Parallel Tools for Asynchronous VLSI Systems

Yi-Shan Lu*, Samira Ataei, Jiayuan He*, Wenmian Huaf, Sepideh Maleki*, Yihang YangT,
Martin Burtscher!, Keshav Pingali*, and Rajit Manohar®

*University of Texas at Austin
{yvishanlu, hejy, smaleki,pingali}@cs.utexas.edu

Texas State University
burtscher@txstate.edu

TYale University
{samira .ataei,wenmian.hua, yihang.yang, rajit. manohar}@yale .edu

Abstract—We propose to develop a collection of electronic
design automation tools for asynchronous circuits. To reduce
design turn-around time, we will implement parallel versions
of the key algorithms using the Galois system. These tools will
be open-sourced when mature.

I. INTRODUCTION

Scalable computer systems are designed as a collection of
modular components that communicate through well-defined
interfaces. The interfaces must be robust to delays and uncer-
tainty in the physical implementation of communication. This
view applies to computer systems at many levels of abstrac-
tion. The Internet is a collection of communicating computers
with message-passing through the Internet protocol. A modern
datacenter is a collection of servers that communicate via
message-passing over commodity network hardware. Even
large software systems consist of a collection of modules that
use well-defined application programming interfaces (APIs) to
communicate. Almost all computer systems disciplines have
made the wise choice to partition their problem into compo-
nents that communicate via protocols that are independent of
their physical realization—such as timing, energy, or size.

However, in current chip designs, this modular approach is
abandoned in favor of global synchrony. A global synchroniza-
tion signal (the “clock™) dictates the time budget for every step
of the computation—regardless of what is being computed.

Although this clocked design paradigm dominates the de-
sign of computers today, engineers are struggling to preserve
the fiction of simultaneity required by the clock, even within
an individual chip. This struggle is an inevitable result of
advancing technology. As transistors get smaller and faster,
the delay of communication over wires dominates the cost
of local computation with transistors. Such progress renders
the clocked paradigm a poorer and poorer abstraction for chip
design. Modern application-specific integrated chips (ASICs)
are designed as a collection of small clocked “islands” that
communicate via interfaces that break the clocking abstraction.

We propose to develop a collection of electronic design
automation (EDA) tools that isolate the designer from the
details of the physical implementation technology, especially

when it comes to delays and timing uncertainty.! The approach
is based on an asynchronous, modular and hierarchical design
methodology for complex chips, and it permits component
re-use from one technology to another with little or no
modification. While individual (small) modules of the chip
could be clocked, the overall system uses an asynchronous
integration approach to achieve modular composition.

To reduce the turn-around time for designs, we will im-
plement parallel versions of the key algorithms in this tool
chain, using the Galois system described in Section III. The
Galois system supports parallelization of irregular algorithms
such as those in which the key data structures are graphs and
hyper-graphs. Since circuits can be viewed as hyper-graphs,
the Galois system is a good platform for this parallelization
effort.

II. EDA FOR ASYNCHRONOUS VLSI SYSTEMS

The phrase “asynchronous digital circuits” refers to a large
family of circuits that do not use a global clock signal to
sequence steps of the computation. There are many asyn-
chronous logic families, ranging from circuits that are highly
robust to timing uncertainty to those that rely on strict timing
constraints for correct operation. While the range of possible
circuit families is large, they all share some common features.

First, the set of gates, or building-blocks, are more general
than standard combinational logic and flip-flops. One of the
most commonly used circuit elements is the C-element, which
is a state-holding gate whose output changes only when the
two inputs are equal. Second, the performance of these circuits
is governed by the delays of cycles of gates. A special case
where this is clear is one where the circuit contains an odd
number of inverters to create an oscillator (the clock), and
the oscillator is used to control flip-flops. This is a traditional
synchronous circuit, and the performance is governed by the
delay of the cycle of inverters. In general, the cycles are
more complicated, and so the performance analysis problem is
very different from that of the clocked domain. Third, correct

't is not possible to entirely decouple the logical correctness of a design
from timing to create completely delay-insensitive circuits [12, 15]. However,
it is possible to make a very mild and local timing assumption that is easy to
satisfy in practice [11].

operation of an asynchronous circuit requires relative path
delay timing constraints on some sets of paths.

The open-source design flow we plan to create starts with
the circuit specified using the Communicating Hardware Pro-
cesses (CHP) programming language [14], which is based on
Hoare’s CSP [4]. The language is a simple sequential pro-
gramming language augmented with communication channels
and send, receive, and probe operations. The next step in
the design flow is to decompose the CHP into a massively
parallel collection of processes that cooperate to perform the
computation specified by the original program. This (large)
step is where all the “micro-architectural” decisions are made.
This transformation is performed in a hierarchical manner as
a sequence of small changes, where each change can be easily
verified. A number of well-established techniques can be used
for this purpose, including techniques such as process decom-
position and projection [13, 16]. After this step, data encoding
and protocol choices are made so that every statement in each
CHP process can be represented as a collection of operations
on Boolean-valued variables. After this step, the program is in
handshaking expansion (or HSE) form. Finally, each individual
component is converted into a circuit based on the logic family
being used, and the concurrent composition of all the circuits
implement the original specification. The core idea behind this
synthesis procedure was developed in the 1980s [14].

The flow we plan to develop includes a design language
called ACT (for asynchronous circuit toolkit). This is a hier-
archical design language that includes communication chan-
nels as first-class objects. The language supports represent-
ing circuits at multiple levels of abstraction, including CHP,
HSE, gate-level, and transistor-level descriptions. By using an
integrated language, we preserve the relationships between
different levels of abstraction in the design throughout the
design flow. Design tools can be viewed as transformations in
the ACT framework. For example, logic synthesis elaborates a
CHP-level description of a module into a gate-level description
of the same module without changing its interface. A summary
of the design flow and linkages to standard, commercially used
file formats is shown in Figure 1.

This language is the result of an evolution over almost
three decades of research in asynchronous design grounded
in the implementation of over a dozen asynchronous VLSI
chips ranging in complexity from 0.5M transistors to 5.4B
transistors, and in technologies ranging from 0.6p4m CMOS to
28nm CMOS. We also plan to develop linkages to and from
the ACT language to standard commercially-used languages
and formats such as Verilog and SPICE. This will allow inter-
operability between our flow and commercial flows whenever
possible.

We plan to develop key components of an open-source
EDA flow for asynchronous circuits that implements several
of the unique aspects of the design flow. Some of the major
components include:

o A cell generator leveraging our previous work in support-
ing non-standard logic gates [6];

ACT:CHP |——p
_/7'

ACT: HSE

/ -
ACT: gates —>-

Fig. 1: Overview of the design flow for asynchronous circuits
that is under development.

uonesiIsp

o A tool that can import synchronous logic into an asyn-
chronous framework to support synchronous module in-
tegration;

o Timing analysis for asynchronous circuits based on re-
cently developed analyses [1, 5];

o An asynchronous memory compiler based on the Open-
RAM framework [2];

« A timing-aware placement and routing flow that respects
the timing constraints required for the correct operation of
asynchronous logic and extends previous work that only
supported a small class of timing requirements [7].

In support of the flow, we also plan to develop formal equiva-
lence checking tools across different levels of abstraction (e.g.,
CHP versus HSE and HSE versus PRS) using a combination
of traditional model checking and inverse synthesis, which
attempts to “undo” steps in the design flow [9, 10].

The modular nature of the asynchronous design flow makes
it inherently suitable for parallelization. Module-level paral-
lelism is easy to achieve, and the high complexity of some of
the tasks (e.g., precise logic synthesis requires a form of state-
space exploration) requires parallelism to speed up the design
process. We plan to use the Galois framework (described next)
as a way to simplify the development of highly parallel EDA
tools.

III. PARALLEL EDA FLOW

Since circuits can be viewed abstractly as graphs and hyper-
graphs, a system for supporting the design and implementation
of a parallel EDA tool-chain must have the following charac-
teristics.

« It must support clean abstractions for reasoning about and
expressing the available parallelism in graph (and hyper-
graph) algorithms.

o It must hide parallelization details such as synchroniza-
tion from EDA algorithm designers.

« It must be scalable; as long as the algorithm has sufficient
parallelism, performance should improve if more cores
are used.

A. Operator formulation of algorithms

A clean abstraction for expressing parallelism in graph algo-
rithms is the operator formulation, a data-centric abstraction
in which algorithms are described as a composition of a local
view and a global view of the computation.

The local view is described by an operator, which is a graph
update rule applied to an active node in the graph (some
algorithms have active edges). Each operator application,
called an activity or action, reads and writes a small region
of the graph around the active node, called the neighborhood
of that activity. An active node becomes inactive once the
activity is completed. Morph operators can modify the graph
structure of the neighborhood by adding and removing nodes
and edges. AIG rewriting [21] deploys morph operators. Label
computation operators, in contrast, only update labels on
nodes and edges without changing the graph structure. FPGA
routing [17], formulated as an SSSP problem within a routing
resource graph, uses label computation operators.

The global view of a graph algorithm is captured by the
location of active nodes and the order in which activities must
appear to be performed. Topology-driven algorithms make a
number of sweeps over the graph until some convergence
criterion is met, e.g., the Bellman-Ford SSSP algorithm. Data-
driven algorithms begin with an initial set of active nodes,
and other nodes may become active on the fly when activities
are executed. They terminate when there are no more active
nodes. Dijkstra’s SSSP algorithm is a data-driven algorithm.
The second dimension of the global view of algorithms is
ordering [3]. Activities in unordered algorithms such as SSSP
can be performed in any order without violating program
semantics, although some orders may be more efficient than
others.

Parallelism can be exploited by processing active nodes in
parallel, subject to neighborhood and ordering constraints. The
resulting parallelism is called amorphous data-parallelism. It is
a generalization of the standard notion of data-parallelism [20].

B. Galois system

The Galois system implements this data-centric program-
ming model (see details in [18]). Application programmers
write programs in sequential C++, using certain programming
patterns to highlight opportunities for exploiting amorphous
data-parallelism. The Galois system provides a library of
concurrent data structures, such as parallel graph and work-list
implementations, and a runtime system. The data structures
and runtime system ensure that each activity appears to
execute atomically. In this way, the Galois system encapsulates
parallelization details and realizes performance scalability at
the same time.

The Galois system has been used to implement parallel
programs for many problem domains including finite-element
simulations, n-body methods, graph analytics, intrusion de-
tection in networks [8], FPGA routing [17], and AIG rewrit-
ing [21].

C. Galois for open-source EDA flow

1) Framework for EDA tool builders: We propose a parallel
programming framework customized for EDA algorithms that
is based on the Galois system. The parallelization can be
among modules in a hierarchical design or within a module for
a specific design stage such as placement. In this framework,
we will provide the following building blocks for EDA tool
builders to quickly prototype EDA algorithms without worry-
ing about details of parallelization:

o A set of parallelization-aware data structures, e.g., gate-
level net-lists, chip layouts, cell libraries.

e A set of operators common to EDA algorithms, e.g.,
the operator for SSSP in routing algorithms or the delay
computation and time propagation in timing analysis.

o A set of schedulers frequently used in EDA algorithms,
e.g., topological-order execution in timing analysis.

The above programming constructs can be parameterized or
instantiated to fit specific needs. For example, router designers
need to carry out only the following steps: (1) instantiate
a placed net-list and read in technology information from,
for example, a cell library; and (2) specify, according to the
quality metrics being considered, the cost function for the
SSSP operator and the schedule/priority function for applying
the operators. Then they can evaluate the resulting router and
improve the quality of the results iteratively.

By providing building blocks at the proper abstraction level,
our proposed approach will support parallelization seamlessly
for EDA algorithms. Deterministic execution can be provided
when required [19]. The framework will also provide means
for tool designers to specify their own operators and schedules
when such needs arise.

2) Tools for chip designers: For chip designers, we plan to
prototype a parallelized flow for timing-driven physical design,
the most time-consuming step in chip design processes. There
are a set of well-established core algorithms for the major
components in standard EDA tools. State-of-the-art EDA tools
combine these algorithms with sophisticated heuristics that are
guided by benchmarks to achieve excellent quality of results
within a reasonable runtime budget. Our goal in developing
parallel tools is to demonstrate the effectiveness of the Galois
framework in speeding up the core algorithms used in different
parts of a timing-driven physical design flow.

Given a gate-level net-list, chip area and process technol-
ogy information, for instance, liberty or LEF/DEF files, our
proposed flow will generate a mostly design-rule-clean layout
with the following components:

o A static timing analysis engine that provides timing
information at various design stages.

o A placer that assigns locations for gates to meet con-
straints in timing, routability, density/utilization, etc. and
optimizes for timing.

e A router that connects pins of nets subject to design
constraints and optimizes for timing.

« A gate sizer that adjusts driving strengths of gates to meet
timing constraints in the physical design flow.

The above components will support both synchronous de-

signs with one clock domain and asynchronous designs.

The components will have built-in parallelization, so chip
designers can enjoy the speedup from parallelization by just
providing the number of threads they want to use. In addition,
users can use scripts to create any iterative flow they wish
or start from any point in the physical design such as from
routing given a placed net-list.

IV. CONCLUSION

We presented a plan for implementing a parallelized phys-
ical design flow for asynchronous circuits. The flow supports
modular design and parallelization naturally. We believe that
this tool chain will promote chip design with clean abstractions
and fast turn-around times.

REFERENCES

[1] S M Burns and A J Martin. Performance analysis and
optimization of asynchronous circuits. 1990.

[2] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian
Chen, Bin Wu, and Mehedi Sarwar. Openram: An open-
source memory compiler. In Proc. 35th International
Conference on Computer-Aided Design, pages 93:1-
93:6, 2016.

[3] Muhammad Amber Hassaan, Martin Burtscher, and Ke-
shav Pingali. Ordered vs. unordered: a comparison of
parallelism and work-efficiency in irregular algorithms.
In Proceedings of the 16th ACM symposium on Princi-
ples and practice of parallel programming, PPoPP 11,
pages 3—12, New York, NY, USA, 2011. ACM.

[4] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666-677, 1978.

[5] Wenmian Hua and Rajit Manohar. Exact timing anal-
ysis for asynchronous systems. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 37(1):203-216, 2018.

[6] Robert Karmazin, Carlos Tadeo Ortega Otero, and Rajit
Manohar. celltk: Automated layout for asynchronous
circuits with nonstandard cells. In Asynchronous Circuits
and Systems (ASYNC), 2013 IEEE 19th International
Symposium on, pages 58—66. IEEE, 2013.

[7] Robert Karmazin, Stephen Longfield, Carlos Tadeo Or-
tega Otero, and Rajit Manohar. Timing driven placement
for quasi delay-insensitive circuits. In Asynchronous
Circuits and Systems (ASYNC), 2015 21st IEEE Inter-
national Symposium on, pages 45-52. IEEE, 2015.

[8] Andrew Lenharth, Donald Nguyen, and Keshav Pingali.
Parallel graph analytics. Commun. ACM, 59(5):78-87,
April 2016.

[9] Stephen James Longfield and Rajit Manohar. Inverting
martin synthesis for verification. In Asynchronous Cir-
cuits and Systems (ASYNC), 2013 IEEE 19th Interna-
tional Symposium on, pages 150-157. IEEE, 2013.
Stephen Longfield Jr and Rajit Manohar. Removing
concurrency for rapid functional verification. In Proc.
2014 IEEE/ACM International Conference on Computer-
Aided Design, pages 332-339. IEEE Press, 2014.

Rajit Manohar and Yoram Moses. Analyzing isochronic
forks with potential causality. In Asynchronous Circuits
and Systems (ASYNC), 2015 21st IEEE International
Symposium on, pages 69-76. IEEE, 2015.

Rajit Manohar and Yoram Moses. The eventual c-
element theorem for delay-insensitive asynchronous cir-
cuits. In Asynchronous Circuits and Systems (ASYNC),
2017 23rd IEEE International Symposium on, pages 102—
109. IEEE, 2017.

Rajit Manohar, Tak-Kwan Lee, and Alain J Martin. Pro-
jection: A synthesis technique for concurrent systems. In
IEEE International Symposium on Asynchronous Circuits
and Systems, page 125. IEEE, 1999.

[14] Alain J Martin. Compiling communicating processes into
delay-insensitive vlsi circuits. Distributed computing, 1
(4):226-234, 1986.

Alain J. Martin. The limitations to delay-insensitivity in
asynchronous circuits. In William J. Dally, editor, Sixth
MIT Conference on Advanced Research in VLSI, pages
263-278, 1990.

Alain J Martin. Synthesis of asynchronous vlsi circuits.
Technical Report CS-TR-93-28, California Institute of
Technology, 1993.

Yehdhih Ould Mohammed Moctar and Phillip Brisk.
Parallel fpga routing based on the operator formulation.
In DAC ’14: Design Automation Conference, 2014.
Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 456-471,
New York, NY, USA, 2013. ACM.

Donald Nguyen, Andrew Lenharth, and Keshav Pin-
gali. Deterministic galois: On-demand, portable and
parameterless. In Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, 2014.
Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin
Burtscher, Muhammad Amber Hassaan, Rashid Kaleem,
Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,
Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui.
The tao of parallelism in algorithms. In PLDI 2011,
pages 12-25, 2011. doi: 10.1145/1993498.1993501.
Vinicius Possani, Yi-Shan Lu, Alan Mishchenko, Keshav
Pingali, Renato Ribas, and Andre Reis. Unlocking fine-
grain parallelism for aig rewriting. In ICCAD ’I8:
International Conference on Computer Aided Design,
2018.

[11]

