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Graph coloring assigns a color to each vertex of a graph such that no two adjacent vertices get the same color. It is a key building 

block in many applications. In practice, solutions that require fewer distinct colors and that can be computed faster are typically 

preferred. Various coloring heuristics exist that provide different quality versus speed tradeoffs. The highest-quality heuristics 

tend to be slow. To improve performance, several parallel implementations have been proposed. This paper describes two 

improvements of the widely used LDF heuristic. First, we present a “shortcutting” approach to increase the parallelism by non-

speculatively breaking data dependencies. Second, we present “color reduction” techniques to boost the solution of LDF. On 18 

graphs from various domains, the shortcutting approach yields 2.5 times more parallelism in the mean, and the color-reduction 

techniques improve the result quality by up to 20%. Our deterministic CUDA implementation running on a Titan V is 2.9 times 

faster in the mean and uses as few or fewer colors as the best GPU codes from the literature. 

CCS CONCEPTS • Computing methodologies • Massively parallel algorithms 

Additional Keywords and Phrases: Graph coloring, shortcutting, color reduction, parallelism, GPU computing 

1 INTRODUCTION 

Graph coloring refers to the assignment of colors (i.e., unique symbols) to the vertices of a graph such that no 

adjacent vertices have the same color. More formally, a vertex coloring of an undirected graph 𝐺 = (𝑉, 𝐸)  is a 

mapping 𝐶 from vertices to colors such that 𝐶(𝑖) ≠ 𝐶(𝑗) for every edge (𝑖, 𝑗) ∈ 𝐸 . The graph coloring problem is the 

problem of coloring a graph using as few colors as possible without violating this adjacency constraint. 

Graph coloring is an algorithmic building block in many applications such as clustering, data mining, image 

capturing, image segmentation, networking, resource allocation, process scheduling, optimizing the calculation of 

sparse Jacobian matrices [10], LU factorization [37], and parallel Gauss-Seidel algorithms for solving non-linear 

equations [28]. An example of resource allocation might be an ambulance service that uses graph coloring to 

schedule non-emergency transports as follows. First, they build a graph where each vertex represents a transport, 

and there is an edge between any pair of transports that overlap in time. Then, they color the graph. The result 

shows not only how many ambulances are needed (the number of unique colors) but also which transports should 

be handled by, say, the red ambulance (all transports that are colored red). The solution minimizes the number of 

required ambulances (the cost) and maximizes their utilization. 

Graph coloring is NP-hard, i.e., there is no known polynomial time algorithm that can solve it optimally [20]. 

However, many heuristic algorithms exist to color a graph using few colors. These algorithms produce a valid 

coloring, meaning they guarantee that no adjacent vertices have the same color, but they may require more colors 

than the optimal algorithm, meaning they do not guarantee optimality. Moreover, these heuristics provide different 

tradeoffs between the coloring quality and the execution time. Typically, faster algorithms tend to require more 

colors. The problem we are addressing is how to deliver a very good coloring quality at high speed. Our solution is 

to increase the parallelism and post-processing the result to reduce the number of colors needed. 
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One well-known heuristic is the greedy algorithm. It assigns a random priority to each vertex. Then, it repeatedly 

selects the uncolored vertex that currently has the highest priority and colors it with the best available color, i.e., 

the first available color that is not already assigned to one of the vertex’s neighbors. In graph coloring, the colors 

are typically ordered (first color, second color, etc.) and the first color is the “best” (most preferred) color. 

Many parallel graph coloring algorithms [5] [9] [24] [41] follow the Jones-Plassmann approach [30], that is, they 

are based on the observation that any independent set of vertices can be colored in parallel. The strategy used for 

the coloring depends on the application. If fewer colors are desirable, the algorithm needs to emphasize the coloring 

quality at the cost of performance. If the application is runtime sensitive, the number of colors might be 

compromised in favor of a higher speed. Combining the Jones-Plassmann approach with different priority heuristics 

allows to select different points in this quality versus speed tradeoff space. 

Several priority heuristics have been proposed for determining the order in which to color the vertices. Some of 

them can be implemented to run in linear time in the size of the graph. There are six prominent ordering heuristics 

for graph coloring: 1) first-fit ordering (FF), where the vertices are colored in the order in which they appear in the 

linearized input, 2) random ordering (R), where the vertices are colored in random order, 3) largest-degree-first 

ordering (LDF), where the vertices with larger degrees are colored first, 4) smallest-degree-last ordering (SDL), 

where the vertices with the smallest degree are successively removed from the graph, the modified graph is colored 

using the LDF heuristic, and finally the removed vertices are gradually re-inserted and colored, 5) saturation-degree 

ordering (SD), where the vertices whose colored neighbors have the largest number of unique colors are colored 

first (using the vertex degree as a tie breaker), and 6) incidence-degree ordering (ID), where the vertices with the 

largest number of colored neighbors are colored first irrespective of the number of unique colors (using the vertex 

degree as a tie breaker). Where needed, these heuristics include a tie breaker, which is often the vertex identifier. 

In general, LDF tends to produce better colorings than FF and R at the same performance level, SDL and SD tend to 

produce better colorings than LDF but with a large additional cost in runtime, and ID tends to produce similar 

coloring quality as LDF but is slower [26]. 

For any ordering heuristic, assigning the best available color to each vertex guarantees that the number of colors 

used is always bounded by dmax+1, where dmax is the highest degree of any vertex in the graph. However, some 

ordering heuristics, in particular SDL, lower this bound to a much smaller quantity called the degeneracy (or core) 

of the graph. Other ordering heuristics, such as LDF, provide a bound that lies somewhere in between. 

Our algorithm is based on the Jones-Plassmann (JP) approach with the largest-degree-first (LDF) heuristic. We 

selected JP-LDF because it is widely used as it tends to produce good colorings while being quite fast [26]. It colors 

vertices with higher degrees first, so vertices with a lower degree must wait before the algorithm can assign a color 

to them. To reduce this waiting, we have developed “shortcuts” that, under certain conditions, allow us to non-

speculatively color lower-degree vertices before their higher-degree neighbors have been colored [1]. Thus, the 

shortcuts increase the parallelism as more vertices can be colored simultaneously, which boosts performance. 

Importantly, the shortcuts are guaranteed to yield the same final coloring as the JP-LDF algorithm without the 

shortcuts. 

The domains of some other NP-hard graph problems, notably the traveling salesman problem (TSP) [1], 

distinguish between two categories of heuristics: construction heuristics and improvement heuristics [27] [38]. 

Construction heuristics build a solution from scratch whereas improvement heuristics take a valid solution as input 

and try to make it better. The two “color-reduction” heuristics we propose in this paper are one of the first 

improvement heuristics in the graph coloring domain. The LDF heuristic always assigns the best available color to 
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a vertex. However, this may prevent the vertices that end up with the highest color h from getting a better color. 

Under some conditions, our color reduction heuristics can assign worse colors (below h) to other vertices to free 

up better colors for the vertices with color h. Recoloring them with one of the better colors lowers the number of 

required colors beyond the capabilities of LDF. Our color-reduction heuristics are guaranteed to never make the 

coloring quality worse. On about half of our inputs, they reduce the number of colors, thus boosting the solution 

quality. They are independent of LDF and can be used to improve the result of any construction heuristic. 

This paper makes the following main contributions. 

• It presents algorithmic shortcuts to increase the parallelism in graph coloring without affecting the coloring 

quality. 

• It presents color-reduction heuristics to improve the solutions of other graph coloring heuristics. 

• It describes techniques to efficiently implement and deterministically parallelize these shortcut and color-

reduction algorithms. 

• It demonstrates that our CUDA implementation is faster than prior CPU and GPU graph coloring codes on a 

variety of graphs while, on average and on most of the tested graphs, also using fewer colors. 

The CUDA source code is available at https://cs.txstate.edu/~burtscher/research/ECL-GC/. 

The rest of the paper is organized as follows. Section 2 provides background information on (parallel) graph 

coloring. Section 3 explains the shortcuts and optimizations to implement them efficiently. Section 4 explains the 

color-reduction heuristics and how they are parallelized. Section 5 summarizes related work. Section 6 describes 

the experimental methodology. Section 7 presents and analyzes the results. Section 8 concludes the paper. 

2 BACKGROUND 

Throughout this paper, we use the color order shown in Figure 1a, i.e., the first color (red) must be chosen whenever 

possible. If it is not available, the second color (blue) must be chosen if possible, and so on. 

We use the graph in Figure 1b with 7 vertices and 16 edges for illustration. To simplify the discussion, the 

vertices are labeled in LDF order, meaning they are to be colored in alphabetic order. The resulting ordering 

imposes a direction upon each edge (from the higher-priority vertex that must be colored earlier to the lower-

priority neighbor), which turns the undirected graph into the directed acyclic graph (DAG) shown in Figure 1c. 

Figure 1d displays a valid coloring with four colors. This is the result that the greedy serial algorithm produces 

when processing the vertices alphabetically. It first colors A, which has no colored neighbors, so A gets red. Then B 

is colored, which is adjacent to A and, therefore, cannot be red. Hence, B is assigned blue, the next best color. Vertex 

C can be red again and D must take orange as it has red and blue neighbors. E must be purple as it has red, blue, and 

orange neighbors. Finally, F can be blue and G can be orange. Note that the serial algorithm requires as many steps 

as there are vertices. Each step must traverse all edges of the current vertex, resulting in the total work of 

𝑂(|𝑉| + |𝐸|) where |𝑉| is the number of vertices and |𝐸| the number of edges in the graph. Any parallel algorithm 

that adheres to the same vertex priority must produce the same coloring, including the JP algorithm and our 

algorithm, which we named “ECL-GC”. 

A DAG generally only specifies a partial order, in this case the order in which to color the vertices. The parallelism 

of the JP algorithm originates from this partial order. The depth of the DAG determines the number of parallel steps, 

and the width at a given level (when drawing the DAG top-down) determines the amount of parallelism. 
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Figure 1: Assumed color priority order (a), sample graph (b), LDF-imposed DAG (c), and greedy coloring (d) 

 

In many JP implementations, each vertex v starts out with a list of k+1 possible colors, where is k is the number 

of higher-priority neighbors, i.e., incoming DAG edges. This number suffices because, in the worst case, every 

incoming edge will be from a differently colored neighbor and use up the first k colors, leaving the k+1st color for 

vertex v. If the incoming edges end up not using all first k colors, because some neighbors of v either have the same 

color or use a color above k, then at least one of the first k colors will be available for v. Hence, it always suffices to 

only reserve the first k+1 colors for a vertex with k incoming edges [45]. Whenever a higher-priority neighbor is 

colored, that color is removed from the list. Each vertex is ultimately colored with the best remaining color. 

JP often uses bitmaps for implementing these lists where each bit represents a different color [33]. A set bit “1” 

means the corresponding color is still possible and a cleared bit “0” means the color is no longer available. The 

position of the bit indicates to which color it refers. A colored vertex has a single set bit in the bitmap reflecting the 

color of the vertex. Uncolored vertices have at least two set bits. Whenever a higher-priority vertex is colored, the 

corresponding bit must be cleared in its lower-priority neighbors since that color is no longer available. 

Figure 2 illustrates how the bitmap for vertex R changes as the neighbors with a higher priority get colored. The 

bitmap starts out with six possible colors since there are five higher-priority neighbors, indicated by the incoming 

arrows. To improve readability, we show each set bit in the color it represents. 

Assuming vertex C is the first to be colored and it is colored blue, the blue bit in vertex R’s list is zeroed out to 

indicate that blue is no longer a possible color for R. Next, assume vertex E is colored gray. Hence, the gray bit is set 

to zero in the bitmap. Then, vertex A is colored green, clearing the green bit. When vertex D is also colored green, 

the bitmap does not change because the green bit is already zero. Finally, vertex B is colored red and the red bit is 

cleared. Now that all higher-priority neighbors have been colored, we can color R. The remaining “1” bits in the 

bitmap indicate which colors can be used (yellow and purple in the example). Since JP-LDF always uses the best 

available color, vertex R is colored yellow. This can be achieved, for example, by zeroing out all bits above the first 

“1” in the bitmap as shown in Figure 2. 
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Figure 2: Bitmap of vertex R representing the list of remaining possible colors 

 

Figure 3 illustrates the steps of the JP-LDF algorithm on our sample graph. Figure 3a shows the initialization 

step, which computes the direction of each edge in parallel by comparing the degrees of the two vertices the edge 

connects and invoking the tie breaker if needed. Vertex A can already be colored as it has no incoming edges. In 

each of the following processing steps, every uncolored vertex checks, in parallel, whether all its higher-priority 

neighbors (incoming edges) have been colored. We visualize this with light edges. Once a vertex has no incoming 

dark edges, it can be colored. 
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Figure 3: Initialization and computation steps of the parallel JP-LDF graph-coloring algorithm 

In the first processing step (Figure 3b), all neighbors of vertex A see that A has been colored and zero out the red 

bit in their bitmaps. At this point, vertex B has no incoming dark edges anymore. It gets blue as that is the best 

available color in its bitmap. In the second step (Figure 2c), all lower-priority neighbors of vertex B clear their blue 

bits. This colors vertex C red. In the third step (Figure 2d), the lower-priority neighbors of vertex C see that C has 

been colored red, but the bitmaps do not change as none of them have the red bit set. Moreover, vertices D and G 

find that all their higher-priority neighbors have been colored. So, they are colored concurrently with the best 

available color, which happens to be orange in both cases. In the fourth step (Figure 2e), all lower-priority neighbors 

of vertices D and G zero out their orange bit. This colors vertex E purple. In the fifth and final step (Figure 2f), the 

purple bit is cleared in vertex F’s bitmap and F is colored with the best remaining color, which is blue. Since all 

vertices are now colored, the JP-LDF algorithm terminates. It takes JP-LDF five steps to complete because the 

longest dependence chain in the DAG has five edges (A→B→C→D→E→F). 

3 SHORTCUT APPROACH 

There is little parallelism in the JP example from the previous section. Only one step colors more than one vertex. 

Yet, additional non-speculative parallelism may exist. To see where it resides, consider the partially colored 

subgraph in Figure 4a. We reuse the color priorities from Figure 1a in this section. 

 

 

Figure 4: Examples of Shortcut 1 

 

Vertices B and C cannot be colored because they both have a higher-priority neighbor that has not yet been 

colored, as indicated by the incoming dark edge. It appears that vertex Q also cannot be colored for the same reason. 

However, it can safely be colored red (the best color) without waiting for B or C. This is safe because B and C are 

guaranteed not to use red since they both have a neighbor that is already red. Figure 4b depicts a similar scenario 

but vertex A is now blue. Applying the same reasoning, we conclude that it is safe to color vertex Q blue as well. But 
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we must give each vertex the best possible color, i.e., the same color as the serial and JP-LDF algorithms. 

Unfortunately, we do not yet know whether it is possible to color vertex Q red and must, therefore, wait. In the 

modified case depicted in Figure 4c, we do not have to wait because blue is now the best possible color for Q, and 

we know that neither B nor C will be blue. Generalizing these observations leads to the first enhancement we 

propose, which we call a “shortcut” because it allows the coloring of vertices before it is their turn. 

Shortcut 1: A vertex can safely be colored with its best possible color as soon as its uncolored higher-priority 

neighbors are no longer considering that color. 

To be able to determine whether this is the case, we need to know what colors each vertex is still considering. 

Luckily, this information is stored in the bitmaps, which are already present in many JP-based graph-coloring codes 

to find the best available color when it is time to color a vertex [33]. Our approach uses these bitmaps for two 

additional tasks, namely, to determine the best available color of a vertex (the lowest set bit in its bitmap) before it 

is time to color the vertex and to determine if any of the higher-priority neighbors are still considering that color. 

Together, these two pieces of information allow us to decide whether the first shortcut can be applied. 

We also use the information in the bitmaps for a second type of shortcut. The second shortcut makes it possible 

to ignore some higher-priority neighbors before they have been colored, which is tantamount to deleting an edge 

from the graph. This has two benefits. First, it enables the removal of one possible color from the bitmap since the 

number of incoming edges has decreased by one, which may make the first shortcut more effective (on other 

vertices). Second, it speeds up later processing steps as they no longer need to check the deleted edge. Figure 5 

illustrates the idea behind the second shortcut. 

 

 
Figure 5: Example of Shortcut 2 

 

In this example, vertex R cannot be colored because it is waiting for one higher-priority neighbor (the incoming 

dark edge). However, we already know it will end up with either blue or purple as those are the only two possible 

colors remaining. Similarly, vertex S cannot be colored yet, and we know that its remaining possible colors are red, 

orange, and gray. Since there is no overlap between the possible colors of vertices R and S, no matter which of its 

possible colors R eventually obtains, it will not interfere with S. Hence, we can safely delete the edge from R to S. 

Doing so lowers the number of incoming dark edges of vertex S to one, meaning it only needs to consider two 

possible colors. Consequently, we can remove the worst color from its list of possible colors, which is gray. 

Generalizing this idea leads to the second shortcut. 
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Shortcut 2: An edge from a higher-priority vertex u to vertex v can safely be removed as soon as there is no 

overlap between the possible colors of vertices u and v, which enables the removal of the worst color from the 

list of possible colors of vertex v. 

Correctness proof of the two shortcuts: 

1. Our approach augments the JP algorithm with two shortcuts. Therefore, it produces the same coloring as 

the JP algorithm when disabling the shortcuts. 

2. Neither shortcut applies to the initialization phase, which is why the bitmaps start out identically with and 

without the shortcuts. 

3. During processing, the only operation performed on the bitmaps, with and without the shortcuts, is the 

clearing of bits. This monotonicity property guarantees that, once there is no overlap between the first set 

bit (Shortcut 1) or any set bit (Shortcut 2) and another bitmap, there never will be an overlap anymore. 

4. Only overlapping set bits can result in the clearing of the first set bit in a lower-priority vertex’s bitmap 

(namely when the higher-priority vertex is colored with that color). Consequently, the first lower-priority 

set bit will never be cleared once the corresponding bit in all higher-priority vertices is zero (Shortcut 1). 

5. Once there is no overlap, a higher-priority vertex cannot possibly select a color that a lower-priority vertex 

considers. Hence, the connecting edge can be ignored (Part 1 of Shortcut 2). Since the higher-priority vertex 

will necessarily either select a color above k+1 or a color that another neighbor of the lower-priority vertex 

has already chosen (since there is no overlap in the bitmaps), the worst-case scenario cannot occur 

anymore, which is why we can eliminate the highest set bit of the lower-priority vertex (Part 2 of Shortcut 

2). 

It is important to note that neither of the two shortcuts affects the ultimate coloring of the graph. They just speed 

up the processing by increasing the parallelism. Figure 6 illustrates this on our sample graph. 

 

 

 

 

Figure 6: Initialization and computation steps of our parallel ECL-GC graph-coloring algorithm 
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The initialization phase (Figure 6a) of ECL-GC, our shortcut-based graph coloring algorithm, is identical to that 

of the JP-LDF algorithm (cf. Figure 3a). In particular, the bitmaps are initialized in the same way, and vertex A is 

already colored red. In each of the following computation steps, all uncolored vertices can be processed in parallel. 

Every vertex v visits its higher-priority neighbors. There are three cases to consider. 

1) If a neighbor u has been colored, i.e., its bitmap only contains a single set bit, the edge from u to v is removed 

from consideration (grayed out) and one bit in the bitmap of v is cleared. If the bit corresponding to u’s color is set, 

that bit must be cleared since this color is no longer a possible color for v. This is equivalent to the standard JP 

algorithm. However, if the bit corresponding to u’s color is not set, the highest set bit in the bitmap of v is cleared 

instead. This is not done in the JP algorithm. It is optional in ECL-GC but may help with the following two cases. 

2) If a neighbor u has not yet been colored, i.e., its bitmap contains multiple set bits, and none of the set bits in 

u’s bitmap overlap with the set bits in v’s bitmap, the edge from u to v is removed from consideration (grayed out) 

and the highest set bit in the bitmap of v is cleared. This implements Shortcut 2. 

3) For all uncolored higher-priority neighbors, the union (bitwise OR) of their bitmaps is computed. If the 

currently best possible color of v is not in the union, all incoming edges are removed from consideration and v is 

colored with its best available color, i.e., all bits above the lowest set bit are cleared (since that many edges were 

removed). This implements Shortcut 1. 

In the first computation step of ECL-GC (Figure 6b), all vertices that are adjacent to A clear their red bit. Note 

that this colors vertex B as it only has one set bit left. B gets blue because the set bit is in the second position. 

In the next computation step (Figure 6c), multiple events occur. All uncolored vertices that are adjacent to B 

clear their blue bit. This colors vertex C red. Due to the parallel processing, the other vertices either see the old 

bitmap of “11” or the new bitmap of “01” for C. Either view suffices for vertices D and G, both of which have vertex 

C as the only remaining higher-priority neighbor, to conclude that they can be colored orange using Shortcut 1 since 

their best possible color is not considered by any of their higher-priority neighbors. Applying Shortcut 1 clears all 

bits past the first set bit, indicated by an “x” in the figure. Shortcut 2 can also be applied in this computation step. 

The bitmap of E has no overlap with the (old or new) bitmap of C, so the edge from C to E is removed from 

consideration, and the highest set bit of E is cleared. 

In the third computation step (Figure 6d), vertices E and F remove their orange bit due to vertex D, which colors 

vertex E purple. Vertex F may not yet see this update of vertex E’s bitmap but can still conclude that its first set bit 

is not contained in any of its remaining neighbors’ (vertices C and E) bitmaps, that is, it can be colored blue using 

Shortcut 1 and the higher bits are cleared. At this point, all vertices are colored, so the algorithm terminates. 

The resulting coloring is identical to that of the serial and JP-LDF algorithms. Moreover, due to the increased 

parallelism, it only takes the ECL-GC algorithm three computation steps to color this graph compared to five steps 

for the JP-LDF algorithm. 

 

3.1 Shortcut Derivation 

The two shortcuts were systematically derived from combinations of intersections between the possible colors 

among neighboring vertices. Assume set C(v) ⊂ ℕ contains the possible colors of vertex v. As shortcuts only apply 

to uncolored vertices and a vertex can only have a finite number of incoming DAG edges, 2 ≤ |C(v)| < ∞ holds. Thus, 

the complement C’(v) = ℕ\ C(v) must have cardinality |C’(v)| = ∞. If U(v) denotes the union of the possible colors of 

all uncolored higher-priority neighbors of v, 2 ≤ |U(v)| < ∞ must also hold and there must be at least one higher-
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priority neighbor given that v is uncolored. Assuming vertex n represents one of those neighbors and that B(v) ⊂ 

C(v) denotes the best color of C(v), i.e., |B(v)| = 1, we end up with the 16 possibilities listed in Table 1. 

Some intersections cannot yield an empty set due to the cardinality constraints outlined above. Others may yield 

an empty set, but the condition under which they do is not strong enough to yield a useful shortcut. The remaining 

four (red) cases are candidates. The 1st case from the top is Shortcut 2. The 5th case by itself is insufficient and only 

part of Shortcut 1. The 9th case is unnecessarily strong and already covered by the 13th case, which is Shortcut 1. We 

similarly tried using the possible colors of the neighbors’ neighbors but could not find any exploitable shortcuts. 

Table 1. Bitmap intersections and resulting actions 

 

 

3.2 ECL-GC Implementation & Optimization 

A direct implementation of the ECL-GC algorithm as described above may be inefficient due to long bitmaps that 

must be processed for vertices with many higher-degree neighbors. This potential inefficiency is concerning since 

the goal of the shortcuts is to accelerate the computation. 

Graph coloring is typically performed on sparse graphs (e.g., dependence graphs) as there is little to be gained 

from coloring dense graphs that require close to  |𝑉|unique colors. We define a graph as sparse if it has 𝑂(|𝑉|) edges, 

that is, |𝐸| = 𝑐|𝑉| where c is a constant (the average degree) that is much smaller than |𝑉|. In a sparse graph, most 

of the vertices must have a low degree (much lower than |𝑉|). Since a vertex of degree k can always be colored with 

one of the first k+1 colors, most vertices in sparse graphs can, therefore, be colored with just a few colors (typically 

significantly fewer than c). This observation led us to a design that treats high-degree and low-degree vertices 

separately. Specifically, we fully implement the presented shortcuts on the low-degree vertices but only 

approximate them on the high-degree vertices to avoid the costly processing of long bitmaps. 

For each low-degree vertex with a degree under 32, we use a fixed bitmap with 32 bits (i.e., an integer). For all 

other vertices, we maintain the full bitmap to ultimately assign the best possible color as the conventional JP 

algorithm does but only use two integers for the shortcut computations. The first integer specifies the best possible 

color and the second integer the worst possible color. We do not update the worst possible color as we found that, 

meaning of empty intersection resulting action

C(v) ∩C(n) poss. colors don't overlap with neighbor remove edge (Shortcut 2)

C'(v) ∩C(n) there is overlap: C(n)  ⊂ C(v) continue

C(v) ∩C'(n) there is overlap: C(v)  ⊂ C(n) continue

C'(v) ∩C'(n) impossible

B(v) ∩C(n) best color not considered by neighbor record info (for Shortcut 1)

B'(v) ∩C(n) impossible

B(v) ∩C'(n) best color is considered by neighbor continue

B'(v) ∩C'(n) impossible

C(v) ∩U(v) p. colors don't overlap with any neighbor use best color (Shortcut 1)

C'(v) ∩U(v) there is overlap: U(v)  ⊂ C(v) continue

C(v) ∩U'(v) there is overlap: C(v)  ⊂ U(v) continue

C'(v) ∩U'(v) impossible

B(v) ∩U(v) best color not considered by any neighbor use best color (Shortcut 1)

B'(v) ∩U(v) impossible

B(v) ∩U'(v) best color is considered by some neighbor continue

B'(v) ∩U'(v) impossible

intersection
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for high-degree vertices, it rarely gets small enough to matter before the vertex is colored. However, we maintain 

the best possible color precisely. 

The shortcuts are approximated as follows with the two integers. Shortcut 1 is applied if the best possible color 

of a lower-priority vertex is not in the range between the best and worst possible color of any of the uncolored 

higher-priority neighbors. This simplification makes the Shortcut 1 processing independent of how long the 

bitmaps are but may miss some shortcutting opportunities. Shortcut 2 can be applied if the range between the 

lowest and highest possible color of a lower-priority vertex does not overlap with the range between the lowest 

and highest possible color of an uncolored higher-priority neighbor. We ended up not including the second shortcut 

for high-degree vertices in our implementation as our tests showed that it applies too infrequently to yield a 

speedup. 

Our ECL-GC CUDA implementation consists of three kernels. Their operations are presented in Algorithms 1, 2, 

and 3 and explained in the following paragraphs. 

The initialization kernel, outlined in Algorithm 1, sets the color of each vertex to zero (line 3) and puts all vertices 

of degree 32 or higher on a worklist (line 5). Furthermore, it records the incoming edges from higher-priority 

vertices (i.e., it builds the DAG, line 10) and initializes the bitmaps with the first k+1 colors (line 13). For efficiency 

reasons, this is done at thread granularity for the low-degree vertices and at warp granularity for the high-degree 

vertices. We use the unique vertex IDs to break ties when computing the priorities. This makes the code 

deterministic, meaning it always computes the same solution for a given input graph, independent of the GPU it is 

executed on and independent of internal thread and warp timing. The two for-each loops are parallelized. The 

worklist is updated concurrently using atomic instructions. The DAGs are generated in parallel using warp-based 

reductions. 

ALGORITHM 1: ECL-GC Initialization 

1: worklist ← Ø 

2: for each vertex v in G do 

3:  colorv ← 0 

4:  if degree(v) ≥ 32 then 

5:   worklist ← worklist ∪ v 

6:  else 

7:   DAGinv ← Ø 

8:   for each neighbor n of v in G do 

9:    if priority(v) < priority(n) then 

10:     DAGinv ← DAGinv ∪ n 

11:    end if 

12:   end for 

13:   posscolv ← {0, 1, …, |DAGinv|} 

14:  end if 

15: end for 
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The second kernel, outlined in Algorithm 2, processes the high-degree vertices, which it retrieves from the 

worklist (line 3). It can safely ignore the low-degree vertices as they are guaranteed to have lower priorities. This 

kernel uses persistent threads [25], meaning it is launched with only as many threads as can simultaneously be 

active on the GPU rather than with as many threads as there are vertices in the graph. Each thread repeatedly and 

asynchronously loops over the vertices assigned to it and performs the computation steps until all vertices have 

been colored. To improve performance, the threads that have a vertex in need of processing (line 4) enlist the 

remaining threads in the warp to help traverse that vertex’s incoming DAG edges (line 7). Hence, this kernel 

combines thread-based and warp-based parallelization. For each colored neighbor, the color is removed from the 

list of possible colors (line 12). If either the best color is removed (line 9) or the range of possible colors of the 

higher-priority neighbor overlaps with the best color (line 15), the shortcut is disabled. If all neighbors have been 

colored or the shortcut can be applied, the vertex is colored with its best possible color (line 22). Otherwise, the 

code will have to try to color this vertex again later (line 24). The two for-each loops are parallelized. The bitmaps 

(posscol) are updated using atomic instructions. The flags are updated using warp-based reductions. 

ALGORITHM 2: ECL-GC High-degree Vertex Coloring 

1: do 

2:  again ← false 

3:  for each vertex v in worklist do 

4:   if !colored(v) then 

5:    shortcut ← true 

6:    done ← true 

7:    for each neighbor n of v in DAGinv do 

8:     if colored(n) then 

9:      if colorn = bestcolv then 

10:       shortcut ← false 

11:      end if 

12:      posscolv ← posscolv \ colorn 

13:     else 

14:      done ← false 

15:      if bestcoln ≤ bestcolv and bestcolv ≤ worstcoln then 

16:       shortcut ← false 

17:      end if 

18:     end if 

19:    end for 

20:    bestcolv ← best(posscolv) 

21:    if done or shortcut then 

22:     colorv ← bestcolv 

23:    else 

24:     again ← true 

25:    end if 
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26:   end if 

27:  end for 

28: while (again) 

 

The third kernel, outlined in Algorithm 3, processes all vertices (line 3), skipping the ones that have already been 

colored (line 4), which includes all high-degree vertices. Hence, it suffices to only use 32-bit bitmaps in this kernel 

to fully implement both shortcuts. Since we know that the remaining uncolored vertices only have few higher-

priority neighbors, this kernel performs all work exclusively at the thread level. As in the previous kernel, each 

thread asynchronously loops over the vertices assigned to it and performs the computation steps until its vertices 

have been colored. For each vertex, the thread traverses the incoming DAG edges (line 6) and computes the union 

of the possible colors of all uncolored higher-priority neighbors (line 7). If applicable (line 8), it applies Shortcut 2 

(lines 9 and 10). If the neighbor has been colored (line 11), it removes the neighbor from further consideration (line 

12) and removes the neighbor’s color from the list of possible colors (line 13). If there are no uncolored higher-

priority neighbors left or Shortcut 1 can be applied (line 16), the vertex is colored with its best possible color (line 

17). Otherwise, the code will have to try to color this vertex again later (line 19). Only the outer for-each loop is 

parallelized as the inner for-each loop is guaranteed to only perform few iterations. This kernel’s only 

synchronization is via producer-consumer relationships using volatile variables. 

ALGORITHM 3: ECL-GC Low-degree Vertex Coloring 

1: do 

2:  again ← false 

3:  for each vertex v in G do 

4:   if !colored(v) then 

5:    union ← Ø 

6:    for each neighbor n of v in DAGinv do 

7:      union ← union ∪ posscoln 

8:     if posscolv ∩ posscoln = Ø then 

9:      DAGinv ← DAGinv \ n 

10:      posscolv ← posscolv \ worst(posscolv) 

11:     else if colored(n) then 

12:      DAGinv ← DAGinv \ n 

13:      posscolv ← posscolv \ colorn 

14:     end if 

15:    end for 

16:    if DAGinv = Ø or union ∩ best(posscolv) = Ø then 

17:     colorv ← best(posscolv) 

18:    else 

19:     again ← true 

20:    end if 

21:   end if 
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22:  end for 

23: while (again) 

 

For performance reasons, all set operations are implemented with logical bit instructions (AND, OR, and NOT). 

Moreover, the colors are allocated from MSB to LSB in the bitmaps, which may seem counterintuitive. This ordering 

does not affect the set operations, but it does accelerate the two important remaining operations: finding the first 

set bit (determining the best possible color, lines 16 and 17) and clearing the last set bit (removing the worst color, 

line 10). The position of the first set bit can quickly be obtained with the “count leading zero bits” instruction, which 

is available on many architectures, including GPUs. In contrast, a “count trailing zero bits” instruction is often not 

present. Clearing the last set bit of a value x can be done quickly by computing x &= (x – 1), which works irrespective 

of where the last set bit is located [44]. Generally, no equally fast way of clearing the first set bit of a value exists. 

Our CUDA implementation has fewer than 300 statements with around 150 kernel statements and is available 

at https://cs.txstate.edu/~burtscher/research/ECL-GC/. It incorporates the above optimizations. It transfers the 

graph to the GPU and the computed colors back to the CPU. After initialization, the code repeatedly processes the 

vertices until convergence is reached. As mentioned, the processing is done asynchronously, which may result in 

threads reading outdated bitmaps. However, the bitmaps only ever have bits cleared. Similarly, for the larger-

degree vertices that use the two integers bestcol and worstcol (in Algorithm 2) to implement the shortcut, bestcol 

only ever increases and worstcol stays constant. Due to these monotonicity conditions, it is always safe for a thread 

to act upon an outdated bitmap or bestcol value, but doing so may lead to extra iterations. 

4 COLOR-REDUCTION HEURISTICS 

As discussed in Section 1, LDF tends to be fast and yields a good coloring quality, but its quality is not as high as that 

of some slower ordering heuristics. To boost the coloring quality beyond the abilities of LDF without resorting to 

overly slow processing, we designed two improvement heuristics that take the solution of a graph-coloring 

algorithm such as JP-LDF as input and try to enhance it by reducing the number of colors used. 

The high-level idea behind our color-reduction heuristics is the following. For each vertex v with the highest 

color, try to recolor some of its neighbors to free up a lower color and assign the freed-up color to v. If the heuristic 

succeeds in doing this for all vertices with the highest color, the new solution will use one fewer color. The 

procedure can be repeated until no further reduction is possible. 

We illustrate how this works on the graph in Figure 7. For simplicity, we labeled the vertices according to their 

LDF priorities, meaning vertex A is colored first, then vertex B, etc. Reusing the color priorities from Figure 1a, we 

find that LDF colors this graph with three colors as shown in Figure 7a. Vertices D and E both end up with the 

highest color yellow. We can only reduce the total number of colors if we manage to recolor both vertices with a 

lower color. Note that they are yellow because they have higher-priority neighbors that already use all lower colors. 

Hence, we must first recolor at least one of their neighbors to free up a lower color. Figure 7b shows how this can 

be achieved by coloring vertex C blue, which frees up red to be used by vertices D and E. The recolored solution 

requires only two colors instead of three. It is important to note that LDF never even considered blue as a possible 

color for vertex C because vertex C has only one bit in its bitmap. In contrast, our color-reduction heuristics consider 

all colors that are better than the highest color for all neighbors of the highest-color vertices. This allows them to 

improve the solution in some cases. 
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Figure 7: High-level idea behind color reduction 

 

When trying to, e.g., recolor vertex D, we iterate over all its neighbors and choose one that can be recolored with 

the lowest color. The new color for the neighbor will necessarily be higher than its current color (since all lower 

colors are unavailable) but must be lower than the color of D to ultimately result in a savings. In Figure 7a, neighbor 

B cannot be recolored since its range of potential alternate colors (higher than blue but lower than yellow) is empty. 

However, neighbor C can be recolored. Its range consists of the color blue. As we already saw, using blue for vertex 

C frees up red for vertices D and E. Since we managed to recolor all highest-color vertices with a lower color, the 

new solution requires one fewer colors. Repeating this procedure does not yield any further improvement. 

4.1 Two Graph-coloring Improvement Heuristics 

This subsection describes our two color-reduction heuristics in detail. One of them targets low-degree graphs, such 

as road networks, and the other targets graphs with some high-degree vertices, such as power-law graphs. Both can 

be used in combination. We implemented the two heuristics in CUDA and added them as a post-processing stage to 

our graph-coloring algorithm ECL-GC. In the following text, the abbreviation “hic” stands for “highest color”. 

4.1.1 Heuristic 1 

Heuristic 1 is intended for graphs with a few high-degree vertices. It checks whether all neighbors of the hic vertices 

that currently use color x can be recolored to y, where y < hic. If such a pair of x and y values exists, performing the 

corresponding recoloring will free up color x to be used by all hic vertices. 

Since Heuristic 1 recolors all hic vertices to the same new color, it tends to only succeed on graphs with relatively 

few hic vertices. Low-degree graphs typically have a small range of used colors and many hic vertices, making it 

unlikely that we can find a single replacement color that works for all hic vertices. Hence, we only recommend 

Heuristic 1 for graphs with high-degree vertices. 

Figure 8 provides an example of how Heuristic 1 works. Figure 8a shows an LDF colored graph where vertex G 

has the highest color, making it the only hic vertex. By examining G’s neighbors, we find that none of the blue and 

yellow neighbors can be recolored to any color less than hic. However, all red neighbors (there is only one) can be 

recolored to yellow, which allows the hic vertex G to be colored red, as shown in Figure 8b. Thus, Heuristic 1 is able 

to reduce the number of colors from four to three in this example. 

For performance and parallelization reasons, we implemented Heuristic 1 as presented in Algorithm 4. It first 

populates a worklist with all vertices that have a hic neighbor (lines 2 through 9). Next, it creates a 2-dimensional 

Boolean matrix of hic-by-hic size and initializes all elements to true (line 10). Then, it sets the matrix elements to 
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false that correspond to a pair <x, y> of colors such that x is the color of a vertex v from the worklist and y is the 

color of a neighbor of v (lines 11 through 15). If at least one matrix element remains true (line 19), its coordinates 

are recorded in the pair <x, y> (line 20). If multiple true elements remain, we deterministically pick the one with 

the lowest coordinates (not shown). Assuming at least one true element exists (line 24), all vertices from the 

worklist whose color is x are recolored to y (lines 25 through 29) and all hic vertices are recolored to x (lines 30 

through 34). All for-each loops of Algorithm 4 can be executed in parallel. The worklist is populated using 

atomicAdd instructions. Setting matrix elements to false does not require synchronization. Deterministically finding 

the lowest true matrix element can be done with atomicMin instructions. Recoloring the vertices is embarrassingly 

parallel. 

 

   

 

Figure 8: Example of Heuristic 1 

 

ALGORITHM 4: Color-reduction Heuristic 1 

1: hic ← highest used color 

2: worklist ← Ø 

3: for each vertex v in G do 

4:  for each neighbor n of v in G do 

5:   if colorn = hic then 

6:    worklist ← worklist ∪ v 

7:   end if 

8:  end for 

9: end for 

10: m ← Boolean hic × hic matrix initialized to true 

11: for each vertex v in worklist do 

12:  for each neighbor n of v in G do 

13:   m[colorv, colorn] ← false 

14:  end for 
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15: end for 

16: x, y ← hic, hic 

17: for each i form 0 to hic - 1 do 

18:  for each j form 0 to hic - 1 do 

19:   if m[i, j] then 

20:    x, y ← i, j 

21:   end if 

22:  end for 

23: end for 

24: if x, y ≠ hic, hic then 

25:  for each vertex v in worklist do 

26:   if colorv = x then 

27:    colorv ← y 

28:   end if 

29:  end for 

30:  for each vertex v in G do 

31:   if colorv = hic then 

32:     colorv ← x 

33:   end if 

34:   end for 

35: end if 

4.1.2 Heuristic 2 

Heuristic 2 is intended for low-degree graphs. It checks, for each hic vertex v, whether its neighbors that currently 

use color x can be recolored to y, where y < hic. If such a pair of x and y values exists that does not conflict with any 

other such pair (see below), performing the corresponding recoloring will free up color x to be used by vertex v. 

Unlike our first heuristic, this heuristic allows the hic vertices to be recolored with different colors, making it 

more likely to succeed on graphs with many hic vertices. However, it requires more memory. To cap the memory 

usage, we only apply Heuristic 2 to the first 32 colors, which typically suffices on low-degree graphs. 

Recoloring graphs using multiple new colors may result in two kinds of conflicts that must be prevented. First, 

if hic vertices v1 and v2 share a common neighbor n, it could happen that v1 wants to recolor n to a different color 

than v2 does. To avoid this first type of conflict, Heuristic 2 creates sets of hic vertices that share a common neighbor 

and recolors all vertices in the set with the same color. Second, if hic vertex v1 has a neighbor n1, hic vertex v2 has a 

neighbor n2, and n1 is a neighbor of n2, it could happen that v1 and v2 want to recolor n1 and n2, respectively, to the 

same color. Doing so would yield a graph in which the adjacent vertices n1 and n2 have the same color. To avoid this 

second type of conflict, Heuristic 2 removes the available colors for recoloring the neighbors of one hic vertex from 

the available colors for recoloring the neighbors of the other hic vertex if they have adjacent neighbors. This ensures 

that the neighbors cannot be recolored with the same color. For example, if one hic vertex is considering recoloring 

one of its neighbors to blue, removing blue from the available colors for recoloring the neighbors of the other hic 

vertex guarantees that it will not use blue for any of its neighbors, thus avoiding the conflict. Heuristic 2 always 

removes the overlapping colors of the larger set from the smaller sets since the smaller set is less likely to be useful. 
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Figure 9 provides an example of how Heuristic 2 works. Figure 9a shows an LDF colored graph in which vertices 

I and J have the highest color, i.e., there are two hic vertices. I and J do not share a common neighbor, so Heuristic 2 

treats them independently and does not put them in the same set. In other words, the first type of conflict cannot 

occur. Examining I’s neighbors, we find that only vertex C can be recolored (to blue). Examining J’s neighbors, we 

find that both vertices A and E can be recolored (to yellow). To avoid the second type of conflict, Heuristic 2 must 

ensure that A and D are not recolored to the same value and that C and H are not recolored to the same value. To 

guarantee that, it removes yellow (A’s recoloring set) from D’s set of available recoloring colors as well as blue (C’s 

recoloring set) from H’s set of available recoloring colors. In both cases, the colors from the larger set with one entry 

are removed from the smaller set, which is empty in this example. At this point, Heuristic 2 recolors C to blue, which 

frees up red for I, and either A or E to yellow. Assuming it picks E, this frees up blue for J. The recolored graph is 

shown in Figure 9b. Note that the heuristic reduced the total number of colors needed by recoloring the two hic 

vertices with different new colors. 

  
Figure 9: Example of Heuristic 2 

 

For performance and parallelization reasons, we implemented Heuristic 2 as presented in Algorithm 5. It first 

populates a worklist with all hic vertices (lines 3 through 7). Next, it creates a disjoint-set (union-find) data 

structure in which each hic vertex is a set of its own (line 8). Then, for each vertex (line 9), it collects all hic neighbors 

in a set (lines 10 through 15) and merges them in the disjoint-set data structure (line 16) to avoid conflicts of the 

first type. For each of the resulting disjoint sets, 32 bitmaps are allocated. Each bitmap corresponds to a possible 

neighbor color and holds the available colors for recoloring all neighbors with that color. The available colors are 

always higher than the current color and must be less than hic (and less than 32 due to our cap), so the bitmaps are 

initialized accordingly (line 20). At this point, the heuristic goes over all neighbors n (line 24) of each hic vertex v 

(line 23) and removes the color of each neighbor’s neighbors from the bitmap corresponding to the color of n and 

belonging to the set of v (line 30), but only if the colors are under 32 (lines 26 and 28). To avoid conflicts of the 

second type, Heuristic 2 goes over all pairs of adjacent vertices (lines 36 and 40) where both vertices have hic 

neighbors (lines 37 and 41) that belong to different sets (line 44), determines the larger set of available colors for 

recoloring (line 45) and removes the overlapping colors from the smaller set (lines 46 and 48). Finally, it traverses 
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all hic vertices (line 55), checks if recoloring any neighbors with a color under 32 is possible (line 59), and, if so, 

recolors the corresponding neighbors (line 62) and the hic vertex (line 65). 

All outer and some inner for-each loops of Algorithm 5 can be executed in parallel. The worklist is populated 

concurrently using atomicAdd instructions. The union operations and the path-compressing find operations on the 

disjoint-set data structure are parallelized as described elsewhere [29]. The initialization of the bitmaps is 

embarrassingly parallel. The unallowed elements are removed from the bitmaps using atomic instructions. This is 

also how the overlapping elements from a larger conflicting set are removed from the smaller set. The recoloring 

itself is embarrassingly parallel. 

ALGORITHM 5: Color-reduction Heuristic 2 

1: hic ← highest used color 

2: worklist ← Ø 

3: for each vertex v in G do 

4:  if colorv = hic then 

5:   worklist ← worklist ∪ v 

6:  end if 

7: end for 

8: disjointsets ← worklist 

9: for each vertex v in G do 

10:  set ← Ø 

11:  for each neighbor n of v in G do 

12:   if colorn = hic then 

13:    set ← set ∪ n 

14:   end if 

15:  end for 

16:  merge all elements of set in disjointsets 

17: end for 

18: for each set s in disjointsets do 

19:  for each i form 0 to 31 do 

20:   availables,i ← {i+1, i+2, …, min(hic-1, 31)} 

21:  end for 

22: end for 

23: for each vertex v in worklist do 

24:  for each neighbor n of v in G do 

25:   c ← colorn 

26:   if c < 32 then 

27:    for each neighbor k of n in G do 

28:     if colork < 32 then 

29:      s ← disjointsets(v) 

30:      availables,c ← availables,c \ colork 
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31:     end if 

32:    end for 

33:   end if 

34:  end for 

35: end for 

36: for each vertex v in G do 

37:  if v has hic neighbor then 

38:   c ← colorv 

39:   s ← disjointsets(any hic neighbor of v) 

40:   for each neighbor n of v in G do 

41:    if n has hic neighbor then 

42:     d ← colorn 

43:     t ← disjointsets(any hic neighbor of n) 

44:     if s ≠ t then 

45:      if availables,c < availablet,d then 

46:       availables,c ← availables,c \ availablet,d 

47:      else 

48:       availablet,d ← availablet,d \ availables,c 

49:      end if 

50:     end if 

51:    end if 

52:   end for 

53:  end if 

54: end for 

55: for each vertex v in worklist do 

56:  s ← disjointsets(v) 

57:  for each i form 0 to 31 do 

58:   b ← best(availables,i) 

59:   if b ≠ Ø then 

60:    for each neighbor n of v in G do 

61:      if colorn = i then 

62:      colorn ← b 

63:     end if 

64:     end for 

65:    colorv ← i 

66:    break 

67:    end if 

68:  end for 

69: end for 
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5 RELATED WORK 

A large amount of related work exists on graph coloring. Yet, there is very little prior work on improvement 

heuristics to reduce the number of colors used and no other work that proposes shortcuts to increase the 

parallelism. 

The classical sequential graph-coloring algorithm is based on the greedy first-fit heuristic. Several other 

heuristics have been proposed that use relatively few colors and have good bounds on their computational 

complexity (cf. Section 1). In contrast, parallel algorithms have not been studied as extensively. Nevertheless, there 

are a few polynomial-time algorithms, some of which can solve the problem using as few colors as the sequential 

algorithms. 

In 1986, Luby designed a Monte Carlo algorithm to find a maximal independent set (MIS) in parallel [32]. All 

vertices in the MIS are given the same color. Then the algorithm finds a new MIS among the remaining vertices and 

assigns the vertices in the second MIS the second color, and so on until all vertices have been colored. 

In 1993, Mark Jones and Paul Plassmann proposed a new graph coloring heuristic (JP) [30] based on Luby’s 

Monte Carlo algorithm. Luby’s algorithm selects new random numbers in each iteration, which requires global 

synchronization. Moreover, generating the random numbers incurs overhead. Jones and Plassmann largely 

eliminate the global synchronization and this overhead by choosing a random number for each vertex only once. In 

other words, their algorithm does not assign new random numbers in each round when a new independent set 

needs to be calculated but reuses the previously assigned numbers. The unique vertex IDs are used to resolve 

conflicts if neighboring vertices end up with the same random number. Then the algorithm checks all the neighbors 

of each uncolored vertex v. If v has the highest random number (i.e., the highest priority) among its uncolored 

neighbors, the lowest available color is assigned to v. The algorithm repeats the last two steps until all vertices have 

colors. 

The Largest-Degree-First (LDF) heuristic assigns a priority to each vertex that is proportional to the degree of 

the vertex. This causes the vertices to be colored in decreasing degree order, i.e., the vertices with the highest degree 

are colored first. Using this ordering typically yields a better coloring quality than the JP and greedy algorithms. 

Random numbers are used to resolve conflicts when two neighboring vertices have the same degree [26]. The JP 

algorithm can easily be augmented with LDF. The resulting parallel JP-LDF algorithm is outlined in Section 2. 

The Smallest-Degree-Last (SDL) heuristic tries to improve upon the coloring quality of LDF by using more 

sophisticated weights [34]. It comprises a weighting and a coloring phase. In the weighting phase, the algorithm 

starts by finding all vertices with the minimum degree dmin. These vertices are assigned weights and are removed 

from the graph, which changes the degree of their neighbors. The algorithm repeatedly removes vertices with 

degree dmin and assigns larger weights in each iteration. Once there are no vertices of degree dmin left, the algorithm 

continues with vertices of degree dmin+1 and so on. Then the coloring phase starts with the vertices that have the 

highest weights. It works in the same way as LDF except is uses the weights instead of the degrees to determine the 

order in which to color the vertices. As mentioned in Section 1, SDL tends to yield a very good coloring quality but 

is slow. 

In 2011, Grosset et al. implemented their 3-step GM algorithm in CUDA [24]. It partitions the graph, colors each 

partition independently, and resolves conflicts along the border first on the GPU and then on the CPU using one of 

the heuristics described in Section 1. The resulting runtime is often worse than the sequential algorithm [8]. 

The CUSPARSE library [14] includes the “csrcolor” graph-coloring code [7]. As the name implies, it operates on 

graphs in CSR format. We use the same format in ECL-GC. Csrcolor is based on the Jones-Plassmann and Cohen-
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Castonguay [9] algorithms. It uses multiple hash functions to generate the “random” numbers for each vertex. The 

local maximums and minimums of the hash values are employed to produce two distinct maximal independent sets. 

The GPU implementation is three to four times faster than the JP algorithm. However, csrcolor typically requires 

over twice as many colors as the JP algorithm. 

Chen et al. [8] proposed two graph coloring algorithms based on Nasre’s ideas for implementing irregular 

algorithms on GPUs [36]. The first is a topology-driven algorithm. It uses the first-fit heuristic to color all vertices 

in parallel with the first permissible color. Conflicts between adjacent vertices with the same color are handled by 

allowing the vertex with the highest degree to preserve its color whereas the remaining conflicting vertices are 

uncolored. Chen et al.’s second algorithm works in the same way but is data-driven. It maintains two worklists for 

holding the vertices that need to be processed, making it more work efficient, but maintaining the worklists incurs 

overhead. 

Chen et al. implemented multiple versions of their algorithms with different optimizations [8], including bitmap 

operations to reduce the memory footprint and the time consumed in reading and writing the color mask. ECL-GC 

employs bitmaps for the same reason but also to facilitate the shortcuts. For better load balancing, they 

implemented Merrill’s balancing strategy [35], which maps the workload of a vertex to a thread, warp, or block 

depending on the size of its neighbor list. Similarly, ECL-GC uses threads for processing vertices with degrees under 

32 and warps for higher-degree vertices. 

Osama et al. [31] wrote GPU versions of Jones-Plassman’s and of Luby’s graph-coloring algorithms based on two 

abstractions, data-centric using the Gunrock framework and linear-algebra-based using GraphBLAS. For Gunrock, 

they employed three operations: 1) an advance operator to generate a new frontier from the current frontier by 

visiting the neighbors of the current frontier, 2) a compute operator that performs an operation on all elements in 

the input frontier, and 3) a neighbor-reduce operator that uses the advance operator to visit the neighbors of each 

item in the input frontier and performs a segmented reduction over the neighborhood. For Luby’s independent-set-

based algorithm, they form two independent sets in each iteration. Instead of only assigning vertices with the largest 

random number relative to their neighbors to a maximum independent color set, they also assign colors to vertices 

with the smallest random number to a minimum independent color set. Since the max-comparison and min-

comparison sets are mutually exclusive, they perform the assignment of two colors in every iteration with no 

additional overhead. This optimization reduces the coloring time by almost half. They also proposed a Hash 

Independent Set (IS) algorithm, which is a modification of the Maximal Independent Set algorithm. Each vertex 

compares only its neighbors with one another and adds the neighbor vertex with the largest random number 

relative to all neighbors to the hash color set. The Hash IS color set can contain more vertices than the independent 

color set. However, the color set is not independent because each vertex knows only its local topology, which may 

cause a conflict. Conflict resolution is another compute operation. It compares all colored vertices with their 

neighbors in a serial for-loop and, if the resolution detects a conflict, it resets one of the violating vertices to be 

uncolored. To amortize the cost of the conflict resolution, the implementation uses a hash table to inform the vertex 

about colors that cannot be used. This implementation yields a fast runtime but not a very good coloring quality. 

Deveci et al. [16] proposed a parallel vertex-based (VB) iterative graph coloring algorithm and present two 

optimizations to enable VB to run efficiently on a GPU. First, they allocate a small FORBIDDEN array of fixed size for 

each thread. These arrays are the inverse of the possible color lists we use. Since the arrays have a fixed size, they 

also employ a COLORRANGE for handling more colors than fit in the array. If a color cannot be found in the given 

range, the adjacency list is traversed again to populate the FORBIDDEN array based on the next COLORRANGE. The 
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second optimization is to eliminate the FORBIDDEN array and use a bitmap instead. Deveci et al. also they present 

an edge-based coloring algorithm. In this algorithm, they create a list of the forbidden colors of each vertex v and 

initialize it to ∅. Then they go over all the vertices, pick the smallest available color for v based on v’s list of forbidden 

colors, and check for conflicts. If a conflict occurs, they go over all edges and atomically update the list of forbidden 

colors for all vertices. These last two steps repeat until all vertices are colored without conflict. 

Gebremedhin et al. [22] proposed two graph coloring heuristics for CPUs. The first heuristic partitions the vertex 

set into p successive blocks of equal size. The parallel coloring comprises n/p parallel steps with barriers at the end 

of each step. In this algorithm, two processors may simultaneously attempt to color vertices in the same block that 

are adjacent to each other, which may result in an invalid coloring (pseudo coloring). The next step is to check for 

any conflict and, if a conflict is detected, the edge in the conflict will be stored in a table. The last step is to color all 

the vertices stored in this table sequentially. For the second algorithm, they modified the first algorithm to use fewer 

colors and based this improvement on Culberson’s Iterated Greedy (IG) coloring heuristic [13]. In the result section, 

we compare to the GM algorithm, which employs the IG heuristic. 

Besta et al. [3] introduced the first graph coloring algorithms with proven theoretical bounds on work, depth, 

and quality. They introduced three CPU algorithms that use a vertex ordering called Approximate Degeneracy 

Ordering (ADG) when selecting which vertex to color next. The first algorithm, JP-ADG, is based on Jones-Plassman’s 

algorithm. The second algorithm employs the speculation-based DEC-ADG algorithm where vertices are colored 

independently using a “speculative coloring”. Any coloring conflicts are resolved by repeated coloring attempts. The 

third algorithm, DEC-ADG-ITR, is based on a recent algorithm called ITR [2]. DEC-ADG-ITR focuses on improving 

the coloring quality of ITR both in theory and practice. They compared their algorithms to the Jones-Plassman 

algorithm combined with different ordering heuristics and to the original ITR algorithm. Using both JP-ADG and 

DEC-ADG-ITR, they were able to improve the coloring quality with a good runtime compared to the baseline. We 

compare ECL-GC to these algorithms in the result section. 

Culberson et al. [13] proposed one of the earliest graph coloring improvement heuristics. They use a simple 

greedy algorithm as the core of an iterative process that permutes the color sets produced by a previous coloring. 

For example, in the second iteration, all the blue vertices from the first iteration may be colored first, followed by 

all the red vertices, etc. Applying such a permutation yields a new coloring in which the number of colors is 

guaranteed not to increase but may decrease, i.e., improve the quality. The premutation is generated based on 

different reordering heuristics for the color sets, including reverse order, increasing size (processes the smaller 

color sets first), decreasing size, increasing degree, decreasing degree, and random ordering. Their first approach 

is to run the greedy algorithm with the increasing size ordering. The resulting coloring is used by the second 

iteration, which uses the decreasing size ordering. This repeats for multiple iterations. The second approach is to 

randomly switch between heuristics in each iteration. The algorithm terminates when reaching a specific number 

of iterations, when there is no improvement for a specified number of iterations, or when a desired number of colors 

is achieved. The second approach tends to yield better coloring as it breaks up cyclic patterns in the coloring 

process. Culberson et al.’s improvement heuristics recolor the entire graph repeatedly. In contrast, our 

improvement heuristics only recolor the vertices with the highest color and their neighbors. 
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6 EXPERIMENTAL METHODOLOGY 

We evaluate the graph-coloring codes listed in Table 2. Some of these programs have multiple versions. We only 

show results for the fastest version as well as the version requiring the fewest colors if the number of colors is 

substantially smaller. 

In the evaluated codes, we only measured the runtime of the color computation, excluding the time it takes to 

copy the graphs into main memory, to transfer data to and from the GPU (unless otherwise noted), and to verify the 

result. We ran each experiment three times and use the best measured runtime. The ECL-GC runtimes only vary by 

a few percent between runs. For all ECL-GC implementations, we verified the solution by comparing it to that of the 

serial code in addition to checking that no adjacent vertices have the same color. 

We present results from two GPUs. The first is a Volta-based Titan V with 5120 processing elements distributed 

over 80 multiprocessors. Each multiprocessor has 96 kB of L1 data cache/shared memory. The 80 multiprocessors 

share a 4.5 MB L2 cache as well as 12 GB of global memory with a peak bandwidth of 652 GB/s. The second GPU is 

a Turing-based GeForce RTX 2070 Super with 2560 processing elements distributed over 40 multiprocessors. Each 

multiprocessor has 96 kB of L1 data cache/shared memory. The 40 multiprocessors share a 4 MB L2 cache as well 

as 8 GB of global memory with a peak bandwidth of 448 GB/s. 

Table 2. The graph coloring codes we evaluate 

Device Ser/Par  Name Version Source 

GPU Parallel  ECL-GC (our code) 1.0 [18] 

     CUSP 0.5.1 [15]  

     csrcolor 9.2.88 [7] 

     Data-wlc 1.0 [8] 

     Data-pq 1.0 [8] 

     Gunrock's LoadBalance 1.0 [39] 

   kokkos-VB 1.0 [16][31] 

CPU Parallel  GMMP-NT    [12] 

     FirstFit 1.0 [8] 

     Grappolo   [23] 

   kokkos-VB 1.0 [16][31] 

   JP-IADG-AVG-IS 1.0 [3] 

   DEC-ADG-ITR 1.0 [3] 

CPU Serial  LF-D1   [12] 

     FirstFit 1.0 [8] 

     Boost 1.66.0 [4] 

   kokkos-Serial  1.0 [16][31] 

 

The system we used for the serial and parallel CPU codes has dual 10-core 3.1 GHz Xeon E5-2687W v3 CPUs. 

Hyperthreading is enabled, i.e., the 20 cores can simultaneously run 40 threads. Each core has separate 32 kB L1 

caches, a 256 kB L2 cache, and the cores on a socket share a 25 MB L3 cache. The 128 GB main memory has a peak 

bandwidth of 68 GB/s. The operating system is Fedora 23. 

We compiled all GPU codes with nvcc 9.2 using “-O3 -arch=sm_70” for the Titan V and “-O3 -arch=sm_75” for the 

GeForce RTX 2070 Super. The CPU codes were compiled with gcc/g++ 7.3.1 using “-O3 -march=native”. 
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Table 3. Information about the input graphs 

 

 

We used the 18 graphs listed in Table 3 as inputs. They were obtained from the Center for Discrete Mathematics 

and Theoretical Computer Science at the University of Rome (Dimacs) [17], the Galois framework (Galois) [19], the 

Stanford Network Analysis Platform (SNAP) [42], and the SuiteSparse Matrix Collection (SMC) [43]. The table lists 

the name, type, source, number of vertices, number of edges, average degree, maximum degree, and the percentage 

of vertices with a degree of at least 32 (for which we use simplified shortcuts). Where necessary, we made the 

graphs undirected and removed self-edges. Due to the CSR format, each undirected edge is represented by two 

directed edges. While it may or may not make sense to color these graphs, we selected them for their wide variety. 

7 GRAPH-COLORING RESULTS 

In this section, we first study the amount of parallelism. Second, we evaluate the coloring quality. Third, we 

investigate the throughput in completed vertices per second, that is, the number of vertices divided by the runtime. 

The improvement heuristics to reduce the number of colors used are studied in the next section. 

7.1 Amount of Parallelism 

In this subsection, we evaluate the intrinsic amount of parallelism with and without the shortcuts. We express the 

parallelism as the number of vertices divided by the number of steps it takes to color a graph in an architecture-

agnostic way, i.e., assuming a machine with infinite resources that processes as many vertices per step as possible 

subject only to data dependencies. Hence, in every step, all vertices are colored that do not have to wait for 

uncolored higher-priority neighbors. 

Figures 10 and 11 show the steps along the x axis and how many vertices are colored per step along the y axis. 

Note that the y axes use a logarithmic scale to better show what happens in the last steps, but this upsets certain 

intuitions that would hold if a linear scale were used, such as that both curves enclose the same area. The larger the 

number of colored vertices in each step the higher the amount of parallelism is. The blue curve shows the results 

Graph name  Type Origin Vertices Edges davg dmax d≥32

2d-2e20.sym grid Galois 1,048,576 4,190,208 4.0 4 0.0%

amazon0601 co-purchases SNAP 403,394 4,886,816 12.1 2,752 3.3%

as-skitter Internet topo. SNAP 1,696,415 22,190,596 13.1 35,455 6.3%

citationCiteseer publication SMC 268,495 2,313,294 8.6 1,318 3.6%

cit-Patents patent cites SMC 3,774,768 33,037,894 8.8 793 3.0%

coPapersDBLP publication SMC 540,486 30,491,458 56.4 3,299 52.5%

delaunay_n24 triangulation SMC 16,777,216 100,663,202 6.0 26 0.0%

europe_osm road map SMC 50,912,018 108,109,320 2.1 13 0.0%

in-2004 web links SMC 1,382,908 27,182,946 19.7 21,869 8.4%

internet Internet topo. SMC 124,651 387,240 3.1 151 0.3%

kron_g500-logn21 Kronecker SMC 2,097,152 182,081,864 86.8 213,904 19.3%

r4-2e23.sym random Galois 8,388,608 67,108,846 8.0 26 0.0%

rmat16.sym RMAT Galois 65,536 967,866 14.8 569 11.4%

rmat22.sym RMAT Galois 4,194,304 65,660,814 15.7 3,687 12.4%

soc-LiveJournal1 community SNAP 4,847,571 85,702,474 17.7 20,333 14.0%

uk-2002 web links SMC 18,520,486 523,574,516 28.3 194,955 18.6%

USA-road-d.NY road map Dimacs 264,346 730,100 2.8 8 0.0%

USA-road-d.USA road map Dimacs 23,947,347 57,708,624 2.4 9 0.0%
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without the shortcuts and the red curve with the shortcuts. Both approaches yield identical colorings and perform 

the same amount of total work. Therefore, finishing in fewer steps implies a higher average parallelism. 

Figure 10 shows that the shortcuts can yield a large increase in parallelism, in this case a 7.85-fold increase. In 

contrast, Figure 11 shows the worst case, i.e., an example where the shortcuts do not increase the average 

parallelism because the two tails overlap and both end in the same step. However, the shortcuts significantly 

increase the average parallelism on most of the tested inputs as shown in Table 4, which lists the number of steps, 

the average parallelism, and the improvement in parallelism for all 18 graphs. 

 

 

Figure 10: Amount of parallelism in each step on the kron_g500-logn21 graph 

 

 

Figure 11: Amount of parallelism in each step on the uk-2002 graph 
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Table 4: Number of steps and average amount of parallelism with and without the shortcuts 

 

 

In the worst case (uk-2002), the amount of parallelism does not increase. This only happens on 1 of the 18 tested 

graphs. In the best case (rmat22.sym), the parallelism is over 12 times higher. Based on the geometric mean, it is 

2.5 times higher, demonstrating the potential of the shortcuts. 

Figure 12 shows the fraction of the vertices that is colored during initialization (blue), using the shortcuts 

(green), and conventionally (red), i.e., after all higher-priority neighbors have been colored. On average, 52.6% of 

the vertices are colored conventionally, 38.8% are colored using the shortcuts, and 8.6% are colored during 

initialization. The number of vertices colored in the initialization phase reflects the number of roots in the DAG. 

Since the shortcuts shorten the dependence chains, they tend to be more effective, i.e., color a larger fraction of the 

vertices, on graphs with larger average degrees like kron_g500-logn21, which has a high maximum and average 

degree. 

 

 

Figure 12: Fraction of colors assigned by various means 

Graph
Steps w/o 

shortcuts

Steps with 

shortcuts

Avg parallelism 

w/o shortcuts

Avg parallelism 

with shortcuts

Increase in 

parallelism

2d-2e20.sym 14 12 74,898.3 87,381.3 1.17

amazon0601 55 24 7,334.4 16,808.1 2.29

as-skitter 481 73 3,526.9 23,238.6 6.59

citationCiteseer 67 20 4,007.4 13,424.8 3.35

cit-Patents 140 26 26,962.6 145,183.4 5.38

coPapersDBLP 802 338 673.9 1,599.1 2.37

delaunay_n24 25 17 671,088.6 986,895.1 1.47

europe_osm 13 11 3,916,309.1 4,628,365.3 1.18

in-2004 501 490 2,760.3 2,822.3 1.02

internet 27 13 4,616.7 9,588.5 2.08

kron_g500-logn21 3,997 509 524.7 4,120.1 7.85

r4-2e23.sym 30 17 279,620.3 493,447.5 1.76

rmat16.sym 188 30 348.6 2,184.5 6.27

rmat22.sym 644 52 6,512.9 80,659.7 12.38

soc-LiveJournal1 1,095 322 4,427.0 15,054.6 3.40

uk-2002 943 943 19,640.0 19,640.0 1.00

USA-road-d.NY 12 10 22,028.8 26,434.6 1.20

USA-road-d.USA 14 13 1,710,524.8 1,842,103.6 1.08
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7.2 Comparison with GPU Codes 

This subsection compares the performance of ECL-GC (with the shortcuts) and ECL-GC_Reduction (with the 

shortcuts as well as the two color-reduction heuristics) to that of leading GPU graph-coloring codes from the 

literature. We compare with CUSP, csrcolor, Data-wlc and Data-pq, the two fastest versions of Chen et al.’s 

algorithms described in Section 4, Gunrock’s LoadBalance algorithm, and Kokkos-kernels vertex-based (VB) 

algorithm. Gunrock includes several different algorithms. We selected the LoadBalance algorithm because it yields 

the best coloring quality and is the second fastest of their algorithms. Their fastest algorithm yields the worst 

coloring quality. We were unable to run LoadBalance with the uk-2002 input, which may be due to the large size of 

this graph. Kokkos-kernels [16][31] also includes several parallel algorithms, and we selected the vertex-based 

(Kokkos-VB) algorithm because it is their fastest algorithm. This algorithm is based on Deveci et al.’s [16] vertex-

based algorithm. 

7.2.1 Coloring Quality 

Figure 13 shows the number of colors needed by the seven GPU codes. Lower numbers are better. The x axis lists 

the input graphs and the y axis the number of colors using a logarithmic scale. The rightmost set of bars reflects the 

geometric mean over all inputs (excluding uk-2002 for LoadBalance). 

Both versions of ECL-GC, CUSP, and csrcolor are deterministic and always produce the same coloring for a given 

input. This is not the case for Data-wlc, Data-pq, and LoadBalance, where the number of colors may vary. For these 

codes, we show the lowest observed number of colors out of 100 runs on the Titan V. Kokkos-VB is also not 

deterministic, but we could only run it 3 times and show the lowest observed number of colors.  

ECL-GC either uses the smallest or the same number of colors for all inputs compared to the six GPU codes from 

the literature. LoadBalance and csrcolor require substantially more colors on each graph compared to the other 

codes. By design, the coloring of ECL-GC is that of JP with LDF, which tends to produce a good coloring quality. As 

discussed in Section 4, csrcolor requires more colors because it is based on the Cohen-Castonguay algorithm. Data-

wlc and Data-pq are based on FirstFit, which typically results in good coloring when paired with LDF. Kokkos-VB 

produces a coloring quality similar to Data-wlc, but Kokkos-VB requires on average one more color than Data-wlc 

and 8.9 and 10.7 more colors than our ECL-GC and ECL-GC_Reduction algorithms, respectively. ECL-GC_Reduction 

lowers the number of colors on half of the 18 inputs relative to ECL-GC, highlighting the benefit of the color-

reduction heuristics. For example, it reduces the number from five to four on the three road maps. It exceeds the 

solution quality of the other codes from the literature on 14 of the 18 inputs and is tied on the remaining four graphs. 

The geometric mean is 30.6 colors for ECL-GC, 28.8 for ECL-GC_Reduction, 37.2 for Data-wlc, 34.3 colors for Data-

pq, 149.4 for csrcolor, 35.0 for CUSP, 67.3 for LoadBalance, and 39.5 for Kokkos-VB. 
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Figure 13: Number of colors needed by the GPU codes 

7.2.2 Throughput 

Figures 14 and 15 present the throughput of these codes on two different GPU architectures. The x axis lists the 

inputs and the geometric mean whereas the y axis shows the throughput in millions of completed vertices per 

second on a logarithmic scale. Throughput is a higher-is-better metric. 

Figure 14 shows the throughput on the Titan V. ECL-GC, i.e., our implementation with the shortcuts, is faster 

than CUSP and LoadBalance on all tested inputs. It is faster than the remaining codes from the literature on 14 of 

the 18 graphs. Note that, in each case where the other codes are faster, they require more colors. Based on the 

geometric mean, ECL-GC is 3.7 times faster than Data-wlc, 2.9 times faster than Data-pq, 5.5 times faster than 

csrcolor, 29.9 times faster than CUSP, 28.8 times faster than LoadBalance and 4.1 times faster than Kokkos-VB. 

 

 

 

Figure 14: Throughput in millions of completed vertices per second on a Titan V 
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ECL-GC_Reduction is half as fast as ECL-GC, meaning that including the color-reduction heuristics doubles the 

mean runtime. However, ECL-GC_Reduction is still faster than the codes from the literature on 10 of the 18 inputs 

and has a higher geometric-mean throughput. These results show that the heuristics are relatively fast. 

We correlated the speedup of ECL-GC over the other codes with various graph properties and found a moderate 

correlation with both the maximum and the average degree, which is expected because the higher the degree the 

higher the chance that a vertex must wait for higher-priority neighbors, which is where the shortcuts can help. On 

the kron_g500-logn21 graph, which has the highest average and maximum degree of the graphs listed in Table 3, 

ECL-GC is 17.8 times faster than Data-pq, the second fastest of the GPU codes. Due to its high degree, this graph 

requires the most work per vertex, which is why it results in a low throughput for all tested codes. 

For reference, Figure 14 also shows results for “ECL-GC w/o shortcuts”, which is ECL-GC with the shortcuts 

disabled. Its geometric-mean performance is slightly higher than that of the other codes, meaning our baseline 

implementation performs on par with the best codes from the literature. When enabling the shortcuts, our 

implementation becomes 2.6 times faster. This speedup demonstrates the usefulness of the shortcuts in practice. 

The next section discusses the performance of the two shortcuts in more detail. 

Figure 15 shows the throughput results for the RTX 2070 Super. CUSP does not run on this newer GPU. ECL-GC 

outperforms LoadBalance on all tested inputs. It outperforms Data-pq and Data-wlc on all but one, csrcolor on 16 

of the 18 graphs, and Kokkos-VB on 14 of the 18 graphs. In all those cases, ECL-GC uses substantially fewer colors. 

Including the color-reduction heuristics results in a slowdown of 1.6 on this GPU, making ECL-GC_Reduction faster 

than Kokkos-VB and Csrcolor on 11 and 17 of the tested inputs, respectively. However, in 5 of the 7 cases where the 

reduction code is slower than Kokkos-VB it uses substantially fewer colors. Based on the geometric mean, ECL-GC 

is 5.4 times faster than Data-wlc, 4.9 times faster than Data-pq, 4.2 times faster than csrcolor, 26.4 times faster than 

LoadBalance, and 3.6 times faster than Kokkos-VB. 

 

  

 

Figure 15: Throughput in millions of completed vertices per second on an RTX 2070 Super 
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7.2.3 Shortcut Performance 

Table 5 presents the performance benefit due to the shortcuts on the Titan V. It shows the speedups attained when 

using only Shortcut 1 (+SC1), only Shortcut 2 (+SC2), and both shortcuts together (+SC1+SC2) relative to our code 

without any shortcuts (baseline). 

On all tested inputs, using both shortcuts together is always faster than using no shortcut. In the worst case, the 

shortcuts only improve performance by a factor of 1.027, in the best case by over a factor of 70, and in the mean by 

a factor of 2.63. These self-relative speedups demonstrate the practical utility of the shortcuts. 

Shortcut 1 provides most of the benefit. Adding it never hurts on the tested inputs, helps by a factor of over 2.5 

in the mean and by more than a factor of 70 in the best case. Its benefit correlates with the average degree of the 

graph (r = 0.82), which is why it helps the most on kron_g500-logn21, our highest-degree graph. 

Interestingly, adding Shortcut 2 on top of Shortcut 1 hurts in three cases (by up to 2%) and adding it on top of 

the baseline also hurts in three cases (by up to 1.1%). In the mean, adding Shortcut 2 helps by a few percent and, in 

the best case, by 25.8%. There are two primary reasons for why Shortcut 2 is not more effective. First, our 

implementation does not use it on vertices of degree ≥ 32 (under 20% of the vertices in all but one graph, cf. Table 

3). Second, employing it does not reduce the number of steps needed until a vertex can be colored. It only makes 

later steps a little faster because they may be able to skip checking a few neighbors. 

Executing the shortcut code itself incurs overhead. If this overhead cannot be amortized, there is a net slowdown, 

which explains the few cases were adding Shortcut 2 lowers the performance. Fortunately, the benefit of either 

shortcut is typically high enough to more than amortize this overhead, thus leading to speedups. 

 
Table 5: Speedup on the Titan V due to the shortcuts relative to the baseline code without any shortcuts 

 

input baseline +SC1 +SC2 +SC1+SC2

2d-2e20.sym 1.000   1.046   1.005   1.092   

amazon0601 1.000   1.236   1.075   1.285   

as-skitter 1.000   3.957   1.001   4.198   

citationCiteseer 1.000   1.751   1.057   1.816   

cit-Patents 1.000   2.015   1.258   2.123   

coPapersDBLP 1.000   4.410   1.004   4.407   

delaunay_n24 1.000   1.126   1.037   1.168   

europe_osm 1.000   1.025   0.999   1.028   

in-2004 1.000   1.051   1.019   1.030   

internet 1.000   1.248   1.016   1.284   

kron_g500-logn21 1.000   70.378   1.004   70.179   

r4-2e23.sym 1.000   1.250   1.110   1.339   

rmat16.sym 1.000   5.112   1.008   5.251   

rmat22.sym 1.000   9.958   0.989   10.163   

soc-LiveJournal1 1.000   16.026   0.996   16.028   

uk-2002 1.000   2.590   1.010   2.612   

USA-road-d.NY 1.000   1.000   1.014   1.027   

USA-road-d.USA 1.000   1.068   1.003   1.073   

geo mean 1.000   2.570   1.032   2.632   
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7.3 Comparison with CPU Codes 

In the following subsections, we compare the performance of ECL-GC and ECL-GC_Reduction running on the Titan 

V to that of leading parallel and serial CPU codes. Figures 16 and 18 show the number of colors. The x axis lists the 

inputs and the geometric mean, and the y axis lists the number of colors using a logarithmic scale. Figures 17 and 

19 show the throughput. The x axis again lists the inputs and the geometric mean, and the y axis lists the throughput 

in completed vertices per second on a logarithmic scale. 

Even though ECL-GC was designed to be a fast implementation for GPUs, it is important to compare its 

performance to the best parallel and serial CPU codes because of the significant tradeoffs between the coloring 

quality and the execution time. Moreover, graph coloring may suffer from load imbalance and low parallelism 

depending on the input, which may cause a GPU implementation to be slower than a CPU implementation, especially 

a parallel CPU implementation. 

7.3.1 Parallel CPU Performance Comparison 

This subsection compares the throughput and coloring quality to leading parallel CPU codes. We show results for 

ColPack’s GMMP algorithm with the natural (NT) heuristic priority Error! Reference source not found.[21], the 

FirstFit implementation by Chen et al. [8], the graph-coloring code Grappolo [23], Kokkos-kernels’ vertex-based 

algorithm Kokkos-VB [31], and Besta et al.’s [3] algorithms JP-IADG-AVG-IS and DEC-ADG-ITR. We decided to use 

both JP-IADG-AVG-IS and DEC-ADG-ITR because one produces a better quality result and the other has better 

performance. 

Figure 16 shows the number of colors assigned by the parallel CPU codes and by ECL-GC and ECL-GC_Reduction. 

As the number of colors may vary from run to run for GMMP-NT, FirstFit, Grappolo, and Kokkos-VB, we present the 

minimum number observed. Note that some of these codes employ different ordering heuristics and, as such, are 

not expected to yield the same number of colors. ECL-GC uses fewer colors than ColPack’s GMMP-NT and Kokkos-

VB on all tested inputs. It uses the smallest or the same number of colors as the FirstFit and Grappolo codes on 11 

of the 18 inputs. On the remaining seven inputs, those two codes require one fewer color than ECL-GC’s LDF 

heuristic. Also, ECL-GC uses the smallest or the same number of colors as the JP-IADG-AVG-IS and DEC-ADG-ITR 

codes on 11 and 12 of the 18 inputs, respectively. The geometric mean is 30.6 colors for ECL-GC, 28.8 for ECL-

GC_Reduction, 36 for GMMP-NT, 34.3 for FirstFit, 34 for Grappolo, 36.3 for Kokkos-VB, 29.2 for JP-IADG-AVG-IS, and 

29 for DEC-ADG-ITR. 

Since ECL-GC_Reduction never uses more colors than ECL-GC, it also requires fewer colors than ColPack’s 

GMMP-NT on all tested inputs. Moreover, it uses the smallest or the same number of colors as the FirstFit and 

Grappolo codes on 14 and 15 of the 18 inputs, respectively. On the remaining inputs, those two codes require one 

fewer color than ECL-GC_Reduction, showing the limitation of the heuristics. Also, ECL-GC_Reduction uses the 

smallest or the same number of colors as JP-IADG-AVG-IS and DEC-ADG-ITR on 14 and 16 of the 18 inputs, 

respectively. On the remaining inputs, the two codes require one fewer color except on 2d-2e20.sym and 

kron_g500-logn21, where JP-IADG-AVG-IS requires 3 and 5 fewer colors, respectively. On these two inputs, our code 

is 1274 and 18.4 times faster than as JP-IADG-AVG-IS. 
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Figure 16: Number of colors needed by the parallel CPU codes as well as by ECL-GC 

 

Figure 17 shows the throughput of the parallel CPU codes on the dual 10-core Xeon system. We ran the codes 

using both 20 and 40 threads. The results in the figure are for 40 threads since hyperthreading yields a shorter 

runtime in most cases. ECL-GC running on the Titan V is faster than Grappolo, Kokkos-VB, JP-IADG-AVG-IS, and DEC-

ADG-ITR on all tested inputs, faster than GMMP-NT on all but two inputs, and faster than FirstFit on 15 of the 18 

inputs. ECL-GC_Reduction is faster than Grappolo, Kokkos-VB, JP-IADG-AVG-IS, and DEC-ADG-ITR on all tested 

inputs, faster than GMMP-NT on all but three inputs, and faster than FirstFit on all but four inputs. Based on the 

geometric mean, ECL-GC is 7.2 times faster than GMMP-NT, 4 times faster than FirstFit, 7.8 times faster than 

Grappolo, 14.9 times faster than Kokkos-VB, 65.7 times faster than JP-IADG-AVG-IS, and 36 times faster than DEC-

ADG-ITR on the tested graphs. ECL-GC_Reduction is 3.9 times faster than GMMP-NT, 2.2 times faster than FirstFit, 

4.2 times faster than Grappolo, 8.0 times faster than Kokkos-VB, 35.3 times faster than JP-IADG-AVG-IS, and 19.4 

times faster than DEC-ADG-ITR 

For reference, Figure 17 also shows results for “ECL-GC with CPU/GPU transfer”, which include the time to send 

the graph to the GPU and the resulting color information back to the CPU. This lowers the geometric-mean 

throughput by a factor of 2.8, meaning it takes longer to transfer the data than to compute the coloring. 

Nevertheless, on most of the inputs and in the mean, the throughput is still higher than that of the parallel CPU 

codes. Of course, this depends on the performance ratio between the CPU and the GPU as well as the speed of the 

link between the two devices. On our system and graphs, it is often faster to send the data to the GPU, perform the 

coloring there, and send the result back than to perform the coloring on the CPU. Note that graph coloring is 

generally only one step in a larger computation. If the previous and next steps are also executed on the GPU, no data 

transfers are needed. 
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Figure 17: Throughput in millions of completed vertices per second on 20 Xeon cores (Titan V for ECL-GC) 

7.3.2 Serial CPU Performance Comparison 

This subsection compares the throughput and coloring quality to leading serial codes. We show results for ColPack’s 

sequential graph coloring code with LF ordering and its fastest heuristic (D1) [12], the serial FirstFit code by Chen 

et al. [8], the graph-coloring code in the Boost library [4] [40], and Kokkos-Serial [31]. 

 

 

 

 

 

Figure 18: Number of colors needed by the serial CPU codes as well as by ECL-GC 

 

Figure 18 presents the number of colors assigned by the serial codes and by ECL-GC and ECL-GC_Reduction. ECL-

GC uses fewer or the same number of colors as serial FirstFit, Boost and Kokkos-Serial on all tested inputs. ECL-GC’s 
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and LF-D1’s coloring quality is almost identical. This is expected given that LF-D1 and ECL-GC both employ the 

largest-degree-first heuristic. The small discrepancies are due to different tie breakers, making LF-D1 use one fewer 

color than ECL-GC on two graphs and ECL-GC use one fewer color than LF-D1 on four graphs. ECL-GC_Reduction 

uses the same number or fewer colors than any of the tested serial codes. On 11 of the 18 inputs, it uses fewer colors 

than any of the serial codes. The geometric mean is 30.6 colors for ECL-GC, 28.8 for ECL-GC_Reduction, 30.9 colors 

for LF-D1, and 35 colors for FirstFit, Boost, and Kokkos-Serial. 

Figure 19 shows the serial throughput on the Xeon system as well as that of ECL-GC and ECL_GC_Reduction 

running on the Titan V. Both ECL-GC and ECL_GC_Reduction are faster than LF-D1, Boost, and Kokkos-Serial on all 

inputs and faster than FirstFit on all but two inputs. In those two cases, FirstFit uses more colors. Based on the 

geometric mean, ECL-GC is 42.9 times faster than LF-D1, 13.2 times faster than FirstFit, 324 times faster than Boost, 

and 49.4 times faster than Kokkos-Serial. ECL-GC_Reduction is 23.1 times faster than LF-D1, 7.1 times faster than 

FirstFit, 173.7 times faster than Boost, and 26.5 times faster than Kokkos-Serial. 

 

 

  

Figure 19: Throughput in millions of completed vertices per second on a Xeon core (Titan V for ECL-GC) 

8 SUMMARY AND CONCLUSIONS 

Graph coloring is an assignment of colors to the vertices of a graph such that no two adjacent vertices have the same 

color. It is an important step in many applications and is used, for example, in data mining, image processing, 

networking, resource allocation, and process scheduling. 

We present a deterministic parallel graph-coloring approach that improves upon the Jones-Plassmann algorithm 

with the largest-degree-first heuristic. It incorporates new algorithmic optimizations called “shortcuts” to increase 

the parallelism (by 2.5 times based on the geometric mean). Under certain conditions, these shortcuts enable the 

code to non-speculatively break data dependencies without changing the ultimate color assignment. The shortcuts 

leverage intermediate coloring information from neighboring vertices, which sometimes allows to correctly color 

a vertex even before all its higher-priority neighbors have been colored. The shortcuts are particularly useful on 

high-degree vertices. The paper also presents optimizations to efficiently implement these shortcuts. 



36 

 

We also present two fast and deterministic parallel color-reduction heuristics, one for high- and one low-degree 

graphs, that improve the coloring quality of ECL-GC on half of the 18 tested graphs by up to 20%. Improving the 

coloring quality is important in applications like networking and resource allocation, where the number of colors 

used is critical. Even with the color-reduction heuristics included, ECL-GC is faster on average and on most of the 

tested inputs than the best GPU and parallel CPU codes from the literature while, at the same time, requiring fewer 

or the same number of colors on most of the tested input graphs. 

We implemented our approaches in CUDA. The code is available at 

https://cs.txstate.edu/~burtscher/research/ECL-GC/. Running on a Titan V, it is 2.9 times faster (geometric mean) 

than the fastest prior GPU code, 4.0 times faster than the fastest OpenMP code running with 40 threads on 20 Xeon 

cores, and 13 times faster than the fastest serial code we could find. Of course, these speedups are system 

dependent. Our code uses as few or fewer colors as the best GPU codes. Whereas there are a few inputs on which 

other GPU codes outperform ours in throughput, they require more colors in those cases. 

In conclusion, we hope our work will help improve the performance of many applications that incorporate graph 

coloring as an algorithmic step. Perhaps our ideas will inspire other researchers to develop similar shortcuts to 

increase the amount of parallelism in other important graph algorithms. Whereas we introduced some of the first 

graph coloring improvement heuristics in this paper, many more undoubtedly exist and will hopefully soon be 

researched. 
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