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Abstract—Dynamic channel assignment algorithms allow wire-
less nodes to select their communication channels based on the
state of the network to reduce interference between the nodes
and improve the overall network performance. They have been
shown to outperform static channel assignment policies and thus
are playing a critical role in Software Defined Networks (SDNs).
In this paper, we examine the security of dynamic channel
assignment algorithms against stealthy decoy attacks in which
the attacker induces channel conflicts on a selective set of edges.
When an edge is attacked, the victim nodes search for and switch
to a different channel to use, possibly causing their neighbors to
switch as well. As the effect of the attack propagates through the
network, the performance of the network is severely degraded.
The decisions of which edges to attack and what channels to use in
creating conflicts are the solutions of various Markov Decision
Processes (MDP) problems in which the attacker’s goal is to
maximize the number of conflicts in the network subject to an
attack cost. We apply approximate policy iteration methods to
identify optimal and suboptimal attack policies. Our results show
that our exposed attack policy outperforms other attack policies
and adapts to the cost of the attack.

I. INTRODUCTION

Wireless communication systems face two major challenges.
On one hand, there is a massive growth in the amount of traffic
that is transmitted over wireless links due to the proliferation
of wireless-enabled mobile devices along with the emergence
of many new applications that are bandwidth-thirsty (e.g.,
streaming). On the other hand, the available bandwidth and
frequency allocations are not growing as fast since they
are tightly regulated by the FCC. This has prompted much
research in areas such as Software Defined Networks [1] and
femtocells [2] to optimize the usage of the frequency spectrum
among devices. Through empowering wireless nodes to select
appropriate frequency channels and adapt their choice (as well
as their transmission ranges), the overall performance can be
significantly improved.

To enable communication between multiple nodes in a net-
work, neighboring nodes must use the same frequency channel
to communicate. Due to the limited availability of wireless
channels (e.g., only 11 channels are allowed in the US over
the 802.11 specifications, [3]), nodes must reuse these channels
over their interfaces. Ideally, the channel reuse policy should
avoid assigning overlapping channels to different interfaces for
a given node to minimize interference. In particular, there are
two types of interference between channels:

1) Co-channel interference (CCI): CCI occurs if two radio
nodes (interfaces) are within each other interference
radius and use the same frequency channel. This causes
extra delay due to medium contention since the trans-
mitting node must wait until the medium is idle before
it can try to send its packets.

2) Adjacent channel interference (ACI): ACI occurs if two
radio nodes (interfaces) are within each other interfer-
ence radius and use two adjacent frequency channels.
This type of interference introduces bit errors as the
signal of each node would be perceived as noise to the
other adjacent node. Thus, channel separation should be
used to prevent ACI.

Wireless interference (ACI and CCI) causes multiple re-
transmissions of packets with an even higher associated cost
of retransmission timeouts that severely reduces the overall
throughput. This has triggered a lot of work on smart channel
assignment methods that can reduce the overall interference
and improve the network performance. In these methods, the
frequency channels are assigned to nodes in a non-overlapping
non-interfering manner. Frequency channel assignment meth-
ods can be either static or dynamic. Static channel assignment
(SCA) assigns the frequency channels to each radio node
prior to network deployment. SCA suits networks with small
variations and lower degree of mobility. In dynamic channel
assignment (DCA), nodes dynamically select and adapt their
selection over time based on the network state and sensed
assignment of their neighbors. DCA requires nodes to be
able to switch channels efficiently. Software Defined networks
(SDNs) [1] are capable of handling such tasks at higher
layers. SDNs can carry channel switching to be performed
in software, hence, they are suitable for interference-aware
dynamic channel assignments.

The dynamic nature of switching between channels in DCA
methods opens a back door for stealthy attacks to be mounted.
In this paper, we identify classes of stealthy attacks that exploit
the self-resolving nature of such methods making the network
perpetually switching over the channels used. In a typical
802.11 network, a node should perform an availability check
before switching to a new frequency channel which may take
up to 20 msec, [4]. Thus, we consider a stealthy attacker that
can induce interference on a particular link in the network



(by simply transmitting on the same or an adjacent channel)
triggering the end nodes of this link to switch to another
channel, hence, they cause their neighbors to potentially switch
their channels as well. With the proper choice of the victim
edge and which channel to induce, the attacker can exploit the
topology of the network to cause a cascading switching be-
havior that propagates through the network causing inefficient
operation and instability in the network. To identify optimal
and suboptimal attack policies, the attacker solves Markov
Decision Processes (MDP) problems in which the decision
to attack a link is based on the expected damage inflicted (in
terms of interference) and on a notion of attack cost.

The rest of the paper is organized as follows. Section II
presents related work. Our system model and proposed policy
are described in Section III. Results are presented in Section
IV, and we conclude in Section V.

II. RELATED WORK

Channel Assignment (CA) is an important problem in de-
signing wireless networks. In [5], a CA algorithm in a WLAN
was proposed based on minimizing the total interference
between access points (APs). The objective is to maximize
the signal-to-interference ratio at the user level. CA can be
either static or dynamic. Static CA is generally considered as
a graph coloring problem [6]. On the other hand, the authors
in [3] designed a dynamic CA algorithm for IEEE 802.11
wireless networks that achieves minimum channel interference
between all nodes resulting in higher throughput.

Despite a large body of literature on CA algorithms of
multi-interface multi-channel (MIMC) wireless networks, the
study of security of CA protocols continues to receive more
attention, especially with the proliferation of cyber-physical
systems. The existing literature focused primarily on node
authentication [7], [8] and intrusion detection [9], [10] in
wireless mesh networks. In [11], the authors investigated
threats that can potentially break down the CA protocol of
MIMC networks reducing the network overall throughput.
Security vulnerabilities in the 802.11 standard were identified
in [12]. It was shown that a denial of service (DOS) effect
of up to one minute can be achieved with a single message
by simply forging the channel switch information [12]. Radio
interference jamming attacks on wireless networks were inves-
tigated in [13]. Moreover, several intelligent jamming attacks
were studied and analyzed in [14].

In dynamic CA, each radio interface inherits channel switch-
ing capabilities, which is a source of threat as it can be
exploited by a stealthy attacker. Since channel switching can
be modeled as a discrete-time process, knowing the structure
and the state of a certain network, an attacker can design and
optimize an attack policy to inflict the maximum damage on
the network. In this paper, we formulate the attack problem
as an optimization problem from the attacker’s standpoint to
solve for an optimal attack policy. We identify suboptimal
attack policies obtained through an approximate solution to
a Markov Decision Process (MDP) problem [15], [16], [17].

III. SYSTEM MODEL

We consider a network graph G(V,E), where V =
{vi} , i = 1, . . . , |V|, is the set of vertices with cardinality
|V|, and E = {eij} , i, j ∈ V, is the set of edges. An edge eij
represents a communication link between vertices i and j over
a certain frequency channel ceij ∈ C. Herein, we consider
C = {1, 2, 3, ..., 11}, the set of usable frequency channels
in the United States for the 2.4 GHz band in the 802.11n
specifications [18].

We assume that each node has multi-radio interfaces. For
successful decoding, a node should use non-interfering fre-
quencies on each radio interface. Hence, the channel assign-
ment problem can be considered as a graph coloring problem
to obtain non-interfering edges. The goal is to assign colors,
i.e, “frequency channels”, to the edges of the graph so that
no two adjacent edges have the same color. Generally, graph
coloring is an NP hard problem, however, a greedy algorithm
can be used to perform the channel assignment.

A. Channel Assignment

For every edge eij , we define a set Beij that contains its
neighboring edges. Neighboring edges are defined as edges
connected to one of its end nodes. Hence,

Beij = {eiu|i, u ∈ V}
⋃

{evj |v, j ∈ V} .
Whenever unambiguous, we henceforth use e without a suffix
to simplify notation. We define a set Ae for every edge e as
the set of available channels that may be assigned to that edge
by defining the interference set Im for each adjacent edge m,

Ae = C \
⋃

m∈Be

Im, m, e ∈ E.

The interference set for an edge e, is defined as Ie =
{max(ce − x, 1), . . . , ce, . . . ,min(ce + x, 11)}, where x is a
channel separation constant. For example, if x = 2 and edge
e is assigned channel 3, then none of its neighboring edges can
be assigned channels 1, 2, 3, 4, 5. Otherwise, we say that edge
e is in conflict. After computing the above sets for each edge,
we build a histogram that counts how many times a given
channel c ∈ C appears in interference sets, Ie, ∀e ∈ E. This
gives an indication of the most and least interfering channels.

Assume that a new channel is to be assigned to edge e based
on the channel assignment of the remaining edges. If A e is
non-empty, i.e., Ae �= ∅, then e is assigned a channel ce drawn
randomly from the set Ae. On the other hand, if Ae = ∅,
then e is assigned the least interfering channel according to
the histogram as this channel will cause minimal interference
in the network. We use a graph coloring greedy algorithm
to assign a channel to each edge. This greedy algorithm is
summarized in the table below.

We define the degree ζeij of an edge eij as the number of
edges connected to its end nodes, i.e., ζeij = δi+δj−2, where
δv is the node degree for node v.



Algorithm 1 Channel Assignment greedy Graph Coloring

1: procedure SORT:(E) � according to edge degree
2: for ∀e ∈ E do
3: Find: Ae,Be and Ie.
4: Update: Channel Histogram.
5: if Ae �= ∅ then
6: Assign e a channel ce = c, c ∈ Ae, drawn randomly.
7: else
8: Choose ce as the least interfering channel.
9: end if

10: end for
11: end procedure

1 2

3 4
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C 3
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C
5

Fig. 1: Attacker is attacking the edges of the wireless network.

B. Stealthy Decoy Attacks

In order to assess the vulnerability of the network to attacks,
we assume that a stealthy attacker attempts to degrade the
network performance by attacking its communication links.
The attacker approaches a selected edge and transmits a
signal at a certain frequency that interferes with the edge’s
assigned channel and/or its neighboring edges. Hence, both
of the edge end nodes will experience high interference at
the corresponding radio interfaces. As illustrated in Fig.1, the
attacker launches an attack by traveling to a victim (edge), e ij ,
between its end nodes i and j, then transmits an interfering
signal on channel f0. Depending on the attack channel f0, the
attack can cause either CCI or ACI.

In order to select the victim edge and the attacking fre-
quency, we assume the attacker is aware of the topology and
the channels assigned to the different edges. Therefore, an
attack action, u, consists of the selected victim edge e and the
attacking frequency f0. However, the action space is limited
by the distance (hop counts) between the current location of
the attacker at edge � and the victim edge e. Note that the
attacker may also choose not to attack at a given time instant to
remain stealthy. To track the successive actions of the attacker,
let b denote the number of successive no-attack actions. b is a
limiting factor that determines the set of edges that are possible
to be attacked. In particular,

• If b = 0, the victim edge e is one of the immediate
neighbors of �, i.e, e ∈ B�.

• If b = 1, the victim edge e is one of the neighbors of
� or the neighbors of neighbors of � (i.e, 2 hops away).
Generally, if b > 0, then the victim edges can be up to
b+ 1 hops away.

To clarify, the attacker can reach further away victims after
a sequence of no-attack actions, due to its power budget. In
other words, we assume that the attacker can save power by
choosing not to attack, hence, can attack far victims on future
time steps. Considering the case where b = 0, after choosing
its victim edge e, the attacker selects the attacking frequency
f0 such that f0 may cause:

• CCI, if f0 = ce, i.e, jamming the channel of edge e.
• ACI, if f0 ∈ ⋃

Im \ {ce}, m ∈ Be

⋃{e}.
If f0 causes both CCI and ACI, this simply means that the
victim edge e was already causing ACI to its neighbors, i.e,
it was already a conflict before it got attacked. The same
explanation extends to the cases where b > 0 with the
difference that the attacking set increases as explained earlier.

Launching an attack would cause conflicts due to the
interference between the radio interfaces of the nodes, thereby
forcing some nodes to switch their channels. Causing more
conflicts leads to a more pronounced channel switching behav-
ior1. Moreover, conflicts could cause more delay due to packet
failure and retransmissions. Such conflicts are rewards from
the attacker’s viewpoint, but the cost is power transmitted by
the attacker and higher risk of being caught. To maximize the
total reward, the attacker aims to optimize its attacking policy.
In this paper, we propose an attacking policy that maximizes
the expected total reward for an attacker by formulating this
problem as an MDP as explained next.

C. MDP Formulation

Let sk denote the state of the network at time k. Specifically,
sk = [ck, �k, bk], where ck is a 1 × |E| vector representing
the channels assigned to every edge in the network at time
k, �k is the last attacked edge, and bk denotes the number of
successive no-attack actions at time k as defined earlier. Being
in state sk, the system evolves to the next state sk+1 with a
transition probability p(sk+1|sk, uk) under action uk taken by
the attacker at time k, where p(sk+1|sk, uk) is uniform over all
possible future states. The attacker gains a reward and incurs
a cost for taking this action uk. Let xe

k be the number of
conflicts at time k in the network with respect to edge e ∈ E,
and yk the cost of action uk = [q, f0]. Hence,

xe
k = | {m|ce,k ∈ Im,m ∈ Be} |, e ∈ E. (1)

where ce,k is the channel assigned to link e at time k. In other
words, xe

k is the number of neighbors of e who have ce,k in
their interference sets. The reward, r(sk, uk, sk+1), is defined
as the difference between the total number of conflicts and the
cost of the attack,

r(sk, uk, sk+1) =
∑
e∈E

xe
k+1 − yk. (2)

The Attack cost yk is defined as,

yk =

{ ∞ if d(�k, q) > bk + 1
h · d(�k, q) + ζq otherwise,

(3)

1An attack may not cause the attacked edge to switch its channel since the
system will select only one edge in conflict to resolve at a time.



where d(�k, q) is the distance between the current edge loca-
tion �k and the victim edge q, and h is some constant capturing
the cost per unit distance. The edge degree ζq is taken into
consideration for cost computation since higher degree implies
higher risk of being caught. Hence, the expected reward over
all possible future states is

r̄(sk, uk) =
∑
sk+1

p(sk+1|sk, uk) · r(sk, uk, sk+1). (4)

We consider a discounted cost MDP formulation, where the
attacker aims to solve for the optimal policy that maximizes
the total discounted expected reward [15]. In particular, let

Jπ(s0) =
∞∑
k=0

γkr̄(sk, μk(sk)),

be the total discounted expected reward, where π =
{μ0, μ1, . . . , } is a sequence of attack policies μk, k =
0, 1, . . ., where μk is a function that maps the state space to
the set of allowable attack actions at time k. The constant
0 < γ < 1 is a discount factor that accords less weight to
future rewards and s0 is the initial state. The attacker aims to
solve the optimization problem

max
π

Jπ(s0). (5)

D. Attack Policy

The optimal solution to the aforementioned discounted cost
formulation is a linear time-invariant policy μ∗ [15] defining
the optimal action for the attacker to take at each state, and
can be obtained as a solution to the Bellman equation,

J(sk) = max
uk∈U(sk)

{r̄(sk, uk) + γ E[J(sk+1)]} (6)

where U(sk) denotes the set of allowable controls given the
current state sk and E[.] denotes the expectation w.r.t. the
future state. However, the exact solution is intractable as
it requires the attacker to enumerate all possible states and
choose an optimal action for every such state. Even if the
maximum number of successive no-attack actions is restricted
to N , the state space would be of size |C||E| × |E| × N
which grows exponentially with the number of edges. Hence,
it is computationally intractable to evaluate the expected state
reward for all the reachable states and actions combinations.

Therefore, we develop an approach to obtain suboptimal
attack policies based on Approximate Policy Iteration (API)
[15] by judiciously extracting relevant state features and esti-
mating the rewards for a set of representative states sampled
from the state space. For every state s of these representative
states, we define a vector of features, φ(s) to be weighted by a
weighting vector r to form a value function. Let J̃r(s) denote
an approximate value for state s (approximation of J) as,

J̃r(s) =

M∑
j=1

rjφj(s) (7)

where M is the total number of features, φj denotes the j-
th feature, and rj , j = 1, . . . ,M , its weight. The sub-optimal

policy μ̃ is obtained by iterating between policy evaluation and
policy improvement steps. We start with some arbitrary initial
policy. For policy evaluation, we use Monte Carlo simulations
to run a large number of trajectories from every representative
state. The average total reward of these trajectories is used
to evaluate the feature weights vector r by solving a simple
least squares problem. Then, to compute an improved action
for state s, we solve

μ̃(s) = argmax
u

∑
s′

p(s′|s, u)
[
r̄(s, u, s′) + γ J̃r(s

′)
]

(8)

where the optimal value function is replaced by the approxi-
mate parametric form J̃r.

E. Feature Selection

The state features were selected to capture important char-
acteristics that affect the attacker’s decision. We used a total
of M = 10 features as described below.

• φ1: Number of edges in conflict with one or more
neighbors in the current state.

• φ2: Ratio of maximum number of edges involved in the
same conflict to the degree of the network graph.

• φ3: Average number of edges involved in the same
conflict.

• φ4: Average number of channels unavailable to an edge.
• φ5: Average conflict size of the highest degree edge(s).
• φ6: Last edge attacked.
• φ7: Steps since last attack.
• φ8: Flag for whether attacker is at the most complex edge

(MCE), i.e., the edge with highest degree.
• φ9: Degree of largest neighbor of the last attacked edge.
• φ10: Fraction of edges within hop distance.

We use these features to capture all relevant characteristics
to each state.

IV. EXPERIMENTAL RESULTS

In this section, we study the performance of the proposed
API suboptimal policy in comparison to other attacking poli-
cies described below.

1) No-attack: We use this as a baseline to compare different
attack policies. The attacker does nothing at every step.
Hence, it is the lowest cost policy. In different repre-
sentative states, a network may start with a number of
conflicts that resolve over time, hence, there is a non-
zero path reward even with the no-attack policy.

2) MCE: The attacker greedily attacks the most complex
edge, i.e, the edge with the highest degree among all
reachable victims. Hence, the attacker can disrupt the
maximum number of edges with single attack action. If
the highest degree is not unique, the attacker will pick
the closest one.

3) Random: In this policy, the attacker randomly chooses
between attack or no-attack. The attacker selects any
random edge within one hop distance if attacking and
broadcasts a conflicting channel.
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Fig. 2: Chain Network Topology-comparing different attack
policies at different attack costs.
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Fig. 3: Tree Network Topology-comparing different attack
policies.

4) DoS: The attacker selects any edge and any random
channel to broadcast at every step randomly. However
in DoS attack, the attacker never chooses not to attack.
Instead, attacks are launched at every step without
considering the attack cost. Therefore, DoS incurs the
maximum cost.

5) Myopic: The attacker selects a victim without consider-
ing any features of potential states, but only considering
the immediate reward and cost.

6) API: The attacker uses the features of the state and
the feature weights computed during policy iteration to
intelligently select an attack that potentially leads to
more rewarding states among all potential states.

We tested several network topologies. For a 6-node chain
network topology, a range of attack cost values (0.1, 1 and 4)
was considered over 30 steps in order to observe the attacker’s
behavior under different attack cost ranges. As shown in Fig.
2, the path reward for the no-attack policy is constant across
all attack costs. We use the average path reward of the no-
attack policy as a baseline to compare the performance of the
different attack policies described above. When the attack cost
is small, 0.1, the DoS attack policy outperforms other policies
except for the proposed API attack policy. This is due to the
low cost constant broadcasting of fake or jamming channels
that forces constant switching in the network under the DoS
policy. On the other hand, when we raise the attack cost to
4, API almost achieves the same average path reward of the
no-attack policy due to the high cost of launching an attack.
This shows that the proposed API policy adapts well to the
cost of the attack to achieve a favorable cost-reward tradeoff.
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Fig. 4: Interconnected Ring Network Topology-comparing
different attack policies.
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Fig. 5: Accumulated Damage by different attacking policies
over time for an Interconnected Ring Network.

Fig. 3 shows the average path reward of the different attack
policies with attack cost 1 for the tree topology illustrated in
Fig. 8. It is clear that the proposed API policy outperforms all
other attacking policies including the no-attack policy, which
is generally desirable at higher values of the attack cost. For
the 5-node interconnected ring topology illustrated in Fig. 9,
the API policy significantly outperforms all the other attacking
policies as demonstrated in Fig. 4. In Fig. 6, we plot the
average path reward for the 6-node ring network topology of
Fig. 7. It is clear that the average path reward of the API
policy is almost equal to that of the Myopic policy when the
attack cost is 1. This is due to the special structure of the ring
network as all edges have the same degree. API outperforms
the DoS policy and the Random policy. In general, the DoS
policy is associated with the highest cost. On the other hand,
the API policy adapts the control actions based on the values
of the different states to strike a favorable tradeoff between
cost and reward. Although the Myopic, DoS and API policies
can create conflicts in the system, the created conflicts affects

No Attack Rand DoS MCE Myopic API
0

20

40

60

80

100

120

140

Av
er

ag
e 

Pa
th

 R
ew

ar
d

Attack Ring Topology Edges

Fig. 6: Ring Network-comparing different attack policies.
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the network unequally. Typically, DoS creates small conflicts
in the system, which may not compound and the system could
resolve them within few steps. The Myopic policy consistently
creates larger conflicts than DoS. Even when the system is
able to resolve these conflicts, the attacker can quickly create
new ones. API creates large conflicts as well, but the system
is typically unable to resolve them as much as it does for
the myopic policy. This observation is demonstrated in Fig. 5
where the accumulated damage caused by the attacker to an
Interconnected network is shown over time. The API policy
is shown to cause the maximum damage over time.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the susceptibility of dynamic
channel assignment to stealthy edge decoy attacks. We formu-
lated the problem through an MDP framework and identified
suboptimal, yet efficient, attack policies through approximate
dynamic programming. The attack policies obtained determine
which edges to attack and at what frequency channels in
order to cause conflicts that propagate through the network
thereby degrading the overall performance. These policies
were optimized to strike a favorable tradeoff between the
damage inflicted by the attacker and the cost of the attack to
ensure that the attacker remains stealthy. Our results show that
the obtained API policy outperforms other attack policies such
as Denial of Service and random attack, among other heuristic
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Fig. 9: 5-node Interconnected Network Topology.

policies. The proposed API policy adapts to the cost of the
attack, namely, with higher attack costs API is more selective.
As Software Defined Networks become more mainstream, it is
important to ensure that their adaptive behavior is resilient to
exploits. This work exposes the vulnerability of these dynamic
protocols and underscores the importance of developing proper
defense mechanisms to ensure their correct behavior.
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