
Pinball Attacks: Exploiting Channel Allocation in
Wireless Networks

Janiece Kelly
Dept. of Computer Science

Texas State University
jek44@txstate.edu

Mina Guirguis
Dept. of Computer Science

Texas State University
msg@txstate.edu

George Atia
Dept. of Electrical Engineering

and Computer Science
University of Central Florida
george.atia@ucf.edu

Abstract—As wireless networks continue to grow rapidly
denser with the introduction of various wireless-enabled elements,
signal interference coupled with limited radio spectrum availabil-
ity emerges as a significant hindrance to network performance.
In order to retain high network throughput, channels must
be strategically assigned to nodes in a way that minimizes
signal overlap between neighboring nodes. Current static channel
assignment techniques are intolerant of network variations and
growth, but flexible dynamic techniques are becoming more
feasible with the introduction of software defined networks and
network function virtualization. As network maintenance tasks
are increasingly handled by software, however, network stability
becomes susceptible to malicious behavior. In this paper, we adopt
an attacker’s prespective and expose stealthy attacks – which
we coin “pinball” Attacks – that aim to trigger unnecessary
channel switching behavior in a network and increase signal
interference between neighboring nodes. We develop a Markov
Decision Process (MDP) framework and investigate suboptimal
attack policies applied to a number of real-world topologies. We
derive attack policies as approximate MDP solutions due to the
exponentially large state space. Our results show that pinball
attack outperforms other attack policies such as Denial of Service,
Random, and other heuristic policies.

I. INTRODUCTION

Motivation: Wireless networks are experiencing an explosive
growth rate owing to the continuous integration of various
wireless-enabled devices, improvements in network capabili-
ties and under-represented popularity of web-based communi-
cation that supports mobility. Accompanying this major growth
in wireless networks is a dramatic shift in the data traffic
profile. Bandwidth-thirsty applications such as video streaming
and various cloud services increase the need for faster, higher
capacity networks. Mobile traffic grew 81 percent in 2013 and
is expected to grow an additional 11-fold by 2018 [1]. As more
devices and heavier traffic push the boundaries of network
capabilities, it becomes crucial to develop automated methods
to monitor, adapt and improve the performance of large scale
networks. Due to the direct control such methods would have
over wireless networks and the immediate effect any changes
would have on network stability, examining their susceptibility
to malicious behaviors is very important.
Challenges: Signal interference that is caused by the reuse
of overlapping channels in the radio spectrum is one of the
main challenges facing wireless networks due to the limited
spectrum. Signal interference can be classified into two types:
(1) Co-channel interference (CCI), also called crosstalk, occurs
when nodes within each others interference radius are using
the same channel. CCI increases network delay due to medium

contention overhead, as nodes must wait until the channel
is clear before transmitting data, and (2) Adjacent channel
interference (ACI) occurs when nodes within each others
interference radius are using adjacent overlapping channels.
ACI causes destructive interference, since any signals sent by
one node will be viewed as noise by nearby nodes on adjacent
overlapping channels, leading to packet loss and poor quality
of service to the network users.

The problem of signal interference can be at least partially
alleviated through channel assignment techniques (e.g., Static
Channel Assignment (SCA) and Dynamic Channel Assign-
ment (DCA)), which aim to carefully allocate channels to
nodes in such a way that adjacent nodes use non-overlapping
channels. SCA methods are inefficient for networks with
frequent variations, whereas DCA methods are more flexible
but require nodes to be interference-aware and able to switch
channels quickly. Typically, this is done through Software
Defined Networks (SDNs) and Network Function virtualization
(NFV) leading to more stable, highly efficient network.

Although abstracting time-consuming network tasks to
software does make the SDNs more reactive, this self-resolving
behavior also makes the network susceptible to attacks aimed
at hijacking and manipulating network functions. An attacker
can easily trigger abnormal switching behavior by inducing a
conflicting channel causing the victim to switch (and possibly
triggering a cascading effect). This type of channel switch
attack has been the focus of some previous studies [2]. In
currently used switching procedures, an access point must
perform a channel availability check for some amount of
time prior to switching, then broadcast an 802.11h channel
switch announcement, and finally switch channels. This chan-
nel switch process takes 224 microseconds in hardware, but
at Layer 2 or 3 it can take more than 320ms [3], [4]. The
access points’ clients lose connection during the switch and
must reconnect, so unnecessary switching can severely impair
service. Excessive channel switching based on nonexistent
conflicts adds to network latency and could potentially prevent
the network from ever resolving. In addition to frequent
switching, an attacker could further impair the network by
intelligently tailoring an attack to trick nodes into switching
behavior that actually increases the number of channel conflicts
and worsens signal interference.
Contributions: While abstracting network functions – such
as dynamic channel switching – from hardware to software
can reduce interference in SDNs, the security and integrity
of the network, however, can be jeopardized by a malicious
attacker. In this paper, we make the following contributions:

(1) We identify pinball attacks that target dynamic channel
assignment methods with the goal to induce conflicting chan-
nels to lure the network into a cascading channel-switching
behavior that increases network instability1. (2) We develop a
Markov Decision Process (MDP) framework through which an
attacker identifies which node to attack and what channel to
induce to maximize the damage inflicted subject to an attack
cost metric. This is done through an adversary model that is
restricted for practical purposes. (3) We apply approximate
dynamic programming methods [5] to identify efficient attack
policies. Through varying the attack cost metric, we were able
to uncover classes of pinball attacks that adjust their decisions
based on risk of exposure. (4) We crafted a set of features
that provides effective approximation for a high-dimensional
problem that would be computationally prohibitive otherwise.
(5) The attacks identified, albeit suboptimal, are shown to
outperform other attack policies such as random, Denial of
Service, etc..., and thus are appealing to attackers.

The rest of the paper is organized as follows. Section II
puts our work in context with other related work. In Section
III, we present our Markov Decision Process model along
with our proposed approximate solution methods to obtain
optimal/suboptimal attack policies. In Section IV, we evaluate
the performance of our exposed attack policies against other
attack heuristics. We conclude the paper in Section V.

II. RELATED WORK

The work in this paper relates to two areas of research:
channel assignment mechanisms and their security.
Channel assignment mechanisms: Channels can be assigned
statically (SCA), dynamically (DCA) or using a hybrid strat-
egy. The authors in [6] propose a modified SCA algorithm that
uses node placement information and the signal-to-interference
ratio of the network to design a channel assignment algorithm.
The work in [7] proposes an edge-coloring, distributed DCA
algorithm for an 802.11b/g network that aims to eliminate both
primary interference caused by using one channel to receive
signals from two different nodes and secondary interference
caused by unintentionally receiving a broadcast signal from
a nearby node. Channel assignment can also be casted as
an optimization problem. The authors in [8] and [9] use
Integer Programming (IP) to obtain a channel reuse pattern
based on co-channel interference constraints. As an alternative
to centralized assignment methods, [10] considers channel
assignment as a constraint satisfaction problem (CSP) and
proposes a distributed DCA model. Through a channel state
table and applying channel overlap constraints, the CSP is
solved efficiently with low computation time.
Security: Channel assignment algorithms have been the sub-
ject of various control-channel attacks [11]–[13] and defense
mechanisms [14], [15]. In [11], three types of vulnerabilities in
channel assignment algorithms that capitalize on attacking the
highest loaded channels are exposed. The attacks, however,
were not studied from an optimization-theoretic standpoint.
The work in [13] shows a number of vulnerabilities in MAC
protocols due to selfish cognitive radio users that seek to
gain more than their fair share of resources. Three types of

1The attack resembles the pinball arcade game in which the player strikes
different targets with a ball using flippers and tries to keep the ball in play by
having each target induces a cascading effect of striking other targets.

attacks against channel assignment mechanisms are illustrated
in [12]. The attacks aim to create utilization-based conflicts,
link breakage and Denial of Data attacks. Again, the attacks
exposed were not optimized. The attacks exposed above are
different from this work since they do not consider an attacker
who’s decisions are based on a Markov Decision Process
(MDP) problem, aiming to maximize their net reward (i.e.,
difference between damage inflicted and attack cost incurred).

III. SYSTEM MODEL AND FORMULATION

The network topologies used in this paper represent a static
wireless network where each node is a wireless access point
(AP) equipped with one single channel radio and each edge
connects access points within each other’s interference radius.

An N -node network is represented by a graph, G = (V, E),
where V = {vi}, i = 1, . . . , N , is the vertex set of APs, and
E = {eij}, i, j ∈ {1, . . . , N}, is the edge set. An edge eij
between the vertices vi and vj signifies that both vertices are
within each other’s interference radius. We let ck denote a 1×
N vector containing the channels assigned to each AP at time
k, with entries ck(i) for vertex vi, i = 1, . . . , N . The network
topology is represented by a standard N×N adjacency matrix,
where any APs connected by an edge cannot use the same or
adjacent channels without experiencing interference. Channels
used in the assignment vector ck are limited to the set of all
usable channels C in a country as set by country regulations.
In the United States there are 11 usable channels in the 2.4
GHz band for an 802.11n network, so in our system ck(i) ∈
C = {1, 2, . . . , 11}.

A. Channel Assignment Technique

We present a discrete-time, interference-aware dynamic
channel assignment technique to reduce channel conflicts in
a previously deployed network topology. We assume each AP
in the network is aware of all usable channels C and is able
to query neighboring APs to determine which channels are
currently in use. We let N (v) denote the neighbors of node
v ∈ V . Hence,

N (v) = {u ∈ V : euv ∈ E}.

We also define δ(v), v ∈ V, as the degree of node v, i.e., the
cardinality |N (v)| of the neighboring set.

In the event of a channel conflict with one or more
neighbors, an AP can determine which channels are available
for it to switch to so that it is no longer in conflict with
its neighbors. An available channel is one that is in the set
of usable channels but not in any of the interference sets of
the AP’s neighbors. An interference set includes all channels
that overlap with the assigned channel based on a channel
separation constant. For an AP, v ∈ V , on channel c ∈ C,
the AP’s interference set, denoted I(v) consists of adjacent
channels, i.e.,

I(v) , {max(c−∆, 1), . . . ,c− 1, c, c+ 1,

. . . ,min(c+ ∆, 11)} (1)

where c is the AP’s local channel and ∆ is the channel
separation constant. For example, for a separation value of
2, a channel c will overlap with channels c − 2, c − 1, c + 1
and c+ 2. For all test cases examined in this paper we used a

channel separation constant ∆ = 2. The set of channels an AP
v can freely switch to is the set difference of usable channels
and the union of the interference sets of all its neighbors and
is denoted A(v).

A(v) = C \ B(v), (2)

where, B(v) is the set of channels that are unavailable to v:

B(v) ,
⋃

u∈N (v)

I(u). (3)

The number of channel conflicts x(vi) experienced by an
AP, vi, is the number of its neighbors which have interference
sets that contain the AP’s local channel c(i), i.e.,

x(vi) = |{u ∈ N (vi)|c(i) ∈ I(u)}| . (4)

We also define F as the set of nodes with conflicts in the
network, namely,

F = {v ∈ V : x(v) > 0}. (5)

During channel switching, a conflicted AP is selected
from F at random and allowed to switch channels. The AP
prepares to switch channels by first computing its set of
available channels. If more than one channel is available, the
AP switches to an available channel at random. If no channels
are available, the AP switches to an unavailable channel that
is least conflicted, i.e., appears in the smallest number of
neighboring interference sets. If more than one channel is
“least conflicted” the AP selects one of them at random. The
channel switching procedure for an AP is outlined as follows:

AP = v, where v picked at random from F (AP to switch)
Find N (AP), neighbors of AP
Find B(AP) =

⋃
u∈N (AP) I(u) (Unavailable channels)

Find A(AP) = C \ B(AP) (Available channels)
if A(AP) = ∅
Pick least interfering c ∈ B(AP)

else
Pick random c ∈ A(AP)

B. Pinball Attack

An attacker mounting a pinball attack aims to degrade
the network’s performance by inducing unnecessary channel
switching among the nodes causing network instabilities and
overhead delays. Since each AP relies on the state of its neigh-
bors to make switching decisions, an attacker can travel to an
AP in the network (e.g. by driving to and sitting outside a home
in a neighborhood) and broadcast a conflicting channel close to
the victim’s AP. Neighboring APs aim to resolve the induced
conflict through switching to other less-interfering channels, if
they are available. Pinball attacks resemble hijacking attacks in
which an attacker hijacks an AP and switches its channel to a
one that conflicts with neighboring channels. While we do not
explicitly consider such hijacking attacks since it is easier to
broadcast a channel than to hijack an AP, their attack behavior
and outcomes would be similar to pinball attacks.

Launching an attack does not guarantee the system will
enter a worse state. One AP may switch channels per state
transition, so even if an attacker creates a fake conflict, an

AP involved in a real conflict elsewhere in the network may
be selected to switch instead of one of the APs affected
by the attack. Additionally, if an affected AP is selected to
switch it will not necessarily switch to a conflicting channel.
For this reason, the attacker must weigh the potential benefit
of successfully causing damage against the definite cost of
launching an attack. We consider the attack cost to be risk of
exposure, which means attack cost scales with network density
as measured by node degree. Attacking an AP with a high node
degree could possibly damage a large number of surrounding
APs, but an attacker in a densely populated area of the network
also runs a higher risk of being caught.

C. MDP Formulation

To maximize the damage caused in comparison to the costs
incurred, the attacker must programmatically find a damaging
attack pattern by maximizing (resp. minimizing) a reward
(resp. cost) function. When attacking a victim, a single attacker
must travel to be within an attacking radius from the desired
victim AP’s location in order to launch the attack. The possible
victims available to the attacker at each step depend on the
attacker’s location, so the travel distance is the limiting factor
in possible victims. We use the hop distance between APs to
represent the travel distance for the attacker.

In a pinball attack, an attacker has two possible course of
actions: (1) do nothing and (2) broadcast channel c ∈ C at
the location of an AP to make it appear as though the AP is
using that channel. In this system model, an attacker knows
the entire network state including the topology and currently
assigned channels, and can compute additional information
such as node degree and the hop distance between any two
APs. For an N -node network, the state of the system sk at
time k is represented by the tuple

sk = (ck , nk, bk),

where ck is the 1×N vector containing the channels assigned
to each AP at time k as defined earlier, nk is the AP most
recently attacked (if any), and bk is the number of steps since
the last attack. bk is part of the state, since it is assumed the
attacker can increase its attack radius depending on how many
consecutive no-attack actions were used. Also, let uk = [v, c]
denote the action of the attacker at time k, which consists of
a victim node v and an attack channel c ∈ I(u), for some
u ∈ N (v) ∪ {v}. The system transitions from sk to a new
state sk+1 when an AP switches channels, thus modifying the
assignment vector. The transition probability is p(sk+1|sk, uk).

As the system transitions from sk to sk+1, the attacker
collects an immediate reward r(sk, uk, sk+1), which is the sum
of conflicts in the reached state sk+1,

r(sk, uk, sk+1) =

N∑
i=1

xk+1(vi)

where the sum is over all the nodes in the graph and xk+1(vi)
is the number of channel conflicts at node vi at time k + 1
as defined in (4). The cost y(sk, uk) of an attack action uk =
[v, c] is

y(sk, uk) =

{
h · d(nk, v) + δ(v) if d(nk, v) ≤ bk + 1

∞ otherwise
(6)

where, d(nk, v) is distance between the last attacked AP, nk,
and the victim node v, h is a constant cost per unit distance,
and δ(v) is degree of the AP. Thus, mounting an attack incurs
a cost that takes into account the distance to the node and
risk of being discovered. The distance to the AP must be less
than or equal to the number of steps bk that have passed since
the last attack plus 1 in order to satisfy the power budget
of the attacker, which can only increase the radius of the
attack based on the time spent without attacking. The net
reward, denoted g(sk, uk, sk+1), is the difference between the
immediate reward and the cost of the attack. Hence,

g(sk, uk, sk+1) = r(sk, uk, sk+1)− y(sk, uk). (7)

The expected net reward g(sk, uk) when transitioning from
state sk to sk+1 is

g(sk, uk) =
∑
sk+1

p(sk+1|sk, uk) · g(sk, uk, sk+1).

The more conflicts an attacker causes over the transition, the
higher the path reward, which is the sum of rewards as the
system transitions along a discrete Markov chain. The reward
earned during a transition from sk to sk+1 is weighted by the
probability p(sk+1|sk, uk) of transitioning from sk to sk+1.

In order to find a favorable tradeoff between reward and
attack cost, the attacker must identify a sequence of attack
policies π = {µ0, µ1, . . . , }, where µk : S → U , is the attack
policy at time k, i.e., a mapping from the state space S to
the control space U . An attack policy describes the sequence
of actions the attacker should take over some time frame
for all sequences of system states. An optimal policy should
optimize the tradeoff between the reward and attack cost so the
attacker can achieve maximum damage to the system at little
expense to the attacker. Since this is a discrete time system
with observable state, the attacker can solve a Markov Decision
Problem (MDP) to select an attack policy. Since this channel
switching model has an infinite horizon, we use a discount
factor 0 < γ < 1 to weight the potential rewards and bias the
attacker towards closer rewards. In particular, let

Jπ(s0) =

∞∑
k=0

γk E [g(sk, µk(sk), sk+1)] . (8)

where s0 is the initial state, and E[.] denotes the expectation
w.r.t. the future states, which are unknown at the times of
the decisions. The attacker aims to solve for the optimal
policy π∗ = {µ∗0, µ∗1, . . .} that maximizes the total discounted
expected reward, i.e., solve the optimization problem

max
π

Jπ(s0). (9)

The optimal solution Jπ∗(s0) is the optimal value function
J∗(s0).

D. Suboptimal Attack Policy

We have modeled our system as an MDP in which an
attacker uses sequential decision-making to navigate discrete
system states by defined state transitions. The optimal solution
to this problem is a time-invariant policy µ∗ [16] defining the
optimal action for the attacker to take at each state, and can
be obtained as a solution to the Bellman equation,

J(sk) = max
uk∈U(sk)

{g(sk, uk) + γ E[J(sk+1)]} (10)

where U(sk) denotes the set of allowable controls given the
current state sk.

In order to obtain the optimal attack policy µ∗, the attacker
would need to solve a set of linear equations to evaluate the
expected reward Jµ of a policy µ

Jµ(s) =
∑
s′

p(s′|s, µ(s)) · [g(s, µ(s), s′) + γJµ(s′)], (11)

for s = 1, . . . ,S. The summation above is over all states s′
reachable from s. Then, the attacker would iteratively improve
the policy by solving

µ̄(s) = arg max
u∈U(s)

∑
s′

p(s′|s, a) · [g(s, u, s′) + γJµ(s′)],

(12)

and then evaluate Jµ̄ as in (11). The attacker iterates over
policy evaluation (11) and policy improvement (12) until
convergence to the optimal policy that maximizes the reward2.

The optimal policy obtained as an exact solution describes
the optimal action the attacker should choose given any state.
For a very small network, an attacker could possibly enumerate
every state and select actions that lead to states with the best
reward, but since this paper focuses on a state space similar
to a real-world network with N nodes and |C| channels, the
exact solution is intractable. Even if the maximum number of
successive no-attack actions is restricted to K, the state space
would be of size |C|N × N ×K, which grows exponentially
with N . Thus, it is computationally intractable for the attacker
to evaluate the expected state reward for every possible state
and action combination.

Instead, we develop suboptimal pinball attack policies
using Approximate Policy Iteration (API) based on estimations
of the state reward. Rather than examining every possible state,
API uses representative states and features. Representative
states are used as training states during policy improvement,
so they must be selected in such a way that they capture most
possibilities for the system and give wide coverage of useful
regions in the state space. We selected representative states
containing a spectrum of possible conflict states, from minimal
conflicts or a conflict-free assignment to maximum conflicts
with all APs assigned the same channel. All APs may start on
any default channel, so an experimental run may begin with
any number of conflicts. The minimal size of a single conflict
is 2 and the maximal size is maxv∈V δ(v), the largest degree
of an AP in the network. Since graph-coloring is an NP hard
problem, we did not attempt to generate a guaranteed minimal
conflict state and instead approximated it using a greedy graph
coloring solution.

From the representative states, a set of representative
features is extracted that captures the characteristics of the
state and can be weighted and used to estimate its value.
In a pinball attack, the attacker evaluates an approximated
parametric expected state rewards using a weight vector r

J̃r(s) =

M∑
j=1

rjφj(s) (13)

2Convergence is guaranteed in this case since the transformation defined
through policy iteration is a contraction mapping, hence the iterations converge
to a unique fixed point.

where M is the total number of features, φj(s) denotes the
j-th feature for state s, and rj , j = 1, . . . ,M (the j-th
entry of vector r) the weight of the j-th feature. Instead
of iteratively evaluating and improving the policy until the
iteration loop naturally terminates, API uses Monte Carlo
simulations to evaluate the feature weights over a number of
independent trajectories from these representative states. More
specifically, the weights vector r is obtained as a solution to
a least-squares problem minimizing the square error between
the empirical average reward of these trajectories and the
parametric approximation J̃r in (13). Then, to compute an
improved action for state s, we solve

µ̃(s) = arg max
u

∑
s′

p(s′|s, u)
[
g(s, u, s′) + γ J̃r(s

′)
]

(14)

where the value function is replaced by the approximate
parametric form J̃r.

E. Feature Selection

Pinball attacks rely on a set of representative features to
capture the characteristics of each state and approximate the
state value. We used 13 features: number of APs in conflict
with one or more neighbors in the current state, ratio of
maximum number of APs involved the same conflict to degree
of the network graph, average number of APs involved in
the same conflict, average number of channels unavailable to
an AP, average conflict size of the highest degree AP(s), last
attacked AP, steps since last attack, flag for whether attacker is
at most complex node (MCN), i.e., node with highest degree,
degree of last attacked location, conflicts at last attacked
location, available channels of last attacked location, degree
of largest neighbor, and fraction of APs within hop distance.

IV. PERFORMANCE EVALUATION

A. Model Instantiation

During policy iteration we tested a range of attack costs
and values of γ, a channel separation constant of 2 and 35
representative states. We tested a range of network topologies
selected to reflect real world topologies. For all topologies we
considered the interference radius to be 1, meaning an AP only
interferes with other APs located one hop away. Each topology
was tested for 20 policy iterations and each iteration simulated
20 trajectories of 50 steps. A random attack was used as a
rollout policy. The Monte Carlo simulations were written in
MATLAB using the parallel computing toolbox and run using
20 cores on a research cluster with Univa Grid engine.

Fig. 1: 8-node topology with a range of node degrees.

B. Attack Comparison

To study the potency of pinball attacks, we compare
them to other attack policies by generating another set of

representative states and computing the average reward gained
under each attack. We compare between the following attack
policies: (1) No attack; (2) MCN (most complex node); (3)
Random (rand); (4) DoS (Denial of service); (5) Myopic; (6)
Pinball (PB). In a no-attack policy, the attacker takes no action
at every step. This is the lowest cost policy and serves as a
baseline. Since a network may start with conflicts and resolves
over time, the attacker may obtain a non-zero path reward
without exerting any effort. In a MCN attack, the attacker
takes a greedy approach and targets the victim AP with the
largest node degree (if multiples exist, the attacker picks the
one with the shortest hop distance from its current location).
Once at the victim AP, the attacker will ignore any costs
incurred and constantly attack at every step with a conflicting
channel. In a random attack, the attacker selects any random
reachable AP and chooses at random whether to broadcast a
channel or do nothing. Since the random policy allows the
attacker to withhold attacks at random, the attacker may miss
critical attack opportunities and allow the system to resolve.
In a DoS attack, the attacker selects any random reachable AP
and broadcasts an interfering channel at every step. However,
since the victim APs are picked at random the attacker may
be expending energy needlessly when there are better victims
to attack. In a myopic attack, the attacker selects a victim AP
with the highest immediate reward (i.e., does not consider the
next state and future rewards).

For each topology, we tested a range of scaling constant
values h to observe the attacker’s behavior as the attack cost is
varied. As expected, the path reward under a no-attack policy
remained constant and is used as a baseline. When the attack
cost is very low, the attacker’s behavior resembles that of a
DoS attack. When the attack cost is very high, it resembles a
no-attack policy.

As the attack cost increased, the path reward of DoS and
random policies decreased, dropping well below that of no
attack for very high attack costs. For all values, even very
low attack costs, the path reward of pinball remained higher
than the path reward of DoS. The reason pinball attacks
could outperform DoS at low attack costs despite launching
the same number of attacks is because DoS attempts to
maximize damage simply by constantly attacking while pinball
maximizes damage by constantly attacking intelligently, taking
future states into account in addition to the potential immediate
reward.

Over all topologies tested, an attacker following a pinball
attack policy was able to achieve a path reward greater than
any other attack policy. Due to lack of space, we only present
the detailed results for one 8-node topology (shown in Fig. 1).

In this case, a single attacker following a pinball attack
policy achieved an average path reward 1.5 times greater than
a DoS attack (see Fig. 2a). Nearly all myopic attacks were
aimed at APs 4 and 5. Under a pinball attack policy, the
attacker was more active in the denser side of the network,
focusing attacks on APs 4, 5 and 6 as shown in Fig. 2b.
The pinball attack approach is smarter because although AP
4 and 6 have the same node degree, AP 6 has more complex
neighbors, one of which is the most complex AP in the whole
network. Rather than constantly attacking AP 5, the most
complex AP, directly by broadcasting the same channel at
AP 5, the attacker often targeted lower cost neighbors and
broadcasted a channel that overlapped with both AP 5 and

(a) Average path reward for various attack
policies with the 8-node topology.

(b) Histogram of victim selection for various
attack policies with the 8-node topology.

(c) Total conflicts seen over 50 steps for
various attack policies and costs.

Fig. 2: Results from 8-node topology.

other surrounding APs, increasing the potential number of
conflicts. The pinball attack outperformed myopic, showing
that it is beneficial for an attacker to make decisions based
on the features of a state. Although the pinball attack policy
was not always able to prevent the system from resolving, it
was always able to continually reintroduce conflicts into the
resolved system and, in some cases, create even more conflicts
than the system originally had. In addition to overall path
reward, policy performance can also be evaluated in terms
of the total conflicts, number of channel switches, or number
of steps until the system resolves. For both the number of
channel switches and total conflicts observed in the system
at high attack costs, pinball attack causes fewer conflicts and
switches because the attacker is much more conservative about
launching attacks as illustrated in Fig. 2c. Even though fewer
conflicts are created, the overall path reward for pinball attack
is still higher because the attacker is not constantly incurring
massive penalties.

In a 6-node ring toplogy, a pinball attack achieved an
average path reward 2.7 times greater than DoS and in a 7-
node tree topology, a pinball attack achieved 6.3 times greater
average reward path than DoS. These results are not presented
in detail here due to lack of space.

V. CONCLUSION

In this paper, we exposed pinball attacks that target wireless
networks employing dynamic channel switching methods. We
have shown that optimized pinball attacks can significantly
impact the stability of the network by introducing unnecessary
channel switching between network nodes in a resolved system
and prolonging convergence to a non-conflicting sate. Using
an MDP formulation, an attacker can solve an optimization
problem to identify the most vulnerable nodes to attack, given
different attack costs. Through approximate policy iteration,
the attacker can estimate the value of being in a state using a
set of features and can obtain an optimal/suboptimal attack
policies. Through various topologies that resemble realistic
real-world settings, we have shown that pinball attacks can
outperform other attack policies such as Denial of Service,
random and even other heuristics that may seem appealing
such as the most complex node. Furthermore, pinball attacks
can adapt their aggressiveness based on the attack, enabling
us to identify classes of attacks based on their exposure risk.

ACKNOWLEDGEMENT

This work was supported in part by NSF awards CNS-
1149397, CNS-1156712, CCF-1320547 and CCF-1552497.

REFERENCES

[1] Cisco, “Global mobile data traffic forecast update, 2014-
2018.” [Online]. Available: http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/white paper
c11-520862.html

[2] B. Konings, F. Schaub, F. Kargl, and S. Dietzel, “Channel Switch and
Quiet Attack: New DoS Attacks Exploiting the 802.11 Standard,” in
LCN, 2009.

[3] D. Murray, M. Dixon, and T. Koziniec, “Scanning Delays in 802.11
Networks,” in NGMAST, 2007.

[4] “Part 11: Wireless lan medium access control (mac) and physical layer
(phy) specifications,” IEEE-SA Standards Board, 2003.

[5] D. P. Bertsekas, “Approximate policy iteration: A survey and some new
methods,” Journal of Control Theory and Applications, 2011.

[6] M. Haidar, R. Ghimire, H. Al-Rizzo, R. Akl, and Y. Chan, “Channel
Assignment in an IEEE 802.11 WLAN based on Signal-to-Interference
Ratio,” in CCECE, 2008.

[7] R. Akl and A. Arepally, “Dynamic Channel Assignment in IEEE 802.11
Networks,” in IEEE PORTABLE, 2007.

[8] K. Daniels, K. Chandra, S. Liu, and S. Widhani, “Dynamic channel as-
signment with cumulative co-channel interference,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 8, no. 4, 2004.

[9] W. El-Hajj and H. Alazemi, “Optimal Frequency Assignment for
IEEE 802.11 Wireless Networks,” Wireless communications and mobile
computing, vol. 9, no. 1, 2009.

[10] S.-Y. Lin, S.-C. Horng, and T.-Y. Chan, “Interference avoidance dis-
tributed dynamic channel assignment for cellular network,” in ICSSE.
IEEE, 2011.

[11] A. Naveed and S. Kanhere, “Security vulnerabilities in channel assign-
ment of multi-radio multi-channel wireless mesh networks,” in IEEE
Global Telecommunications Conference. IEEE, 2006, pp. 1–5.

[12] Q. Gu, M. Yu, W. Zang, and P. Liu, “Lightweight Attacks Against
Channel Assignment Protocols in MIMC Wireless Networks,” in IEEE
ICC, 2011.

[13] Y. Zhang and L. Lazos, “Vulnerabilities of Cognitive Radio MAC
Protocols and Countermeasures,” IEEE Networks, vol. 27, no. 3, 2013.

[14] L. Lazos, S. Liu, and M. Krunz, “Mitigating Control-channel Jamming
Attacks in Multi-channel Ad hoc Networks,” in WiSec, 2009.

[15] S. Liu, L. Lazos, and M. Krunz, “Thwarting Control-channel Jamming
Attacks from Inside Jammers,” IEEE Transactions on Mobile Comput-
ing, vol. 11, no. 9, 2012.

[16] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 2014.

