Rethinking the Parallelization of
Random-Restart Hill Climbing

A Case Study in Optimizing a
2-Opt TSP Solver for GPU Execution

Molly A. O’Neil and Martin Burtscher
Department of Computer Science

TEXASsk STATE F (\ I
UNIVERSITY SO

The rising STAR of Texas Efficient Computing Laboratory

Overview

TSP and 2-opt heuristic
Previous GPU approaches

Assign a climber per thread

Our new approach

Assigns a climber per thread block, parallelizes the 2-
opt evaluations between threads in a block

Several other optimizations
Outperforms previous implementations

Experimental comparison

Rethinking the Parallelization of Random-Restart Hill Climbing

Traveling Salesman Problem (TSP)

Combinatorial optimization problem

Find minimum-distance Hamiltonian tour in complete,
undirected, weighted graph

Finding optimal solution is NP-hard
Test bed for heuristic approximation approaches

Application areas
Logistics
Wire routing
Genome analysis

Rethinking the Parallelization of Random-Restart Hill Climbing

Random-Restart Hill Climbing

Iterative hill climbing (IHC) local search
Generate initial candidate solution
Iteratively improve solution via move to neighbor
Unlikely to reach global optimum

Random restart
Repeatedly perform IHC from random initial solutions
Can require 1,000s to 1,000,000s+ of restarts

Each restart (climber) is independent; evaluation of
possible moves within each climber also independent

Rethinking the Parallelization of Random-Restart Hill Climbing

2-Opt Move Evaluation

= Random-restart TSP

Generate k random initial tours (city orderings)
Iteratively improve tours until local minimum reached

= Tour improvement via application of 2-opt move

Remove edges (i,i+1) and . .
(j,j+1) of the tour, reconnect

the resulting subtours in the =

other order by adding edges

(I,j) and (|+1IJ+1) j+1 i+l jH1 i+l

In each IHC step, evaluate all moves and apply best

Rethinking the Parallelization of Random-Restart Hill Climbing >

2-opt Pseudo Code

#define dist(a,b) dmat[city[a]][city[b]]

do {
minchange = 0 Distance matrix: O(n?) time/space

for (i = 0; i < cities-2; i++) {
for (jJ = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+1,j+1)
- dist(i,i+1l) - dist(j,j+1)
if (minchange > change) {

Don’t evaluate symmetric
or adjacent edges

minchange = change No need to compute
mini = i, minj = j actual tour length
}}o}

} while (minchange < 0)

Rethinking the Parallelization of Random-Restart Hill Climbing 6

2-opt Pseudo Code

#define dist(a,b) dmat[city[a]][city[b]]

do {
minchange = 0
for (1 = 0; 1 < cities-2; i++) {

i i+l
for (j = i+2; j < cities; j++) {
change = dist(i,]j) + dist(i+1l,3j+1l) - dist(j,j+1)
if (minchange > change) {
minchange = change
mini = i, minj = j

b}

Pull loop-invariant edge
out of inner j-loop

i,i+1

} while (minchange < 0)

Rethinking the Parallelization of Random-Restart Hill Climbing

Experimental Methodology
Metric

Throughput in billions of 2-opt moves evaluated per
second (Gigamoves/second)

System
K40 (Kepler) GPU with 15 SMs and 2880 PEs
TACC Maverick node (2x Xeons with 10 cores each)

Inputs
First n points of ‘d18512.tsp’ from TSPLIB
Select climber count k to fully load SMs

Rethinking the Parallelization of Random-Restart Hill Climbing

1. Distance Matrix (matr s)

Our original implementation (2011)
Assign a climber (initial random tour) per thread
Pre-compute distance matrix in shared memory
Each climber needs a tour order array (local memory)

v/ Distance lookups all to shared memory

® O(n?) shared memory requirement (48kB max) limits
problem size to 110 cities

¥ Lots of bank conflicts from random matrix accesses

Rethinking the Parallelization of Random-Restart Hill Climbing

amoves/s

Throughput (Gig

Throughput: matr_s

Limited to problems
<110 cities

~ 26 Gmoves/sec Need a more
scalable solution

Runs out of
shared memory

Number of Cities

Rethinking the Parallelization of Random-Restart Hill Climbing 10

2. Distance Matrix—Global (matr g)

= Naive way to remove the shared mem limit...

Pre-compute distance matrix in global memory
¢ No more shared memory limit on problem size

¥ Random accesses to large global memory matrix are
uncoalesced and uncached in the L1

Rethinking the Parallelization of Random-Restart Hill Climbing 11

)€€ € EECECECCeeeeee

Throughput (Gigamoves/s)
B

20

10

0
PPPGOP P LIPS PECPFPPPPFLFFF I FS T
Number of Cities

AR K CCRR ci6lele s o

2. Distance Matrix—Global (matr g ro)

"—Najve way to remove the shared mem limit=
* Pre-compute-distance matrix in.gtobal memory
¢ No more shared meme ¥ton problem size
¥ Randaom-accesses to large global memory-atrix are
ncoalesced and uncached in the L1
= OK, but distance matrix is read-only...
= Use Idg() to force read onto read-only data cache path
¢/ High hit rate in the cache at smaller problem sizes
% Still random access pattern to O(n?) storage

Rethinking the Parallelization of Random-Restart Hill Climbing 13

Throughput: matr_g ro

Nearly as good
as matr_s

Until we exceed
RO cache space

And L2 space

Rethinking the Parallelization of Random-Restart Hill Climbing

Need a faster and
more scalable solution

14

3. Distance Re-Calculation (calc)

Published by K. Rocki and R. Suda (2012, 2013)

Re-compute distances as needed rather than look up

Allows direct permutation of coordinates in tour order
(no need for separate array)

v/ O(n) storage allows larger problem sizes (~4000)
v/ Coalesced memory accesses
® Limited by local memory size
® Large k (230720) needed to fully utilize K40 GPU

Rethinking the Parallelization of Random-Restart Hill Climbing 15

Pseudo Code Update

#define dist(a,b) dmat[city[a]][city[b]]
do {
minchange = 0
for (i = 0; i < cities-2; i++) {
minchange += dist(i,i+1)
for (jJ = i+2; j < cities; jJ++) {
change = dist(i,]j) + dist(i+l1l,j+1)
if (minchange > change) {
minchange = change
mini = i, minj = j
}o}
minchange -= dist(i,i+1)

}
} while (minchange < 0)

Rethinking the Parallelization of Random-Restart Hill Climbing

- dist(3j,3+1)

16

Pseudo Code Update

do {
minchange = 0 Re-calculate distance rather
for (1 = 0; 1i < cities-2; i++) { than index into matrix

minchange += dist(i,i+1)
for (j = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+1l,j+1) - dist(j,]j+1)
if (minchange > change) {
minchange = change

mini = i, minj = j
}o}
minchange -= dist(i,i+1)

}

} while (minchange < 0)

Rethinking the Parallelization of Random-Restart Hill Climbing 17

b
| o o ‘
U ¥ JU L b'_

CeCcccreseeesese

60
~*-matr_s “-—matr_g

S matr_g ro “*calc

(2

s

Throughput (Gigamoves/s)
2

3

PEPIIPPIPOEPH P I P E PP PFSFFFPFFPESHS
Number of Cities

AR K CCRR cislale s o

4. Intra-Parallelization (intra)

Hierarchical parallelization of the 2-opt evals
Assign a tour per thread block instead of per thread

Parallelize 2-opt computation across threads in block

Distribute outer i-loop across threads in block (fully
parallelized if cities < 1024); inner j-loop sequential

Requires reduction + sync to identify best 2-opt move

v/ Storage requirement per block reduced
Single set of coordinates in tour order

¥ Complexity of implementation increases

Rethinking the Parallelization of Random-Restart Hill Climbing 19

Pseudo Code Update—Intra

#define dist(a,b) sqgrtf((x[a]l-x[b])? + (y[al-y[b])?)
do {
minchange = 0
for (i = 0; i < cities-2; i++)
minchange += dist(i,1i+1)
for (j = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+l,j+1l) - dist(j,j+1)
if (minchange > change) {
minchange = change
mini = i, minj = j
} o}
minchange -= dist(i,i+1)
}
// apply best 2-opt move (mini/minj)
} while (minchange < 0)

Rethinking the Parallelization of Random-Restart Hill Climbing

20

Pseudo Code Update—Intra

#define dist(a,b) sqgrtf((x[a]l-x[b])? + (y[al-y[b])?)
do { Distribute outer loop to threads in block
minchange = 0
minchange +:- dist(i,i+1)
for (j = i+2; j < cities; j++) {
change = dist(i,]j) + dist(i+1l,j+1l) - dist(j,Jj+1)
if (minchange > change) {
minchange = change

mini = i, minj = j
_ b} _ . Each thread tracks its best
minchange -:- dist(i,i+l) move; reduction required
} to find overall best

} while (minchange < 0)

Rethinking the Parallelization of Random-Restart Hill Climbing 21

Pseudo Code Update—Intra

#define dist(a,b) sqrtf((x[a]l-x[b])2+ (y[al-y[b])2)
do {

Pre-compute tour segment lengths

minchange = 0
for (i = threadID; i < cities-2; i += blockDim) {
minchange -= i
for (jJ = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+1l,3j+1) + I

if (minchange > change) {

minchange = change
g g Segment distances read

mini = i, minj = j
} } from global memory buffer
minchange += i

}
syncthreads ()

// reduction to identify + apply best 2-opt move
} while (minchange < 0)

Rethinking the Parallelization of Random-Restart Hill Climbing

22

ughout (Gigamoves

Thre

Throughput: intra

No practical limit
on input size!

Can we recover the

On par with performance loss?

calc, but not

quite there...

o— O——0—O o0—0— 6038009
0 - —— o
_—e—g - 9 'U‘-O““Q"o -
-
r
r

-~

Number of Cities

23

Rethinking the Parallelization of Random-Restart Hill Climbing

5. Intra-Parallelization + ShMem Tiling (tile)

Blocks share ordered tour and buffer space
Shared mem is small, don’t want to limit problem size
Strip mine the inner j-loop

Break iterations into chunks s.t. each chunk’s working set
fits in shared memory and preload each tile

But... each thread’s j-loop begins at a different index!
Solution: run inner j-loop backwards
v/ Most accesses go to shared memory

¢ No bank conflicts, full coalescing
¥ Implementation complexity increases further

Rethinking the Parallelization of Random-Restart Hill Climbing 24

Pseudo Code Update—Tile

for (j = i+2; j < cities; j++) {
change = dist(i,j) + dist(i+l,j+1)
+ buf[j]
if (minchange > change) {
minchange = change
mini = i, minj = j

Rethinking the Parallelization of Random-Restart Hill Climbing

25

Pseudo Code Update—Tile

Run inner loop in reverse
to align initial j across
threads

for () |
change = dist(i,j) + dist(i+l,j+1)
+ buf[j]
if (minchange > change) {
minchange = change
mini = i, minj = j

Rethinking the Parallelization of Random-Restart Hill Climbing

26

Pseudo Code Update—Tile

Coordinates and buffer
now in shared memory

for (jJ = jj; j >= tileLowerBound; j--) {
change = dist(i,]j) + dist(i+1,9+1)
+ buf[j]
if (minchange > change) {
minchange = change
mini = i, minj = j

Rethinking the Parallelization of Random-Restart Hill Climbing 27

Pseudo Code Update—Tile

parallel load tile(x shmem[], x[])
parallel load tile(y shmem[], yI[])
parallel load tile(buf shmem[], buf[])
__syncthreads ()

J-loop broken into
chunks, each pre-loads
tile into shared memory

for (jJ = jj; j >= tileLowerBound; j--) {
change = shmem dist(i,]j) + shmem dist(i+1,3j+1)
+ shmem buf[]]
if (minchange > change) {
minchange = change
mini = i, minj = j

Rethinking the Parallelization of Random-Restart Hill Climbing 28

Pseudo Code Update—Tile

for (jj = cities-1; jj >= i+2; jj -= tileSize) {
parallel load tile(x shmem[], x[])
parallel load tile(y shmem[], yI[])
parallel load tile(buf shmem[], buf[])
__syncthreads ()

for (jJ = jj; j >= tileLowerBound; j--) {
change = shmem dist(i,]j) + shmem dist(i+1,3j+1)
+ shmem buf[]]
if (minchange > change) {
minchange = change
mini = i, minj = j

Additional synchronization

Rethinking the Parallelization of Random-Restart Hill Climbing

29

~&-matr_s ~matr_g
“omatr g ro o cale
0 ~*inra ~®-tile
)
g .
g 0
20 & OO

-5 .o > o o o e a
) ¢ e . - D e oo
PEPIOPPI PP F PP PP 9.:?44‘4*"4? FEFFFE P T E S PG E

Number of Cities

AR KRR clslele s o

6. Intra + Tiling + Tuned Launch (tuned)

= Tune thread count per block

Based on # of cities, shared memory usage, max
threads per block and SM, max blocks for SM, and
registers per SM

= Launch kernel with computed thread count

v Maximizes hardware usage
® None (except small CPU code block)

Rethinking the Parallelization of Random-Restart Hill Climbing 31

)€€ €€ € EC €€ ¢ ¢€6ceee

o ~&-matr_s matr_g
“omatr_g_ro " calke

50 “*-intra - tile
~&~tuned

20

Throughput [Gigamaoves/s)
z

10 ’.}

-

° ottt
PERPIOPPLPIEPL PRI PP E R LI PEL I P PSP F

\
Number of Cities

e

Ret |nk|ng the Parallelization of Rand

()’C.*& € € e e Q Q €)e ¢ ¢ @& @

e

” “-matr_s matr g
= matr_g_ro calc
- intra - tile -
. »v
- ned —_=cpu
e
-

-

o
OpenMP on 2 w

~ . 10-core Xeons

20

Throughput (Gigamoves/s)
3

-

./

”y
10 /‘
- s

.to”"QQ

0
SERIOP PRI PP E P wuwm* PR EPE PP ES P FEHE
Number of Cities

m.
Rethlnklng the Parallelization of Ran 3

“- B e e

Conclusions

CUDA 2-opt TSP solver based on hierarchical
parallelization of climbers and move evaluation
Uses shared memory without limiting problem size
Faster time to first solution
Outperforms prior GPU implementations by up to 3X
Outperforms OpenMP version on 20 cores by up to 8X

Another reminder to rethink parallelization
strategy and optimize code for GPU hardware

Rethinking the Parallelization of Random-Restart Hill Climbing 34

Questions?

Acknowledgments

NSF Graduate Research Fellowship grant 1144466

NSF grants 1141022, 1217231, 1406304, and 1438963
REP grant from Texas State University

Texas Advanced Computing Center (TACC) HPC resources
Grants and gifts from NVIDIA Corporation

Rethinking the Parallelization of Random-Restart Hill Climbing 35

