
Control Theoretic Adaptive Monitoring Tools
for the Android Platform

DAVID REYNOLDS
Department of Computer Science

Texas State University
San Marcos, USA

dr1299@txstate.edu

MINA GUIRGUIS
Department of Computer Science

Texas State University
San Marcos, USA

msg@txstate.edu

Abstract— With the escalation of attacks that target mobile
devices there is an increasing need for efficient monitoring
tools. Due to computation, storage, and power constraints of
the devices, these monitoring tools may overload the entire
system causing severe performance degradation for the running
applications. Moreover, they can be pushed by resource-intensive
applications and may not perform an adequate monitoring job.
To that end, in this project we develop adaptive monitoring tools
that are capable of monitoring a wide range of information while
efficiently utilizing the available resources on the mobile device.
We apply control theoretic techniques to design monitoring
functionalities, such as process, integrity and network monitors,
that utilize the underlying resources efficiently. This is achieved
through controllers that dynamically select the duty cycles of the
monitors. Our models and results are validated on the Android
platform through emulation and real implementation on the
Nexus 7 tablet.

I. INTRODUCTION

Motivation: The Android platform is becoming increasingly
popular due to its open-source framework. With more than 400
million activated Android devices, it is being considered by
various government organizations, including DoD, in diverse
settings. Many users utilize Android devices in their daily
work routines such as: checking email, logging into different
servers, and accessing on-line services. With the rise in popu-
larity of Android devices there has also been a significant rise,
as much as 400%, in number of attacks on mobile devices [1].
With intensifying attacks that seek to steal private data, track
keystrokes, and increase the phone bill by texting, calling or
generating traffic, such organizations become stakeholders in
the security of the Android platform. While an Android device
does have security measures embedded within the system,
there are still major vulnerabilities to protect against. This rise
in malicious activity increases the need for the deployment of
efficient monitoring tools. Due to computation, storage and
power constraints of the mobile devices, however, these tools
need to adjust their resource consumption in tandem with the
applications running. This is achieved through the use and
application of control theory to develop monitoring tools.

In this project we present DriodMonitor - a monitoring
application - that utilizes control theoretic controllers to
monitor the device while limiting its own use of system
resources. DroidMonitor can be easily extended by including
additional monitors to gather data that is requested by the user.

The user sets a target utilization value of the resources that
DroidMonitor needs to match. This implies that DroidMonitor
will actively fight to obtain the allowed resources when the
system is under heavy use, and will also limit its resource
consumption when the device is in a period of light use. Thus
giving the user the ability to choose DroidMonitor’s effect on
the system as a whole and adjust the amount of data gathered
by the monitors within.

Throughout this project, we have experimented with differ-
ent types of controllers including the traditional control theo-
retic ones such as the Proportional (P), Proportional Integral
(PI) and Proportional Integral Derivative (PID). Many exper-
iments were conducted in order to assess their performance
in terms of their stability and response to various stimuli in
controlling DroidMonitor’s own resource consumption. Our
models and results are validated on the Android platform
through emulation and real implementation on the Nexus 7
tablet.

Regarding our implementation of DroidMonitor, it is impor-
tant to mention that while the core abilities of DriodMonitor
do not rely on the Android device being rooted, it is required
for the network monitor portion of this tool. It is our opinion
that rooting a device is more of a risk than it is worth.
By rooting a device the Android device presents a much
easier target for malicious attacks, while admittedly this would
only increase the need for monitoring the device, rooting
the device is counter-intuitive to the overall security of the
Android operating system. This does place limits on what
can be monitored from the application level, namely network
traffic sniffing. In order to implement the much sought after
mobile network monitoring aspect of DroidMonitor, the testing
devices have been rooted.
Paper organization: This report is organized as follows: In
Section 2 we discuss the problem in more details elaborating
on pervious related work in the area. Section 3 describes our
methodology and the application of control theoretic tech-
niques in DriodMonitor. We report on our results in Section
4 and conclude the report in Section 5 with a summary.

II. RELATED WORK

There has been some previous work accomplished in order
to address this issue. There are many Android applications



that can be easily downloaded and installed from Google
Play that will monitor the active processes of the device.
Popular applications that fall into this category include OS
Monitor [2], Android Assistant [3], and Advanced Task Killer
[4]. These applications often fall short in many areas that
need to be addressed. One of the main areas in which these
applications fail is, they do not continue monitoring the device
when not running in the foreground. The user is not able
to monitor the activity of an application while it is running
in the foreground since the monitoring application has to be
in the foreground in order to monitor the running processes.
Despite only monitoring the device when in the foreground
monitoring applications also often use large amounts of the
device’s limited resources, while failing to maintain any record
of past resource consumption. In order to obtain a clear picture
of what the device is being used for, the monitoring device
should be as unobtrusive on the system as possible while
gathering the needed granularity of data for the information
to be useful to the user.

Google has taken a proactive approach in an attempt to
limit the number of malicious content that is released. All
applications looking to be published on Google Play must first
be checked by Bouncer, a program designed to catch malicious
applications. However, Bouncer is easily bypassed, and does
nothing to prevent third party sites from releasing malicious
content. There is a strong need to be able to compare appli-
cations post distribution, according to the malware genome
project 86% of malicious content on Android devices are
”repackaged versions of legitimate applications with malicious
payloads.” [5] There has been research in the area of detecting
repackaged applications on third party websites, DroidMOSS
[6] uses fuzzy hashing to detect repackaged applications being
hosted on alternative application stores.

A wide range of research has been accomplished regarding
Android security. Crowdroid [7] gathers system calls made on
the Android device, then sends the data to a remote server
to be analysed by a behavior-based malware detection remote
server. TaintDroid [8] tracks an applications use of the users
private data in an attempt to detect inappropriate use of that
data. Kirin security service performs lightweight certification
of applications to mitigate malware at install time [9].

III. THE GENERAL FRAMEWORK

In this section we outline the general framework for Droid-
Monitor. We describe the different controllers that are based
on feedback control systems.

A. The Architecture

DroidMonitor is an extensible framework that is composed
of: (1) a set of monitors, (2) a feedback monitor and (3)
controllers. Each monitor is responsible for performing a
specific task such as acquiring CPU utilization of the running
processes, hashing application binaries and sending the results
to the cloud, or sniffing network traffic. DroidMonitor is
designed to allow the addition and removal of monitors to
be quick and easy. The controller decides the duty cycles

of the monitors to ensure that DroidMonitor does not use
too few or too many resources. This is achieved by allowing
DroidMonitor to sleep for a period of time that is dynamically
chosen based on the load of the system and based on the
resources used by DriodMonitor. The feedback monitor reports
the resource utilization of DriodMonitor itself back to the
controller to decide future actions. Figure III-A shows a block
diagram of the proposed architecture.

Fig. 1. The DroidMonitor Framework

B. The Monitors

Each monitor is run in its own thread that is controlled
by the Monitor Service, and largely by the user through the
user interface. The current version of DroidMonitor includes
three monitors: a monitor for recording the CPU utilization
of each of the running processes, a monitor for hashing the
application binaries for integrity checks and another one for
sniffing network packets through TCPdump [10].

C. The Feedback Monitor

The feedback monitor is run in an independent thread from
any of the monitors, an OFF period is determined based on the
current resource load and the current control algorithm being
used. The CPU consumption of DroidMonitor is obtained
through one of the monitors. Then, the controller uses this
information, along with information detailing the set target
consumption, to set an OFF period for DroidMonitor. The
OFF period is passed to each of the monitors via the Monitor
Messenger and then each monitor will adjust their sleep cycle
to match the set OFF period. If DroidMonitor is using more
than its allowed resources it will increase the time spent in a
wait state, and vice versa if the monitor is not using all of its
allowed resources. By increasing its requested resources from
the system it can actively push back on other resource heavy
programs in order to match the user set resource constraints.
This allows the user to set the granularity of data gathered,
and prevent other applications from monopolizing the devices
resources. The feedback monitor is an integral process in the
Feedback Loop and can be seen in Figure 2.

Fig. 2. The Feedback Loop



D. The Controllers

DroidMonitor implements different types of controllers to
adjust its own resource utilization at a target value T that is
chosen by the user. The following controllers are available:

• Ratio-based Controller: In this controller, DriodMonitor
calculates its Pon period, the time taken to execute all the
monitors, and uses Equation 1 to adjust its Poff period.

Poff = Pon × (
1

T
− 1) (1)

• Proportional Integral Controller: In this controller,
DroidMonitor adjusts its Poff based on its previous value
and the error signal at time, t. The error signal, e, is
the utilization of DroidMonitor, ρDM , minus its target
value T . K is the gain of the controller that adjusts its
aggressiveness. Larger values of K cause the controller
to react swiftly to small variations, while smaller values
makes the controller more stable and less reactive. When
the utilization of DroidMonitor is at its target value, the
error signal would be zero and the Poff period would
not change. Equation 2 describes the PI controller.

Poff = Poff +K × e (2)

• Proportional Integral Differential Controller: In this
controller, DroidMonitor adapts Poff using a controller
based on a standard PID controller. The user can adjust
each individual value of K at the user interface. Equation
3 describes how the Poff period is selected with a PID
controller.

Poff = Kpe(t) +Ki

∫ t

0

e(t) +Kd
d

dt
e(t) (3)

IV. PERFORMANCE EVALUATION

In this section, we describe our evaluation of DroidMonitor
on the Android Virtual Devices (AVD) and on the Nexus 7
tablet.

A. The Setup

We thoroughly tested the implemented control algorithms
using an AVD running Google API level 15 with WVGA800
skin. Each Test had three test monitors included within Droid-
Monitor.

The first monitor is a Process Monitor, this monitor gathers
and logs information on all running applications on the device.
The information is gathered from the proc/[PID]/ and written
to the device in a secure file that can only be written to and
read from DroidMonitor. This file, however, can be pulled
from the device and analyzed by the user. This Process
Monitor also feeds information about DroidMonitor itself back
to the feedback monitor.

The second monitor is named Hash Monitor. This monitor
computes an MD5 hash of every installed application on the
phone. Hash Monitor was created mainly to test two different
ideas. The first idea was to see how the controllers would react
to a sudden burst in activity from its own process when MD5

hashes are computed, and the second to compare identical
applications installed on separate but similar devices. The
comparison can be used to identify applications claiming to
be legitimate applications that have been tampered with.

The last monitor is a Network Monitor. This monitor
launches and collects packets captured by tcpdump [10]. These
packets are then written to a secure file similar to that used by
the Process Monitor. The resource consumption of tcpdump
is added to the total resource consumption of DroidMonitor
in order to keep DroidMonitor’s total resource consumption
close to the target set by the user. We report below on the
results obtained from our experiments with the implemented
controllers.

B. Results

Ratio-based Controller
This simple and straight forward controller does a decent

job at maintaining the target resource usage. However, since
the Poff are dependent on the Pon periods of the current
running monitors the actual resource consumption has a higher
deviation than other controllers. This is due to uncontrollable
variation in Pon, and the inability to obtain a complete
on period for all of the DroidMonitor’s threads. While the
difference is slight and easily adjusted for, the main downfall
of the ratio-based controller is its response to other heavy
resource consuming processes. This controller lacks the ability
to push back against these processes and drops drastically
below target consumption failing to gather the needed data.
The behavior of this controller can be seen in Figure 3.

Fig. 3. P Controller: T = 45

Proportional Integral Controller
Our implementation of the PI controller uses the parameter

K that decides the aggressiveness of the controller in its
reaction to the error signal. Figure 4 shows the utilization of
DroidMonitor when the target CPU usage was set to 30%
under a choice of K of 100. While it takes a considerable
amount of time to reach the target, once it is reached the
choice of K of 100 seems to keep the utilization close to the
target. In Figure 5, K is set to 1000. As one can see the target
is reached at a much faster pace than when K was set to 100,
and remains closer to the target value. Finally, in Figure 6 it is
possible to see an extreme example of an aggressive controller
with K set to 10000 where the target is reached by a drastic
overshot and then oscillates wildly around the target area.

As we can see from the previous three graphs it appears
that when K is set to a value of, or near 1000, the controller
achieves the proper balance between swiftly reaching the target



Fig. 4. PI Controller: T = 30, K = 100

Fig. 5. PI Controller: T = 30, K = 1000

and staying near the target. However, as seen in Figure 7 -
where we introduce a browsing activity - a choice of a K value
of 1000 does not respond well when fighting for resources.
The high K value is too reactive to remain at or near the
target value during a common activity such as browsing the
Internet on the device. When K is set to a smaller value, such
as 100, and the experiment is repeated it becomes clear that a
less reactive value for K is needed when the device is under
normal use. Figure 8 shows the behavior with K set to 100
with browsing activity.

The results above suggest that it would be worthwhile to
adjust the value of K dynamically to affect the behavior of
the controller. Figure 9 and Figure 10 show the results of a PI
controller where the value of K is adjusted linearly between
100 and 1000 based on the overall utilization of the CPU. In
particular, when the device is under low usage, the value of
K is increased appropriately to swiftly reach and maintain the
target resource consumption. When the device is experiencing
heavy use and spikes in resource consumption the value of
K is lowered to prevent jittery and unpredictable behavior
from the monitors. These two figures reveal that not only
does this insure that DroidMonitor can quickly reach target
resource consumption, but can also remain at target resource
consumption when other applications are trying to use the
same resources.
Proportional Integral Differential Controller

Figure 11 shows the behavior of the PID controller with
browsing activity. KP , KI and KD were set to 1, 1, and
10 respectively. Originally the PID controller was expected to
be the best possible controller for this device. However, after
many experiments it became clear that this controller often
failed to meet DroidMonitor’s needs. Only one set of variables
was able to quickly approach the target consumptions, yet as
can be seen by Figure 11, the PID controller is not able to
maintain the target resource use while other activities are being
run on the device. We believe that this is primarily due to the
selection of the weights for the components of the controller
and tuning its performance. We plan to investigate this issue

Fig. 6. PI Controller: T = 30, K = 10000

Fig. 7. PI Controller: T = 30, K = 1000, Browsing the Internet

further in the future.

C. DroidMonitor on Nexus 7

Along with ample testing completed on an Android Virtual
Device, DroidMonitor was also tested on a Nexus 7. The 16
GB Nexus 7 runs Android version 4.2.1 (Jelly Bean) on a
NVIDIA(R) Tegra(R) 3 quad-core processor. Figure 12 shows
the DroidMonitor interface.

The Nexus 7 offered a drastically different environment
to test on when compared to the virtual device. We found
that each monitor completed its task faster, and at much less
resource cost to the system. While running DroidMonitor on a
virtual device the CPU monitor could be run with no controller
and use as much as 75% of the CPU, when the same test was
completed on the Nexus 7 each pass was made faster and at
a max cost of 30% CPU consumption. Predictably the Nexus
7 is able to gather more data with less resource consumption
than the virtual device. However, the cost of this performance
increase was at the expense of the variance between the actual
CPU usage from the target usage.

The increase in variance can be attributed to the additional
cores provided by the Nexus 7. Figure 13 shows the effect
of the varying number of active cores on DroidMonitor’s
CPU consumption. The number of active cores is based on
information gathered from proc/stat and the normal processes
executing in user mode. As you can see the number of cores
currently running, along with the changing number of active
cores, increases or decreases the variance of the resource
consumption.

Figure 14 shows DroidMonitor’s resource consumption on
a Nexus 7 while playing Hill Climb Racing [11], a top free
Android game. DroidMonitor is unaffected by the game and
maintains its target consumption.

D. Network Monitoring

Our network monitor relied on Tcpdump [10] to collect
packet traces of the applications running. The CPU usage of
Tcpdump was found to be negligible, unless the device is



Fig. 8. PI Controller: T = 30, K = 100, Browsing the Internet

Fig. 9. PI Controller: T = 30, K = Dynamic, Browsing the Internet

under extreme network load. The highest resource consump-
tion issue occurred while writing the packets gathered to a
file. This issue was dealt with in a method similar to other
monitors within DroidMonitor, by controlling the ON and
OFF periods of the monitor. While Tcpdump was constantly
active, the act of writing the gathered packets to a file only
took place within the feedback monitor’s allotted on period.
Tcpdump’s output is captured in a buffer and this buffer is
emptied by DroidMonitor, if the buffer is full and no data can
be written to it, then the information is dropped. This allows
for Droidmonitor to catch only a percentage of the captured
packets that is consistent with the amount of resources the
monitor is allowed to use. Figure 15 shows DroidMonitor’s
CPU consumption while gathering network packets during
a heavy Internet browsing session. DroidMonitor lowers its
own CPU usage to accommodate Tcpdump’s usage in order
to maintain the set target consumption.

E. Testing DroidMonitor with Other Applications

Along with DroidMonitor two other applications were cre-
ated in order to facilitate a way to test DroidMonitor.

The first of these applications is called CPU Consumer.
CPU Consumer was created in order to test how DroidMon-
itor reacts to other applications consuming large amounts of
resources in a controlled manner. The application oscillates
between high CPU usage and low CPU usage, at first the
OFF period of CPU Consumer starts very quickly and slowly
increases to longer and longer OFF intervals. This allows
for standardized testing of the controllers response to other
applications running asynchronously.

The second application for testing is a very simple game
that involves ’popping’ falling balls with your finger. Two
versions of this game were created, one version is simply
the game, and the second version is infected with a Trojan
horse. The Trojan horse simply gathers data of the users’
current location and sends the information to a remote server.
While not directly related to what was being tested with
DroidMonitor, the addition to the game was made to see if

Fig. 10. PI Controller: T = 30, K = Dynamic, CPU Consumer

Fig. 11. PID Controller: P = 1, I = 1, D = 10, T = 30

a difference could be found among the two different versions
of an application that could be detected with the two monitors.
The infected version of the application was modeled after
Android.Tapsnake, a malicious geo-locating application found
in the wild [12]. More research needs to be done on analyzing
the data gathered, but a small test can show that the concept
of monitoring an Android device has validity as a solution to
detecting malicious applications on the device.

While the main purpose of DroidMonitor was to create an
application to allow users to monitor and collect data on their
device, we were interested in DroidMonitors ability to detect
malicious applications on the device. After running both clean
and infected versions of Poppers on identical emulators while
simultaneously gathering information with DroidMonitor it
was clear that a difference could be seen between the two
different versions. Not only were the hashes different, but the
resource consumption was noticeably affected as well. More
tests need to be carried out, but it is our hypothesis that
peer pressure could be used to detect infected applications
on mobile devices in a cloud network.

V. CONCLUSIONS

In this paper, we presented a control theoretic adaptive
monitoring tool for the Android platform that we termed
DroidMonitor. DroidMonitor is able to effectively monitor an
Android device while being aware of the limited resources
of the device. Monitors can easily be added to DroidMonitor
and can be controlled by a number of controllers. We have
investigated a number of traditional controllers and investi-
gated their performance in terms of their stability and response
behavior under different stimuli. We have found that the
dynamic PI controller achieved our best performance results.
We have experienced some difficulty tuning the weights of the
PID controller. Our results are validated through emulation in
virtual devices and implementation on the Nexus 7 tablet.



Fig. 12. DroidMonitor Interface

Fig. 13. PI Controller: T = 15, K = Dynamic

ACKNOWLEDGMENTS

This research is funded by a grant from the Air Force
Research Laboratory and by NSF award #1149397.

REFERENCES

[1] “Malicious mobile threats report 2010/2011,” http://
www.juniper.net/us/en/loca/pdf/whitepapers/
2000415-en.pdf, 2011.

[2] “Os monitor,” available from https://play.google.com/
store, August 2011.

[3] “Android assistant,” available from https://play.google.com/
store, September 2012.

[4] “Advanced task killer,” available from https://play.google.
com/store, July 2011.

[5] Xuxian Jiang Yajin Zhou, “Dissecting android malware: Characteriza-
tion and evolution,” in Proceedings of the 33rd IEEE Symposium on
Security and Privacy, San Francisco, California, May 2012.

[6] Wu Zhou, Yajin Zhou, Xuxian Jiang and Peng Ning, “DroidMOSS:
Detecting Repackaged Smartphone Applications in Third-Party Android
Marketplaces,” in Proceedings of the 2nd ACM Conference on Data and
Application Security and Privacy, San Antonio, Texas, Feburary 2012.

[7] Iker Burguera, Urko Zurutuza and Simin Nadjm-Tehrani, “Crowdroid:
Behavior-based Malware Detection System for Android,” in Proceeding
SPSM ’11 Proceedings of the 1st ACM workshop on Security and
Privacy in Smartphones and Mobile devices, New York, New York,
October 2011.

[8] William Enck, Peter Gilbert, Byung-gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel and Anmol N. Sheth, “TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones,” in Proceeding of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Vancouver, October 2010.

Fig. 14. PI Controller: T = 15, K = Dynamic, Browsing the Internet

Fig. 15. PI Controller: T = 40, K = Dynamic, Browsing the Internet

[9] William Enck, Machigar Ongtang and Patrick McDaniel, “On
Lightweight Mobile Phone Application Certification,” in Proceedings of
the 16th ACM conference on Computer and communications security,
Chicago, Illinois, November 2009.

[10] “Tcpdump & libpcap public repository,” http://www.tcpdump.
org/.

[11] “Hill climb racing,” available from https://play.google.com/
store, November 2012.

[12] “Android.tapsnake,” http://www.symantec.com/security_
response/writeup.jsp?docid=2010-081214-2657-99,
August 2010.


