree of imprecision can 

be tolerated in these domains, such data do not have to be recreated exactly. Our work focuses 

exclusively on the lossless compression of floating-point values. There are many instances, espe-

cially in science and engineering, where lossless compression is required. Simulation checkpoint 

data and medical images are examples where lossy compression is unacceptable. 

Much of the related work that deals with lossless compression of floating-point data focuses 

on 32-bit single-precision values. Our work concentrates on 64-bit double-precision data, such as 

those produced by numeric programs, which are also the target of the following algorithms from 

the literature. 

Engelson et al. [9] propose a compression scheme for the double-precision output of a numer-

ical solver for ordinary differential equations. It uses integer delta and extrapolation techniques 

to compress and decompress the data. This method is particularly beneficial with gradually 

changing data. The difference between consecutive values of this nature is small and can, there-

fore, be encoded with only a few bits. The algorithm includes support for fixed and varying step 

sizes. It can optionally perform lossy compression. 

Lindstrom and Isenburg [23] designed an efficient compressor for both 32- and 64-bit images. 

Their emphasis is on 2D and 3D data for rendering. The algorithm predicts the data using the Lo-

renzo predictor [18] and encodes the residual, i.e., the difference between the predicted and the 

true value, with a range coder based on Schindler’s quasi-static probability model [28]. 



 

 9

We have previously used value predictors as data models in program-execution-trace com-

pressors [3]. However, that work focuses on integer data. Together with Jian Ke, the authors 

have proposed the DFCM compressor for 64-bit floating-point data [26]. DFCM uses a modified 

dfcm value predictor to generate the residual, which is the xored difference between the true and 

the predicted value. Then, a four-bit leading zero suppress scheme is employed to encode it. We 

incorporated the DFCM compression algorithm in an MPI library to speed up parallel message-

passing programs running on a cluster of workstations [21]. 

Several papers on lossless compression of floating-point data focus on 32-bit single-precision 

values, as exemplified by the following work. Klimenko et al. [22] present a method that com-

bines differentiation and zero suppression to compress floating-point data from experiments con-

ducted at the Laser Interferometer Gravitation Wave Observatory (LIGO). It has about the same 

compression ratio as GZIP but is significantly faster. Its success is tied to the nature of the LIGO 

data, which are time series whose values change only gradually. Ghido [13] proposes an algo-

rithm for the lossless compression of audio data. It transforms the floating-point values into in-

tegers and generates an additional binary stream for the lossless reconstruction of the original 

floating-point values. 

Lossless compression of single-precision floating-point data is also of interest to the scientific 

visualization and imaging community. Several publications cover the compression of the differ-

ent types of data encountered in this field. These studies, however, focus on maximizing the 

compression ratio as the compression and decompression speed are not very important. 

Fowler et al. [10] use a predictive coding technique to compress volumetric datasets from 

medical images used for diagnosis and treatment. Their method employs a combination of diffe-

rential pulse-code modulation (DPCM) and Huffman coding to predict and encode a data sample, 

respectively. 

Ibarria et al. [18] propose the Lorenzo predictor for compressing high-dimensional scalar 

fields. The predictor is an extension of the two-dimensional parallelogram predictor originally 

proposed by Touma and Gotsman [29] to compress triangle meshes. The residuals generated by 

the predictor are further encoded using arithmetic coding. The scheme by Ibarria et al. requires 

only a small buffer, and is, thus, appropriate for out-of-core compression. 



 

 10

Usevitch [31] proposes extensions to the JPEG2000 standard that allow data to be efficiently 

encoded with bit-plane coding algorithms where the floating-point values are represented as “big 

integers”. Gamito et al. [12] describe modifications needed in JPEG2000 to accommodate loss-

less floating-point compression, namely, adjustments in the wavelet transformation and earlier 

signaling of special numbers such as NaNs in the main header. 

Isenburg et al. [20] describe an adaptation to lossy predictive geometry coding to compress 

vertex positions in triangular meshes in a lossless manner. The idea is to break up each floating-

point value into its sign, exponent, and mantissa component and to compress them separately. 

This scheme employs the parallelogram predictor proposed by Touma and Gotsman [29] in the 

prediction stage and a context-based arithmetic coder in the coding stage. 

Trott et al. [30] use an extended precision algorithm, the Haar wavelet transform, and Huff-

man coding to losslessly compress 3D curvilinear grids. The extended precision algorithm first 

converts single-precision data into double-precision data so that loss of precision will not occur 

during the transformation and coding process. 

Chen et al. [7] compress irregular grid volume data represented as a tetrahedral mesh. Their 

technique performs differential coding and clustering to generate separate data residuals for the 

mantissa and the exponent. Then, a Huffman coder and GZIP are used to encode the mantissa 

and exponent residuals. 

 

4. EVALUATION METHODOLOGY 

4.1 Systems and Compilers 

We compiled and evaluated FPC and the compressors listed in Section 4.4 on the following four 

systems. 

• A 64-bit Alpha system with an 833 MHz Alpha 21264B CPU, a 2-way associative 64 kB L1 

data cache, a direct-mapped 4 MB unified L2 cache (off chip), and 1 GB of main memory. The 

operating system is Tru64 UNIX V5.1B. We used the Compaq C Compiler version 6.5 with the 

“-O3 -arch ev68 -non_shared” flags. 

• A 64-bit Athlon system with a 2 GHz Athlon 64 CPU, a 2-way associative 64 kB L1 data 

cache, a 16-way associative 512 kB unified L2 cache (which does not duplicate the data in the 

L1 cache), and 1 GB of main memory. The operating system is Red Hat Linux 3.4.5-2 and the 



 

 11

compiler is gcc version 3.4.5. All programs were compiled with the “-O3 -march=athlon64 

-static” flags on this system. 

• A 64-bit Itanium system with a 1.6 GHz Itanium 2 CPU, a 4-way associative 16 kB L1 data 

cache, an 8-way associative 256 kB unified L2 cache, a 12-way associative 3 MB unified L3 

cache (on chip), and 3 GB of main memory. The operating system is Red Hat Enterprise Linux 

AS4 and the compiler is the Intel C Itanium Compiler version 9.1. We used the “-O3 

-mcpu=itanium2 -static” compiler flags. 

• A 32-bit Pentium system with a 3 GHz Pentium4-Xeon CPU, a 4-way associative 16 kB L1 

data cache, an 8-way associative 1 MB unified L2 cache, and 1 GB of main memory. The operat-

ing system is SuSE Linux 9.1 and the compiler is gcc version 3.3.3. We compiled the compres-

sors with the “-O3 -march=pentium4 -static” flags on this machine. 

 

4.2 Timing Measurements 

All timing measurements in this paper refer to the elapsed time reported by the UNIX shell 

command time. To make the measurements independent of the disk speed, each experiment was 

conducted five times in a row and the shortest running time is reported. (Using the median run-

time instead of the minimum does not change the results significantly.) This approach minimized 

the timing component due to disk I/O operations because, after the first run, the compressors’ 

inputs were cached in main memory by the operating system. All output was written to /dev/null, 

that is, it was consumed but ignored. 

 

4.3 Datasets 

We used thirteen datasets from various scientific domains for our evaluation. Each dataset con-

sists of a one-dimensional binary sequence of IEEE 754 double-precision floating-point numbers 

and belongs to one of the following categories. 

Observational data: These four datasets comprise measurements from scientific instruments. 

• obs_error: data values specifying brightness temperature errors of a weather satellite 

• obs_info: latitude and longitude information of the observation points of a weather satellite 



 

 12

• obs_spitzer: data from the Spitzer Space Telescope showing a slight darkening as an extraso-

lar planet disappears behinds its star 

• obs_temp: data from a weather satellite denoting how much the observed temperature differs 

from the actual contiguous analysis temperature field 

Numeric simulations: These four datasets are the result of numeric simulations. 

• num_brain: simulation of the velocity field of a human brain during a head impact 

• num_comet: simulation of the comet Shoemaker-Levy 9 entering Jupiter’s atmosphere 

• num_control: control vector output between two minimization steps in weather-satellite data 

assimilation 

• num_plasma: simulated plasma temperature evolution of a wire array z-pinch experiment 

Parallel messages: These five datasets contain the numeric messages sent by a node in a parallel 

system running NAS Parallel Benchmark (NPB) [1] and ASCI Purple [17] applications. 

• msg_bt: NPB computational fluid dynamics pseudo-application bt 

• msg_lu: NPB computational fluid dynamics pseudo-application lu 

• msg_sp: NPB computational fluid dynamics pseudo-application sp 

• msg_sppm: ASCI Purple solver sppm 

• msg_sweep3d: ASCI Purple solver sweep3d 

 

Table 1 summarizes information about each dataset. The first two data columns list the size in 

megabytes and in millions of double-precision floating-point values. The middle column shows 

the percentage of values in each dataset that are unique, i.e., appear exactly once. The fourth col-

umn displays the first-order entropy of the values in bits. The last column expresses the random-

ness of the datasets in percent, that is, it reflects how close the first-order entropy is to that of a 

truly random dataset with the same number of unique values. 

The entropy is computed as 

∑
−

=

















×−=

1

0

2
log

n

i

ii

total

freq

total

freq
entropy  



 

 13

where n is the number of distinct values, total refers to the total number of values, and the freqi 

are the number of occurrences of each distinct value (i.e., ∑
−

=

=

1

0

n

i

i
freqtotal ). The randomness is 

( )n
entropy

randomness
2

log
=

 

where the denominator is the first-order entropy of a sequence of n values that are all distinct. 

 

Table 1: Statistical information about the datasets 

 

 

We observe that all datasets contain several million doubles. What is striking is that the data-

sets from all three categories appear to largely consist of unique values. Moreover, they are high-

ly random from an entropy perspective, even the ones that do not contain many unique doubles 

(e.g., num_plasma). 

Based on these statistics, it is unlikely that a purely entropy-based compression approach will 

work well. Note that the higher-order entropies (not shown) are also close to random because of 

the large percentage of unique values. Clearly, we have to use a good data model or subdivide 

the doubles into smaller entities (e.g., bytes), some of which may exhibit less randomness, to 

compress these datasets well. FPC incorporates both approaches. 

 

4.4 Compressors 

This section describes the compression schemes with which we compare our approach. BZIP2 

and GZIP are lossless, general-purpose algorithms that can be used to compress any kind of data. 

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

msg_bt 254.0 33.30 92.9 23.67 95.1

msg_lu 185.1 24.26 99.2 24.47 99.8

msg_sp 276.7 36.26 98.9 25.03 99.7

msg_sppm 266.1 34.87 10.2 11.24 51.6

msg_sweep3d 119.9 15.72 89.8 23.41 98.6

num_brain 135.3 17.73 94.9 23.97 99.9

num_comet 102.4 13.42 88.9 22.04 93.8

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 99.4

obs_error 59.3 7.77 18.0 17.80 87.2

obs_info 18.1 2.37 23.9 18.07 94.5

obs_spitzer 189.0 24.77 5.7 17.36 85.0
obs_temp 38.1 4.99 100.0 22.25 100.0



 

 14

The remaining algorithms represent our implementations of special-purpose floating-point com-

pressors from the literature. They are all single-pass, lossless compression schemes that “know” 

about the format of double-precision values. We compiled the C source code of each algorithm 

described in this section with the same compiler and optimization flags (cf. Section 4.1). 

BZIP2: BZIP2 [15] is a general-purpose compressor that operates at byte granularity. It im-

plements a variant of the block-sorting algorithm described by Burrows and Wheeler [2]. BZIP2 

applies a reversible transformation to a block of inputs, uses sorting to group bytes with similar 

contexts together, and then compresses them with a Huffman coder. The block size is adjustable. 

We evaluate BZIP2 version 1.0.2 with all supported block sizes, i.e., one through nine. 

DFCM: Our previously proposed DFCM scheme [26] maps each encountered floating-point 

value to an unsigned integer and predicts it with a modified dfcm predictor. This predictor com-

putes a hash value out of the three most recently encountered differences between consecutive 

values in the input. Next, it performs a hash table lookup to retrieve the differences that followed 

the last two times the same hash was encountered, and one of the two differences is used to pre-

dict the next value. A residual is generated by xoring the predicted value with the true value. 

This residual is encoded using a four-bit leading zero bit count. We evaluate all predictor sizes 

between 16 bytes and 512 MB that are powers of two. Note that DFCM and FPC utilize different 

dfcm predictors. 

FSD: The FSD compressor implements the fixed step delta-algorithm proposed by Engelson 

et al. [9]. As it reads in a stream of doubles, it iteratively generates difference sequences from the 

original sequence. The order determines the number of iterations. A zero suppress algorithm is 

then used to encode the final difference sequence, where each value is expected to have many 

leading zeroes. Generally, gradually changing data tend to benefit from higher difference orders 

whereas rapidly changing data compress better with lower orders. We evaluate orders one 

through seven. 

GZIP: GZIP [16] is a general-purpose compression utility that operates at byte granularity 

and implements a variant of the LZ77 algorithm [32]. It looks for repeating strings, i.e., se-

quences of bytes, within a 32 kB sliding window. The length of the string is limited to 256 bytes, 

which corresponds to the lookahead buffer size. GZIP uses two Huffman trees, one to compress 

the distances in the sliding window and another to compress the lengths of the strings as well as 

the individual bytes that were not part of any matched sequence. The algorithm finds duplicated 



 

 15

strings using a chained hash table. A command-line argument determines the maximum length of 

the hash chains and whether lazy evaluation should be used. We evaluate GZIP version 1.3.5 

with all supported levels, i.e., one through nine. 

PLMI: The PLMI scheme proposed by Lindstrom and Isenburg [23] employs a Lorenzo pre-

dictor in the front-end to predict 2D and 3D geometry data for rendering. Since our datasets are 

one dimensional (i.e., we do not have dimension information), we cannot evaluate PLMI in its 

intended mode. For linear data, the Lorenzo predictor reverts to a delta predictor, which 

processes data similarly to the first-order FSD algorithm. Hence, we use the modified dfcm pre-

dictor from the DFCM compressor (see above) in our implementation of PLMI, which com-

presses linear data better. The predicted and true floating-point values are mapped to unsigned 

integers from which a residual is computed by a difference process. The final step involves en-

coding the residual with range coding based on Schindler’s quasi-static probability model [28]. 

We evaluate all predictor sizes between 16 bytes and 512 MB that are powers of two. 

 

5. RESULTS 

This section evaluates FPC and compares it with the five compressors presented in the previous 

section. Section 5.1 studies the compression ratio, Section 5.2 investigates the throughput, and 

Section 5.3 looks at the memory consumption. Section 5.4 evaluates the predictor and Section 

5.5 the critical-loop performance of FPC. 

 

5.1 Compression Ratio 

Table 2 presents the compression ratios that the six algorithms achieve on each dataset. The 

numbers in bold print highlight the best compression ratio for each dataset. The leftmost column 

lists the compression level for BZIP2 and GZIP, the order for FSD, and the binary logarithm of 

the number of table entries (an entry consists of two eight-byte words) for DFCM, FPC, and 

PLMI. To improve the readability, the table only includes results for odd DFCM, FPC, and 

PLMI sizes. The bottom-most row gives the compression ratio of the original PLMI algorithm 

(based on an executable provided by the PLMI authors), which uses the Lorenzo predictor in-

stead of the modified dfcm predictor. 

 



 

 16

Table 2: Compression ratio of the six algorithms on the thirteen dataset 

 

bt lu sp sppm sweep3d brain comet control plasma error info spitzer temp

1 1.102 1.021 1.075 6.783 1.061 1.039 1.145 1.028 1.383 1.295 1.095 1.287 1.021 1.290

2 1.097 1.018 1.068 6.863 1.062 1.041 1.154 1.029 1.788 1.301 1.116 1.387 1.023 1.327

3 1.094 1.017 1.063 6.875 1.130 1.041 1.159 1.030 2.418 1.303 1.131 1.466 1.023 1.372

4 1.092 1.016 1.059 6.880 1.172 1.042 1.162 1.030 2.942 1.312 1.153 1.530 1.023 1.404

5 1.091 1.017 1.056 6.878 1.190 1.042 1.165 1.030 3.523 1.321 1.153 1.584 1.023 1.430

6 1.090 1.017 1.055 6.878 1.213 1.042 1.167 1.029 4.312 1.328 1.165 1.634 1.023 1.459

7 1.089 1.017 1.053 6.880 1.247 1.042 1.169 1.029 4.579 1.334 1.174 1.678 1.023 1.474

8 1.088 1.018 1.054 6.899 1.275 1.042 1.172 1.029 5.177 1.333 1.205 1.717 1.024 1.496

9 1.088 1.018 1.055 6.933 1.294 1.043 1.173 1.029 5.789 1.339 1.217 1.752 1.024 1.516

1 1.126 1.021 1.089 2.509 1.285 1.171 1.151 1.062 0.970 1.009 0.968 0.984 0.991 1.137

3 1.162 1.134 1.138 2.705 1.283 1.171 1.138 1.053 0.969 1.098 0.968 0.986 0.999 1.167

5 1.226 1.221 1.155 2.898 1.294 1.167 1.143 1.052 0.970 1.172 0.970 0.986 1.006 1.193

7 1.264 1.229 1.213 3.247 1.298 1.157 1.140 1.049 0.976 1.230 0.979 0.987 1.003 1.217

9 1.301 1.239 1.230 3.510 1.300 1.164 1.138 1.050 0.978 1.271 0.980 0.988 1.005 1.233

11 1.312 1.224 1.234 3.700 1.307 1.167 1.138 1.050 0.982 1.277 0.986 0.988 1.005 1.240

13 1.331 1.229 1.236 3.846 1.338 1.175 1.141 1.049 0.983 1.293 0.991 0.988 1.002 1.250

15 1.351 1.233 1.241 3.948 1.383 1.194 1.148 1.053 1.303 1.321 1.217 0.991 1.007 1.312

17 1.355 1.223 1.244 4.036 1.446 1.207 1.145 1.050 1.301 1.350 1.221 0.991 1.002 1.321

19 1.363 1.225 1.246 4.126 1.482 1.225 1.152 1.046 1.301 1.395 1.222 0.992 1.004 1.332

21 1.359 1.221 1.247 4.185 1.518 1.226 1.158 1.043 1.300 1.438 1.223 0.993 1.008 1.339

23 1.362 1.223 1.248 4.215 1.553 1.230 1.166 1.045 1.301 1.495 1.225 0.994 1.011 1.349

25 1.363 1.224 1.249 4.234 1.559 1.232 1.174 1.054 1.301 1.518 1.226 0.995 1.014 1.354

1 1.127 1.061 1.088 2.714 1.234 1.150 1.156 1.047 1.106 1.141 1.109 1.014 1.013 1.181

3 1.131 1.114 1.196 3.200 1.220 1.140 1.145 1.047 1.157 1.151 1.151 1.013 1.019 1.216

5 1.157 1.144 1.235 3.840 1.229 1.131 1.146 1.047 1.268 1.193 1.156 1.013 1.019 1.254

7 1.185 1.142 1.247 4.198 1.233 1.130 1.147 1.049 1.312 1.229 1.138 1.013 1.017 1.270

9 1.222 1.145 1.251 4.575 1.231 1.136 1.146 1.050 1.305 1.242 1.131 1.013 1.015 1.282

11 1.242 1.145 1.252 4.808 1.232 1.138 1.147 1.050 1.305 1.266 1.136 1.013 1.014 1.292

13 1.244 1.143 1.249 4.901 1.263 1.140 1.147 1.048 1.421 1.278 1.167 1.013 1.013 1.308

15 1.255 1.157 1.247 5.082 1.604 1.153 1.147 1.046 2.687 1.324 1.255 1.013 1.010 1.418

17 1.272 1.169 1.253 5.264 2.287 1.158 1.150 1.046 6.437 1.469 1.471 1.014 1.009 1.598

19 1.280 1.172 1.257 5.298 2.794 1.158 1.150 1.042 11.377 1.890 1.857 1.014 1.008 1.762

21 1.284 1.173 1.260 5.276 2.999 1.162 1.151 1.038 13.870 2.723 2.138 1.015 1.004 1.870

23 1.287 1.172 1.262 5.284 3.065 1.163 1.155 1.038 14.764 3.376 2.269 1.020 0.999 1.924

25 1.286 1.169 1.261 5.274 3.089 1.164 1.156 1.041 15.048 3.603 2.270 1.027 0.997 1.938

1 1.070 1.004 0.987 2.348 1.151 1.100 1.095 0.992 0.940 1.163 0.938 0.962 0.966 1.095

2 1.054 0.992 0.982 2.227 1.193 1.092 1.109 0.976 0.997 1.004 1.002 0.950 0.959 1.087

3 1.037 0.984 0.967 2.182 1.210 1.076 1.105 0.985 0.996 1.003 0.999 0.939 0.953 1.080

4 1.022 0.986 0.946 2.139 1.195 1.058 1.089 0.968 0.979 1.001 0.985 0.937 0.969 1.069

5 0.997 0.958 0.941 2.114 1.176 1.036 1.072 0.971 0.925 0.998 0.942 0.927 0.948 1.048

6 0.984 0.917 0.934 2.072 1.153 1.017 1.058 0.951 0.889 0.971 0.916 0.916 0.926 1.025

7 0.975 0.906 0.927 2.049 1.131 1.002 1.044 0.939 0.889 0.934 0.903 0.903 0.909 1.011

1 1.127 1.050 1.108 6.314 1.085 1.057 1.157 1.054 1.592 1.422 1.146 1.219 1.034 1.323

2 1.128 1.050 1.108 6.675 1.086 1.058 1.157 1.054 1.591 1.422 1.146 1.228 1.034 1.329

3 1.128 1.050 1.107 6.853 1.085 1.058 1.158 1.054 1.591 1.421 1.146 1.232 1.034 1.332

4 1.130 1.055 1.108 7.000 1.092 1.064 1.161 1.058 1.607 1.448 1.153 1.230 1.036 1.341

5 1.130 1.055 1.108 7.217 1.092 1.064 1.161 1.058 1.608 1.448 1.154 1.231 1.036 1.344

6 1.130 1.055 1.108 7.352 1.092 1.064 1.161 1.058 1.608 1.448 1.154 1.231 1.036 1.346

7 1.130 1.055 1.107 7.388 1.092 1.064 1.162 1.058 1.608 1.448 1.154 1.231 1.036 1.346

8 1.130 1.055 1.107 7.420 1.092 1.064 1.162 1.058 1.608 1.448 1.154 1.231 1.036 1.347

9 1.130 1.055 1.107 7.431 1.092 1.064 1.162 1.058 1.608 1.448 1.154 1.231 1.036 1.347

1 1.123 1.054 1.094 2.722 1.206 1.115 1.168 1.057 1.133 1.054 1.138 1.067 1.033 1.182

3 1.133 1.123 1.134 2.918 1.207 1.116 1.164 1.057 1.139 1.113 1.142 1.067 1.034 1.204

5 1.162 1.181 1.161 3.210 1.207 1.117 1.169 1.060 1.149 1.173 1.147 1.069 1.035 1.229

7 1.189 1.184 1.175 3.598 1.207 1.115 1.171 1.060 1.137 1.197 1.143 1.070 1.035 1.244

9 1.214 1.188 1.178 3.908 1.207 1.116 1.176 1.061 1.150 1.224 1.144 1.071 1.035 1.259

11 1.223 1.182 1.180 4.208 1.208 1.115 1.177 1.061 1.143 1.229 1.142 1.072 1.035 1.266

13 1.234 1.184 1.182 4.383 1.208 1.117 1.180 1.060 1.183 1.233 1.143 1.073 1.035 1.276

15 1.238 1.185 1.182 4.495 1.209 1.119 1.182 1.061 1.232 1.239 1.148 1.074 1.035 1.284

17 1.239 1.181 1.184 4.719 1.210 1.121 1.181 1.061 1.243 1.239 1.151 1.075 1.035 1.290

19 1.240 1.181 1.184 4.817 1.211 1.123 1.183 1.062 1.244 1.245 1.152 1.076 1.035 1.293

21 1.239 1.180 1.185 4.962 1.212 1.123 1.182 1.062 1.255 1.249 1.152 1.078 1.036 1.298

23 1.240 1.180 1.186 5.003 1.212 1.125 1.183 1.062 1.255 1.261 1.155 1.079 1.036 1.300

25 1.241 1.180 1.186 5.025 1.213 1.125 1.184 1.063 1.255 1.262 1.156 1.081 1.037 1.302

1.200 1.134 1.112 3.249 1.332 1.245 1.265 1.124 1.063 1.365 1.056 1.075 1.088 1.263

message datasets

P
L
M
I

G
Z
IP

PLMI

GM

B
Z
IP
2

F
S
D

D
F
C
M

F
P
C

observational datasetsnumeric datasets



 

 17

With table sizes above one megabyte, FPC achieves the highest geometric-mean compression 

ratio. It outperforms the other five algorithms by a large margin on four datasets. However, on 

the two datasets msg_sppm and obs_spitzer, GZIP and BZIP2 substantially outperform FPC, re-

spectively. Surprisingly, BZIP2 delivers the second highest geometric-mean compression ratio 

even though it was not specifically designed for compressing floating-point data. 

DFCM is superior to FPC in some instances because it employs a more sophisticated predic-

tor, which stores two difference values in each table entry and uses a more elaborate hash func-

tion. However, FPC outperforms DFCM on the majority of our datasets because FPC contains 

two predictors that complement each other, i.e., when one of them performs poorly, the other of-

ten performs well (cf. Section 5.4). 

The original version of PLMI outperforms our modified PLMI version on six datasets and ex-

cels over all other algorithms on four datasets. Interestingly, all of these datasets are generally 

poorly compressible. On average, the original PLMI algorithm performs at the level of our ver-

sion with 1024 table entries (i.e., 16 kilobytes of state). 

DFCM occasionally outperforms PLMI (e.g., on msg_sweep3d and obs_error). Both algo-

rithms employ the same predictor and, intuitively, the fixed-length codes used by DFCM should 

be inferior to PLMI’s variable-length codes because of the nonuniform symbol distribution (cf. 

Section 5.4). However, DFCM’s coding scheme is sometimes superior for two reasons. First, 

PLMI uses a quasi-static probability model to estimate the symbol distribution on the fly. The 

estimate is solely based on the frequency of the previously seen symbols. If the estimated distri-

bution does not accurately reflect the distribution of the following symbols, it can result in sub-

optimal code lengths. Second, PLMI employs range coding that outputs data in byte increments. 

Consequently, even though variable-length coding is employed, the algorithm often needs to in-

sert padding bits to stay at a byte boundary. Our measurements show that on average 3.46 bits of 

padding are added per double with a one-million-entry predictor. 

No compression algorithm performs best on more than five of the thirteen datasets. There is 

also no best algorithm within the three dataset categories. Even BZIP2 and GZIP, the general-

purpose compressors, provide the highest compression ratio in some cases. 

With the exception of msg_sppm, which can be compressed by at least a factor of two, none 

of our datasets are highly compressible with the algorithms we studied. All six algorithms are 



 

 18

ineffective on num_control and obs_temp, which they compress by no more than six and four 

percent, respectively. These results are consistent with the randomness information from Table 1, 

based on which we would expect msg_sppm to be the most and obs_temp the least compressible 

dataset. The highest overall compression ratio is obtained on num_plasma, which contains the 

lowest fraction of unique values. 

Some datasets, most notably msg_sweep3d, num_plasma, obs_error, obs_info, obs_spitzer, 

and msg_sppm much prefer one algorithm over the others. (For example, num_plasma strongly 

favors FPC, which compresses this dataset by more than a factor of fifteen, over the other algo-

rithms, which compress it less than half as much.) With the exception of msg_sweep3d, these 

datasets contain relatively few unique values. 

The five datasets with above 99.5% randomness (msg_lu, msg_sp, num_brain, num_control, 

and obs_temp) cannot be compressed by more than 26% by any of the algorithms we studied. 

Increasing the level (i.e., the block size) of BZIP2 increases the compression ratio by more 

than three percent on four datasets and hurts the performance on msg_bt and msg_sp. Increasing 

the level of GZIP boosts the compression ratio by more than two percent only on msg_sppm. 

FSD performs worse with higher orders on our datasets. There are some cases where orders two, 

three, or four are best, but most of the time order one results in the highest compression ratio. 

Increasing the predictor size improves the compression ratio by more than ten percent on eight 

datasets for DFCM and FPC and on five datasets for PLMI. However, FPC’s performance de-

creases with larger table sizes on num_control and obs_temp (i.e., the two datasets that are the 

hardest to compress). The same is true for DFCM on num_control. In summary, increasing the 

predictor size or level is only worthwhile on some datasets, usually the ones that are easier to 

compress. Moreover, as we shall see next, such an increase comes at the cost of decreased 

throughput. 

 

5.2 Throughput 

This section examines the compression and decompression throughput of the six algorithms (i.e., 

the raw dataset size divided by the runtime). Figure 2 presents the results from the four systems 

described in Section 4.1. Each panel plots the throughput in gigabits per second versus the geo-

metric-mean compression ratio. The four rows of panels correspond to the four platforms. The 



 

 19

left panels show the compression and the right panels the decompression results. For DFCM, 

FPC, and PLMI, the predictor table size doubles for each data point from sixteen bytes (leftmost) 

to 512 MB (rightmost). For BZIP2 and GZIP, the individual data points correspond to levels one 

(leftmost) through nine (rightmost). For FSD, the figure shows results for order one (rightmost) 

through order seven (leftmost). Note that the y-axes are scaled differently in each panel to im-

prove readability. 

 

   

   

   

Itanium 2

0

1

2

3

4

5

6

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Itanium 2

0

1

2

3

4

5

6

7

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

d
e
c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Athlon 64

0.0

0.5

1.0

1.5

2.0

2.5

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Athlon 64

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

d
e
c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Pentium 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Pentium 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

d
e
c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI



 

 20

   

Figure 2: Geometric-mean compression throughput (left panels) and decompression throughput 
(right panels) versus compression ratio of the six algorithms on the four systems 

 

For a given compression ratio, FPC exceeds the throughput of the other algorithms by a large 

margin on all four architectures. DFCM has the second highest throughput, though, occasionally 

(e.g., on the Pentium 4), GZIP’s decompression throughput is a little higher. FSD is third, but it 

delivers the lowest compression ratios on our datasets. PLMI compresses the datasets faster than 

GZIP but decompresses them more slowly. BZIP2 is the slowest algorithm but reaches the 

second highest compression ratio. All algorithms except our implementation of PLMI decom-

press faster than they compress. On the Itanium 2, FPC compresses our datasets 8 to 300 times 

faster and decompresses them 9 to 100 times faster than the other algorithms at the same geome-

tric-mean compression ratio. It reaches a compression throughput of up to 5.43 Gb/s and a de-

compression throughput of up to 6.73 Gb/s. 

FSD’s compression and decompression throughput is roughly half a gigabit per second, ex-

cept on the Athlon 64, where it decompresses at over one gigabit per second. DFCM also per-

forms best on the Athlon 64, where it reaches about 1.1 to 1.5 Gb/s compared to well under one 

gigabit per second on the other three machines. PLMI’s highest throughput is below 0.2 Gb/s on 

all machines, but it, too, is the highest on the Athlon 64. These three algorithms seem to benefit 

from the Athlon’s combination of a high clock speed, large L1 data cache, and 64-bit support. 

Although the Pentium 4 has an even higher clock speed, it lacks 64-bit support, provides fewer 

logical registers, and has a smaller L1 cache. 

GZIP runs faster on the two x86 machines than on the Alpha and the Itanium. Compression is 

slightly faster on the Athlon 64 whereas decompression is slightly faster on the Pentium 4. GZIP 

Alpha 21264

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

Alpha 21264

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

d
e
c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t 
(G

b
/s
) 

BZIP2

DFCM

FPC

FSD

GZIP

PLMI



 

 21

operates at byte granularity and is therefore not sensitive to 64-bit support. The same is true for 

BZIP2. However, BZIP2’s memory footprint is substantially larger than that of GZIP (cf. Section 

5.3), which is probably why it is more sensitive to the cache size. At least for decompression, its 

throughput on the Itanium 2 is significantly higher than on the Pentium 4, the latter of which is 

clocked almost twice as fast (internally almost four times as fast) but has a smaller cache hie-

rarchy. 

The Athlon 64 system delivers the highest compression throughput on all algorithms except 

FPC, where the Itanium 2 is faster. The Itanium 2 system is otherwise the second fastest, fol-

lowed by the Pentium 4, which is outperformed on FPC by the Alpha 21264, the otherwise slow-

est system. The same observations apply to the decompression throughput. 

The Athlon 64 has the highest clock speed of the three 64-bit systems and the largest L1 data 

cache (together with the Alpha 21264). This combination of features makes it the system of 

choice for most of the compression algorithms we studied. FPC prefers the Itanium 2 because 

this processor provides the largest number of logical registers and the highest internal parallelism 

(cf. Section 5.5). These two reasons, together with the fact that the Pentium 4 is a 32-bit CPU, 

also explain why FPC runs faster on the Alpha than on the Pentium 4. 

Figure 3 combines the FPC throughput results from the four systems in one graph. It plots the 

throughput in millions of doubles per second against the binary logarithm of the number of hash-

table entries. 

 

   

Figure 3: FPC’s compression and decompression throughput versus hash-table size on the four 
systems (the right panel shows a zoomed in version of the left panel’s lower right corner) 

 

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

log2(table entries)

th
ro
u
g
h
p
u
t 
(m

e
g
a
d
o
u
b
le
s
 p
e
r 
s
e
c
o
n
d
)

Itanium 2 compression

Itanium 2 decompression

Alpha 21264 compression

Alpha 21264 decompression

Pentium 4 compression

Pentium 4 decompression

Athlon 64 compression

Athlon 64 decompression

0

5

10

15

20

25

30

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

log2(table entries)

th
ro
u
g
h
p
u
t 
(m

e
g
a
d
o
u
b
le
s
 p
e
r 
s
e
c
o
n
d
)

Itanium 2 compression

Itanium 2 decompression

Alpha 21264 compression

Alpha 21264 decompression

Pentium 4 compression

Pentium 4 decompression

Athlon 64 compression

Athlon 64 decompression



 

 22

FPC runs over twice as fast on the Itanium 2 as on the other three machines for table sizes up 

to about four megabytes (the L3 cache has a capacity of three megabytes). As mentioned, the two 

most important reasons for this performance difference are that the Itanium 2 has the highest is-

sue width of the four CPUs (it can sustain 6 as opposed to 4 or 3 executed instructions per cycle) 

and that it has the most logical general-purpose registers (128 as opposed to the Alpha’s 32, the 

Athlon’s 16, and the Pentium’s 8) and therefore does not spill any scalar variables or tempora-

ries. 

The Pentium 4 performs the worst for table sizes up to a few megabytes. This is mostly be-

cause it is the only 32-bit machine we studied (our FPC implementation uses almost exclusively 

64-bit operations) and it has only eight logical general-purpose registers. As a consequence, the 

Pentium 4 has to spill and fill registers all the time. Moreover, it needs to execute at least two 

machine instructions for every 64-bit operation for which the other three machines only require 

one instruction. Evidently, the higher clock speed is not able to compensate for this overhead. 

The Athlon 64 has fewer registers (16) than the Alpha 21264 (32) but outperforms it because its 

clock speed is almost 2.5 times higher. 

At the high end, i.e., up to half a gigabyte of table space, FPC frequently misses in all cache 

levels due to the rather random hash-table accesses. Hence, the CPU parameters do not matter 

much and the memory controller and the main memory latency largely determine the perfor-

mance. In this range, we find the Athlon 64 system to dominate except for the largest two table 

sizes, where the Itanium 2 takes the lead again. We suspect the Athlon’s superior performance to 

be the result of the integration of the memory controller with the core on the same die, which 

significantly reduces the access latency. At the largest size we measured (half a gigabyte), the 

performance is mostly determined by the throughput of the main memory, which is higher on the 

Itanium 2 server than on the Athlon 64 workstation. The Pentium 4’s memory system is designed 

for 32-bit operations and has to handle twice the number of accesses, which is why it is slower. 

The Alpha 21264 server has the slowest memory system, probably because it is over four years 

older than the other three machines. 

 



 

 23

5.3 Memory Consumption 

This section studies the memory footprint, as reported by the UNIX command ps, of the six algo-

rithms. Figure 4 shows the total memory consumption in megabytes relative to the geometric-

mean compression ratio. For GZIP and BZIP2, which allocate a different amount of memory for 

compression and decompression, Figure 4 plots the larger of the two amounts. The individual 

datapoints in the figure again correspond to different table sizes, levels, and orders. The results 

were measured on the Itanium 2 system, but the trends are the same on the other three systems. 

 

 

Figure 4: Memory usage versus compression ratio of the six algorithms on the Itanium 2 system 

 

Except for FPC, all algorithms basically reach their highest geometric-mean compression ra-

tio with less than ten megabytes of memory. In fact, the benefits are already small above two 

megabytes for most of the compressors. FSD and GZIP have a constant memory footprint. PLMI 

and DFCM’s modified dfcm predictor does not benefit from more than six megabytes of memo-

ry. 

At the low end, the code and stack size as well as the input and output buffers determine 

FPC’s memory usage. But for larger sizes, the two predictor tables dominate, as can be seen 

from the exponentially growing curve. The same is true for DFCM and PLMI. However, unlike 

their modified dfcm predictor, FPC’s two predictors can effectively turn additional memory (up 

0

1

2

3

4

5

6

7

8

9

10

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

geometric-mean compression ratio

m
e
m
o
ry
 u
s
a
g
e
 (
m
e
g
a
b
y
te
s
).

BZIP2

DFCM

FPC

FSD

GZIP

PLMI



 

 24

to about ten megabytes) into higher compression ratios. The next 500 megabytes yield less than a 

ten percent increase in compression ratio for FPC. 

 

5.4 Predictor Usage 

Figure 5 shows how often the fcm and the dfcm predictions are used in FPC, i.e., how often they 

result in more leading zero bytes than the prediction of the other predictor. A pair of bars is 

shown for each dataset; one bar for 1024 hash-table entries and the other for 1,048,576 entries. 

 

 

Figure 5: Percentage of time the fcm and dfcm predictions provide more leading zero bytes (in 
each pair, the top bar corresponds to 1,048,576-entry and the bottom bar to 1024-entry tables) 

 

We find that the two predictors complement each other well. Only on msg_lu and msg_sppm 

is one predictor needed less than ten percent of the time with the small and the large table size. In 

other words, both predictors are used frequently in most cases. 

Some datasets result in rather biased usage. On the one hand, fcm is useless 83.1% of the time 

on msg_sweep3d with one million entries. On the other hand, fcm yields more leading zero bytes 

75.5% of the time on msg_sp with one million entries. These results highlight the importance of 

having more than one predictor and explain why FPC compresses many datasets better than the 

related DFCM algorithm, which only uses a single predictor. 

0 10 20 30 40 50 60 70 80 90 100

average

obs_temp

obs_spitzer

obs_info

obs_error

num_plasma

num_control

num_comet

num_brain

msg_sweep3d

msg_sppm

msg_sp

msg_lu

msg_bt

percentage

fcm better

tie

dfcm better



 

 25

On some datasets, e.g., obs_spitzer and msg_sppm, the frequency of usage does not change 

much when changing the table size. On other datasets, e.g., msg_sweep3d and num_plasma, the 

frequency changes by a large amount. Interestingly, the datasets that result in different usage fre-

quencies typically see significant improvements in their compression ratios due to the much bet-

ter performance of the dfcm predictor with larger tables (cf. Table 2). 

Figure 6 shows the distribution of the number of leading zero bytes after xoring the true 

double values with the more accurate of the two predictions. The results are averages over the 

thirteen datasets. 

 

 

Figure 6: Average distribution of the leading zero byte counts for different table sizes 

 

With table sizes of more than eight entries, less than 15% of the doubles result in no leading 

zero bytes. Because of the added 4-bit code in the compressed output, these values are expanded 

instead of compressed by FPC. However, the other 85% of the values are compressed. One and 

two leading zero bytes are common for all predictor sizes, but eight zero bytes (i.e., all 64 bits 

predicted correctly) are also frequent with larger hash tables. Seven and three leading zero bytes 

occur less than 7% of the time and six, five, and four leading zero bytes are very infrequent 

(<1.1%). 

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

log2(table entries)

fr
e
q
u
e
n
c
y
 o
f 
o
c
c
u
rr
e
n
c
e
 (
%
)

0

1

2

3

4

5

6

7

8



 

 26

5.5 Critical-Loop Performance 

This section studies the critical loop in the compression and in the decompression function of our 

FPC implementation. These two loops compress and decompress one block of data (comprising 

up to 32,768 doubles), respectively. For hash tables that fit in the L1 data cache, a little over 90% 

of the compression time is spent in the critical loop and basically all of the remaining time is 

spent moving data into and out of the buffers in I/O operations. Similarly, just under 90% of the 

decompression time is spent in the critical loop with the rest of the time going to data movement. 

With larger hash table sizes, the loops run more slowly because of cache misses and the percen-

tage of the total runtime they represent increases. 

We investigated the assembly listing of the two loops on each of our four systems. Table 3 

shows the number of static machine instructions in the loop bodies as well as the approximate 

average number of static instructions in the loops needed to compress and decompress one 

double. 

 

Table 3: Static instruction count of the critical loops in FPC 

 

 

The results indicate that FPC requires roughly 60 to 90 machine instructions (i.e., operations) 

on 64-bit CPUs to compress a double and roughly 40 to 55 instructions to decompress a double. 

The 32-bit CPU is over a factor of two less efficient because the compiler has to synthesize 64-

bit operations out of 32-bit instructions. Moreover, due to the small number of logical registers, a 

large amount of spill and fill code is needed for the Pentium 4. 

The Alpha compiler emits the entire loop as a single basic block (all IF statements are con-

verted into conditional move instructions) and uses the fewest instructions per double. It is the 

only compiler that chose to unroll one of the loops (it unrolled the decompression loop three 

times). Both loops contain one NOP for instruction slotting purposes [8]. The decompression 

loop contains a software prefetch instruction. 

loop body per double loop body per double

Itanium 2 138 69.0 93 46.5

Athlon 64 185 92.5 110 55.0

Pentium 4 367 183.5 361 120.3

Alpha 21264 121 60.5 253 42.2

compression decompression



 

 27

The Itanium compiler generates slightly more instructions per double, partially because both 

loops contain four NOPs due to static scheduling constraints [19]. Each loop contains a software 

prefetch instruction. The loops are also single basic blocks and are software pipelined. Because 

the Itanium 2 is an in-order, statically scheduled machine, we can determine the number of 

cycles a loop iteration takes assuming there are no L1 cache misses. A compression iteration 

takes 25 cycles (12.5 cycles per double) and a decompression iteration takes 18 cycles (9 cycles 

per double). This means that the compression loop executes an average of 5.5 instructions per 

cycle and the decompression loop 5.16 instructions per cycle. This very high ILP is quite close to 

the CPU’s maximum of six executed instructions per cycle. Moreover, it is substantially higher 

than the fetch width of the other three machines we studied, which explains why FPC runs par-

ticularly well on the Itanium 2. 

The fact that the two critical loop bodies are single basic blocks has an important implication. 

The exact same sequence of instructions is executed to compress/decompress a block of doubles 

regardless of the data values or their compressibility. The running time of these loops, which ac-

count for most of the total runtime, is therefore only dependent on the load latency, as all other 

instructions have fixed latencies. In other words, as long as the hash tables fit in the L1 data 

cache, the compression and the decompression time for a block of data are constant no matter 

what data are being processed. This rather unusual feature, which most other compression algo-

rithms do not possess, is a requirement in real-time environments. 

The Athlon requires noticeably more instructions to express the loop bodies, mostly because 

of a significant number of register spills and fills. More than 16 (but no more than 32) registers 

are needed to hold all the variables and temporaries. While the decompression loop is also a sin-

gle basic block, the Athlon compiler only converts 16 of the 18 IF statements in the compression 

loop into conditional moves and emits two conditional jumps. The 16 converted IF statements all 

compare a value to zero and have only a single assignment in their bodies. The remaining two IF 

statements are more complex. 

The Pentium code of the compression loop includes the same two conditional branches. 

Moreover, almost exactly twice as many instructions are emitted for the 32-bit x86 CPU as for 

the 64-bit x86 CPU. The decompression code consists of multiple basic blocks that are emitted 

out of program order, i.e., the loop body is not straight-line code but consists of chunks of code 

that jump to other chunks. Moreover, about half of the code is duplicated in the various chunks. 



 

 28

6. CONCLUSIONS 

This paper describes FPC, a lossless compression algorithm for linear streams of double-

precision floating-point values. It uses two context-based predictors to sequentially predict each 

value in the stream. The prediction and the true value are xored and the xor result is leading zero 

byte compressed. This algorithm features a high speed, good compression ratio, and ease of im-

plementation. In addition, varying the predictors’ table sizes allows to trade off throughput for 

compression ratio. 

FPC delivers the highest geometric-mean compression ratio and the highest throughput on our 

thirteen hard-to-compress scientific datasets. It achieves individual compression ratios between 

1.02 and 15.05. With predictor tables that fit into the L1 data cache, it delivers a guaranteed 

throughput of over 84 million doubles per second on a 1.6 GHz Itanium 2. This corresponds to 

only two machine cycles to process a byte of data. The source code, a line by line description 

thereof, and the datasets are available at http://www.csl.cornell.edu/~burtscher/research/FPC/. 

The current version of FPC does not compress structured datasets (e.g., multidimensional da-

tasets), 32-bit floating-point values, and easy-to-compress data particularly well. Hence, we want 

to generalize FPC by adding support for exploiting structure, designing a version that is opti-

mized for single-precision data, and including an optional second compression stage. To further 

improve the speed of FPC, we are planning on writing a parallel version. We also intend to look 

at compressing each block independently (i.e., zero out the predictor state instead of continuing 

with the state from the previous block). Doing so enables the simultaneous compres-

sion/decompression of multiple blocks and allows fast-forwarding without the need to decom-

press all preceding values. Preliminary experiments show that compressing blocks of several ki-

lobytes independently reduces the compression ratio by no more than a couple of percent with 

small to medium predictor sizes. 

 

7. ACKNOWLEDGEMENTS 

The authors and this project are supported by the Department of Energy under Award Number 

DE-FG02-06ER25722. Martin Burtscher is further supported by NSF grants CNS-0724966 and 

CNS-0719966 as well as grants from IBM and Intel. Intel donated some of the machines we used 

to evaluate the compressors. The views and opinions expressed herein do not necessarily state or 



 

 29

reflect those of the DOE, IBM, Intel, or the NSF. Drs. Peter Lindstrom and Martin Isenburg pro-

vided the executable of the original PLMI algorithm. Prof. Joseph Harrington of the Department 

of Physics at the University of Central Florida provided the datasets obs_spitzer and num_comet. 

Prof. David Hammer and Ms. Jiyeon Shin of the Laboratory of Plasma Studies at Cornell Uni-

versity provided num_plasma. Mr. Sami Saarinen of the European Centre for Medium-Range 

Weather Forecasts provided obs_temp, obs_error, obs_info, and num_control. One of the authors 

generated num_brain using a modified version of EULAG [5], [25], a fluid code developed at 

the National Center for Atmospheric Research in Boulder, Colorado. Mr. Jian Ke ran the NPB 

and ASCI Purple benchmarks with 64 processes to capture the five message datasets. 

 

8. REFERENCES 

[1] D. Bailey, T. Harris, W. Saphir, R. v. d. Wijngaart, A. Woo and M. Yarrow. “The NAS Pa-
rallel Benchmarks 2.0.” Technical Report NAS-95-020, NASA Ames Research Center. 
1995. 

[2] M. Burrows and D. J. Wheeler. “A Block-Sorting Lossless Data Compression Algorithm.” 
Digital SRC Research Report 124. May 1994. 

[3] M. Burtscher. “VPC3: A Fast and Effective Trace-Compression Algorithm.” Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems, pp. 167-176. June 
2004. 

[4] M. Burtscher and P. Ratanaworabhan. “High Throughput Compression of Double-
Precision Floating-Point Data.” 2007 Data Compression Conference, pp. 293-302. March 
2007. 

[5] M. Burtscher and I. Szczyrba. “Numerical Modeling of Brain Dynamics in Traumatic Situ-
ations - Impulsive Translations.” International Conference on Mathematics and Engineer-

ing Techniques in Medicine and Biological Sciences, pp. 205-211. June 2005. 

[6] M. Burtscher and B. G. Zorn. “Exploring Last n Value Prediction.” International Confe-
rence on Parallel Architectures and Compilation Techniques, pp. 66-76. October 1999. 

[7] D. Chen, Y.-J. Chiang and N. Memon. “Lossless compression of point-based 3D models.” 
Pacific Graphics, pp. 124-126. October 2005. 

[8] Compaq. “Compiler Writer’s Guide for the Alpha 21264.” ftp://ftp.digital.com/pub/Digital/ 
info/semiconductor/literature/dsc-library.html. June 1999. 

[9] V. Engelson, D. Fritzson and P. Fritzson. “Lossless Compression of High-Volume Numeri-
cal Data from Simulations.” Data Compression Conference, pp. 574-586. March 2000. 

[10] J. Fowler and R. Yagel. “Lossless Compression of Volume Data.” IEEE Symposium on Vo-
lume Visualization, pp. 43-50. 1994. 

[11] F. Gabbay. Speculative Execution Based on Value Prediction. EE Department Technical 
Report #1080, Technion - Israel Institute of Technology. November 1996. 



 

 30

[12] M. N. Gamito and M. S. Dias. “Lossless Coding of Floating Point Data with JPEG 2000 
Part 10.” Applications of Digital Image Processing XXVII, pp. 276-287. 2004. 

[13] F. Ghido. “An Efficient Algorithm for Lossless Compression of IEEE Float Audio.” Data 
Compression Conference, pp. 429-438. March 2004. 

[14] B. Goeman, H. Vandierendonck and K. Bosschere. “Differential FCM: Increasing Value 
Prediction Accuracy by Improving Table Usage Efficiency.” Seventh International Sympo-
sium on High Performance Computer Architecture, pp. 207-216. January 2001. 

[15] http://www.bzip.org/, 2007. 

[16] http://www.gzip.org/, 2007. 

[17] http://www.llnl.gov/asc/computing_resources/purple/rfp/benchmarks/limited/code_list.html, 
2007. 

[18] L. Ibarria, P. Lindstrom, J. Rossignac and A. Szymczak. “Out-of-Core Compression and 
Decompression of Large n-Dimensional Scalar Fields.” Eurographics, pp. 343-348. Sep-
tember 2003. 

[19] Intel Corporation. “Intel Itanium 2 Processor Reference Manual for Software Development 
and Optimization.” http://www.intel.com/design/itanium2/manuals/251110.htm. May 2004. 

[20] M. Isenburg, P. Lindstrom and J. Snoeyink. “Lossless Compression of Floating-Point 
Geometry.” CAD2004, pp. 495-502. 2004. 

[21] J. Ke, M. Burtscher and E. Speight. “Runtime Compression of MPI Messages to Improve 
the Performance and Scalability of Parallel Applications.” High-Performance Computing, 
Networking and Storage Conference, pp. 59-65. November 2004. 

[22] S. Klimenko, B. Mours, P. Shawhan and A. Sazonov. “Data Compression Study with the 
E2 Data.” LIGO-T010033-00-E Technical Report, pp. 1-14. 2001. 

[23] P. Lindstrom and M. Isenburg. “Fast and Efficient Compression of Floating-Point Data.” 
IEEE Transactions on Visualization and Computer Graphics, Vol. 12, No. 5. September 
2006. 

[24] M. H. Lipasti, C. B. Wilkerson and J. P. Shen. “Value Locality and Load Value Predic-
tion.” Seventh International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 138-147. October 1996. 

[25] J. M. Prusa, P. K. Smolarkiewicz and A. A. Wyszogrodzki. “Simulations of Gravity Wave 
Induced Turbulence Using 512 PE CRAY T3E.” International Journal of Applied Mathe-

matics and Computational Science, Vol. 11, pp. 101-115. 2001. 

[26] P. Ratanaworabhan, J. Ke and M. Burtscher. “Fast Lossless Compression of Scientific 
Floating-Point Data.” Data Compression Conference, pp. 133-142. March 2006. 

[27] Y. Sazeides and J. E. Smith. “The Predictability of Data Values.” 30th International Sym-
posium on Microarchitecture, pp. 248-258. December 1997. 

[28] M. Schindler. “A Fast Renormalisation for Arithmetic Coding.” Data Compression Confe-
rence, p. 572. March 1998. 

[29] C. Touma and C. Gotsman. “Triangle Mesh Compression.” Graphics Interface, pp. 26-34. 
1998. 



 

 31

[30] A. Trott, R. Moorhead and J. McGenley. “Wavelets Applied to Lossless Compression and 
Progressive Transmission of Floating Point Data in 3-D Curvilinear Grids.” IEEE Visuali-
zation, pp. 355-388. October 1996. 

[31] B. E. Usevitch. “JPEG2000 Extensions for Bit Plane Coding of Floating Point Data.” Data 
Compression Conference, pp. 451-461. March 2003. 

[32] J. Ziv and A. Lempel. “A Universal Algorithm for Data Compression.” IEEE Transaction 
on Information Theory, Vol. 23, No. 3, pp. 337-343. May 1977. 

 

Martin Burtscher received the combined BS/MS degree in computer 

science from the Swiss Federal Institute of Technology (ETH) Zurich in 

1996 and the Ph.D. degree in computer science from the University of Colo-

rado at Boulder in 2000. He was an assistant professor in the School of Elec-

trical and Computer Engineering at Cornell University until 2007. Since 

then, he has been a research scientist in the Center for Grid and Distributed Computing at the 

University of Texas at Austin. His research interests include automatic parallelization and opti-

mization of irregular programs, high-speed data compression, hardware- and software-based pre-

fetching, and brain injury simulation. He is a senior member of the IEEE, its Computer Society, 

and the ACM. 

 

Paruj Ratanaworabhan received a BENG and an MENG degree in 

Electrical Engineering from Kasetsart University and Cornell University, 

respectively. He is now working on his Ph.D. in Electrical and Computer 

Engineering at Cornell University, where he is a member of the Computer 

Systems Laboratory. His research encompasses race detection and toleration, 

phase-aware computer architectures, data compression, and compiler optimizations. Currently, 

he is a visiting student at the Center for Distributed and Grid Computing at the University of 

Texas at Austin. 


