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Overview

TSP and 2-opt heuristic
Previous GPU approaches

Assign a climber per thread

Our new approach

Assigns a climber per thread block, parallelizes the 2-
opt evaluations between threads in a block

Several other optimizations
Outperforms previous implementations

Experimental comparison
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Traveling Salesman Problem (TSP)

Combinatorial optimization problem

Find minimum-distance Hamiltonian tour in complete,
undirected, weighted graph

Finding optimal solution is NP-hard
Test bed for heuristic approximation approaches

Application areas
Logistics
Wire routing
Genome analysis
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Random-Restart Hill Climbing

Iterative hill climbing (IHC) local search
Generate initial candidate solution
Iteratively improve solution via move to neighbor
Unlikely to reach global optimum

Random restart
Repeatedly perform IHC from random initial solutions
Can require 1,000s to 1,000,000s+ of restarts

Each restart (climber) is independent; evaluation of
possible moves within each climber also independent
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2-Opt Move Evaluation

= Random-restart TSP

Generate k random initial tours (city orderings)
Iteratively improve tours until local minimum reached

= Tour improvement via application of 2-opt move

Remove edges (i,i+1) and . .
(j,j+1) of the tour, reconnect

the resulting subtours in the =

other order by adding edges

(I,j) and (|+1IJ+1) j+1 i+l jH1 i+l

In each IHC step, evaluate all moves and apply best
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2-opt Pseudo Code

#define dist(a,b) dmat[city[a]][city[b]]

do {
minchange = 0 Distance matrix: O(n?) time/space

for (i = 0; i < cities-2; i++) {
for (jJ = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+1,j+1)
- dist(i,i+1l) - dist(j,j+1)
if (minchange > change) {

Don’t evaluate symmetric
or adjacent edges

minchange = change No need to compute
mini = i, minj = j actual tour length
}}o}

} while (minchange < 0)
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2-opt Pseudo Code

#define dist(a,b) dmat[city[a]][city[b]]

do {
minchange = 0
for (1 = 0; 1 < cities-2; i++) {

i i+l
for (j = i+2; j < cities; j++) {
change = dist(i,]j) + dist(i+1l,3j+1l) - dist(j,j+1)
if (minchange > change) {
minchange = change
mini = i, minj = j

b}

Pull loop-invariant edge
out of inner j-loop

i,i+1

} while (minchange < 0)
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Experimental Methodology
Metric

Throughput in billions of 2-opt moves evaluated per
second (Gigamoves/second)

System
K40 (Kepler) GPU with 15 SMs and 2880 PEs
TACC Maverick node (2x Xeons with 10 cores each)

Inputs
First n points of ‘d18512.tsp’ from TSPLIB
Select climber count k to fully load SMs
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1. Distance Matrix (matr s)

Our original implementation (2011)
Assign a climber (initial random tour) per thread
Pre-compute distance matrix in shared memory
Each climber needs a tour order array (local memory)

v/ Distance lookups all to shared memory

® O(n?) shared memory requirement (48kB max) limits
problem size to 110 cities

¥ Lots of bank conflicts from random matrix accesses
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amoves/s

Throughput (Gig

Throughput: matr_s

Limited to problems
<110 cities

~ 26 Gmoves/sec Need a more
scalable solution

Runs out of
shared memory

Number of Cities
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2. Distance Matrix—Global (matr g)

= Naive way to remove the shared mem limit...

Pre-compute distance matrix in global memory
¢ No more shared memory limit on problem size

¥ Random accesses to large global memory matrix are
uncoalesced and uncached in the L1
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2. Distance Matrix—Global (matr g ro)

"—Najve way to remove the shared mem limit=
* Pre-compute-distance matrix in.gtobal memory
¢ No more shared meme ¥ton problem size
¥ Randaom-accesses to large global memory-atrix are
ncoalesced and uncached in the L1
= OK, but distance matrix is read-only...
= Use Idg() to force read onto read-only data cache path
¢/ High hit rate in the cache at smaller problem sizes
% Still random access pattern to O(n?) storage
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Throughput: matr_g ro

Nearly as good
as matr_s

Until we exceed
RO cache space

And L2 space
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more scalable solution
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3. Distance Re-Calculation (calc)

Published by K. Rocki and R. Suda (2012, 2013)

Re-compute distances as needed rather than look up

Allows direct permutation of coordinates in tour order
(no need for separate array)

v/ O(n) storage allows larger problem sizes (~4000)
v/ Coalesced memory accesses
® Limited by local memory size
® Large k (230720) needed to fully utilize K40 GPU
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Pseudo Code Update

#define dist(a,b) dmat[city[a]][city[b]]
do {
minchange = 0
for (i = 0; i < cities-2; i++) {
minchange += dist(i,i+1)
for (jJ = i+2; j < cities; jJ++) {
change = dist(i,]j) + dist(i+l1l,j+1)
if (minchange > change) {
minchange = change
mini = i, minj = j
}o}
minchange -= dist(i,i+1)

}
} while (minchange < 0)
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Pseudo Code Update

do {
minchange = 0 Re-calculate distance rather
for (1 = 0; 1i < cities-2; i++) { than index into matrix

minchange += dist(i,i+1)
for (j = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+1l,j+1) - dist(j,]j+1)
if (minchange > change) {
minchange = change

mini = i, minj = j
}o}
minchange -= dist(i,i+1)

}

} while (minchange < 0)
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4. Intra-Parallelization (intra)

Hierarchical parallelization of the 2-opt evals
Assign a tour per thread block instead of per thread

Parallelize 2-opt computation across threads in block

Distribute outer i-loop across threads in block (fully
parallelized if cities < 1024); inner j-loop sequential

Requires reduction + sync to identify best 2-opt move

v/ Storage requirement per block reduced
Single set of coordinates in tour order

¥ Complexity of implementation increases
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Pseudo Code Update—Intra

#define dist(a,b) sqgrtf( (x[a]l-x[b])? + (y[al-y[b])?)
do {
minchange = 0
for (i = 0; i < cities-2; i++)
minchange += dist(i,1i+1)
for (j = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+l,j+1l) - dist(j,j+1)
if (minchange > change) {
minchange = change
mini = i, minj = j
} o}
minchange -= dist(i,i+1)
}
// apply best 2-opt move (mini/minj)
} while (minchange < 0)
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Pseudo Code Update—Intra

#define dist(a,b) sqgrtf( (x[a]l-x[b])? + (y[al-y[b])?)
do { Distribute outer loop to threads in block
minchange = 0
minchange +:- dist(i,i+1)
for (j = i+2; j < cities; j++) {
change = dist(i,]j) + dist(i+1l,j+1l) - dist(j,Jj+1)
if (minchange > change) {
minchange = change

mini = i, minj = j
_ b} _ . Each thread tracks its best
minchange -:- dist(i,i+l) move; reduction required
} to find overall best

} while (minchange < 0)
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Pseudo Code Update—Intra

#define dist(a,b) sqrtf( (x[a]l-x[b])2+ (y[al-y[b])2)
do {

Pre-compute tour segment lengths

minchange = 0
for (i = threadID; i < cities-2; i += blockDim) {
minchange -= i
for (jJ = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+1l,3j+1) + I

if (minchange > change) {

minchange = change
g g Segment distances read

mini = i, minj = j
} } from global memory buffer
minchange += i

}
syncthreads ()

// reduction to identify + apply best 2-opt move
} while (minchange < 0)
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5. Intra-Parallelization + ShMem Tiling (tile)

Blocks share ordered tour and buffer space
Shared mem is small, don’t want to limit problem size
Strip mine the inner j-loop

Break iterations into chunks s.t. each chunk’s working set
fits in shared memory and preload each tile

But... each thread’s j-loop begins at a different index!
Solution: run inner j-loop backwards
v/ Most accesses go to shared memory

¢ No bank conflicts, full coalescing
¥ Implementation complexity increases further
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Pseudo Code Update—Tile

for (j = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+l,j+1)
+ buf[j]
if (minchange > change) {
minchange = change
mini = i, minj = j
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Pseudo Code Update—Tile

Run inner loop in reverse
to align initial j across
threads

for ( ) |
change = dist(i,j) + dist(i+l,j+1)
+ buf[j]
if (minchange > change) {
minchange = change
mini = i, minj = j
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Pseudo Code Update—Tile

Coordinates and buffer
now in shared memory

for (jJ = jj; j >= tileLowerBound; j--) {
change = dist(i,]j) + dist(i+1,9+1)
+ buf[j]
if (minchange > change) {
minchange = change
mini = i, minj = j
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Pseudo Code Update—Tile

parallel load tile(x shmem[], x[])
parallel load tile(y shmem[], yI[])
parallel load tile(buf shmem[], buf[])
__syncthreads ()

J-loop broken into
chunks, each pre-loads
tile into shared memory

for (jJ = jj; j >= tileLowerBound; j--) {
change = shmem dist(i,]j) + shmem dist(i+1,3j+1)
+ shmem buf[]]
if (minchange > change) {
minchange = change
mini = i, minj = j
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Pseudo Code Update—Tile

for (jj = cities-1; jj >= i+2; jj -= tileSize) {
parallel load tile(x shmem[], x[])
parallel load tile(y shmem[], yI[])
parallel load tile(buf shmem[], buf[])
__syncthreads ()

for (jJ = jj; j >= tileLowerBound; j--) {
change = shmem dist(i,]j) + shmem dist(i+1,3j+1)
+ shmem buf[]]
if (minchange > change) {
minchange = change
mini = i, minj = j

Additional synchronization

Rethinking the Parallelization of Random-Restart Hill Climbing
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6. Intra + Tiling + Tuned Launch (tuned)

= Tune thread count per block

Based on # of cities, shared memory usage, max
threads per block and SM, max blocks for SM, and
registers per SM

= Launch kernel with computed thread count

v Maximizes hardware usage
® None (except small CPU code block)
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Conclusions

CUDA 2-opt TSP solver based on hierarchical
parallelization of climbers and move evaluation
Uses shared memory without limiting problem size
Faster time to first solution
Outperforms prior GPU implementations by up to 3X
Outperforms OpenMP version on 20 cores by up to 8X

Another reminder to rethink parallelization
strategy and optimize code for GPU hardware
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