
Improving the Speed and Quality of Parallel Graph Coloring

Ghadeer Alabandi

Texas State University, gaa54@txstate.edu

Martin Burtscher

Texas State University, burtscher@txstate.edu

Graph coloring assigns a color to each vertex of a graph such that no two adjacent vertices get the same color. It is a key building

block in many applications. In practice, solutions that require fewer distinct colors and that can be computed faster are typically

preferred. Various coloring heuristics exist that provide different quality versus speed tradeoffs. The highest-quality heuristics

tend to be slow. To improve performance, several parallel implementations have been proposed. This paper describes two

improvements of the widely used LDF heuristic. First, we present a “shortcutting” approach to increase the parallelism by non-

speculatively breaking data dependencies. Second, we present “color reduction” techniques to boost the solution of LDF. On 18

graphs from various domains, the shortcutting approach yields 2.5 times more parallelism in the mean, and the color-reduction

techniques improve the result quality by up to 20%. Our deterministic CUDA implementation running on a Titan V is 2.9 times

faster in the mean and uses as few or fewer colors as the best GPU codes from the literature.

CCS CONCEPTS • Computing methodologies • Massively parallel algorithms

Additional Keywords and Phrases: Graph coloring, shortcutting, color reduction, parallelism, GPU computing

1 INTRODUCTION

Graph coloring refers to the assignment of colors (i.e., unique symbols) to the vertices of a graph such that no

adjacent vertices have the same color. More formally, a vertex coloring of an undirected graph 𝐺 = (𝑉, 𝐸) is a

mapping 𝐶 from vertices to colors such that 𝐶(𝑖) ≠ 𝐶(𝑗) for every edge (𝑖, 𝑗) ∈ 𝐸 . The graph coloring problem is the

problem of coloring a graph using as few colors as possible without violating this adjacency constraint.

Graph coloring is an algorithmic building block in many applications such as clustering, data mining, image

capturing, image segmentation, networking, resource allocation, process scheduling, optimizing the calculation of

sparse Jacobian matrices [10], LU factorization [37], and parallel Gauss-Seidel algorithms for solving non-linear

equations [28]. An example of resource allocation might be an ambulance service that uses graph coloring to

schedule non-emergency transports as follows. First, they build a graph where each vertex represents a transport,

and there is an edge between any pair of transports that overlap in time. Then, they color the graph. The result

shows not only how many ambulances are needed (the number of unique colors) but also which transports should

be handled by, say, the red ambulance (all transports that are colored red). The solution minimizes the number of

required ambulances (the cost) and maximizes their utilization.

Graph coloring is NP-hard, i.e., there is no known polynomial time algorithm that can solve it optimally [20].

However, many heuristic algorithms exist to color a graph using few colors. These algorithms produce a valid

coloring, meaning they guarantee that no adjacent vertices have the same color, but they may require more colors

than the optimal algorithm, meaning they do not guarantee optimality. Moreover, these heuristics provide different

tradeoffs between the coloring quality and the execution time. Typically, faster algorithms tend to require more

colors. The problem we are addressing is how to deliver a very good coloring quality at high speed. Our solution is

to increase the parallelism and post-processing the result to reduce the number of colors needed.

2

One well-known heuristic is the greedy algorithm. It assigns a random priority to each vertex. Then, it repeatedly

selects the uncolored vertex that currently has the highest priority and colors it with the best available color, i.e.,

the first available color that is not already assigned to one of the vertex’s neighbors. In graph coloring, the colors

are typically ordered (first color, second color, etc.) and the first color is the “best” (most preferred) color.

Many parallel graph coloring algorithms [5] [9] [24] [41] follow the Jones-Plassmann approach [30], that is, they

are based on the observation that any independent set of vertices can be colored in parallel. The strategy used for

the coloring depends on the application. If fewer colors are desirable, the algorithm needs to emphasize the coloring

quality at the cost of performance. If the application is runtime sensitive, the number of colors might be

compromised in favor of a higher speed. Combining the Jones-Plassmann approach with different priority heuristics

allows to select different points in this quality versus speed tradeoff space.

Several priority heuristics have been proposed for determining the order in which to color the vertices. Some of

them can be implemented to run in linear time in the size of the graph. There are six prominent ordering heuristics

for graph coloring: 1) first-fit ordering (FF), where the vertices are colored in the order in which they appear in the

linearized input, 2) random ordering (R), where the vertices are colored in random order, 3) largest-degree-first

ordering (LDF), where the vertices with larger degrees are colored first, 4) smallest-degree-last ordering (SDL),

where the vertices with the smallest degree are successively removed from the graph, the modified graph is colored

using the LDF heuristic, and finally the removed vertices are gradually re-inserted and colored, 5) saturation-degree

ordering (SD), where the vertices whose colored neighbors have the largest number of unique colors are colored

first (using the vertex degree as a tie breaker), and 6) incidence-degree ordering (ID), where the vertices with the

largest number of colored neighbors are colored first irrespective of the number of unique colors (using the vertex

degree as a tie breaker). Where needed, these heuristics include a tie breaker, which is often the vertex identifier.

In general, LDF tends to produce better colorings than FF and R at the same performance level, SDL and SD tend to

produce better colorings than LDF but with a large additional cost in runtime, and ID tends to produce similar

coloring quality as LDF but is slower [26].

For any ordering heuristic, assigning the best available color to each vertex guarantees that the number of colors

used is always bounded by dmax+1, where dmax is the highest degree of any vertex in the graph. However, some

ordering heuristics, in particular SDL, lower this bound to a much smaller quantity called the degeneracy (or core)

of the graph. Other ordering heuristics, such as LDF, provide a bound that lies somewhere in between.

Our algorithm is based on the Jones-Plassmann (JP) approach with the largest-degree-first (LDF) heuristic. We

selected JP-LDF because it is widely used as it tends to produce good colorings while being quite fast [26]. It colors

vertices with higher degrees first, so vertices with a lower degree must wait before the algorithm can assign a color

to them. To reduce this waiting, we have developed “shortcuts” that, under certain conditions, allow us to non-

speculatively color lower-degree vertices before their higher-degree neighbors have been colored [1]. Thus, the

shortcuts increase the parallelism as more vertices can be colored simultaneously, which boosts performance.

Importantly, the shortcuts are guaranteed to yield the same final coloring as the JP-LDF algorithm without the

shortcuts.

The domains of some other NP-hard graph problems, notably the traveling salesman problem (TSP) [1],

distinguish between two categories of heuristics: construction heuristics and improvement heuristics [27] [38].

Construction heuristics build a solution from scratch whereas improvement heuristics take a valid solution as input

and try to make it better. The two “color-reduction” heuristics we propose in this paper are one of the first

improvement heuristics in the graph coloring domain. The LDF heuristic always assigns the best available color to

3

a vertex. However, this may prevent the vertices that end up with the highest color h from getting a better color.

Under some conditions, our color reduction heuristics can assign worse colors (below h) to other vertices to free

up better colors for the vertices with color h. Recoloring them with one of the better colors lowers the number of

required colors beyond the capabilities of LDF. Our color-reduction heuristics are guaranteed to never make the

coloring quality worse. On about half of our inputs, they reduce the number of colors, thus boosting the solution

quality. They are independent of LDF and can be used to improve the result of any construction heuristic.

This paper makes the following main contributions.

• It presents algorithmic shortcuts to increase the parallelism in graph coloring without affecting the coloring

quality.

• It presents color-reduction heuristics to improve the solutions of other graph coloring heuristics.

• It describes techniques to efficiently implement and deterministically parallelize these shortcut and color-

reduction algorithms.

• It demonstrates that our CUDA implementation is faster than prior CPU and GPU graph coloring codes on a

variety of graphs while, on average and on most of the tested graphs, also using fewer colors.

The CUDA source code is available at https://cs.txstate.edu/~burtscher/research/ECL-GC/.

The rest of the paper is organized as follows. Section 2 provides background information on (parallel) graph

coloring. Section 3 explains the shortcuts and optimizations to implement them efficiently. Section 4 explains the

color-reduction heuristics and how they are parallelized. Section 5 summarizes related work. Section 6 describes

the experimental methodology. Section 7 presents and analyzes the results. Section 8 concludes the paper.

2 BACKGROUND

Throughout this paper, we use the color order shown in Figure 1a, i.e., the first color (red) must be chosen whenever

possible. If it is not available, the second color (blue) must be chosen if possible, and so on.

We use the graph in Figure 1b with 7 vertices and 16 edges for illustration. To simplify the discussion, the

vertices are labeled in LDF order, meaning they are to be colored in alphabetic order. The resulting ordering

imposes a direction upon each edge (from the higher-priority vertex that must be colored earlier to the lower-

priority neighbor), which turns the undirected graph into the directed acyclic graph (DAG) shown in Figure 1c.

Figure 1d displays a valid coloring with four colors. This is the result that the greedy serial algorithm produces

when processing the vertices alphabetically. It first colors A, which has no colored neighbors, so A gets red. Then B

is colored, which is adjacent to A and, therefore, cannot be red. Hence, B is assigned blue, the next best color. Vertex

C can be red again and D must take orange as it has red and blue neighbors. E must be purple as it has red, blue, and

orange neighbors. Finally, F can be blue and G can be orange. Note that the serial algorithm requires as many steps

as there are vertices. Each step must traverse all edges of the current vertex, resulting in the total work of

𝑂(|𝑉| + |𝐸|) where |𝑉| is the number of vertices and |𝐸| the number of edges in the graph. Any parallel algorithm

that adheres to the same vertex priority must produce the same coloring, including the JP algorithm and our

algorithm, which we named “ECL-GC”.

A DAG generally only specifies a partial order, in this case the order in which to color the vertices. The parallelism

of the JP algorithm originates from this partial order. The depth of the DAG determines the number of parallel steps,

and the width at a given level (when drawing the DAG top-down) determines the amount of parallelism.

4

Figure 1: Assumed color priority order (a), sample graph (b), LDF-imposed DAG (c), and greedy coloring (d)

In many JP implementations, each vertex v starts out with a list of k+1 possible colors, where is k is the number

of higher-priority neighbors, i.e., incoming DAG edges. This number suffices because, in the worst case, every

incoming edge will be from a differently colored neighbor and use up the first k colors, leaving the k+1st color for

vertex v. If the incoming edges end up not using all first k colors, because some neighbors of v either have the same

color or use a color above k, then at least one of the first k colors will be available for v. Hence, it always suffices to

only reserve the first k+1 colors for a vertex with k incoming edges [45]. Whenever a higher-priority neighbor is

colored, that color is removed from the list. Each vertex is ultimately colored with the best remaining color.

JP often uses bitmaps for implementing these lists where each bit represents a different color [33]. A set bit “1”

means the corresponding color is still possible and a cleared bit “0” means the color is no longer available. The

position of the bit indicates to which color it refers. A colored vertex has a single set bit in the bitmap reflecting the

color of the vertex. Uncolored vertices have at least two set bits. Whenever a higher-priority vertex is colored, the

corresponding bit must be cleared in its lower-priority neighbors since that color is no longer available.

Figure 2 illustrates how the bitmap for vertex R changes as the neighbors with a higher priority get colored. The

bitmap starts out with six possible colors since there are five higher-priority neighbors, indicated by the incoming

arrows. To improve readability, we show each set bit in the color it represents.

Assuming vertex C is the first to be colored and it is colored blue, the blue bit in vertex R’s list is zeroed out to

indicate that blue is no longer a possible color for R. Next, assume vertex E is colored gray. Hence, the gray bit is set

to zero in the bitmap. Then, vertex A is colored green, clearing the green bit. When vertex D is also colored green,

the bitmap does not change because the green bit is already zero. Finally, vertex B is colored red and the red bit is

cleared. Now that all higher-priority neighbors have been colored, we can color R. The remaining “1” bits in the

bitmap indicate which colors can be used (yellow and purple in the example). Since JP-LDF always uses the best

available color, vertex R is colored yellow. This can be achieved, for example, by zeroing out all bits above the first

“1” in the bitmap as shown in Figure 2.

First Second Third Fourth Fifth Sixth

B

C

F

D

G

A

E

B

C

F

D

G

A

E

B

C

F

D

G

A

E

(b) (c) (d)

(a)

5

Figure 2: Bitmap of vertex R representing the list of remaining possible colors

Figure 3 illustrates the steps of the JP-LDF algorithm on our sample graph. Figure 3a shows the initialization

step, which computes the direction of each edge in parallel by comparing the degrees of the two vertices the edge

connects and invoking the tie breaker if needed. Vertex A can already be colored as it has no incoming edges. In

each of the following processing steps, every uncolored vertex checks, in parallel, whether all its higher-priority

neighbors (incoming edges) have been colored. We visualize this with light edges. Once a vertex has no incoming

dark edges, it can be colored.

B
C

D

E
R

R: 111111

A

B
C

D

E
R

R: 111101

A

B
C

D

E
R

R: 101101

A

B
C

D

E
R

R: 001101

A

B
C

D

E
R

R: 001101

A

B
C

D

E
R

R: 001100

A

B
C

D

E
R

R: 000100

A

B

C

F

D

G

A

E

A: 1

D: 1111

F: 11111

E: 11111

C: 11

B: 11

G: 1111

A: 1

D: 1110

F: 11110

E: 11110

C: 11

B: 10

A

G B

D

F

E

C

G: 1110

A: 1

D: 1100

F: 11110

E: 11100

C: 01

B: 10

A

G B

D

F

E

C

G: 1100

A: 1

D: 0100

F: 11110

E: 11100

C: 01

B: 10

G: 0100

A

G B

D

F

E

C

(a) (b)

(c) (d)

6

Figure 3: Initialization and computation steps of the parallel JP-LDF graph-coloring algorithm

In the first processing step (Figure 3b), all neighbors of vertex A see that A has been colored and zero out the red

bit in their bitmaps. At this point, vertex B has no incoming dark edges anymore. It gets blue as that is the best

available color in its bitmap. In the second step (Figure 2c), all lower-priority neighbors of vertex B clear their blue

bits. This colors vertex C red. In the third step (Figure 2d), the lower-priority neighbors of vertex C see that C has

been colored red, but the bitmaps do not change as none of them have the red bit set. Moreover, vertices D and G

find that all their higher-priority neighbors have been colored. So, they are colored concurrently with the best

available color, which happens to be orange in both cases. In the fourth step (Figure 2e), all lower-priority neighbors

of vertices D and G zero out their orange bit. This colors vertex E purple. In the fifth and final step (Figure 2f), the

purple bit is cleared in vertex F’s bitmap and F is colored with the best remaining color, which is blue. Since all

vertices are now colored, the JP-LDF algorithm terminates. It takes JP-LDF five steps to complete because the

longest dependence chain in the DAG has five edges (A→B→C→D→E→F).

3 SHORTCUT APPROACH

There is little parallelism in the JP example from the previous section. Only one step colors more than one vertex.

Yet, additional non-speculative parallelism may exist. To see where it resides, consider the partially colored

subgraph in Figure 4a. We reuse the color priorities from Figure 1a in this section.

Figure 4: Examples of Shortcut 1

Vertices B and C cannot be colored because they both have a higher-priority neighbor that has not yet been

colored, as indicated by the incoming dark edge. It appears that vertex Q also cannot be colored for the same reason.

However, it can safely be colored red (the best color) without waiting for B or C. This is safe because B and C are

guaranteed not to use red since they both have a neighbor that is already red. Figure 4b depicts a similar scenario

but vertex A is now blue. Applying the same reasoning, we conclude that it is safe to color vertex Q blue as well. But

A: 1

D: 0100

F: 11010

E: 01000

C: 01

B: 10

G: 0100

A

G B

D

F

E

C

A: 1

D: 0100

F: 00010

E: 01000

C: 01

B: 10

G: 0100

A

G B

D

F

E

C

Q

B C

A

A: 000001

B: 110 C: 110

Q: 111

Q

B C

A

A: 000010

B: 101 C: 101

Q: 111

Q

B C

A

A: 000010

B: 101 C: 101

Q: 1110

P

P: 0001

(a)

(a) (b) (c)

(e) (f)

7

we must give each vertex the best possible color, i.e., the same color as the serial and JP-LDF algorithms.

Unfortunately, we do not yet know whether it is possible to color vertex Q red and must, therefore, wait. In the

modified case depicted in Figure 4c, we do not have to wait because blue is now the best possible color for Q, and

we know that neither B nor C will be blue. Generalizing these observations leads to the first enhancement we

propose, which we call a “shortcut” because it allows the coloring of vertices before it is their turn.

Shortcut 1: A vertex can safely be colored with its best possible color as soon as its uncolored higher-priority

neighbors are no longer considering that color.

To be able to determine whether this is the case, we need to know what colors each vertex is still considering.

Luckily, this information is stored in the bitmaps, which are already present in many JP-based graph-coloring codes

to find the best available color when it is time to color a vertex [33]. Our approach uses these bitmaps for two

additional tasks, namely, to determine the best available color of a vertex (the lowest set bit in its bitmap) before it

is time to color the vertex and to determine if any of the higher-priority neighbors are still considering that color.

Together, these two pieces of information allow us to decide whether the first shortcut can be applied.

We also use the information in the bitmaps for a second type of shortcut. The second shortcut makes it possible

to ignore some higher-priority neighbors before they have been colored, which is tantamount to deleting an edge

from the graph. This has two benefits. First, it enables the removal of one possible color from the bitmap since the

number of incoming edges has decreased by one, which may make the first shortcut more effective (on other

vertices). Second, it speeds up later processing steps as they no longer need to check the deleted edge. Figure 5

illustrates the idea behind the second shortcut.

Figure 5: Example of Shortcut 2

In this example, vertex R cannot be colored because it is waiting for one higher-priority neighbor (the incoming

dark edge). However, we already know it will end up with either blue or purple as those are the only two possible

colors remaining. Similarly, vertex S cannot be colored yet, and we know that its remaining possible colors are red,

orange, and gray. Since there is no overlap between the possible colors of vertices R and S, no matter which of its

possible colors R eventually obtains, it will not interfere with S. Hence, we can safely delete the edge from R to S.

Doing so lowers the number of incoming dark edges of vertex S to one, meaning it only needs to consider two

possible colors. Consequently, we can remove the worst color from its list of possible colors, which is gray.

Generalizing this idea leads to the second shortcut.

E

F

A
B

C

D
R

S

R: 001010

S: 10101

8

Shortcut 2: An edge from a higher-priority vertex u to vertex v can safely be removed as soon as there is no

overlap between the possible colors of vertices u and v, which enables the removal of the worst color from the

list of possible colors of vertex v.

Correctness proof of the two shortcuts:

1. Our approach augments the JP algorithm with two shortcuts. Therefore, it produces the same coloring as

the JP algorithm when disabling the shortcuts.

2. Neither shortcut applies to the initialization phase, which is why the bitmaps start out identically with and

without the shortcuts.

3. During processing, the only operation performed on the bitmaps, with and without the shortcuts, is the

clearing of bits. This monotonicity property guarantees that, once there is no overlap between the first set

bit (Shortcut 1) or any set bit (Shortcut 2) and another bitmap, there never will be an overlap anymore.

4. Only overlapping set bits can result in the clearing of the first set bit in a lower-priority vertex’s bitmap

(namely when the higher-priority vertex is colored with that color). Consequently, the first lower-priority

set bit will never be cleared once the corresponding bit in all higher-priority vertices is zero (Shortcut 1).

5. Once there is no overlap, a higher-priority vertex cannot possibly select a color that a lower-priority vertex

considers. Hence, the connecting edge can be ignored (Part 1 of Shortcut 2). Since the higher-priority vertex

will necessarily either select a color above k+1 or a color that another neighbor of the lower-priority vertex

has already chosen (since there is no overlap in the bitmaps), the worst-case scenario cannot occur

anymore, which is why we can eliminate the highest set bit of the lower-priority vertex (Part 2 of Shortcut

2).

It is important to note that neither of the two shortcuts affects the ultimate coloring of the graph. They just speed

up the processing by increasing the parallelism. Figure 6 illustrates this on our sample graph.

Figure 6: Initialization and computation steps of our parallel ECL-GC graph-coloring algorithm

B

C

F

D

G

A

E

A: 1

D: 1111

F: 11111

E: 11111

C: 11

B: 11

G: 1111

A: 1

D: 1110

F: 11110

E: 11110

C: 11

B: 10

G: 1110

A

G B

D

F

E

C

A: 1

D: x100

F: 11110

E: 01100

C: 01

B: 10

G: x100

A

G B

D

F

E

C

A: 1

D: 0100

F: xxx10

E: 01000

C: 01

B: 10

G: 0100

A

G B

D

F

E

C

(a) (b)

(c) (d)

9

The initialization phase (Figure 6a) of ECL-GC, our shortcut-based graph coloring algorithm, is identical to that

of the JP-LDF algorithm (cf. Figure 3a). In particular, the bitmaps are initialized in the same way, and vertex A is

already colored red. In each of the following computation steps, all uncolored vertices can be processed in parallel.

Every vertex v visits its higher-priority neighbors. There are three cases to consider.

1) If a neighbor u has been colored, i.e., its bitmap only contains a single set bit, the edge from u to v is removed

from consideration (grayed out) and one bit in the bitmap of v is cleared. If the bit corresponding to u’s color is set,

that bit must be cleared since this color is no longer a possible color for v. This is equivalent to the standard JP

algorithm. However, if the bit corresponding to u’s color is not set, the highest set bit in the bitmap of v is cleared

instead. This is not done in the JP algorithm. It is optional in ECL-GC but may help with the following two cases.

2) If a neighbor u has not yet been colored, i.e., its bitmap contains multiple set bits, and none of the set bits in

u’s bitmap overlap with the set bits in v’s bitmap, the edge from u to v is removed from consideration (grayed out)

and the highest set bit in the bitmap of v is cleared. This implements Shortcut 2.

3) For all uncolored higher-priority neighbors, the union (bitwise OR) of their bitmaps is computed. If the

currently best possible color of v is not in the union, all incoming edges are removed from consideration and v is

colored with its best available color, i.e., all bits above the lowest set bit are cleared (since that many edges were

removed). This implements Shortcut 1.

In the first computation step of ECL-GC (Figure 6b), all vertices that are adjacent to A clear their red bit. Note

that this colors vertex B as it only has one set bit left. B gets blue because the set bit is in the second position.

In the next computation step (Figure 6c), multiple events occur. All uncolored vertices that are adjacent to B

clear their blue bit. This colors vertex C red. Due to the parallel processing, the other vertices either see the old

bitmap of “11” or the new bitmap of “01” for C. Either view suffices for vertices D and G, both of which have vertex

C as the only remaining higher-priority neighbor, to conclude that they can be colored orange using Shortcut 1 since

their best possible color is not considered by any of their higher-priority neighbors. Applying Shortcut 1 clears all

bits past the first set bit, indicated by an “x” in the figure. Shortcut 2 can also be applied in this computation step.

The bitmap of E has no overlap with the (old or new) bitmap of C, so the edge from C to E is removed from

consideration, and the highest set bit of E is cleared.

In the third computation step (Figure 6d), vertices E and F remove their orange bit due to vertex D, which colors

vertex E purple. Vertex F may not yet see this update of vertex E’s bitmap but can still conclude that its first set bit

is not contained in any of its remaining neighbors’ (vertices C and E) bitmaps, that is, it can be colored blue using

Shortcut 1 and the higher bits are cleared. At this point, all vertices are colored, so the algorithm terminates.

The resulting coloring is identical to that of the serial and JP-LDF algorithms. Moreover, due to the increased

parallelism, it only takes the ECL-GC algorithm three computation steps to color this graph compared to five steps

for the JP-LDF algorithm.

3.1 Shortcut Derivation

The two shortcuts were systematically derived from combinations of intersections between the possible colors

among neighboring vertices. Assume set C(v) ⊂ ℕ contains the possible colors of vertex v. As shortcuts only apply

to uncolored vertices and a vertex can only have a finite number of incoming DAG edges, 2 ≤ |C(v)| < ∞ holds. Thus,

the complement C’(v) = ℕ\ C(v) must have cardinality |C’(v)| = ∞. If U(v) denotes the union of the possible colors of

all uncolored higher-priority neighbors of v, 2 ≤ |U(v)| < ∞ must also hold and there must be at least one higher-

10

priority neighbor given that v is uncolored. Assuming vertex n represents one of those neighbors and that B(v) ⊂

C(v) denotes the best color of C(v), i.e., |B(v)| = 1, we end up with the 16 possibilities listed in Table 1.

Some intersections cannot yield an empty set due to the cardinality constraints outlined above. Others may yield

an empty set, but the condition under which they do is not strong enough to yield a useful shortcut. The remaining

four (red) cases are candidates. The 1st case from the top is Shortcut 2. The 5th case by itself is insufficient and only

part of Shortcut 1. The 9th case is unnecessarily strong and already covered by the 13th case, which is Shortcut 1. We

similarly tried using the possible colors of the neighbors’ neighbors but could not find any exploitable shortcuts.

Table 1. Bitmap intersections and resulting actions

3.2 ECL-GC Implementation & Optimization

A direct implementation of the ECL-GC algorithm as described above may be inefficient due to long bitmaps that

must be processed for vertices with many higher-degree neighbors. This potential inefficiency is concerning since

the goal of the shortcuts is to accelerate the computation.

Graph coloring is typically performed on sparse graphs (e.g., dependence graphs) as there is little to be gained

from coloring dense graphs that require close to |𝑉|unique colors. We define a graph as sparse if it has 𝑂(|𝑉|) edges,

that is, |𝐸| = 𝑐|𝑉| where c is a constant (the average degree) that is much smaller than |𝑉|. In a sparse graph, most

of the vertices must have a low degree (much lower than |𝑉|). Since a vertex of degree k can always be colored with

one of the first k+1 colors, most vertices in sparse graphs can, therefore, be colored with just a few colors (typically

significantly fewer than c). This observation led us to a design that treats high-degree and low-degree vertices

separately. Specifically, we fully implement the presented shortcuts on the low-degree vertices but only

approximate them on the high-degree vertices to avoid the costly processing of long bitmaps.

For each low-degree vertex with a degree under 32, we use a fixed bitmap with 32 bits (i.e., an integer). For all

other vertices, we maintain the full bitmap to ultimately assign the best possible color as the conventional JP

algorithm does but only use two integers for the shortcut computations. The first integer specifies the best possible

color and the second integer the worst possible color. We do not update the worst possible color as we found that,

meaning of empty intersection resulting action

C(v) ∩C(n) poss. colors don't overlap with neighbor remove edge (Shortcut 2)

C'(v) ∩C(n) there is overlap: C(n) ⊂ C(v) continue

C(v) ∩C'(n) there is overlap: C(v) ⊂ C(n) continue

C'(v) ∩C'(n) impossible

B(v) ∩C(n) best color not considered by neighbor record info (for Shortcut 1)

B'(v) ∩C(n) impossible

B(v) ∩C'(n) best color is considered by neighbor continue

B'(v) ∩C'(n) impossible

C(v) ∩U(v) p. colors don't overlap with any neighbor use best color (Shortcut 1)

C'(v) ∩U(v) there is overlap: U(v) ⊂ C(v) continue

C(v) ∩U'(v) there is overlap: C(v) ⊂ U(v) continue

C'(v) ∩U'(v) impossible

B(v) ∩U(v) best color not considered by any neighbor use best color (Shortcut 1)

B'(v) ∩U(v) impossible

B(v) ∩U'(v) best color is considered by some neighbor continue

B'(v) ∩U'(v) impossible

intersection

11

for high-degree vertices, it rarely gets small enough to matter before the vertex is colored. However, we maintain

the best possible color precisely.

The shortcuts are approximated as follows with the two integers. Shortcut 1 is applied if the best possible color

of a lower-priority vertex is not in the range between the best and worst possible color of any of the uncolored

higher-priority neighbors. This simplification makes the Shortcut 1 processing independent of how long the

bitmaps are but may miss some shortcutting opportunities. Shortcut 2 can be applied if the range between the

lowest and highest possible color of a lower-priority vertex does not overlap with the range between the lowest

and highest possible color of an uncolored higher-priority neighbor. We ended up not including the second shortcut

for high-degree vertices in our implementation as our tests showed that it applies too infrequently to yield a

speedup.

Our ECL-GC CUDA implementation consists of three kernels. Their operations are presented in Algorithms 1, 2,

and 3 and explained in the following paragraphs.

The initialization kernel, outlined in Algorithm 1, sets the color of each vertex to zero (line 3) and puts all vertices

of degree 32 or higher on a worklist (line 5). Furthermore, it records the incoming edges from higher-priority

vertices (i.e., it builds the DAG, line 10) and initializes the bitmaps with the first k+1 colors (line 13). For efficiency

reasons, this is done at thread granularity for the low-degree vertices and at warp granularity for the high-degree

vertices. We use the unique vertex IDs to break ties when computing the priorities. This makes the code

deterministic, meaning it always computes the same solution for a given input graph, independent of the GPU it is

executed on and independent of internal thread and warp timing. The two for-each loops are parallelized. The

worklist is updated concurrently using atomic instructions. The DAGs are generated in parallel using warp-based

reductions.

ALGORITHM 1: ECL-GC Initialization

1: worklist ← Ø

2: for each vertex v in G do

3: colorv ← 0

4: if degree(v) ≥ 32 then

5: worklist ← worklist ∪ v

6: else

7: DAGinv ← Ø

8: for each neighbor n of v in G do

9: if priority(v) < priority(n) then

10: DAGinv ← DAGinv ∪ n

11: end if

12: end for

13: posscolv ← {0, 1, …, |DAGinv|}

14: end if

15: end for

12

The second kernel, outlined in Algorithm 2, processes the high-degree vertices, which it retrieves from the

worklist (line 3). It can safely ignore the low-degree vertices as they are guaranteed to have lower priorities. This

kernel uses persistent threads [25], meaning it is launched with only as many threads as can simultaneously be

active on the GPU rather than with as many threads as there are vertices in the graph. Each thread repeatedly and

asynchronously loops over the vertices assigned to it and performs the computation steps until all vertices have

been colored. To improve performance, the threads that have a vertex in need of processing (line 4) enlist the

remaining threads in the warp to help traverse that vertex’s incoming DAG edges (line 7). Hence, this kernel

combines thread-based and warp-based parallelization. For each colored neighbor, the color is removed from the

list of possible colors (line 12). If either the best color is removed (line 9) or the range of possible colors of the

higher-priority neighbor overlaps with the best color (line 15), the shortcut is disabled. If all neighbors have been

colored or the shortcut can be applied, the vertex is colored with its best possible color (line 22). Otherwise, the

code will have to try to color this vertex again later (line 24). The two for-each loops are parallelized. The bitmaps

(posscol) are updated using atomic instructions. The flags are updated using warp-based reductions.

ALGORITHM 2: ECL-GC High-degree Vertex Coloring

1: do

2: again ← false

3: for each vertex v in worklist do

4: if !colored(v) then

5: shortcut ← true

6: done ← true

7: for each neighbor n of v in DAGinv do

8: if colored(n) then

9: if colorn = bestcolv then

10: shortcut ← false

11: end if

12: posscolv ← posscolv \ colorn

13: else

14: done ← false

15: if bestcoln ≤ bestcolv and bestcolv ≤ worstcoln then

16: shortcut ← false

17: end if

18: end if

19: end for

20: bestcolv ← best(posscolv)

21: if done or shortcut then

22: colorv ← bestcolv

23: else

24: again ← true

25: end if

13

26: end if

27: end for

28: while (again)

The third kernel, outlined in Algorithm 3, processes all vertices (line 3), skipping the ones that have already been

colored (line 4), which includes all high-degree vertices. Hence, it suffices to only use 32-bit bitmaps in this kernel

to fully implement both shortcuts. Since we know that the remaining uncolored vertices only have few higher-

priority neighbors, this kernel performs all work exclusively at the thread level. As in the previous kernel, each

thread asynchronously loops over the vertices assigned to it and performs the computation steps until its vertices

have been colored. For each vertex, the thread traverses the incoming DAG edges (line 6) and computes the union

of the possible colors of all uncolored higher-priority neighbors (line 7). If applicable (line 8), it applies Shortcut 2

(lines 9 and 10). If the neighbor has been colored (line 11), it removes the neighbor from further consideration (line

12) and removes the neighbor’s color from the list of possible colors (line 13). If there are no uncolored higher-

priority neighbors left or Shortcut 1 can be applied (line 16), the vertex is colored with its best possible color (line

17). Otherwise, the code will have to try to color this vertex again later (line 19). Only the outer for-each loop is

parallelized as the inner for-each loop is guaranteed to only perform few iterations. This kernel’s only

synchronization is via producer-consumer relationships using volatile variables.

ALGORITHM 3: ECL-GC Low-degree Vertex Coloring

1: do

2: again ← false

3: for each vertex v in G do

4: if !colored(v) then

5: union ← Ø

6: for each neighbor n of v in DAGinv do

7: union ← union ∪ posscoln

8: if posscolv ∩ posscoln = Ø then

9: DAGinv ← DAGinv \ n

10: posscolv ← posscolv \ worst(posscolv)

11: else if colored(n) then

12: DAGinv ← DAGinv \ n

13: posscolv ← posscolv \ colorn

14: end if

15: end for

16: if DAGinv = Ø or union ∩ best(posscolv) = Ø then

17: colorv ← best(posscolv)

18: else

19: again ← true

20: end if

21: end if

14

22: end for

23: while (again)

For performance reasons, all set operations are implemented with logical bit instructions (AND, OR, and NOT).

Moreover, the colors are allocated from MSB to LSB in the bitmaps, which may seem counterintuitive. This ordering

does not affect the set operations, but it does accelerate the two important remaining operations: finding the first

set bit (determining the best possible color, lines 16 and 17) and clearing the last set bit (removing the worst color,

line 10). The position of the first set bit can quickly be obtained with the “count leading zero bits” instruction, which

is available on many architectures, including GPUs. In contrast, a “count trailing zero bits” instruction is often not

present. Clearing the last set bit of a value x can be done quickly by computing x &= (x – 1), which works irrespective

of where the last set bit is located [44]. Generally, no equally fast way of clearing the first set bit of a value exists.

Our CUDA implementation has fewer than 300 statements with around 150 kernel statements and is available

at https://cs.txstate.edu/~burtscher/research/ECL-GC/. It incorporates the above optimizations. It transfers the

graph to the GPU and the computed colors back to the CPU. After initialization, the code repeatedly processes the

vertices until convergence is reached. As mentioned, the processing is done asynchronously, which may result in

threads reading outdated bitmaps. However, the bitmaps only ever have bits cleared. Similarly, for the larger-

degree vertices that use the two integers bestcol and worstcol (in Algorithm 2) to implement the shortcut, bestcol

only ever increases and worstcol stays constant. Due to these monotonicity conditions, it is always safe for a thread

to act upon an outdated bitmap or bestcol value, but doing so may lead to extra iterations.

4 COLOR-REDUCTION HEURISTICS

As discussed in Section 1, LDF tends to be fast and yields a good coloring quality, but its quality is not as high as that

of some slower ordering heuristics. To boost the coloring quality beyond the abilities of LDF without resorting to

overly slow processing, we designed two improvement heuristics that take the solution of a graph-coloring

algorithm such as JP-LDF as input and try to enhance it by reducing the number of colors used.

The high-level idea behind our color-reduction heuristics is the following. For each vertex v with the highest

color, try to recolor some of its neighbors to free up a lower color and assign the freed-up color to v. If the heuristic

succeeds in doing this for all vertices with the highest color, the new solution will use one fewer color. The

procedure can be repeated until no further reduction is possible.

We illustrate how this works on the graph in Figure 7. For simplicity, we labeled the vertices according to their

LDF priorities, meaning vertex A is colored first, then vertex B, etc. Reusing the color priorities from Figure 1a, we

find that LDF colors this graph with three colors as shown in Figure 7a. Vertices D and E both end up with the

highest color yellow. We can only reduce the total number of colors if we manage to recolor both vertices with a

lower color. Note that they are yellow because they have higher-priority neighbors that already use all lower colors.

Hence, we must first recolor at least one of their neighbors to free up a lower color. Figure 7b shows how this can

be achieved by coloring vertex C blue, which frees up red to be used by vertices D and E. The recolored solution

requires only two colors instead of three. It is important to note that LDF never even considered blue as a possible

color for vertex C because vertex C has only one bit in its bitmap. In contrast, our color-reduction heuristics consider

all colors that are better than the highest color for all neighbors of the highest-color vertices. This allows them to

improve the solution in some cases.

15

Figure 7: High-level idea behind color reduction

When trying to, e.g., recolor vertex D, we iterate over all its neighbors and choose one that can be recolored with

the lowest color. The new color for the neighbor will necessarily be higher than its current color (since all lower

colors are unavailable) but must be lower than the color of D to ultimately result in a savings. In Figure 7a, neighbor

B cannot be recolored since its range of potential alternate colors (higher than blue but lower than yellow) is empty.

However, neighbor C can be recolored. Its range consists of the color blue. As we already saw, using blue for vertex

C frees up red for vertices D and E. Since we managed to recolor all highest-color vertices with a lower color, the

new solution requires one fewer colors. Repeating this procedure does not yield any further improvement.

4.1 Two Graph-coloring Improvement Heuristics

This subsection describes our two color-reduction heuristics in detail. One of them targets low-degree graphs, such

as road networks, and the other targets graphs with some high-degree vertices, such as power-law graphs. Both can

be used in combination. We implemented the two heuristics in CUDA and added them as a post-processing stage to

our graph-coloring algorithm ECL-GC. In the following text, the abbreviation “hic” stands for “highest color”.

4.1.1 Heuristic 1

Heuristic 1 is intended for graphs with a few high-degree vertices. It checks whether all neighbors of the hic vertices

that currently use color x can be recolored to y, where y < hic. If such a pair of x and y values exists, performing the

corresponding recoloring will free up color x to be used by all hic vertices.

Since Heuristic 1 recolors all hic vertices to the same new color, it tends to only succeed on graphs with relatively

few hic vertices. Low-degree graphs typically have a small range of used colors and many hic vertices, making it

unlikely that we can find a single replacement color that works for all hic vertices. Hence, we only recommend

Heuristic 1 for graphs with high-degree vertices.

Figure 8 provides an example of how Heuristic 1 works. Figure 8a shows an LDF colored graph where vertex G

has the highest color, making it the only hic vertex. By examining G’s neighbors, we find that none of the blue and

yellow neighbors can be recolored to any color less than hic. However, all red neighbors (there is only one) can be

recolored to yellow, which allows the hic vertex G to be colored red, as shown in Figure 8b. Thus, Heuristic 1 is able

to reduce the number of colors from four to three in this example.

For performance and parallelization reasons, we implemented Heuristic 1 as presented in Algorithm 4. It first

populates a worklist with all vertices that have a hic neighbor (lines 2 through 9). Next, it creates a 2-dimensional

Boolean matrix of hic-by-hic size and initializes all elements to true (line 10). Then, it sets the matrix elements to

G F

D E

C

A

B

C: 1

A: 1

E: 100D: 100

B: 10

F: 10G: 10

G F

D E

C

A

B

C: 10

A: 1

E: 001D: 001

B: 10

F: 10G: 10

(a) (b)

16

false that correspond to a pair <x, y> of colors such that x is the color of a vertex v from the worklist and y is the

color of a neighbor of v (lines 11 through 15). If at least one matrix element remains true (line 19), its coordinates

are recorded in the pair <x, y> (line 20). If multiple true elements remain, we deterministically pick the one with

the lowest coordinates (not shown). Assuming at least one true element exists (line 24), all vertices from the

worklist whose color is x are recolored to y (lines 25 through 29) and all hic vertices are recolored to x (lines 30

through 34). All for-each loops of Algorithm 4 can be executed in parallel. The worklist is populated using

atomicAdd instructions. Setting matrix elements to false does not require synchronization. Deterministically finding

the lowest true matrix element can be done with atomicMin instructions. Recoloring the vertices is embarrassingly

parallel.

Figure 8: Example of Heuristic 1

ALGORITHM 4: Color-reduction Heuristic 1

1: hic ← highest used color

2: worklist ← Ø

3: for each vertex v in G do

4: for each neighbor n of v in G do

5: if colorn = hic then

6: worklist ← worklist ∪ v

7: end if

8: end for

9: end for

10: m ← Boolean hic × hic matrix initialized to true

11: for each vertex v in worklist do

12: for each neighbor n of v in G do

13: m[colorv, colorn] ← false

14: end for

M L

D F E

G

C B

I: 01

M: 10

J: 10

H

K

A

J I
K: 10

L: 10

C: 1

H: 100 A: 1 B: 10

F: 10 E: 100
D: 1

G: 1000

M L

D F E

G

C B

I: 01

M: 10

J: 10

H

K

A

J I
K: 10

L: 10

C: 1

H: 100 A: 1 B: 10

F: 10 E: 100
D: 100

G: 0001
(a) (b)

17

15: end for

16: x, y ← hic, hic

17: for each i form 0 to hic - 1 do

18: for each j form 0 to hic - 1 do

19: if m[i, j] then

20: x, y ← i, j

21: end if

22: end for

23: end for

24: if x, y ≠ hic, hic then

25: for each vertex v in worklist do

26: if colorv = x then

27: colorv ← y

28: end if

29: end for

30: for each vertex v in G do

31: if colorv = hic then

32: colorv ← x

33: end if

34: end for

35: end if

4.1.2 Heuristic 2

Heuristic 2 is intended for low-degree graphs. It checks, for each hic vertex v, whether its neighbors that currently

use color x can be recolored to y, where y < hic. If such a pair of x and y values exists that does not conflict with any

other such pair (see below), performing the corresponding recoloring will free up color x to be used by vertex v.

Unlike our first heuristic, this heuristic allows the hic vertices to be recolored with different colors, making it

more likely to succeed on graphs with many hic vertices. However, it requires more memory. To cap the memory

usage, we only apply Heuristic 2 to the first 32 colors, which typically suffices on low-degree graphs.

Recoloring graphs using multiple new colors may result in two kinds of conflicts that must be prevented. First,

if hic vertices v1 and v2 share a common neighbor n, it could happen that v1 wants to recolor n to a different color

than v2 does. To avoid this first type of conflict, Heuristic 2 creates sets of hic vertices that share a common neighbor

and recolors all vertices in the set with the same color. Second, if hic vertex v1 has a neighbor n1, hic vertex v2 has a

neighbor n2, and n1 is a neighbor of n2, it could happen that v1 and v2 want to recolor n1 and n2, respectively, to the

same color. Doing so would yield a graph in which the adjacent vertices n1 and n2 have the same color. To avoid this

second type of conflict, Heuristic 2 removes the available colors for recoloring the neighbors of one hic vertex from

the available colors for recoloring the neighbors of the other hic vertex if they have adjacent neighbors. This ensures

that the neighbors cannot be recolored with the same color. For example, if one hic vertex is considering recoloring

one of its neighbors to blue, removing blue from the available colors for recoloring the neighbors of the other hic

vertex guarantees that it will not use blue for any of its neighbors, thus avoiding the conflict. Heuristic 2 always

removes the overlapping colors of the larger set from the smaller sets since the smaller set is less likely to be useful.

18

Figure 9 provides an example of how Heuristic 2 works. Figure 9a shows an LDF colored graph in which vertices

I and J have the highest color, i.e., there are two hic vertices. I and J do not share a common neighbor, so Heuristic 2

treats them independently and does not put them in the same set. In other words, the first type of conflict cannot

occur. Examining I’s neighbors, we find that only vertex C can be recolored (to blue). Examining J’s neighbors, we

find that both vertices A and E can be recolored (to yellow). To avoid the second type of conflict, Heuristic 2 must

ensure that A and D are not recolored to the same value and that C and H are not recolored to the same value. To

guarantee that, it removes yellow (A’s recoloring set) from D’s set of available recoloring colors as well as blue (C’s

recoloring set) from H’s set of available recoloring colors. In both cases, the colors from the larger set with one entry

are removed from the smaller set, which is empty in this example. At this point, Heuristic 2 recolors C to blue, which

frees up red for I, and either A or E to yellow. Assuming it picks E, this frees up blue for J. The recolored graph is

shown in Figure 9b. Note that the heuristic reduced the total number of colors needed by recoloring the two hic

vertices with different new colors.

Figure 9: Example of Heuristic 2

For performance and parallelization reasons, we implemented Heuristic 2 as presented in Algorithm 5. It first

populates a worklist with all hic vertices (lines 3 through 7). Next, it creates a disjoint-set (union-find) data

structure in which each hic vertex is a set of its own (line 8). Then, for each vertex (line 9), it collects all hic neighbors

in a set (lines 10 through 15) and merges them in the disjoint-set data structure (line 16) to avoid conflicts of the

first type. For each of the resulting disjoint sets, 32 bitmaps are allocated. Each bitmap corresponds to a possible

neighbor color and holds the available colors for recoloring all neighbors with that color. The available colors are

always higher than the current color and must be less than hic (and less than 32 due to our cap), so the bitmaps are

initialized accordingly (line 20). At this point, the heuristic goes over all neighbors n (line 24) of each hic vertex v

(line 23) and removes the color of each neighbor’s neighbors from the bitmap corresponding to the color of n and

belonging to the set of v (line 30), but only if the colors are under 32 (lines 26 and 28). To avoid conflicts of the

second type, Heuristic 2 goes over all pairs of adjacent vertices (lines 36 and 40) where both vertices have hic

neighbors (lines 37 and 41) that belong to different sets (line 44), determines the larger set of available colors for

recoloring (line 45) and removes the overlapping colors from the smaller set (lines 46 and 48). Finally, it traverses

G D

I

C

F

BK

E A H

J

I: 1000

D: 10

K: 10
F: 010

E: 010

C: 1

A: 1

B: 1

G: 100

H: 100

J: 1000

G D

I

C

F

BK

E A H

J

I: 0001

D: 10

K: 10
F: 010

E: 100

C: 10

A: 1

B: 1

G: 100

H: 100

J: 0010

(a) (b)

19

all hic vertices (line 55), checks if recoloring any neighbors with a color under 32 is possible (line 59), and, if so,

recolors the corresponding neighbors (line 62) and the hic vertex (line 65).

All outer and some inner for-each loops of Algorithm 5 can be executed in parallel. The worklist is populated

concurrently using atomicAdd instructions. The union operations and the path-compressing find operations on the

disjoint-set data structure are parallelized as described elsewhere [29]. The initialization of the bitmaps is

embarrassingly parallel. The unallowed elements are removed from the bitmaps using atomic instructions. This is

also how the overlapping elements from a larger conflicting set are removed from the smaller set. The recoloring

itself is embarrassingly parallel.

ALGORITHM 5: Color-reduction Heuristic 2

1: hic ← highest used color

2: worklist ← Ø

3: for each vertex v in G do

4: if colorv = hic then

5: worklist ← worklist ∪ v

6: end if

7: end for

8: disjointsets ← worklist

9: for each vertex v in G do

10: set ← Ø

11: for each neighbor n of v in G do

12: if colorn = hic then

13: set ← set ∪ n

14: end if

15: end for

16: merge all elements of set in disjointsets

17: end for

18: for each set s in disjointsets do

19: for each i form 0 to 31 do

20: availables,i ← {i+1, i+2, …, min(hic-1, 31)}

21: end for

22: end for

23: for each vertex v in worklist do

24: for each neighbor n of v in G do

25: c ← colorn

26: if c < 32 then

27: for each neighbor k of n in G do

28: if colork < 32 then

29: s ← disjointsets(v)

30: availables,c ← availables,c \ colork

20

31: end if

32: end for

33: end if

34: end for

35: end for

36: for each vertex v in G do

37: if v has hic neighbor then

38: c ← colorv

39: s ← disjointsets(any hic neighbor of v)

40: for each neighbor n of v in G do

41: if n has hic neighbor then

42: d ← colorn

43: t ← disjointsets(any hic neighbor of n)

44: if s ≠ t then

45: if availables,c < availablet,d then

46: availables,c ← availables,c \ availablet,d

47: else

48: availablet,d ← availablet,d \ availables,c

49: end if

50: end if

51: end if

52: end for

53: end if

54: end for

55: for each vertex v in worklist do

56: s ← disjointsets(v)

57: for each i form 0 to 31 do

58: b ← best(availables,i)

59: if b ≠ Ø then

60: for each neighbor n of v in G do

61: if colorn = i then

62: colorn ← b

63: end if

64: end for

65: colorv ← i

66: break

67: end if

68: end for

69: end for

21

5 RELATED WORK

A large amount of related work exists on graph coloring. Yet, there is very little prior work on improvement

heuristics to reduce the number of colors used and no other work that proposes shortcuts to increase the

parallelism.

The classical sequential graph-coloring algorithm is based on the greedy first-fit heuristic. Several other

heuristics have been proposed that use relatively few colors and have good bounds on their computational

complexity (cf. Section 1). In contrast, parallel algorithms have not been studied as extensively. Nevertheless, there

are a few polynomial-time algorithms, some of which can solve the problem using as few colors as the sequential

algorithms.

In 1986, Luby designed a Monte Carlo algorithm to find a maximal independent set (MIS) in parallel [32]. All

vertices in the MIS are given the same color. Then the algorithm finds a new MIS among the remaining vertices and

assigns the vertices in the second MIS the second color, and so on until all vertices have been colored.

In 1993, Mark Jones and Paul Plassmann proposed a new graph coloring heuristic (JP) [30] based on Luby’s

Monte Carlo algorithm. Luby’s algorithm selects new random numbers in each iteration, which requires global

synchronization. Moreover, generating the random numbers incurs overhead. Jones and Plassmann largely

eliminate the global synchronization and this overhead by choosing a random number for each vertex only once. In

other words, their algorithm does not assign new random numbers in each round when a new independent set

needs to be calculated but reuses the previously assigned numbers. The unique vertex IDs are used to resolve

conflicts if neighboring vertices end up with the same random number. Then the algorithm checks all the neighbors

of each uncolored vertex v. If v has the highest random number (i.e., the highest priority) among its uncolored

neighbors, the lowest available color is assigned to v. The algorithm repeats the last two steps until all vertices have

colors.

The Largest-Degree-First (LDF) heuristic assigns a priority to each vertex that is proportional to the degree of

the vertex. This causes the vertices to be colored in decreasing degree order, i.e., the vertices with the highest degree

are colored first. Using this ordering typically yields a better coloring quality than the JP and greedy algorithms.

Random numbers are used to resolve conflicts when two neighboring vertices have the same degree [26]. The JP

algorithm can easily be augmented with LDF. The resulting parallel JP-LDF algorithm is outlined in Section 2.

The Smallest-Degree-Last (SDL) heuristic tries to improve upon the coloring quality of LDF by using more

sophisticated weights [34]. It comprises a weighting and a coloring phase. In the weighting phase, the algorithm

starts by finding all vertices with the minimum degree dmin. These vertices are assigned weights and are removed

from the graph, which changes the degree of their neighbors. The algorithm repeatedly removes vertices with

degree dmin and assigns larger weights in each iteration. Once there are no vertices of degree dmin left, the algorithm

continues with vertices of degree dmin+1 and so on. Then the coloring phase starts with the vertices that have the

highest weights. It works in the same way as LDF except is uses the weights instead of the degrees to determine the

order in which to color the vertices. As mentioned in Section 1, SDL tends to yield a very good coloring quality but

is slow.

In 2011, Grosset et al. implemented their 3-step GM algorithm in CUDA [24]. It partitions the graph, colors each

partition independently, and resolves conflicts along the border first on the GPU and then on the CPU using one of

the heuristics described in Section 1. The resulting runtime is often worse than the sequential algorithm [8].

The CUSPARSE library [14] includes the “csrcolor” graph-coloring code [7]. As the name implies, it operates on

graphs in CSR format. We use the same format in ECL-GC. Csrcolor is based on the Jones-Plassmann and Cohen-

22

Castonguay [9] algorithms. It uses multiple hash functions to generate the “random” numbers for each vertex. The

local maximums and minimums of the hash values are employed to produce two distinct maximal independent sets.

The GPU implementation is three to four times faster than the JP algorithm. However, csrcolor typically requires

over twice as many colors as the JP algorithm.

Chen et al. [8] proposed two graph coloring algorithms based on Nasre’s ideas for implementing irregular

algorithms on GPUs [36]. The first is a topology-driven algorithm. It uses the first-fit heuristic to color all vertices

in parallel with the first permissible color. Conflicts between adjacent vertices with the same color are handled by

allowing the vertex with the highest degree to preserve its color whereas the remaining conflicting vertices are

uncolored. Chen et al.’s second algorithm works in the same way but is data-driven. It maintains two worklists for

holding the vertices that need to be processed, making it more work efficient, but maintaining the worklists incurs

overhead.

Chen et al. implemented multiple versions of their algorithms with different optimizations [8], including bitmap

operations to reduce the memory footprint and the time consumed in reading and writing the color mask. ECL-GC

employs bitmaps for the same reason but also to facilitate the shortcuts. For better load balancing, they

implemented Merrill’s balancing strategy [35], which maps the workload of a vertex to a thread, warp, or block

depending on the size of its neighbor list. Similarly, ECL-GC uses threads for processing vertices with degrees under

32 and warps for higher-degree vertices.

Osama et al. [31] wrote GPU versions of Jones-Plassman’s and of Luby’s graph-coloring algorithms based on two

abstractions, data-centric using the Gunrock framework and linear-algebra-based using GraphBLAS. For Gunrock,

they employed three operations: 1) an advance operator to generate a new frontier from the current frontier by

visiting the neighbors of the current frontier, 2) a compute operator that performs an operation on all elements in

the input frontier, and 3) a neighbor-reduce operator that uses the advance operator to visit the neighbors of each

item in the input frontier and performs a segmented reduction over the neighborhood. For Luby’s independent-set-

based algorithm, they form two independent sets in each iteration. Instead of only assigning vertices with the largest

random number relative to their neighbors to a maximum independent color set, they also assign colors to vertices

with the smallest random number to a minimum independent color set. Since the max-comparison and min-

comparison sets are mutually exclusive, they perform the assignment of two colors in every iteration with no

additional overhead. This optimization reduces the coloring time by almost half. They also proposed a Hash

Independent Set (IS) algorithm, which is a modification of the Maximal Independent Set algorithm. Each vertex

compares only its neighbors with one another and adds the neighbor vertex with the largest random number

relative to all neighbors to the hash color set. The Hash IS color set can contain more vertices than the independent

color set. However, the color set is not independent because each vertex knows only its local topology, which may

cause a conflict. Conflict resolution is another compute operation. It compares all colored vertices with their

neighbors in a serial for-loop and, if the resolution detects a conflict, it resets one of the violating vertices to be

uncolored. To amortize the cost of the conflict resolution, the implementation uses a hash table to inform the vertex

about colors that cannot be used. This implementation yields a fast runtime but not a very good coloring quality.

Deveci et al. [16] proposed a parallel vertex-based (VB) iterative graph coloring algorithm and present two

optimizations to enable VB to run efficiently on a GPU. First, they allocate a small FORBIDDEN array of fixed size for

each thread. These arrays are the inverse of the possible color lists we use. Since the arrays have a fixed size, they

also employ a COLORRANGE for handling more colors than fit in the array. If a color cannot be found in the given

range, the adjacency list is traversed again to populate the FORBIDDEN array based on the next COLORRANGE. The

23

second optimization is to eliminate the FORBIDDEN array and use a bitmap instead. Deveci et al. also they present

an edge-based coloring algorithm. In this algorithm, they create a list of the forbidden colors of each vertex v and

initialize it to ∅. Then they go over all the vertices, pick the smallest available color for v based on v’s list of forbidden

colors, and check for conflicts. If a conflict occurs, they go over all edges and atomically update the list of forbidden

colors for all vertices. These last two steps repeat until all vertices are colored without conflict.

Gebremedhin et al. [22] proposed two graph coloring heuristics for CPUs. The first heuristic partitions the vertex

set into p successive blocks of equal size. The parallel coloring comprises n/p parallel steps with barriers at the end

of each step. In this algorithm, two processors may simultaneously attempt to color vertices in the same block that

are adjacent to each other, which may result in an invalid coloring (pseudo coloring). The next step is to check for

any conflict and, if a conflict is detected, the edge in the conflict will be stored in a table. The last step is to color all

the vertices stored in this table sequentially. For the second algorithm, they modified the first algorithm to use fewer

colors and based this improvement on Culberson’s Iterated Greedy (IG) coloring heuristic [13]. In the result section,

we compare to the GM algorithm, which employs the IG heuristic.

Besta et al. [3] introduced the first graph coloring algorithms with proven theoretical bounds on work, depth,

and quality. They introduced three CPU algorithms that use a vertex ordering called Approximate Degeneracy

Ordering (ADG) when selecting which vertex to color next. The first algorithm, JP-ADG, is based on Jones-Plassman’s

algorithm. The second algorithm employs the speculation-based DEC-ADG algorithm where vertices are colored

independently using a “speculative coloring”. Any coloring conflicts are resolved by repeated coloring attempts. The

third algorithm, DEC-ADG-ITR, is based on a recent algorithm called ITR [2]. DEC-ADG-ITR focuses on improving

the coloring quality of ITR both in theory and practice. They compared their algorithms to the Jones-Plassman

algorithm combined with different ordering heuristics and to the original ITR algorithm. Using both JP-ADG and

DEC-ADG-ITR, they were able to improve the coloring quality with a good runtime compared to the baseline. We

compare ECL-GC to these algorithms in the result section.

Culberson et al. [13] proposed one of the earliest graph coloring improvement heuristics. They use a simple

greedy algorithm as the core of an iterative process that permutes the color sets produced by a previous coloring.

For example, in the second iteration, all the blue vertices from the first iteration may be colored first, followed by

all the red vertices, etc. Applying such a permutation yields a new coloring in which the number of colors is

guaranteed not to increase but may decrease, i.e., improve the quality. The premutation is generated based on

different reordering heuristics for the color sets, including reverse order, increasing size (processes the smaller

color sets first), decreasing size, increasing degree, decreasing degree, and random ordering. Their first approach

is to run the greedy algorithm with the increasing size ordering. The resulting coloring is used by the second

iteration, which uses the decreasing size ordering. This repeats for multiple iterations. The second approach is to

randomly switch between heuristics in each iteration. The algorithm terminates when reaching a specific number

of iterations, when there is no improvement for a specified number of iterations, or when a desired number of colors

is achieved. The second approach tends to yield better coloring as it breaks up cyclic patterns in the coloring

process. Culberson et al.’s improvement heuristics recolor the entire graph repeatedly. In contrast, our

improvement heuristics only recolor the vertices with the highest color and their neighbors.

24

6 EXPERIMENTAL METHODOLOGY

We evaluate the graph-coloring codes listed in Table 2. Some of these programs have multiple versions. We only

show results for the fastest version as well as the version requiring the fewest colors if the number of colors is

substantially smaller.

In the evaluated codes, we only measured the runtime of the color computation, excluding the time it takes to

copy the graphs into main memory, to transfer data to and from the GPU (unless otherwise noted), and to verify the

result. We ran each experiment three times and use the best measured runtime. The ECL-GC runtimes only vary by

a few percent between runs. For all ECL-GC implementations, we verified the solution by comparing it to that of the

serial code in addition to checking that no adjacent vertices have the same color.

We present results from two GPUs. The first is a Volta-based Titan V with 5120 processing elements distributed

over 80 multiprocessors. Each multiprocessor has 96 kB of L1 data cache/shared memory. The 80 multiprocessors

share a 4.5 MB L2 cache as well as 12 GB of global memory with a peak bandwidth of 652 GB/s. The second GPU is

a Turing-based GeForce RTX 2070 Super with 2560 processing elements distributed over 40 multiprocessors. Each

multiprocessor has 96 kB of L1 data cache/shared memory. The 40 multiprocessors share a 4 MB L2 cache as well

as 8 GB of global memory with a peak bandwidth of 448 GB/s.

Table 2. The graph coloring codes we evaluate

Device Ser/Par Name Version Source

GPU Parallel ECL-GC (our code) 1.0 [18]

 CUSP 0.5.1 [15]

 csrcolor 9.2.88 [7]

 Data-wlc 1.0 [8]

 Data-pq 1.0 [8]

 Gunrock's LoadBalance 1.0 [39]

 kokkos-VB 1.0 [16][31]

CPU Parallel GMMP-NT [12]

 FirstFit 1.0 [8]

 Grappolo [23]

 kokkos-VB 1.0 [16][31]

 JP-IADG-AVG-IS 1.0 [3]

 DEC-ADG-ITR 1.0 [3]

CPU Serial LF-D1 [12]

 FirstFit 1.0 [8]

 Boost 1.66.0 [4]

 kokkos-Serial 1.0 [16][31]

The system we used for the serial and parallel CPU codes has dual 10-core 3.1 GHz Xeon E5-2687W v3 CPUs.

Hyperthreading is enabled, i.e., the 20 cores can simultaneously run 40 threads. Each core has separate 32 kB L1

caches, a 256 kB L2 cache, and the cores on a socket share a 25 MB L3 cache. The 128 GB main memory has a peak

bandwidth of 68 GB/s. The operating system is Fedora 23.

We compiled all GPU codes with nvcc 9.2 using “-O3 -arch=sm_70” for the Titan V and “-O3 -arch=sm_75” for the

GeForce RTX 2070 Super. The CPU codes were compiled with gcc/g++ 7.3.1 using “-O3 -march=native”.

25

Table 3. Information about the input graphs

We used the 18 graphs listed in Table 3 as inputs. They were obtained from the Center for Discrete Mathematics

and Theoretical Computer Science at the University of Rome (Dimacs) [17], the Galois framework (Galois) [19], the

Stanford Network Analysis Platform (SNAP) [42], and the SuiteSparse Matrix Collection (SMC) [43]. The table lists

the name, type, source, number of vertices, number of edges, average degree, maximum degree, and the percentage

of vertices with a degree of at least 32 (for which we use simplified shortcuts). Where necessary, we made the

graphs undirected and removed self-edges. Due to the CSR format, each undirected edge is represented by two

directed edges. While it may or may not make sense to color these graphs, we selected them for their wide variety.

7 GRAPH-COLORING RESULTS

In this section, we first study the amount of parallelism. Second, we evaluate the coloring quality. Third, we

investigate the throughput in completed vertices per second, that is, the number of vertices divided by the runtime.

The improvement heuristics to reduce the number of colors used are studied in the next section.

7.1 Amount of Parallelism

In this subsection, we evaluate the intrinsic amount of parallelism with and without the shortcuts. We express the

parallelism as the number of vertices divided by the number of steps it takes to color a graph in an architecture-

agnostic way, i.e., assuming a machine with infinite resources that processes as many vertices per step as possible

subject only to data dependencies. Hence, in every step, all vertices are colored that do not have to wait for

uncolored higher-priority neighbors.

Figures 10 and 11 show the steps along the x axis and how many vertices are colored per step along the y axis.

Note that the y axes use a logarithmic scale to better show what happens in the last steps, but this upsets certain

intuitions that would hold if a linear scale were used, such as that both curves enclose the same area. The larger the

number of colored vertices in each step the higher the amount of parallelism is. The blue curve shows the results

Graph name Type Origin Vertices Edges davg dmax d≥32

2d-2e20.sym grid Galois 1,048,576 4,190,208 4.0 4 0.0%

amazon0601 co-purchases SNAP 403,394 4,886,816 12.1 2,752 3.3%

as-skitter Internet topo. SNAP 1,696,415 22,190,596 13.1 35,455 6.3%

citationCiteseer publication SMC 268,495 2,313,294 8.6 1,318 3.6%

cit-Patents patent cites SMC 3,774,768 33,037,894 8.8 793 3.0%

coPapersDBLP publication SMC 540,486 30,491,458 56.4 3,299 52.5%

delaunay_n24 triangulation SMC 16,777,216 100,663,202 6.0 26 0.0%

europe_osm road map SMC 50,912,018 108,109,320 2.1 13 0.0%

in-2004 web links SMC 1,382,908 27,182,946 19.7 21,869 8.4%

internet Internet topo. SMC 124,651 387,240 3.1 151 0.3%

kron_g500-logn21 Kronecker SMC 2,097,152 182,081,864 86.8 213,904 19.3%

r4-2e23.sym random Galois 8,388,608 67,108,846 8.0 26 0.0%

rmat16.sym RMAT Galois 65,536 967,866 14.8 569 11.4%

rmat22.sym RMAT Galois 4,194,304 65,660,814 15.7 3,687 12.4%

soc-LiveJournal1 community SNAP 4,847,571 85,702,474 17.7 20,333 14.0%

uk-2002 web links SMC 18,520,486 523,574,516 28.3 194,955 18.6%

USA-road-d.NY road map Dimacs 264,346 730,100 2.8 8 0.0%

USA-road-d.USA road map Dimacs 23,947,347 57,708,624 2.4 9 0.0%

26

without the shortcuts and the red curve with the shortcuts. Both approaches yield identical colorings and perform

the same amount of total work. Therefore, finishing in fewer steps implies a higher average parallelism.

Figure 10 shows that the shortcuts can yield a large increase in parallelism, in this case a 7.85-fold increase. In

contrast, Figure 11 shows the worst case, i.e., an example where the shortcuts do not increase the average

parallelism because the two tails overlap and both end in the same step. However, the shortcuts significantly

increase the average parallelism on most of the tested inputs as shown in Table 4, which lists the number of steps,

the average parallelism, and the improvement in parallelism for all 18 graphs.

Figure 10: Amount of parallelism in each step on the kron_g500-logn21 graph

Figure 11: Amount of parallelism in each step on the uk-2002 graph

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

0 500 1000 1500 2000 2500 3000 3500 4000

V
e
rt

ic
e
s

co
lo

re
d

Step

No shortcuts With shortcuts

1

4

16

64

256

1024

4096

16384

65536

262144

1048576

4194304

0 100 200 300 400 500 600 700 800 900 1000

V
e
rt

ic
e
s

co
lo

re
d

Step

No shortcuts With shortcuts

Both lines
overlap and end
at same point

27

Table 4: Number of steps and average amount of parallelism with and without the shortcuts

In the worst case (uk-2002), the amount of parallelism does not increase. This only happens on 1 of the 18 tested

graphs. In the best case (rmat22.sym), the parallelism is over 12 times higher. Based on the geometric mean, it is

2.5 times higher, demonstrating the potential of the shortcuts.

Figure 12 shows the fraction of the vertices that is colored during initialization (blue), using the shortcuts

(green), and conventionally (red), i.e., after all higher-priority neighbors have been colored. On average, 52.6% of

the vertices are colored conventionally, 38.8% are colored using the shortcuts, and 8.6% are colored during

initialization. The number of vertices colored in the initialization phase reflects the number of roots in the DAG.

Since the shortcuts shorten the dependence chains, they tend to be more effective, i.e., color a larger fraction of the

vertices, on graphs with larger average degrees like kron_g500-logn21, which has a high maximum and average

degree.

Figure 12: Fraction of colors assigned by various means

Graph
Steps w/o

shortcuts

Steps with

shortcuts

Avg parallelism

w/o shortcuts

Avg parallelism

with shortcuts

Increase in

parallelism

2d-2e20.sym 14 12 74,898.3 87,381.3 1.17

amazon0601 55 24 7,334.4 16,808.1 2.29

as-skitter 481 73 3,526.9 23,238.6 6.59

citationCiteseer 67 20 4,007.4 13,424.8 3.35

cit-Patents 140 26 26,962.6 145,183.4 5.38

coPapersDBLP 802 338 673.9 1,599.1 2.37

delaunay_n24 25 17 671,088.6 986,895.1 1.47

europe_osm 13 11 3,916,309.1 4,628,365.3 1.18

in-2004 501 490 2,760.3 2,822.3 1.02

internet 27 13 4,616.7 9,588.5 2.08

kron_g500-logn21 3,997 509 524.7 4,120.1 7.85

r4-2e23.sym 30 17 279,620.3 493,447.5 1.76

rmat16.sym 188 30 348.6 2,184.5 6.27

rmat22.sym 644 52 6,512.9 80,659.7 12.38

soc-LiveJournal1 1,095 322 4,427.0 15,054.6 3.40

uk-2002 943 943 19,640.0 19,640.0 1.00

USA-road-d.NY 12 10 22,028.8 26,434.6 1.20

USA-road-d.USA 14 13 1,710,524.8 1,842,103.6 1.08

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

initialization conventional shortcut

28

7.2 Comparison with GPU Codes

This subsection compares the performance of ECL-GC (with the shortcuts) and ECL-GC_Reduction (with the

shortcuts as well as the two color-reduction heuristics) to that of leading GPU graph-coloring codes from the

literature. We compare with CUSP, csrcolor, Data-wlc and Data-pq, the two fastest versions of Chen et al.’s

algorithms described in Section 4, Gunrock’s LoadBalance algorithm, and Kokkos-kernels vertex-based (VB)

algorithm. Gunrock includes several different algorithms. We selected the LoadBalance algorithm because it yields

the best coloring quality and is the second fastest of their algorithms. Their fastest algorithm yields the worst

coloring quality. We were unable to run LoadBalance with the uk-2002 input, which may be due to the large size of

this graph. Kokkos-kernels [16][31] also includes several parallel algorithms, and we selected the vertex-based

(Kokkos-VB) algorithm because it is their fastest algorithm. This algorithm is based on Deveci et al.’s [16] vertex-

based algorithm.

7.2.1 Coloring Quality

Figure 13 shows the number of colors needed by the seven GPU codes. Lower numbers are better. The x axis lists

the input graphs and the y axis the number of colors using a logarithmic scale. The rightmost set of bars reflects the

geometric mean over all inputs (excluding uk-2002 for LoadBalance).

Both versions of ECL-GC, CUSP, and csrcolor are deterministic and always produce the same coloring for a given

input. This is not the case for Data-wlc, Data-pq, and LoadBalance, where the number of colors may vary. For these

codes, we show the lowest observed number of colors out of 100 runs on the Titan V. Kokkos-VB is also not

deterministic, but we could only run it 3 times and show the lowest observed number of colors.

ECL-GC either uses the smallest or the same number of colors for all inputs compared to the six GPU codes from

the literature. LoadBalance and csrcolor require substantially more colors on each graph compared to the other

codes. By design, the coloring of ECL-GC is that of JP with LDF, which tends to produce a good coloring quality. As

discussed in Section 4, csrcolor requires more colors because it is based on the Cohen-Castonguay algorithm. Data-

wlc and Data-pq are based on FirstFit, which typically results in good coloring when paired with LDF. Kokkos-VB

produces a coloring quality similar to Data-wlc, but Kokkos-VB requires on average one more color than Data-wlc

and 8.9 and 10.7 more colors than our ECL-GC and ECL-GC_Reduction algorithms, respectively. ECL-GC_Reduction

lowers the number of colors on half of the 18 inputs relative to ECL-GC, highlighting the benefit of the color-

reduction heuristics. For example, it reduces the number from five to four on the three road maps. It exceeds the

solution quality of the other codes from the literature on 14 of the 18 inputs and is tied on the remaining four graphs.

The geometric mean is 30.6 colors for ECL-GC, 28.8 for ECL-GC_Reduction, 37.2 for Data-wlc, 34.3 colors for Data-

pq, 149.4 for csrcolor, 35.0 for CUSP, 67.3 for LoadBalance, and 39.5 for Kokkos-VB.

29

Figure 13: Number of colors needed by the GPU codes

7.2.2 Throughput

Figures 14 and 15 present the throughput of these codes on two different GPU architectures. The x axis lists the

inputs and the geometric mean whereas the y axis shows the throughput in millions of completed vertices per

second on a logarithmic scale. Throughput is a higher-is-better metric.

Figure 14 shows the throughput on the Titan V. ECL-GC, i.e., our implementation with the shortcuts, is faster

than CUSP and LoadBalance on all tested inputs. It is faster than the remaining codes from the literature on 14 of

the 18 graphs. Note that, in each case where the other codes are faster, they require more colors. Based on the

geometric mean, ECL-GC is 3.7 times faster than Data-wlc, 2.9 times faster than Data-pq, 5.5 times faster than

csrcolor, 29.9 times faster than CUSP, 28.8 times faster than LoadBalance and 4.1 times faster than Kokkos-VB.

Figure 14: Throughput in millions of completed vertices per second on a Titan V

30

ECL-GC_Reduction is half as fast as ECL-GC, meaning that including the color-reduction heuristics doubles the

mean runtime. However, ECL-GC_Reduction is still faster than the codes from the literature on 10 of the 18 inputs

and has a higher geometric-mean throughput. These results show that the heuristics are relatively fast.

We correlated the speedup of ECL-GC over the other codes with various graph properties and found a moderate

correlation with both the maximum and the average degree, which is expected because the higher the degree the

higher the chance that a vertex must wait for higher-priority neighbors, which is where the shortcuts can help. On

the kron_g500-logn21 graph, which has the highest average and maximum degree of the graphs listed in Table 3,

ECL-GC is 17.8 times faster than Data-pq, the second fastest of the GPU codes. Due to its high degree, this graph

requires the most work per vertex, which is why it results in a low throughput for all tested codes.

For reference, Figure 14 also shows results for “ECL-GC w/o shortcuts”, which is ECL-GC with the shortcuts

disabled. Its geometric-mean performance is slightly higher than that of the other codes, meaning our baseline

implementation performs on par with the best codes from the literature. When enabling the shortcuts, our

implementation becomes 2.6 times faster. This speedup demonstrates the usefulness of the shortcuts in practice.

The next section discusses the performance of the two shortcuts in more detail.

Figure 15 shows the throughput results for the RTX 2070 Super. CUSP does not run on this newer GPU. ECL-GC

outperforms LoadBalance on all tested inputs. It outperforms Data-pq and Data-wlc on all but one, csrcolor on 16

of the 18 graphs, and Kokkos-VB on 14 of the 18 graphs. In all those cases, ECL-GC uses substantially fewer colors.

Including the color-reduction heuristics results in a slowdown of 1.6 on this GPU, making ECL-GC_Reduction faster

than Kokkos-VB and Csrcolor on 11 and 17 of the tested inputs, respectively. However, in 5 of the 7 cases where the

reduction code is slower than Kokkos-VB it uses substantially fewer colors. Based on the geometric mean, ECL-GC

is 5.4 times faster than Data-wlc, 4.9 times faster than Data-pq, 4.2 times faster than csrcolor, 26.4 times faster than

LoadBalance, and 3.6 times faster than Kokkos-VB.

Figure 15: Throughput in millions of completed vertices per second on an RTX 2070 Super

31

7.2.3 Shortcut Performance

Table 5 presents the performance benefit due to the shortcuts on the Titan V. It shows the speedups attained when

using only Shortcut 1 (+SC1), only Shortcut 2 (+SC2), and both shortcuts together (+SC1+SC2) relative to our code

without any shortcuts (baseline).

On all tested inputs, using both shortcuts together is always faster than using no shortcut. In the worst case, the

shortcuts only improve performance by a factor of 1.027, in the best case by over a factor of 70, and in the mean by

a factor of 2.63. These self-relative speedups demonstrate the practical utility of the shortcuts.

Shortcut 1 provides most of the benefit. Adding it never hurts on the tested inputs, helps by a factor of over 2.5

in the mean and by more than a factor of 70 in the best case. Its benefit correlates with the average degree of the

graph (r = 0.82), which is why it helps the most on kron_g500-logn21, our highest-degree graph.

Interestingly, adding Shortcut 2 on top of Shortcut 1 hurts in three cases (by up to 2%) and adding it on top of

the baseline also hurts in three cases (by up to 1.1%). In the mean, adding Shortcut 2 helps by a few percent and, in

the best case, by 25.8%. There are two primary reasons for why Shortcut 2 is not more effective. First, our

implementation does not use it on vertices of degree ≥ 32 (under 20% of the vertices in all but one graph, cf. Table

3). Second, employing it does not reduce the number of steps needed until a vertex can be colored. It only makes

later steps a little faster because they may be able to skip checking a few neighbors.

Executing the shortcut code itself incurs overhead. If this overhead cannot be amortized, there is a net slowdown,

which explains the few cases were adding Shortcut 2 lowers the performance. Fortunately, the benefit of either

shortcut is typically high enough to more than amortize this overhead, thus leading to speedups.

Table 5: Speedup on the Titan V due to the shortcuts relative to the baseline code without any shortcuts

input baseline +SC1 +SC2 +SC1+SC2

2d-2e20.sym 1.000 1.046 1.005 1.092

amazon0601 1.000 1.236 1.075 1.285

as-skitter 1.000 3.957 1.001 4.198

citationCiteseer 1.000 1.751 1.057 1.816

cit-Patents 1.000 2.015 1.258 2.123

coPapersDBLP 1.000 4.410 1.004 4.407

delaunay_n24 1.000 1.126 1.037 1.168

europe_osm 1.000 1.025 0.999 1.028

in-2004 1.000 1.051 1.019 1.030

internet 1.000 1.248 1.016 1.284

kron_g500-logn21 1.000 70.378 1.004 70.179

r4-2e23.sym 1.000 1.250 1.110 1.339

rmat16.sym 1.000 5.112 1.008 5.251

rmat22.sym 1.000 9.958 0.989 10.163

soc-LiveJournal1 1.000 16.026 0.996 16.028

uk-2002 1.000 2.590 1.010 2.612

USA-road-d.NY 1.000 1.000 1.014 1.027

USA-road-d.USA 1.000 1.068 1.003 1.073

geo mean 1.000 2.570 1.032 2.632

32

7.3 Comparison with CPU Codes

In the following subsections, we compare the performance of ECL-GC and ECL-GC_Reduction running on the Titan

V to that of leading parallel and serial CPU codes. Figures 16 and 18 show the number of colors. The x axis lists the

inputs and the geometric mean, and the y axis lists the number of colors using a logarithmic scale. Figures 17 and

19 show the throughput. The x axis again lists the inputs and the geometric mean, and the y axis lists the throughput

in completed vertices per second on a logarithmic scale.

Even though ECL-GC was designed to be a fast implementation for GPUs, it is important to compare its

performance to the best parallel and serial CPU codes because of the significant tradeoffs between the coloring

quality and the execution time. Moreover, graph coloring may suffer from load imbalance and low parallelism

depending on the input, which may cause a GPU implementation to be slower than a CPU implementation, especially

a parallel CPU implementation.

7.3.1 Parallel CPU Performance Comparison

This subsection compares the throughput and coloring quality to leading parallel CPU codes. We show results for

ColPack’s GMMP algorithm with the natural (NT) heuristic priority Error! Reference source not found.[21], the

FirstFit implementation by Chen et al. [8], the graph-coloring code Grappolo [23], Kokkos-kernels’ vertex-based

algorithm Kokkos-VB [31], and Besta et al.’s [3] algorithms JP-IADG-AVG-IS and DEC-ADG-ITR. We decided to use

both JP-IADG-AVG-IS and DEC-ADG-ITR because one produces a better quality result and the other has better

performance.

Figure 16 shows the number of colors assigned by the parallel CPU codes and by ECL-GC and ECL-GC_Reduction.

As the number of colors may vary from run to run for GMMP-NT, FirstFit, Grappolo, and Kokkos-VB, we present the

minimum number observed. Note that some of these codes employ different ordering heuristics and, as such, are

not expected to yield the same number of colors. ECL-GC uses fewer colors than ColPack’s GMMP-NT and Kokkos-

VB on all tested inputs. It uses the smallest or the same number of colors as the FirstFit and Grappolo codes on 11

of the 18 inputs. On the remaining seven inputs, those two codes require one fewer color than ECL-GC’s LDF

heuristic. Also, ECL-GC uses the smallest or the same number of colors as the JP-IADG-AVG-IS and DEC-ADG-ITR

codes on 11 and 12 of the 18 inputs, respectively. The geometric mean is 30.6 colors for ECL-GC, 28.8 for ECL-

GC_Reduction, 36 for GMMP-NT, 34.3 for FirstFit, 34 for Grappolo, 36.3 for Kokkos-VB, 29.2 for JP-IADG-AVG-IS, and

29 for DEC-ADG-ITR.

Since ECL-GC_Reduction never uses more colors than ECL-GC, it also requires fewer colors than ColPack’s

GMMP-NT on all tested inputs. Moreover, it uses the smallest or the same number of colors as the FirstFit and

Grappolo codes on 14 and 15 of the 18 inputs, respectively. On the remaining inputs, those two codes require one

fewer color than ECL-GC_Reduction, showing the limitation of the heuristics. Also, ECL-GC_Reduction uses the

smallest or the same number of colors as JP-IADG-AVG-IS and DEC-ADG-ITR on 14 and 16 of the 18 inputs,

respectively. On the remaining inputs, the two codes require one fewer color except on 2d-2e20.sym and

kron_g500-logn21, where JP-IADG-AVG-IS requires 3 and 5 fewer colors, respectively. On these two inputs, our code

is 1274 and 18.4 times faster than as JP-IADG-AVG-IS.

33

Figure 16: Number of colors needed by the parallel CPU codes as well as by ECL-GC

Figure 17 shows the throughput of the parallel CPU codes on the dual 10-core Xeon system. We ran the codes

using both 20 and 40 threads. The results in the figure are for 40 threads since hyperthreading yields a shorter

runtime in most cases. ECL-GC running on the Titan V is faster than Grappolo, Kokkos-VB, JP-IADG-AVG-IS, and DEC-

ADG-ITR on all tested inputs, faster than GMMP-NT on all but two inputs, and faster than FirstFit on 15 of the 18

inputs. ECL-GC_Reduction is faster than Grappolo, Kokkos-VB, JP-IADG-AVG-IS, and DEC-ADG-ITR on all tested

inputs, faster than GMMP-NT on all but three inputs, and faster than FirstFit on all but four inputs. Based on the

geometric mean, ECL-GC is 7.2 times faster than GMMP-NT, 4 times faster than FirstFit, 7.8 times faster than

Grappolo, 14.9 times faster than Kokkos-VB, 65.7 times faster than JP-IADG-AVG-IS, and 36 times faster than DEC-

ADG-ITR on the tested graphs. ECL-GC_Reduction is 3.9 times faster than GMMP-NT, 2.2 times faster than FirstFit,

4.2 times faster than Grappolo, 8.0 times faster than Kokkos-VB, 35.3 times faster than JP-IADG-AVG-IS, and 19.4

times faster than DEC-ADG-ITR

For reference, Figure 17 also shows results for “ECL-GC with CPU/GPU transfer”, which include the time to send

the graph to the GPU and the resulting color information back to the CPU. This lowers the geometric-mean

throughput by a factor of 2.8, meaning it takes longer to transfer the data than to compute the coloring.

Nevertheless, on most of the inputs and in the mean, the throughput is still higher than that of the parallel CPU

codes. Of course, this depends on the performance ratio between the CPU and the GPU as well as the speed of the

link between the two devices. On our system and graphs, it is often faster to send the data to the GPU, perform the

coloring there, and send the result back than to perform the coloring on the CPU. Note that graph coloring is

generally only one step in a larger computation. If the previous and next steps are also executed on the GPU, no data

transfers are needed.

34

Figure 17: Throughput in millions of completed vertices per second on 20 Xeon cores (Titan V for ECL-GC)

7.3.2 Serial CPU Performance Comparison

This subsection compares the throughput and coloring quality to leading serial codes. We show results for ColPack’s

sequential graph coloring code with LF ordering and its fastest heuristic (D1) [12], the serial FirstFit code by Chen

et al. [8], the graph-coloring code in the Boost library [4] [40], and Kokkos-Serial [31].

Figure 18: Number of colors needed by the serial CPU codes as well as by ECL-GC

Figure 18 presents the number of colors assigned by the serial codes and by ECL-GC and ECL-GC_Reduction. ECL-

GC uses fewer or the same number of colors as serial FirstFit, Boost and Kokkos-Serial on all tested inputs. ECL-GC’s

0

1

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

2d-
2e2

0.s
ym

am
az

on06
01

as
-sk

itt
er

cit
at

io
nCite

se
er

cit
-P

ate
nts

co
Pa

pe
rsD

BLP

dela
un

ay
_n24

eu
ro

pe_
osm

in
-2

004

in
te

rn
et

kr
on_g

500-
lo

gn
21

r4
-2

e2
3.sy

m

rm
at1

6.sy
m

rm
at2

2.sy
m

so
c-

Liv
eJ

ourn
al1

uk-
20

02

USA
-ro

ad
-d

.N
Y

USA
-ro

ad
-d

.U
SA

GEO
M

ET
RI

C
M

EAN

M
ill

io
n

s
o

f
ve

rt
ic

e
s

p
e

r
se

co
n

d

ECL-GC ECL-GC with CPU/GPU transfer ECL-GC_Reduction GMMP-NT FirstFit Grappolo Kokkos-VB JP-IADG-AVG-IS DEC-ADG-ITR

35

and LF-D1’s coloring quality is almost identical. This is expected given that LF-D1 and ECL-GC both employ the

largest-degree-first heuristic. The small discrepancies are due to different tie breakers, making LF-D1 use one fewer

color than ECL-GC on two graphs and ECL-GC use one fewer color than LF-D1 on four graphs. ECL-GC_Reduction

uses the same number or fewer colors than any of the tested serial codes. On 11 of the 18 inputs, it uses fewer colors

than any of the serial codes. The geometric mean is 30.6 colors for ECL-GC, 28.8 for ECL-GC_Reduction, 30.9 colors

for LF-D1, and 35 colors for FirstFit, Boost, and Kokkos-Serial.

Figure 19 shows the serial throughput on the Xeon system as well as that of ECL-GC and ECL_GC_Reduction

running on the Titan V. Both ECL-GC and ECL_GC_Reduction are faster than LF-D1, Boost, and Kokkos-Serial on all

inputs and faster than FirstFit on all but two inputs. In those two cases, FirstFit uses more colors. Based on the

geometric mean, ECL-GC is 42.9 times faster than LF-D1, 13.2 times faster than FirstFit, 324 times faster than Boost,

and 49.4 times faster than Kokkos-Serial. ECL-GC_Reduction is 23.1 times faster than LF-D1, 7.1 times faster than

FirstFit, 173.7 times faster than Boost, and 26.5 times faster than Kokkos-Serial.

Figure 19: Throughput in millions of completed vertices per second on a Xeon core (Titan V for ECL-GC)

8 SUMMARY AND CONCLUSIONS

Graph coloring is an assignment of colors to the vertices of a graph such that no two adjacent vertices have the same

color. It is an important step in many applications and is used, for example, in data mining, image processing,

networking, resource allocation, and process scheduling.

We present a deterministic parallel graph-coloring approach that improves upon the Jones-Plassmann algorithm

with the largest-degree-first heuristic. It incorporates new algorithmic optimizations called “shortcuts” to increase

the parallelism (by 2.5 times based on the geometric mean). Under certain conditions, these shortcuts enable the

code to non-speculatively break data dependencies without changing the ultimate color assignment. The shortcuts

leverage intermediate coloring information from neighboring vertices, which sometimes allows to correctly color

a vertex even before all its higher-priority neighbors have been colored. The shortcuts are particularly useful on

high-degree vertices. The paper also presents optimizations to efficiently implement these shortcuts.

36

We also present two fast and deterministic parallel color-reduction heuristics, one for high- and one low-degree

graphs, that improve the coloring quality of ECL-GC on half of the 18 tested graphs by up to 20%. Improving the

coloring quality is important in applications like networking and resource allocation, where the number of colors

used is critical. Even with the color-reduction heuristics included, ECL-GC is faster on average and on most of the

tested inputs than the best GPU and parallel CPU codes from the literature while, at the same time, requiring fewer

or the same number of colors on most of the tested input graphs.

We implemented our approaches in CUDA. The code is available at

https://cs.txstate.edu/~burtscher/research/ECL-GC/. Running on a Titan V, it is 2.9 times faster (geometric mean)

than the fastest prior GPU code, 4.0 times faster than the fastest OpenMP code running with 40 threads on 20 Xeon

cores, and 13 times faster than the fastest serial code we could find. Of course, these speedups are system

dependent. Our code uses as few or fewer colors as the best GPU codes. Whereas there are a few inputs on which

other GPU codes outperform ours in throughput, they require more colors in those cases.

In conclusion, we hope our work will help improve the performance of many applications that incorporate graph

coloring as an algorithmic step. Perhaps our ideas will inspire other researchers to develop similar shortcuts to

increase the amount of parallelism in other important graph algorithms. Whereas we introduced some of the first

graph coloring improvement heuristics in this paper, many more undoubtedly exist and will hopefully soon be

researched.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under awards #1406304 and #1955367, by

the Department of Energy, National Nuclear Security Administration under award #DE-NA0003969, and by

equipment donations from NVIDIA Corporation.

REFERENCES

[1] Alabandi, Ghadeer, Evan Powers, and Martin Burtscher. Increasing the Parallelism of Graph Coloring via Shortcutting. Proceedings of the 2020

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 262-275. February 2020.

[2] Applegate, David L., Robert E. Bixby, Vašek Chvátal, and William J. Cook. The traveling salesman problem. Princeton university press, 2011.

[3] Besta, Maciej, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, and Torsten Hoefler. "High-performance parallel
graph coloring with strong guarantees on work, depth, and quality." In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-17. IEEE, 2020.

[4] Boost, https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/index.html, last accessed on 5/6/2021.

[5] Çatalyürek, Ümit V., John Feo, Assefaw H. Gebremedhin, Mahantesh Halappanavar, and Alex Pothen. “Graph coloring algorithms for multi-core

and massively multithreaded architectures.” Parallel Computing 38, no. 10-11 (2012): 576-594.

[6] Çatalyürek, Ümit V., John Feo, Assefaw H. Gebremedhin, Mahantesh Halappanavar, and Alex Pothen. "Graph coloring algorithms for multi-
core and massively multithreaded architectures." Parallel Computing 38, no. 10-11 (2012): 576-594.

[7] Chen and Li, https://github.com/chenxuhao/csrcolor, last accessed on 5/6/2021.

[8] Chen, Xuhao, Pingfan Li, Jianbin Fang, Tao Tang, Zhiying Wang, and Canqun Yang. “Efficient and high‐quality sparse graph coloring on GPUs.”

Concurrency and Computation: Practice and Experience 29, no. 10 (2017): e4064.

[9] Cohen, Jonathan and Patrice Castonguay. “Efficient graph matching and coloring on the GPU.” In GPU Technology Conference, pp. 1-10. 2012.

[10] Coleman, Thomas F. and Arun Verma. “The efficient computation of sparse Jacobian matrices using automatic differentiation.” SIAM Journal on

Scientific Computing 19, no. 4 (1998): 1210-1233.

[11] Coleman, Thomas F., and Jorge J. Moré. "Estimation of sparse Hessian matrices and graph coloring problems." Mathematical
programming 28, no. 3 (1984): 243-270.

[12] ColPack, Combinatorial Scientific Computing and Petascale Simulations, https://github.com/CSCsw/ColPack, last accessed on 02/07/2022.

[13] Culberson, Joseph. "Iterated greedy graph coloring and the difficulty landscape." (1992).
[14] Cusparse library. NVIDIA Corporation, Santa Clara, California. 2014.

[15] Dalton, S., and N. Bell. “CUSP: A C++ templated sparse matrix library.” http://cusplibrary.github.io, last accessed on 5/6/2021.

[16] Deveci, Mehmet, Erik G. Boman, Karen D. Devine, and Sivasankaran Rajamanickam. "Parallel graph coloring for manycore architectures."
In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 892-901. IEEE, 2016.

[17] DIMACS, Center for Discrete Mathematics and Theoretical Computer Science, http://www.dis.uniroma1.it/challenge9/download.shtml, last accessed

on 5/6/2021.

37

[18] ECL-GC, Texas State University, https://cs.txstate.edu/~burtscher/research/ECL-GC/, last accessed on 5/6/2021.

[19] Galois, ISS - The University of Texas at Austin, https://iss.oden.utexas.edu/?p=projects/galois, last accessed on 5/6/2021.

[20] Garey, Michael R., and David S. Johnson. “Computers and Intractability”, vol. 29. W. H. Freeman and Company, New York (2002): 1-99.

[21] Gebremedhin, Assefaw H., Duc Nguyen, Mostofa Ali Patwary, and Alex Pothen. “ColPack: Graph coloring software for derivative computation and

beyond.” ACM Transactions on Mathematical Software, 40 (1), 30, 2013.

[22] Gebremedhin, Assefaw Hadish, and Fredrik Manne. "Scalable parallel graph coloring algorithms." Concurrency: Practice and Experience 12,
no. 12 (2000): 1131-1146.

[23] Grappolo, the Grappolo graph toolkit, https://github.com/luhowardmark/GrappoloTK, last accessed on 5/6/2021.

[24] Grosset, Andre Vincent Pascal, Peihong Zhu, Shusen Liu, Suresh Venkatasubramanian, and Mary Hall. “Evaluating graph coloring on GPUs.” ACM

SIGPLAN Notices 46, no. 8 (2011): 297-298.

[25] Gupta, Kshitij, Jeff A. Stuart, and John D. Owens. A study of persistent threads style GPU programming for GPGPU workloads. IEEE, 2012.

[26] Hasenplaugh, William, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. “Ordering heuristics for parallel graph coloring.” In 26th ACM

Symposium on Parallelism in Algorithms and Architectures, pp. 166-177. ACM, 2014.

[27] Hoffman, Karla L., Manfred Padberg, and Giovanni Rinaldi. "Traveling salesman problem." Encyclopedia of operations research and management

science 1 (2013): 1573-1578.

[28] Huang, G., and Weerakorn Ongsakul. “An efficient task allocation algorithm and its use to parallelize irregular Gauss-Seidel type algorithms.” In

Proceedings of 8th International Parallel Processing Symposium, pp. 497-501. IEEE, 1994.

[29] Jaiganesh, Jayadharini, and Martin Burtscher. "A high-performance connected components implementation for GPUs." In Proceedings of the 27th

International Symposium on High-Performance Parallel and Distributed Computing, pp. 92-104. 2018.

[30] Jones, Mark T., and Paul E. Plassmann. “A parallel graph coloring heuristic.” SIAM Journal on Scientific Computing 14, no. 3 (1993): 654-669.

[31] Kokkos-Kernels, https://github.com/kokkos/kokkos-kernels, last accessed on 5/6/2021.

[32] Luby, Michael. “A simple parallel algorithm for the maximal independent set problem.” SIAM journal on computing 15, no. 4 (1986): 1036-1053.

[33] Martínez-Bazan, Norbert, M. Ángel Águila-Lorente, Victor Muntés-Mulero, David Dominguez-Sal, Sergio Gómez-Villamor, and Josep-L. Larriba-

Pey. “Efficient graph management based on bitmap indices.” In 16th International Database Engineering & Applications Symposium, pp. 110-119.

ACM, 2012.

[34] Matula, David W., George Marble, and Joel D. Isaacson. “Graph coloring algorithms.” In Graph theory and computing, pp. 109-122. Academic

Press, 1972.

[35] Merrill, Duane, Michael Garland, and Andrew Grimshaw. “Scalable GPU graph traversal.” In ACM SIGPLAN Notices, vol. 47, no. 8, pp. 117-128.

ACM, 2012.

[36] Nasre, Rupesh, Martin Burtscher, and Keshav Pingali. “Data-driven versus topology-driven irregular computations on GPUs.” In 2013 IEEE

International Symposium on Parallel and Distributed Processing, pp. 463-474. IEEE, 2013.

[37] Naumov, Maxim, Patrice Castonguay, and Jonathan Cohen. “Parallel graph coloring with applications to the incomplete-LU factorization on the

GPU.” Nvidia White Paper, 2015.

[38] Nilsson, Christian. "Heuristics for the traveling salesman problem." Linkoping University 38 (2003): 00085-9.

[39] Osama, Muhammad, Minh Truong, Carl Yang, Aydın Buluç, and John Owens. "Graph coloring on the GPU." In 2019 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), pp. 231-240. IEEE, 2019.

[40] Siek, Jeremy, Andrew Lumsdaine, and Lie-Quan Lee. “The boost graph library: user guide and reference manual.” Addison-Wesley, 2002.

[41] Singhal, Nandini, Sathya Peri, and Subrahmanyam Kalyanasundaram. “Practical multi-threaded graph coloring algorithms for shared memory

architecture.” In 18th International Conference on Distributed Computing and Networking, p. 44. ACM, 2017.

[42] SNAP, Stanford Large Network Dataset Collection, https://snap.stanford.edu/data/, last accessed on 5/6/2021.

[43] SuiteSparse Matrix Collection, https://sparse.tamu.edu/, last accessed on 5/6/2021.

[44] Warren, Henry S. Hacker's delight. Pearson Education, 2013.

[45] Welsh, Dominic JA, and Martin B. Powell. “An upper bound for the chromatic number of a graph and its application to timetabling problems.” The

Computer Journal 10, no. 1 (1967): 85-86.

	1 Introduction
	2 Background
	3 Shortcut Approach
	3.1 Shortcut Derivation
	3.2 ECL-GC Implementation & Optimization

	4 Color-Reduction Heuristics
	4.1 Two Graph-coloring Improvement Heuristics
	4.1.1 Heuristic 1
	4.1.2 Heuristic 2

	5 Related Work
	6 Experimental Methodology
	7 Graph-coloring Results
	7.1 Amount of Parallelism
	7.2 Comparison with GPU Codes
	7.2.1 Coloring Quality
	7.2.2 Throughput
	7.2.3 Shortcut Performance

	7.3 Comparison with CPU Codes
	7.3.1 Parallel CPU Performance Comparison
	7.3.2 Serial CPU Performance Comparison

	8 summary and conclusions

