
Exploiting Type Information in Load-Value Predictors

Nana B. Sam and Martin Burtscher

Computer Systems Laboratory
Cornell University
Ithaca, NY 14853

{besema, burtscher}@csl.cornell.edu

ABSTRACT
To alleviate the high cost of main-memory accesses,
computer architects have proposed various speculation
mechanisms, including load-value prediction. A load-
value predictor forecasts the result of load instructions,
thus allowing dependent instructions to execute without
having to wait for the memory access to complete. Un-
fortunately, costly mispredictions hinder the true poten-
tial of load-value prediction.

This paper describes several approaches to build
more accurate and faster load-value predictors with
little extra hardware by exploiting the hardware type of
the load instructions. Our techniques are easily imple-
mentable in any CPU that supports multiple load types,
e.g., byte, word, single, etc. Compared to traditional
load-value predictors, our schemes substantially reduce
the number of mispredictions with a concomitant
speedup of the CPU. Moreover, we show that the type
of a load can effectively be used as the selector in a
hybrid predictor.

1. INTRODUCTION
Memory accesses, especially loads, can degrade the
performance of a processor. First, due to the widening
gap between CPU and memory speeds, memory ac-
cesses are slow and are becoming slower. Second,
memory reads limit the available instruction-level par-
allelism because instructions that use the result of a
load stall until the memory access is complete, which
potentially lengthens the critical path of a program.
Load-value prediction [6, 11] addresses these problems
by predicting the result of load instructions. Dependent
instructions can immediately consume the predicted
value and are thus able to execute concurrently with the
memory access. If the predicted value is incorrect, the
speculation hardware must perform expensive recovery
actions. Consequently, load-value predictors are only
effective if the benefit of the correct predictions out-
weighs the penalty incurred by the mispredictions. In
other words, avoiding mispredictions is crucial because
they slow down the processor.

Most 32- and 64-bit CPUs support load instructions
of different types, e.g., byte, word, long, IEEE single,
and IEEE double loads as well as sign-extended, zero-
extended, and locked variants of some of them. This
paper investigates using this type information to design

more accurate and faster predictors, to reduce the size
of predictors without degrading their performance, and
to improve the prediction coverage. Note that our clas-
sification of load types differs from prior work [11],
which investigated the behavior of address, data, inte-
ger, and floating-point loads, i.e., higher-level data
types. We exploit the hardware load types as follows.

Type-based misprediction avoidance: Due to the
finite table size, different load instructions can map to
the same predictor line, which almost always results in
detrimental aliasing. Based on the type of the load in-
struction, it is often possible to detect such aliasing and
inhibit the corresponding prediction, which lowers the
misprediction rate. We investigate two such schemes.

Type-separated predictor tables: Directing the dif-
ferent load types to separate, smaller tables rather than
to one large, shared table is beneficial because smaller
tables can be accessed faster. Also, loads of different
types generally do not correlate with each other. Thus,
separating them can reduce negative interference. We
analyze one such approach.

Type-based hybrid predictors: Hybrids combine
multiple predictors in one and require a selector to de-
cide which component to use for each prediction. We
use the load type as the selector. This is advantageous
because it eliminates the need to store selection infor-
mation, simplifies and speeds up the predictor hard-
ware, and reduces pollution because not all loads up-
date all components, which improves the prediction
accuracy and the predictor’s effective capacity.

The remainder of this paper is organized as follows.
Section 2 provides background information. Section 3
summarizes related work. Section 4 describes our type-
based techniques in more detail. Section 5 presents the
evaluation methodology. Section 6 studies the per-
formance of our approaches. Section 7 concludes with
a summary.

2. BACKGROUND

2.1 Load-Value Prediction
Predicting load values may initially seem almost im-
possible since a 32-bit word can hold over four billion
distinct values. Fortunately, load instructions exhibit
value locality [6, 11], i.e., they often fetch predictable
sequences of values. Several predictors have been pro-
posed that take advantage of this behavior to predict

load values before they are fetched from memory. We
apply our type-based techniques to the following three
predictors, which we believe to be representative in
complexity and performance of many previously pro-
posed predictors.

The last value predictor (LV) [6, 11, 16] predicts
that a load instruction will load the same value it did the
previous time it executed. LV can only predict se-
quences of repeating values.

The stride 2-delta predictor (ST2D) [16] remembers
the last value for each load (like LV) but also maintains
a stride, which is the difference between the last two
loaded values. To make a prediction, ST2D adds the
stride to the last value. When a load is completed,
ST2D updates the last value but only updates the stride
if it has encountered the same stride twice in a row,
which enhances the performance [16]. ST2D can pre-
dict sequences with zero and non-zero strides.

The third order differential finite context method
predictor (DFCM3) [7] computes a hash value out of
the difference between the last three loaded values to
index the predictor’s second-level table [13, 14, 15].
This table stores the strides that followed previously
seen sequence of three consecutive strides. Since the
table is shared, load instructions can communicate in-
formation to one another in this predictor. Hence, after
observing a sequence of load values, DFCM3 can pre-
dict any load that loads the same sequence or a different
sequence with the same strides.

2.2 Confidence Estimation
Because making no prediction and waiting for the
memory access to complete is faster than making an
incorrect prediction and having to recover from it, most
load-value predictors in the literature include a confi-
dence estimator. Confidence estimators inhibit predic-
tions that are likely to be incorrect [5, 11, 13, 14] and
thus reduce the number of mispredictions and the asso-
ciated recovery cost, which improves the predictor’s
overall performance.

The most frequently used confidence estimator, the
bimodal confidence estimator [11, 13, 14], is based on
saturating up/down counters and has four parameters: a
maximum, a threshold, a penalty, and an award. The
maximum is the upper bound of the counter (the mini-
mum is always zero). A prediction is made only if the
count is equal to or above the threshold. When an un-
predictable value is encountered, the counter is decre-
mented by the penalty; otherwise it is incremented by
the award.

3. RELATED WORK
Lipasti et al. [11] investigated how predictable different
kinds of load instructions are. They found that while all
loads are value predictable to a degree, address loads
have slightly better value locality than data loads, in-

struction address loads hold an edge over data address
loads, and integer values are more predictable than
floating-point values. We take advantage of the differ-
ences in predictability by separating loads by their
hardware type rather than by their kind.

Gonzalez and Gonzalez [8] found that the benefit of
data value prediction increases significantly as the in-
struction window size grows, indicating that value pre-
diction is likely to play an important role in future proc-
essors. Moreover, they observed an almost linear corre-
lation between the number of correctly predicted in-
structions and the resulting performance improvement,
emphasizing the need for more accurate prediction ap-
proaches, which our techniques offer.

One result of Sazeides and Smiths’s work [17] is
that over half of the mispredicted branches have pre-
dictable input values, implying that a side effect of ac-
curate value prediction should be improved branch pre-
diction. Gonzalez and Gonzalez proposed predictor
implementations to take advantage of this correlation
[9]. Sodani and Sohi [19] build on the Gonzalez stud-
ies. They found, among other things, that resolving
branches using predicted operands is only beneficial in
the presence of low value misprediction rates, which
our approaches provide.

Calder et al. [5] examined selection techniques to
minimize predictor capacity conflicts by prohibiting
unimportant instructions from using the predictor.
They found that loads were responsible for most of the
latency on the critical path and hence predicting only
loads represents a good filtering criterion. We implic-
itly use this criterion because we only investigate load-
value predictors.

In order to save space and power, Loh [12] replaced
the traditional predictor with multiple smaller tables
with different widths and proposed a data-width predic-
tor to choose among the tables. Our techniques also
result in space-saving predictors. Unlike in Loh’s
study, we use the load type information provided by the
decoder and therefore do not need to measure the actual
width of the load value nor do we need a data-width
predictor.

4. TYPE-BASED TECHNIQUES
Most high-end microprocessors support different types
of loads, such as byte, word, and long-word loads.
Nevertheless, the value predictors in the literature treat
every load alike. We propose the following schemes to
exploit the different load types. Note that the load type
is determined in the decoder and that our type checks
are trivial and can be done rapidly.

4.1 Type-Based Misprediction Avoidance
Sometimes loads of different types are mapped to the
same predictor line due to the finite table size. More-
over, in the DFCM3 predictor, all loads share the sec-

ond-level table. Thus, it is possible that a load is pre-
dicted using information from another load, which usu-
ally results in a costly misprediction. Such detrimental
aliasing can often be detected by taking the type of load
into account. We propose the following two schemes to
avoid such likely mispredictions.

4.1.1 ‘Check’
Many architectures support zero-extended and sign-
extended load values. In the Alpha 21264 ISA, which
we use for our study, byte and word loads are zero-
extended and long loads are sign-extended to 64 bits.
Furthermore, single-precision floating-point loads ex-
pand the eight-bit memory-format exponent into an
eleven-bit register-format exponent and set the 29 low-
order fraction bits to zero [2].

We examine a simple scheme that inhibits predic-
tions that do not match the format prescribed in the ISA
for a particular load type. For example, assume a load
instruction that expects a zero-extended value. In our
scheme, we inhibit all predictions that have a non-zero
bit in any bit position that corresponds to the zero-
extended portion in the value. Sign-extended and sin-
gle-to-double converted values can be tested in a simi-
lar manner. We call this scheme ‘check’.

4.1.2 ‘Type-Tag’
Previously proposed load-value predictors depend on
confidence estimation to filter out likely mispredictions.
We use the type of a load instruction to further elimi-
nate possible mispredictions. For instance, assume the
current load instruction is a byte load and expects a
value of 1. Let us further assume the selected predictor
line contains a value of 2 from a word load and has a
confidence above the threshold. In a conventional pre-
dictor a misprediction is made. However, with our
‘type-tag’ method, the prediction is inhibited due to the
type mismatch. Hence, the predictor can identify and
inhibit incorrect predictions based on a simple type test
and thus avoid the recovery cost. A few additional bits
(three in this study) per predictor line are required to
record the load type.

4.2 Type-Separated Predictor Tables
Splitting larger tables into multiple smaller ones can be
beneficial because smaller tables have faster access
times. Moreover, having multiple tables allows the
direction of different types of load instructions to dif-
ferent tables. Also, it allows each table to be independ-
ently optimized to the corresponding load type. We call
this scheme ‘split’.

The width of a conventional load-value-predictor ta-
ble is determined by the largest load size. In this ex-
periment, we split the conventional table with its 64-bit
entries into four smaller ones of half the height for 8-,
16-, 32-, and 64-bit loads. Note that the 32- and 64-bit

tables are shared between integer and floating-point
loads. This arrangement results in a slightly lower
overall size (in number of bits of storage) but provides
space for twice as many load values.

4.3 Type-Based Hybrid Predictors
Hybrid predictors combine multiple predictors [4, 14,
20] and employ a selector to decide which component
to use for each prediction. We utilize the type of the
load instructions to make this decision. Doing so is
beneficial as it eliminates the extra storage for the
selector. Also, each load only updates one component
of the hybrid, thus eliminating the pollution of the other
components, which increases the hybrid’s effective
capacity. This is our ‘type-hybrid’ scheme.

5. METHODOLOGY
All our measurements are performed on a simulator
derived from the SimpleScalar/Alpha 3.0 tool set [3], a
suite of functional and timing simulation tools for the
Alpha ISA. The simulations are execution-driven and
include execution down speculative paths until the
fault, TLB miss, branch misprediction, or load mis-
speculation is detected.

5.1 Simulation Framework
We simulated a 4-way, 7-stage, superscalar, out-of-
order CPU (similar to the Alpha 21264) with a 128-
entry instruction window, a 32-entry load/store buffer, a
32-entry 8-way instruction TLB, a 64-entry 8-way data
TLB, both with a 30-cycle miss penalty, a 64KB, 2-way
1-cycle L1 instruction cache, a 64KB, 2-way 3-cycle L1
data cache, a unified 4MB, 4-way 20-cycle L2 cache,
an 8K-entry hybrid gshare-bimodal branch predictor,
four integer ALU units, two floating-point adders and
one floating-point MULT/DIV unit. The data cache is
write-back and non-blocking with two ports. The
caches have a block size of 64 bytes. All functional
units except the divide unit are pipelined to allow a new
instruction to initiate execution each cycle. It takes 160
cycles to access main memory. This represents our
baseline architecture.

We model 2048-entry load-value predictors. The
predictors include a bimodal confidence estimator (CE)
with three-bit saturating counters with a threshold of
five, a penalty of three, and an award of one. We used
the same CE configuration for all the predictors and did
not vary it for this study. The predictors and confi-
dence estimator are described in Section 2. Each pre-
diction is made after decode, and the predictors are up-
dated as soon as the true load value is available, there
are no speculative updates, and an out-of-date predic-
tion is made as long as there are pending updates to the
same predictor line. We use the re-fetch misprediction
recovery scheme [6]. It is identical to that used for re-
covering from branch mispredictions. We enable ‘al-

ways no alias’ dependence prediction (to predict aliases
between loads and stores) since we believe future high-
end CPUs will include a similar feature [10, 13].

5.2 Alpha 21264 Load Types
We consider all types of loads that are present in the
Alpha 21264 architecture, except VAX and locked
loads, which do not occur in our benchmark programs.
Table 1 gives information about the load types.

Table 1: Alpha 21264 load types.

instr type special format bits

ldbu byte zero-extended 8

ldwu word zero-extended 16

ldl long sign-extended 32

ldq, ldqu quad (aligned, unaligned) - 64

lds IEEE single-precision single to double 32

ldt IEEE double-precision - 64

5.3 Benchmarks
Table 2 describes the twelve C programs from the
SPECcpu2000 benchmark suite [1] that we use for our
measurements. They were compiled on a DEC Alpha
21264A processor with the DEC C compiler under the
OSF/1 v5.1 operating system using a high optimization
level. We use the SPEC-provided train inputs. We
skipped over the initialization part of each program,
which is usually not representative of the general pro-
gram behavior [18]. Results are then reported for simu-
lating each program for 300 million committed instruc-
tions. The remaining three C programs were not used
because SimpleScalar could not run those binaries. We
further excluded the C++ and Fortran programs due to
the lack of a compiler. Table 2 shows the number of
instructions (in billions) that we skipped before begin-
ning the cycle-accurate simulations, the number of
simulated load instructions (in millions), the percentage
of executed instructions that are loads, and the instruc-
tion per cycle (IPC) on the baseline processor.

Table 2: Information about the simulated segments.

skipped simulated %

insts (B) loads (M) loads

ammp 4.2 76 25.2 1.415

art 3.6 83 27.7 0.822

bzip2 3.3 76 25.4 1.732

crafty 3.3 91 30.3 1.664

equake 4.2 115 38.5 1.081

gcc 4.2 102 33.9 1.470

gzip 3.0 64 21.2 1.677

mcf 1.2 106 35.3 0.623

mesa 0.6 65 21.8 1.638

twolf 4.2 78 25.9 1.244

vortex 3.3 92 30.8 1.557

vpr 4.2 100 33.3 1.066

program base IPC

6. RESULTS

6.1 Baseline
Figure 1 shows the distribution of the load types for the
simulated segment of each of the twelve programs. We
find that quad words are loaded most often. On aver-
age, ldbu, ldwu, ldl, ldqu, ldq, lds, and ldt represent
9.8%, 3.5%, 18.5%, 11.3%, 38.9%, 5.4%, and 12.6% of
the loads, respectively. This variety in load type distri-
bution motivates our approaches.

0%

20%

40%

60%

80%

100%

am
m
p

ar
t

bz
ip
2

cr
af
ty

eq
ua
ke gc

c
gz
ip

m
cf

m
es
a

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

lo
a
d
 t
y
p
e
 d
is
tr
ib
u
ti
o
n.

ldt

lds

ldq

ldl

ldqu

ldwu

ldbu

Figure 1: Load type distribution.

To establish a baseline for our type-based predictors,

we evaluate the performance of the benchmark pro-
grams on our base architecture when traditional (i.e.,
non-type-based) load-value predictors are used. We
find the average prediction coverage of the LV, ST2D
and DFCM3 predictors to be 40.2%, 43.8%, and 50.0%,
respectively.

0

2

4

6

8

10

12

am
m
p

ar
t

bz
ip
2

cr
af
ty

eq
ua
ke gc

c
gz
ip

m
cf

m
es
a

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

%
 m

is
p
re
d
ic
ti
o
n
 r
a
te
.

LV

ST2D

DFCM3

Figure 2: Misprediction rate.

Figure 2 shows the percentage of these predictions

that is incorrect. For most of the programs, DFCM3
has the highest misprediction rate. This seems contrary
to previous research that indicates that context predic-
tors work the best. However, in our study we have ob-
served that context predictors outperform their simpler
counterparts when the number of entries are higher than
2048. For smaller sizes, the context predictors do not
perform as well. This is because all loads share the
second-level table in DFCM3, which increases aliasing.
The exception is ammp, which probably loads non-
strided sequences that are best captured by DFCM3.

Unless otherwise stated, the performance of our type-
based techniques in the following subsections is ex-
pressed relative to this baseline, which already includes
load-value predictors.

6.2 ‘Check’
Our ‘check’ scheme (Section 4.1.1) inhibits predicted
values that do not match the ISA-prescribed formats
and thus reduces mispredictions. Figure 3 shows the
misprediction reduction over the baseline predictors
when we inhibit guaranteed mispredictions using
‘check’.

We find that ‘check’ reduces mispredictions by up to
22%. DFCM3 clearly benefits the most from this tech-
nique since all loads share the second-level table. Some
of these aliases are caught by ‘check’. Note that
‘check’ will never inhibit a correct prediction.

To support faster clock speeds, processor pipelines
are getting longer. Since increasing the number of
pipeline stages also increases the misprediction recov-
ery cost, we expect ‘check’ to become even more help-
ful in the future.

0

5

10

15

20

25

am
m
p

ar
t

bz
ip
2

cr
af
ty

eq
ua
ke gc

c
gz
ip

m
cf

m
es
a

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

%
 m

is
p
re
d
ic
ti
o
n
 r
e
d
u
c
ti
o
n.

LV-check

ST2D-check

DFCM3-check

Figure 3: ‘Check’ misprediction reduction.

6.3 ‘Type-Tag’
The ‘type-tag’ approach (Section 4.1.2) inhibits predic-
tions whose types do not match that of the current load
instruction. As in ‘check’, the goal is to reduce mispre-
dictions. Figure 4 shows that ‘type-tag’ very effec-
tively lowers the misprediction rate (by up to 72%).

0

10

20

30

40

50

60

70

80

am
m
p

ar
t

bz
ip
2

cr
af
ty

eq
ua
ke gc

c
gz
ip

m
cf

m
es
a

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

%
 m

is
p
re
d
ic
ti
o
n
 r
e
d
u
c
ti
o
n.

LV-tag

ST2D-tag

DFCM3-tag

Figure 4: ‘Type-Tag’ misprediction reduction.

While ‘check’ cannot improve the frequently exe-
cuted ldq, ldqu, and ldt instructions, ‘type-tag’ distin-
guishes between all seven load types. Interestingly, LV
and ST2D benefit more from ‘type-tag’ than DFCM3.
Since LV and ST2D predict values with a constant or a
zero stride, it can be inferred that such sequences stem
mostly from 64-bit loads whose aliasing cannot be de-
tected by ‘check’ but is caught by ‘type-tag’. It is natu-
ral to expect ‘type-tag’ to subsume ‘check’. However,
in some cases ‘type-tag’ inhibits correct predictions.
For example, if a byte load expects 0 and the prediction
returns a 0 but of type word, ‘tag’ inhibits the predic-
tion. A program that suffers from this behavior is mesa,
where even with a 33% reduction in mispredictions, a
slowdown is observed (see Tables 3, 4 and 5). Fortu-
nately, this does not occur often and performance is
generally enhanced.

6.4 ‘Split’
The two goals of ‘split’ are to speed up the predictor
access time and to increase the predictor capacity with-
out increasing the number of transistors. Our ‘split’
scheme allocates separate tables for 8-, 16-, 32- and 64-
bit loads. In order not to increase the overall size of the
predictor, we reduce the number of lines in each table
by a factor of two (Section 4.2). The resulting predictor
is 7% smaller (in number of bits of storage) but can
hold twice as many entries as the corresponding predic-
tor with a single table.

Figure 5 shows the misprediction reduction of this
scheme for the three predictors. mesa benefits the most
with 56.8%. We believe this scheme has even more
potential since we did not search for the split that gives
the optimal performance. equake and mcf’s perform-
ance suffers because they have a highly imbalanced
load-type distribution (Figure 1). For instance, over
90% of mcf’s loads are 64 bits wide. Reducing the
number of lines in the 64-bit table thus increases alias-
ing and consequently the number of mispredictions.
Another potential benefit of ‘split’ is the ability to pre-
dict multiple loads in the same cycle if the loads are of
different type.

-10

0

10

20

30

40

50

60

am
m
p

ar
t

bz
ip
2

cr
af
ty

eq
ua
ke gc

c
gz
ip

m
cf

m
es
a

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

%
 m

is
p
re
d
ic
ti
o
n
 r
e
d
u
c
ti
o
n.

LV-split

ST2D-split

DFCM3-split

Figure 5: ‘Split’ misprediction reduction.

6.5 Performance
We compare the IPCs of our enhanced predictors to that
of the conventional predictors in Tables 3, 4 and 5. We
observe that on average LV and ST2D both perform
well with ‘type-tag’ while DFCM3 performs the best
with ‘check’.

 Table 3: IPCs of LV, LV-check, LV-tag and LV-

split.

program LV LV-check LV-tag LV-split

ammp 1.416 1.423 1.438 1.432

art 1.182 1.188 1.196 1.201

bzip2 1.791 1.802 1.816 1.807

crafty 1.707 1.719 1.738 1.709

equake 1.119 1.125 1.133 1.134

gcc 1.504 1.512 1.527 1.523

gzip 1.712 1.721 1.737 1.732

mcf 0.656 0.660 0.666 0.662

mesa 2.061 2.071 2.027 2.054

twolf 1.267 1.273 1.299 1.284

vortex 1.840 1.858 1.886 1.891

vpr 1.219 1.225 1.237 1.234

average 1.456 1.465 1.475 1.472

Table 4: IPCs of ST2D, ST2D-check, ST2D-tag and

ST2D-split.

program ST2D ST2D-check ST2D-tag ST2D-split

ammp 1.418 1.425 1.440 1.433

art 1.228 1.234 1.243 1.249

bzip2 1.792 1.803 1.817 1.808

crafty 1.706 1.720 1.738 1.709

equake 1.123 1.129 1.136 1.127

gcc 1.506 1.517 1.533 1.525

gzip 1.745 1.755 1.774 1.766

mcf 0.658 0.661 0.668 0.654

mesa 2.059 2.071 2.024 2.071

twolf 1.268 1.274 1.300 1.284

vortex 1.852 1.876 1.901 1.903

vpr 1.221 1.227 1.239 1.236

average 1.465 1.474 1.484 1.480

Table 5: IPCs of DFCM3, DFCM3-check, DFCM3-

tag and DFCM-split.

program DFCM3 DFCM3-check DFCM3-tag DFCM3-split

ammp 1.439 1.456 1.454 1.427

art 1.194 1.207 1.204 1.227

bzip2 1.734 1.773 1.735 1.731

crafty 1.695 1.716 1.712 1.698

equake 1.224 1.237 1.233 1.215

gcc 1.507 1.524 1.525 1.529

gzip 1.733 1.750 1.747 1.752

mcf 0.661 0.667 0.667 0.653

mesa 2.089 2.111 2.016 2.107

twolf 1.260 1.274 1.283 1.276

vortex 1.862 1.895 1.892 1.938

vpr 1.190 1.203 1.202 1.217

average 1.466 1.484 1.473 1.481

6.6 ‘Type-Hybrid’
As discussed in Section 4.3, hybrid predictors can de-
liver better performance than unit predictors. However,
instead of using a meta predictor as the component se-
lector, we propose using the load type. The goals of
‘type-hybrid’ are to speed up the predictor access and to
eliminate the storage requirement of the traditional se-
lector. Figure 6 shows the average predictability by
type of the twelve programs. The predictability of a
load is defined as the percentage of correct predictions
when all the loads are predicted, i.e., no confidence
estimator is used to filter out unpredictable loads. This
gives us a better picture of which predictor favors
which load type. Also, we generated the predictability
data using functional simulation and, therefore, the pre-
dictors are updated immediately. In the cycle-accurate
simulations, the predictors are updated at commit, re-
sulting in some predictions being made with stale data.

0

10

20

30

40

50

60

70

ldbu ldqu ldwu lds ldt ldl ldq all

load type

%
 p
re
d
ic
ta
b
il
it
y.

LV

ST2D

DFCM3

Figure 6: Average load-type predictability.

To determine which hybrid component should be

used to predict the different load types in each program,
we used cross-validation. For example, the configura-
tion used to predict twolf was based on the average
load-type predictability of the other eleven programs.
We used this approach because we do not expect de-
signers to change the mapping for each program that
runs on a CPU, i.e., only one mapping is used for all
programs. Cross-validation determines how well our
approach would work if a designer chose a mapping
with no prior knowledge of the programs that will be
run on the processor.

We compare the performance of our ‘type-hybrid’
with a traditional hybrid, both of which include an LV,
ST2D, and a DFCM3 component. In the traditional
hybrid, the component with the highest confidence is
chosen to make the prediction. We observe that our
type-based hybrid reduces mispredictions by up to
about 60% on average.

It is evident from the IPC results in Table 6 that
‘type-hybrid’ outperforms the traditional hybrid with
the exception of equake and mcf. Note that our tech-
nique eliminates the storage requirement of the selector,
resulting in a reduction in the overall predictor size and

power consumption. It also speeds up the predictor
access because no selector needs to be accessed or up-
dated. The improvement in performance, shown in
Table 6, is solely due to the reduction in mispredictions
and the larger effective capacity. Note that our per-
formance gains from value prediction are lower than
those published elsewhere because we include a load-
store dependence predictor in our CPU.

Note that ‘check’ or ‘type-tag’ can be combined with
‘type-hybrid’ to obtain even more benefit.

Table 6: IPCs of traditional hybrid and ‘type-

hybrid’.

traditional-hybrid type-hybrid

ammp 1.449 1.452

art 1.215 1.216

bzip2 1.830 1.832

crafty 1.743 1.747

equake 1.146 1.130

gcc 1.536 1.541

gzip 1.783 1.791

mcf 0.672 0.664

mesa 2.110 2.119

twolf 1.295 1.299

vortex 1.879 1.886

vpr 1.251 1.254

average 1.492 1.494

7. CONCLUSIONS

Load instructions represent a large and growing per-
formance bottleneck in microprocessors because of the
gap between CPU and memory speeds. Load-value
prediction addresses this problem by predicting the
value a load instruction will fetch so that dependent
instructions do not have to wait for the memory to sup-
ply the data. Unfortunately, costly mispredictions re-
duce the overall benefit of load-value prediction.

Previous studies treat all loads alike. We take ad-
vantage of the load type (byte, word, etc.) provided by
the decoder to design more accurate and faster predic-
tors with little additional hardware. We find that our
type-based techniques can significantly reduce the mis-
prediction rates and thus increase the speedup delivered
by load-value predictors. Furthermore, we show that it
is possible to split predictor tables into smaller tables,
which have faster access times, without hurting predic-
tion accuracy. Finally, we demonstrate that the type of
a load can effectively serve as the component selector
in a hybrid predictor, obviating the need for a separate
selector.

8. ACKNOWLEDGEMENT

This work has been supported by the National Science
Foundation (NSF) under Award #0208567.

9. REFERENCES

[1] SPECcpu2000 benchmarks. http://www.spec.org/-

osg/cpu2000
[2] Alpha Architecture Reference Manual. Fourth

Edition. ftp.compaq.com/pub/products/alphaCPU-

docs/alpha_arch_ref.pdf
[3] T. Burger, T. Austin. The SimpleScalar Tool Set,

version 2.0. ACM SIGARCH Computer Architec-

ture News, 1997.
[4] M. Burtscher, B. G. Zorn. Hybrid Load-Value

Predictors. IEEE Transaction on Computers, Vol.
51:7, 2002, pp. 759-774.

[5] B. Calder, G. Reinman, D. M. Tullsen. Selective
Value Prediction. 26th Annual Int. Symposium on
Computer Architecture, 1999, pp. 64-74.

[6] F. Gabbay. Speculative Execution Based on
Value Prediction. Technical Report 1080, De-
partment of Electrical Engineering, Technion-
Israel Institue of Technology, 1996.

[7] B. Goeman, H. V. Dierendonck, K. DeBosschere.
Differential FCM: Increasing Value Prediction
Accuracy by Improving Table Usage Efficiency.
7th International Symposium on High-Perform-

ance Computer Architecture, 2001, pp. 207-216.
[8] J. Gonzalez, A. Gonzalez. The Potential of Data

Value Speculation to Boost ILP. 12th Interna-
tional Conference on Supercomputing, 1998, pp.
21-28.

[9] J. Gonzalez, A. Gonzalez. Control-Flow Specula-
tion through Value Prediction for Superscalar
Processors. International Conference on Parallel
Architectures and Compilation Techniques, 1999,
pp. 57-65.

[10] R. E. Kessler, E. J. McLellan, D. A. Webb. The
Alpha 21264 Microprocessor Architecture. Inter-
national Conference on Computer Design, 1998,
pp. 90-95.

[11] M. H. Lipasti, C. B. Wilkerson, J. P. Shen. Value
Locality and Load Value Prediction. Second In-
ternational Conference on Architectural Support

for Programming Languages and Operating Sys-
tems, 1996, pp. 138-147.

[12] G. H. Loh. Width-Partitioned Load Value Predic-
tors. Journal of Instruction-Level Parallelism,
2003, pp. 1-23.

[13] G. Reinman, B. Calder. Predictive Techniques for
Aggressive Load Speculation. 31st IEEE/ACM In-
ternational Symposium on Microarchitecture,
1998, pp. 127-137.

[14] B. Rychlik, J. Faistl, B. Krug, J. P. Shen. Efficacy
and Performance Impact of Value Prediction. In-
ternational Conference on Parallel Architectures
and Compilation Techniques, 1998, pp. 148-154.

[15] Y. Sazeides, J. E. Smith. Implementations of
Context Based Value Predictors. Technical Re-

port ECE-97-8, University of Wisconsin, Madi-
son, Wisconsin, 1997.

[16] Y. Sazeides, J. E. Smith. The Predictability of
Data Values. 13th International Symposium on Mi-

croarchitecture, 1997, pp. 248-258.
[17] Y. Sazeides, J. E. Smith. Modeling Program Pre-

dictability. 25th International Symposium on Com-
puter Architecture, 1998, pp. 73-84.

[18] T. Sherwood, E. Perelman, G. Hamerly, B. Cal-
der. Automatically Characterizing Large Scale
Program Behavior. 10th International Conference

on Architectural Support for Programming Lan-

guages and Operating Systems, 2002, pp. 45-57.
[19] A. Sodani, G. S. Sohi. Understanding the Differ-

ences between Value Prediction and Instruction
Reuse. 31st Annual IEEE/ACM International Sym-

posium on Microarchitecture, 1998, pp. 205-215.
[20] K. Wang, M. Franklin. Highly Accurate Data

Value Prediction using Hybrid Predictors. 30th
Annual ACM/IEEE International Symposium on
Microarchitecture, 1997, pp. 358-363.

