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Abstract—We present a novel game-theoretic framework for
the Virtual Machine (VM) migration timing problem. In a
multi-tenant cloud, a number of VMs are collocated on the
same physical machine. This increases the risk of a malicious
VM performing side-channel attacks and leaking sensitive
information. To this end, this paper develops and analyzes a
game-theoretic framework for the timing problem in which the
cloud provider decides when to migrate a VM to a different
physical machine to reduce the risk of being compromised by
a collocated malicious VM. The adversary decides the rate at
which she launches new VMs to collocate with the victim VMs.
Our formulation captures a data leakage model in which the
cost incurred by the cloud provider depends on the duration of
collocation as well as the overhead in migration. We establish
sufficient conditions for the existence of Nash equilibria for
general cost functions, as well as for specific instantiations, and
characterize the best response for both players. Our theoretical
findings are corroborated with extensive numerical results in
various settings.
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I. INTRODUCTION AND RELATED WORK

One of the main characteristics of the Cloud that allows
scalable and cost-effective operation is multi-tenancy. Multi-
tenancy is achieved through virtualization to enable cloud
providers to host multiple virtual machines (VMs) on the
same physical machine while providing isolation between
them. Recent attacks, however, have been shown to bypass
such isolation [1]. A malicious VM collocating on the same
physical machine with a victim VM can seek unauthorized
access to sensitive and private data and/or intellectual prop-
erty, or can render some of its computational functionality
unusable.

This has prompted cloud providers to develop various
strategies for VM placement, migration and reconfiguration
to mitigate some of these attacks. Moving target defense
(MTD) strategies aim to dynamically shift the attack surface,
making it more difficult for attackers to launch potent attacks
[2]. When developing an MTD strategy, two main questions
generally arise: which targets should be moved and when
should they be moved? The answer to these questions is
highly-dependent on the context of the problem and the

nature of the attack. For example, if an attacker contemplates
inferring the underlying topology of the cloud, then the
connectivity between machines is the target that should be
changed over time. In a different setting, if the attacker is
interested in cracking the system credentials that protect the
users’ databases, then the keys are the target that should
be constantly reconfigured (i.e., moved). In this paper, we
consider collocation attacks whereby an attacker can leak
sensitive data from a targeted victim by running a VM on the
same physical node (e.g., through launching a side-channel
attack). Thus, for securing such system, VMs should be
periodically migrated (i.e., moved to a different physical
machine). This paper is primarily focused on the second
question, that is, when to move the identified targets.

In the MTD literature, this question is usually referred to
as the timing problem of the MTD strategy. In this paper,
we study this question using a game-theoretic framework
seeking an understanding of the interplay of the actions of
both the cloud provider (i.e., the defender) and the adversary,
[3], [4]. In our formulation, the adversary seeks to prolong
the collocation time with the victim VMs to maximize
information leakage. Since the adversary has no guarantees
to be successfully collocated on the same physical machine
with the victim – since different cloud providers implement
different placement algorithms according to different criteria
that the attacker has no control over – her best-effort would
be to increase the number of VMs to launch (which is a
cost metric we capture). The adversary can then check after
being placed whether she had a successful collocation or not
[5]. The cloud provider, on the other hand, seeks to migrate
VMs between physical machines to minimize the collocation
times between VMs. VM live migration, while efficient, is
not free [6] and thus the question so as to when to migrate
is crucial in order to mitigate the collocation attack threats
while not burdening the system with a large overhead that
may not be justified.

Cross-VM side-channel attacks and their impact have
been the subject of various recent studies (e.g., [5], [7], [8],
[9], [10], [11], [12]). The authors in [13] showed that by
controlling the placement process, a defense mechanism can



mitigate the effect of cross-VM attacks through reducing the
co-run probability between users. The approach, however,
is only effective in the case of time-sensitive attacks and
when the number of assigned virtual CPUs is substantial.
The use of game theory has largely focused on the VM
allocation problem in the presence of adversaries [6], [14],
[15], [16], [17], [18], [19], [20]. A common assumption
in such formulations is that the adversary is known. This
assumption does not hold in practice. Additionally, existing
formulations do not consider the timing problem, which is
a critical one for the defender wishing to migrate VMs for
security.
Contributions: While VM migration strategies have been
proposed as defense mechanisms against collocation attacks
in various studies, such work focused on the VM assignment
problem (mapping VMs to physical nodes) as a single player
scheduling problem. In this paper, however, we consider the
timing problem of the MTD as a game between the attacker
and the cloud provider. Our work contributes to the theory
of timing games [21], which is largely unexplored in cloud
computing settings. We leverage the results of the leakage
model in the FlipIt game considered previously in [22], [23],
[24], [25], [26], [27] to develop a novel formulation to study
the VM collocation problem in an extended FlipIt game-
theoretic framework. To the best of our knowledge, this is
the first work to investigate the following aspects of the
timing games.
• We provide a new game-theoretic formulation for the

VM collocation timing problem.
• Unlike [14], [15], [17], we do not assume the defender

has prior knowledge of the exact location of the at-
tacker, thereby allowing for realistic threat and defense
models. The defender has to periodically migrate the
VMs to protect against malicious collocating users.

• We analytically characterize the Nash equilibrium (NE)
for the studied game model and derive sufficient exis-
tence conditions.

• We provide extensive numerical experiments to support
our theoretical findings and compare our proposed
defense policies against other defense policies. In our
numerical evaluation, we consider several reward func-
tions to reflect the severity of the attack and different
degrees of information leakage.

This paper is organized as follows. In Section II, we
provide the system model and game formulation. In Section
III, we provide theoretical analysis and establish existence
conditions of NE for the formulated game. Our numerical
results are presented in Section IV and we conclude the
paper in Section V.

II. SYSTEM MODEL

A. The cloud
We model the cloud as a set of physical machines whereby

each machine can host a number of VMs from different
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Figure 1. System model illustration

users. The cloud provider uses a placement strategy to
initially assign VMs to physical machines. The details of
the placement strategy do not affect our analysis and we
assume that the adversary (or any user) has no control
over it. We assume the adversary is interested in targeting
a set of victim VMs by collocating with them on the
same physical machine. We study the interaction between
the cloud provider (defender) and the adversary through a
game-theoretic framework in which the rewards are time-
dependent. In particular, the defender’s strategy is to choose
the time to re-assign VMs to different machines to defend
against collocation attacks. The adversary, on the other hand,
chooses an attack rate to launch more VMs to increase her
collocation duration to maximize information leakage from
her victims as described in Fig. 1. We define the game next.

B. The game

A game is defined as a tuple Γ(P,A,U), where P is
the set of players (here, P = {1, 2}, denoting the defender
(player 1) and the adversary (player 2)), A = Ad × Aa is
the action space for the defender and adversary, and U =
{ud, ua} is the reward function, U : A → R2.

1) Defender’s action space: Since we are investigating
the timing factor of the game, the defender is assumed to
control the re-allocation period. Let τd ∈ Ad denote the
time at which the defender migrates a running VM to a
new physical node, such that Ad = [τmin, T ], where T is
a system parameter at which the credentials are reset and
τmin the smallest reconfiguration time. Since we assume a
leakage model, at time T when the system credentials are
reset, the attacker can no longer benefit from the current
side-channel attack. In other words, the whole game will be
reset every T . The defender seeks to optimize the value of
τd to minimize chances for information leakage and avoid
loading the system with unnecessary migrations. Thus, the
defender’s goal is to optimize the tradeoff between security
and stability.

2) Attacker’s action space: In our model, we consider a
realistic threat model in which the attacker does not know the
placement engine algorithms, hence only tries to increase her
co-residency chances via increasing the number of requests
submitted to the cloud provider. Let λa ∈ Aa denote the rate
of requests (rate of attack) submitted to the cloud, where
Aa = [λmin, λmax] is an interval of non-negative attack
rates. The game starts at time t = 0, and τa denotes the
actual time at which the attacker successfully collocates with
her targeted victim. Hence, τa > 0 is a non-negative random



variable with a probability density function (pdf) fa(.;λa)
parametrized by λa. Since the attacker pays a cost for each
submitted job, she needs to optimize over the attack rate λa.
Hence, the attacker’s tradeoff can be summarized as follows.
When λa is very small, it is less probable for the attacker to
successfully co-reside with her victim and in turn leak any
information before it is migrated. When λa is very large,
the attacker increases her chances of successful collocation
at the expense of a higher attack cost.

Therefore, the pdf fa should be such that fa(τa;λa1)
yields a higher probability of early collocation than
fa(τa;λa2), when λa1 > λa2 , i.e., Fa(t;λa1) ≥ Fa(t;λa2) ,
where Fa(t;λa) denotes the Cumulative Distribution Func-
tion (CDF) of the collocation time τa.

If λmin = 0, then the attacker can choose to back off, i.e.,
not attack. In such case, Fa(T ; 0) = 0 since the probability
of collocation is 0. Next, we define the players’ reward
(payoff) functions. We assume a nonzero-sum two-person
game.

3) Attacker’s reward: Since the game ends at τd ≤ T
then repeated, we consider the reward per unit time. Once
the attacker is successfully placed on the same node where
the victim VM resides, she immediately starts accumulating
rewards by leaking information. Let G(τd, τa) denote the
reward accumulated by the attacker such that G(τd, τa) =
G(τd − τa) for τa < τd and 0 otherwise. Naturally, we
assume that G is monotonically non-decreasing in the col-
location duration τd − τa. The attacker incurs a cost Ca for
launching the attack. Hence, the total cost is scaled by the
rate of attack λa. Therefore, the attacker’s payoff is

ũa(τd, τa, λa) =
1

τd

[
G(τd, τa) · 1{τa<τd} − λaCa

]
, (1)

where 1{} is an indicator function, and the tilde notation
signifies the payoff for a given realization of τa. Hence, the
expected payoff is

ua(τd, λa) =

∫ ∞
0

ũa(τd, τa, λa)fa(τa;λa) dτa . (2)

4) Defender’s reward: The defender, on the other hand,
incurs a loss due to collocation of a victim VM with the
attacker equal in magnitude to the gain of the attacker.
In addition, the defender pays a cost per migration, which
increases the system overhead and overloads the placement
engine. The cost of migration is denoted Cd. Accordingly,
the defender’s payoff can be written as

ũd(τd, τa, λa) =
1

τd

[
−G(τd, τa) · 1{τa<τd} − Cd

]
. (3)

Averaging over τa, the expected payoff for the defender can
be calculated as

ud(τd, λa) =

∫ ∞
0

ũd(τd, τa, λa)fa(τa;λa)dτa . (4)

III. THEORETICAL ANALYSIS

In this section, we provide sufficient conditions for the
existence of NE for the formulated game. Existence of a
NE depends on the properties of the payoff functions. First,
we derive existence conditions for a general accumulated
reward function G(τd, τa) and pdf of the collocation time
fa(τa;λa), then analyze conditions for a special instance of
such functions. We also characterize the best response curves
for both players and derive conditions for NE strategies if
they exist. Next, we state the main theoretical results and
discuss their significance in Section III-B. For proofs of the
stated results, we refer the reader to an extended version of
this work [28].

A. General reward functions
The following theorem establishes sufficient conditions

for the formulated game to admit a pure strategy NE for the
general payoff formulation described in (2) and (4).

Theorem 1. The 2-person nonzero-sum game defined in
Section II-B with the payoff functions in (2) and (4) admits
a NE in pure strategy if fa(τa;λa) is continuous and strictly
concave in λa ∈ Aa, G(τd−τa)

τd
is convex in τd ∈ Ad, and

G is continuous in τd ∈ Ad.

The proof of Theorem 1 rests upon establishing sufficient
conditions for strict concavity of the payoff functions, specif-
ically ensuring that ud is strictly concave in τd for every
λa ∈ Aa and that ua is strictly concave in λa for every
τd ∈ Ad. The following proposition explicitly identifies
an important NE in which the attacker backs off and the
defender stops migration.

Proposition 2. For the game defined in Section II-B with
λmin = 0, there exists an equilibrium in which the attacker
backs off (i.e., does not attack) and the defender does not
migrate if the reward function G satisfies

Eλa
[G(T − τa)] ≤ λaCa, (5)

for every λa ∈ Aa, where Eλa
[.] denotes the expectation

w.r.t. the measure induced by f(.;λa).

The following theorem characterizes the best response for
both players.

Theorem 3. For the 2-person nonzero-sum game defined in
Section II-B, if the attacker’s payoff function in (2) is strictly
concave in λa, then the attacker’s best response λ∗a to any
defense strategy can be described as
• λ∗a = λmax, if ∂ua

∂λa
> 0, ∀ λa ∈ Aa

• λ∗a = λmin , if ∂ua

∂λa
< 0, ∀ λa ∈ Aa

• λ∗a ∈
{
λa |

∫ τd
0
G(τd, τa)∂fa(τa;λa)

∂λa
dτa = Ca

}
, if

∂ua

∂λa
= 0, for any λa ∈ Aa.

Also, if the defender’s payoff function in (4) is strictly
concave in τd, then the best response τ∗d can be described
as



• τ∗d = T , if ∂ud

∂τd
> 0, ∀ τd ∈ Ad

• τ∗d = τmin , if ∂ud

∂τd
< 0, ∀ τd ∈ Ad

• τ∗d ∈
{
τd |

∫ τd
0

(
τd

∂G
∂τd
−G

)
fa(τa;λa)dτa = Cd

}
, if

∂ud

∂τd
= 0, for any τd ∈ Ad.

B. Special reward functions

In Section III-A, we provided conditions for the existence
of an equilibrium for generic reward functions. The condi-
tions imposed were the strict concavity of fa in addition
to the non-negativity, monotonicity and stationarity of G
(stationarity in that the accumulated reward depends on the
collocation and migration times only through their differ-
ence, i.e., the duration of collocation). In this section, we
study existence conditions for equilibrium and characterize
the best response sets of both players for specific choices of
the reward function G and the collocation pdf fa(τa;λa)
as special cases of interest. In particular, we provide an
analysis of the formulated timing game for the case where
G(t) increases linearly in the collocation duration t, i.e.,

G(τd, τa) =

{
α (τd − τa) , τa ≤ τd ≤ T
0, otherwise

(6)

for some constant α > 0. Without loss of generality, we
always consider α = 1. The case α 6= 1 is equivalent to
α = 1 with the migration cost Cd replaced by Cd

α . In Section
IV-C, we provide numerical results on the best response for
other (non-linear) functions including, for example, when
G(t) is quadratic in t.

Motivated by the interpretation of λa ∈ Aa as the rate of
attack launched by the adversary, in our numerical evaluation
we consider an exponential pdf for the collocation time, i.e.,

fa(τa;λa) = λae
−λaτa , τa ≥ 0 . (7)

Next, we derive sufficient conditions for the existence of
a NE for the choice of functions in (6) and (7).

Theorem 4. Consider the 2-person nonzero-sum game de-
fined in Section II-B with G(t) and fa(τa;λa) defined in (6)
and (7). If

1− λaCd <
(

1 + λaτd +
λ2aτ

2
d

2

)
e−λaτd ,∀(τd, λa) ∈ A ,

then the game admits a pure strategy NE.

The best response for both players for the choice of
functions in (6) and (7) can be derived following the same
proof of the general characterization in Theorem 3 as in
[28] and is omitted here for brevity. The following theorem
characterizes bounds on both the attack cost Ca and the
migration cost Cd beyond which the players’ best response
strategies are on the boundaries of their action intervals.

Theorem 5. For the two person nonzero-sum game defined
in Section II-B with the reward function in (6) and the
exponentially distributed collocation time τa in (7), if

Ca >
1− (1 + λmaxτd)e

−λmaxτd

λ2min

,

then the attacker’s best response to the action τd of the
defender is λ∗a(τd) = λmin. Also, if

Cd >
1− (1 + λaT )e−λaT

λa
,

then the defender’s best response to the action λa of the
attacker is to stop migrations, i.e, τ∗d (λa) = T .

IV. NUMERICAL ANALYSIS

In this section, we provide numerical analysis of the
studied game model. We consider the payoff functions for
both players using G(t) and fa(τa;λa) defined in (6) and
(7). We study the behavior of the payoff functions for both
players, then we investigate the effect of the migration cost
Cd and the attack cost Ca on the reward functions, the
players’ best responses, and the existence of a NE. We also
investigate different scaling regimes for the reward function.

Figure 2a shows the NE existence region for Cd = 0.3.
Per Theorem 4, at T = 1.5 and λmax = 5 as marked with the
highlighted rectangle, the game admits a Nash equilibrium in
pure strategies. The figure also illustrates the best response
curves along with the game action space when Cd = 0.3 and
Ca = 0.5. In the figure, the horizontally dashed region is the
region of concavity of ua in λa for all τd ∈ Ad. Similarly,
the vertically dashed region designates the region in which
ud is concave in τd for every λa ∈ Aa. Any game defined in
the region of intersection characterized in Theorem 4 admits
a NE in pure strategies. In this setting, the NE is unique –
shown as the unique intersection point of the best response
curves for both players at τ∗d = 1.27 and λ∗a = 0.61.

A. Payoff functions

Figure 2b shows the payoff function of the defender ud
versus the migration time τd for Cd = 0.3 and T = 4.
The figure highlights the tradeoff faced by the defender
as he seeks to optimize τd to secure the system through
VM migration while avoiding a large migration overhead.
Evidently, the optimal migration time τ∗d depends on the
attacker’s strategy λa. The tradeoff agrees with our intuition
based on the studied game model. Specifically, a very small
τd – signifying a high VM migration rate – is associated with
a high migration cost that dominates the payoff function
ud. On the other hand, a larger τd implies that the VMs
dwell for a longer period of time on the same physical
node giving the attacker more room to collocate and leak
data from her targeted VM. In Figure 2b, we compare the
defender’s reward at different attack rates λa. When the
attack is less aggressive, the defender is able to maximize his
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Figure 2. (a) Verifying NE existence in the region characterized in Theorem 4; (b) Defender’s reward versus migration time τd; (c) Attacker’s reward
versus attack rate λa.
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Figure 3. Defender’s reward versus migration time τd for (a) Cd = 0.03 and (b) Cd = 1.5, and attacker’s reward versus attack rate λa for (c) Ca = 0.01
and (d) Ca = 4.

payoff by reducing the migration time τd at the expense of
higher migration cost. Therefore, when λa increases from 1
to 2.5, the optimal τd reduces from 1.25 to 0.85 resulting in
a higher migration frequency. However, when the attacker
is very aggressive, the defender is better off avoiding the
migration cost by increasing τd to T .

In Figure 2c, we plot the attacker’s expected payoff ua
versus the attack rate λa for different defense actions τd
for an attack cost Ca = 0.2. As shown, the optimal attack
rate depends on the defender’s action. As the attack rate
increases, the cost of attack increases and becomes the
dominating term in the payoff function. Moreover, as the
defender reduces his time to migrate τd, the attacker’s reward
decreases. This is due to the fact that when the migration rate
is higher, there is a shorter time window for the attacker to
successfully collocate with her victim. Contrariwise, when
the migration rate is not too high (i.e., τd is fairly large),
the attacker can maximize her reward by increasing the
attack rate λa. However, if the defender is migrating the
VMs at a very high rate, i.e, τd is very small, the attacker’s
best response is to attack at the minimum possible rate or
completely back-off since the attack is useless.

B. Cost effect and monotonicity

To show the effect of the migration and attack costs Cd
and Ca, we plot the players’ payoff functions for different

values of the cost. In Figure 3a, we plot the defender’s
payoff versus τd for different attack strategies for a fairly
small migration cost Cd = 0.03. At this small migration
cost, the defender’s best response is to always migrate at
the highest permissible rate, i.e, τ∗d = τmin regardless of
the attack rate λa. Hence, the leakage loss term dominates
the defender’s payoff function ud. On the other hand, when
the migration cost is high as shown in Figure 3b where
Cd = 1.5, the defender’s best response is τ∗d = T to reduce
the associated migration cost, a fact which was established
analytically in Theorem 5. Similarly, the effect of the attack
cost Ca is exhibited in Figure 3c and Figure 3d. At a very
small attack cost, Ca = 0.01, the attacker’s best strategy is
to attack aggressively with λmax to maximize the chances of
successful collocation regardless of the defender’s action as
shown in Figure 3c. In Figure 3d, the attack cost is high as
Ca = 4, so the cost of the attack term dominates the payoff
function. Therefore, the best action for the attacker is λmin

regardless of the action of the defender, which follows our
result in Theorem 5.

C. Best response curves

In this section, we study the best response curves to
provide more insight into the optimal action of a player as
function of the action of the opponent. Figure 4a shows
the defender’s best response curve τ∗d as function of λa
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Figure 4. Players best response curves.

and the attacker’s best response curve λ∗a as function of
the defender’s action τd. In this scenario, we set T = 4,
λmax = 5, Cd = 0.3, and Ca = 0.1. In Figure 4a,
the intersection point of the two response curves is the
unique Nash equilibrium. The point(s) of equilibria depend
on the values of Ca and Cd. The best response curves also
underscore the tradeoff for each player. For example, at
equilibrium the defender migrates with τd = 0.86 while
the attacker uses rate λa = 2.51 for the attack. Clearly, at
low attack rate, VM migration at a very small migration
rate, i.e, larger τd, is more favorable. As the attack rate
increases, the defender is urged to migrate the VMs at
faster rate, wherefore τ∗d decreases as λa increases, but only
until a certain point where faster migration becomes futile.
Indeed, when the attack rate is overwhelming, it is more
rewarding for the defender to use a large τd to alleviate high
migration costs. On the attacker’s side, a similar tradeoff is
observed. The attacker attacks the system at the minimum
rate λmin as long as the VM stays on the same physical node
for a duration τd < 0.4 since it is very hard to collocate
when migration is taking place at such high rates. If the
defender increases the time before migrating, i.e. τd > 0.4,
the attacker is enticed to attack the system at higher rates to
increase information leakage. However, the maximum attack
rate the attacker will select is λa = 3.16, which is strictly
smaller than λmax, since the resultant attack cost yields a
smaller overall payoff.

D. Higher order reward regimes

In order to shed light on the importance of the data
leakage model, we study other scaling regimes for the reward
function. In particular, we consider the scenario where the
reward function G(τd, τa) scales quadratically or cubically
with the collocation duration. In Figure 4b, we plot the de-
fender’s best response curves for linear, quadratic, and cubic
reward functions. Intuitively, higher order reward functions
are more disposed to dominate the payoff functions than for
the linear scaling. It is obvious that in the linear regime the
defender is facing the tradeoff discussed earlier in Section

IV-C. However, for higher order reward regimes, the reward
term dominates the payoff over the entire range of attack
rates in this setting. Therefore, the defender is consistently
urged to increase the migration rate as the attacker increases
her attack rates.

In Figure 4c, the attacker’s best response curves are
plotted for the different reward functions. In the linear
regime, the attacker’s best response rate is non-vanishing
and increasing in τd for τd > 1, but saturates at λa = 1.4 as
soon as the cost of the attack starts to dominate the attacker’s
payoff. For both the quadratic and cubic regimes, the higher
reward from data leakage entices the attacker to attack at
higher rates as τd increases.

V. CONCLUSION

We developed a moving target defense framework for the
virtual machines migration timing problem. Live migration
of virtual machines between different physical nodes is
studied in a game-theoretic framework to defend multi-
tenant clouds against side channel attacks launched by
malicious users who are co-residing on the same physical
node. We established sufficient conditions for existence of
Nash equilibrium for the proposed game model, as well
as best response strategies. We also verified our theoretical
results numerically for different settings of the game. The
theoretical and numerical analyses provided characterize
the performance of the migration defense approach against
collocation attacks.
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