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Abstract— Security and privacy in cloud computing are
critical components for various organizations that depend on
the cloud in their daily operations. Customers’ data and the
organizations’ proprietary information have been subject to
various attacks in the past. In this paper, we develop a set
of Moving Target Defense (MTD) strategies that randomize
the location of the Virtual Machines (VMs) to harden the
cloud against a class of Multi-Armed Bandit (MAB) policy-
based attacks. These attack policies capture the behavior of
adversaries that seek to explore the allocation of VMs in the
cloud and exploit the ones that provide the highest rewards
(e.g., access to critical datasets, ability to observe credit card
transactions, etc). We assess through simulation experiments
the performance of our MTD strategies, showing that they
can make MAB policy-based attacks no more effective than
random attack policies. Additionally, we show the effects of
critical parameters – such as discount factors, the time between
randomizing the locations of the VMs and variance in the
rewards obtained – on the performance of our defenses. We
validate our results through simulations and a real OpenStack
system implementation in our lab to assess migration times and
down times under different system loads.

I. INTRODUCTION

The cloud has been a major target of cyber attacks owing
to the ever-increasing reliance on it by industry, private,
and public sectors in their day-to-day operations. Attackers
target the cloud to seek unauthorized access to sensitive
and private data and/or intellectual property, or to render
some functionality of the cloud unusable for legitimate users.
While virtualization seeks to isolate virtual machines (VMs)
from each other, recent attacks have shown that they can
bypass such isolation [1], [2]. Moreover, due to their open-
access nature, attackers can dynamically create their own
VMs with malicious code that can target the host machines
or the network of the cloud provider.

Due to the dynamic nature of the cloud, attackers may not
necessarily know a priori which physical machine they will
be hosted on nor the nature of other VMs collocated on that
same machine. Such decisions are often left to the provider
(subject to resource constraints enforced by the user) and
typically are the result of various resource optimization
problems. This means that rational attackers would likely try
to explore the cloud environment seeking particular physical
and virtual machines to exploit. Thus, in this paper, we model
the behavior of the attacker as in a Multi-Armed Bandit
(MAB) problem. In a MAB problem, the bandit is presented
with K slot machines and in each turn, he/she chooses a

slot machine in order to maximize their reward. Initially,
the bandit tries to explore the rewards obtained from all of
the machines and then exploit the high paying ones. We
believe that this adversarial model is critical in the cloud
security domain as it reflects four important components:
(1) initially, the attacker does not have a lot of knowledge
when their first VM is created, (2) the ability of the attacker
to create more opportunities to potentially explore other
physical machines, (3) other VMs will be migrated by the
reallocation strategies of the provider, enabling the attacker
to explore them (and explore other physical machines once
their own VMs are migrated), and (4) the attacker can trigger
a move by manipulating their own resource constraints until
they observe a change or alternatively, exploit a placement
vulnerability through manipulating the cloud provider into
creating their VM on the same physical node that hosts the
VM they want to target [3].

As a simple attack scenario, consider an attacker who has
loaded malicious code onto their VM and used a virtualiza-
tion vulnerability to access information that belongs to other
VMs on the same physical node [1]. The attacker can snoop
the memory for sensitive information and as other VMs are
migrated into this physical machine (or the attacker’s VM
is migrated to another physical machine) the attacker can
continue doing so until they find the critical information.

Moving Target Defense (MTD) strategies has been pro-
posed to allow randomization to harden the system against
attackers [4]. The idea is that the defender makes some
changes to its system’s configuration every so often (e.g.,
migrating VMs) to make it harder for the attacker to succeed.
In this paper, we develop MTD strategies and assess their
effectiveness against attackers using a wide range of MAB-
based policies. We show that our defense can effectively
waste the attacker’s effort – making it no better than a
random attack in which no knowledge is exploited. While
it may not completely prevent the attacker from achieving
some small successes, it will greatly reduce the potential
damage that can be caused. This will help protect the users’
sensitive and intellectual property information in enterprise
cloud environments.

In this paper we make the following contributions:
1) Develop a set of MTD strategies that introduce ran-

domization to counter MAB policy-based attacks.
2) Assess the impact of our defenses against a variety of

MAB algorithms and show that it can make them no



more effective than a randomized attack policy.
3) Study the effect of critical parameters (e.g., time to

switch VMs, variance in rewards, reward saturation,
etc) on the performance of our defense.

4) Validate our mechanisms using a real OpenStack sys-
tem to collect data on migration times and VM down
times under different system loads.

Paper organization: In Section II we discuss related work.
In Section III we present the MTD strategies against MAB
policy-based attacks. We present our results from simulations
and real system implementation in Section IV and conclude
the paper in Section V.

II. RELATED WORK

This work relates to the following three main areas of
research:
Security in Cloud Computing: The authors in [5] provide a
detailed list of security flows that can occur in the cloud from
the perspective of a software developer and the work in [6]
lists seven major ways cloud services can be at risk from the
perspective of a business executive, giving recommendations
for how companies can prepare to leverage cloud services.
The work in [7] provides several techniques to protect data
through encryption while the work in [8] describes a new
architecture for cloud systems designed with security as the
primary concern. The authors in [2] proposed a migration
based method for detecting and avoiding Denial of Service
attacks in a cloud environment. The main difference is that
their solution is to be implemented by the clients running on
the VM on the cloud, whereas our solution is built into the
cloud system itself. Similarly, the authors of [9] propose a
system for cloud defense based on the actual migration of
VMs. While it shares many similarities with our defensive
strategy, our contributions are not the same. They focus
exclusively on preventing Denial of Service attacks, while we
show the effectiveness against other types of attacks as well,
such as packet sniffing and memory snooping. In addition,
their evaluation was conducted using PlanetLab, a large scale
worldwide network research environment. We performed our
evaluation on a deployment of OpenStack, a cloud system
that is currently used by actual cloud provider companies,
such as HP, IBM, and Oracle.

Our solution addresses a few of the security concerns listed
in the above papers, mostly focusing on the Network Security
flaw from [5] and the Malicious Insiders flaw from [6].
Our MTD strategy can be used in tandem with encryption
for extra protection, and does not require a redesign of the
existing cloud, so it could be implemented efficiently.
Multi-Armed Bandit: The standard version of the MAB
problem that we will define in Section III-A was described
in [10]. Many variants of the problem have been created
over the years, which modify the process that determines
how the arms give rewards. There are two main versions of
the MAB problem based on how its rewards are generated:
stochastic and non-stochastic. In the stochastic problem, the
rewards are generated based on some logical process, such
as a probability distribution, while in the non-stochastic

problem there may not be any logic to the choice of reward
values. The traditional stochastic MAB problem simply uses
a probability distribution – as we consider here – but other
ideas have been proposed, such as the one by [11], where
each arm’s rewards are given by a Markov Decision Process
(MDP). Whenever an arm is pulled, it gives some reward
and causes the MDP to transition to the next state. A further
modification of this version is called Restless Bandits [12],
where all the arms transition state every turn, not just the arm
that was pulled. There are also MAB variants that, like our
work, modify the state of the game over time. In [13], they
define a problem where more arms appear over time, growing
the number of choices the gambler is presented with. In [14],
they define a variant where arms have a lifespan and will
“die” after a number of turns, to be replaced by a completely
new arm. Many solutions to the stochastic problem have been
proposed over the years. One of the first popular ones was an
optimal policy called the Gittins Index [15]. In more recent
years, the UCB algorithm from [16] has been a standard,
forming the base of many other variations. In Section III,
we will study those solutions in more details.

Some of the MAB variants that modify the game state
(e.g., [14]) are close to our strategy. There are differences
between their work and ours however, such as how they
model their scenario as a non-stochastic problem, while we
have intentionally avoided doing that. In addition, when
they talk about an arm “dying”, they mean that its reward
distribution is replaced with a completely new one. In our
system, rather than replace old distributions we move them
around, so that our system remains constant aside from the
mapping of reward distributions to arms.
Moving Target Defense: The work in [4] gives detailed
information about the definition of a MTD, various MTD
strategies, and the general effectiveness of these strategies
against different classes of attacks and exploits. Instead
of the comprehensive overview that they gave, this paper
delves into the effectiveness of MTD strategies against the
specific MAB policy-based attacks. A formalized theory of
MTD systems is laid out in [17]. The authors in [18] give
an overview of several different types of MTD strategies
and compare how they perform under different attacking
scenarios. In their work, they study migration based defense
strategies against an attacker that acts on a genetic algorithm,
rather than a MAB policy. In [19], the authors look at the
effectiveness of a network based defense. They adapt their
system through the complete refresh of the VMs, where
all prior state information is lost. In our scenario, we are
simply migrating the VM from a node to another with no
information lost and almost zero expected downtime. They
are also using a configuration manager component to decide
when to refresh the VMs, whereas we are migrating them at
random.

III. METHODOLOGY

A. Multi-Armed Bandit (MAB)

In a MAB problem, the gambler is presented with K slot
machines to choose between over a number of turns T (the



horizon). In turn t ∈ {1, ..., T}, the gambler selects one of
the slot machines m ∈ {1, ...,K}, and pulls its arm receiving
some reward rm,t. The reward obtained from slot machine
m is chosen based on some probability distribution Dm that
is not known to the gambler a priori and is independent from
the distributions of the other slot machines. The goal is to
maximize the aggregate reward R over the T turns through
choosing m at each turn. The aggregate reward is given by:

R =

T∑
t=1

rm,t. (1)

To maximize the rewards obtained, the gambler needs
to create a policy that selects which m to pull in each
turn. Because the gambler has no foreknowledge of how the
machines give their rewards, the gambler must explore the
arms before choosing which one(s) to exploit. Policies, in
general, are designed to choose when to explore and when
to exploit based on the previous rewards earned.

Policies are not evaluated in terms of maximizing rewards,
but instead in terms of minimizing the regret ρ. Regret is
defined as the cumulative total of the difference between
the optimal arm and the arm that was actually pulled by
the policy. Because the arms can give rewards with some
variance, regret is calculated using the expected rewards [20].
We let µm denote the expected reward of pulling the arm of
machine m and µ∗ denote the highest expected reward (i.e.,
µ∗ = max1≤m≤K µm. We define regret, ρ, after T turns as:

ρ = T ∗ µ∗ −
K∑

m=1

µm ∗ Pm(T ), (2)

where Pm(t) is the number of times machine m’s arm has
been pulled by time t. Equation 2 can be reformulated in
terms of T , to yield:

ρ =

T∑
t=1

(µ∗ − µmt), (3)

where mt is the index of the arm that was pulled at time t.
In many situations, it becomes important to value earlier

rewards higher – specially from an adversary’s standpoint
that wishes to minimize the time they spend in the system.
Equations 1 and 3 can be stated with a discount factor, γ :
0 < γ < 1, [21] as follows:

R =

T∑
t=1

γt ∗ rm,t (4)

ρ =

T∑
t=1

γt ∗ (µ∗ − µmt
). (5)

B. Attack Policies as Solutions to the MAB Problem

Many policies can be applied to solve the MAB problem.
To capture a wide range of possible attack policies, we
present the following list of policies that vary in the way
they tradeoff between exploration and exploitation. The full

details of each policy can be found in the respective refer-
ences, but here we give a brief description of each method.

• Upper Confidence Bounds (UCB): This policy is one
of the most basic ones [16]. It pulls every arm once,
and then it chooses the arm that maximizes:

µ̄m +

√
c ∗ log t

Pm(t)
(6)

where µ̄m is the current sample expected reward, c
is a positive constant, t is the current turn number,
and Pm(t) is the number of times arm m has been
pulled at time t. The log t term ensures a non-decreasing
sequence of values that are an order of magnitude below
t, which is what allows it to explore again over time if
the rewards received are not very large.

• UCB-Tuned: This policy is from [16], and is a variant
of the UCB policy. The upper confidence bound is
modified so that instead of the constant c, a variable
based on the the previous variance of the arm is used.
This allows it to function the same way, but hopefully
make choices at a smarter time.

• UCB-V: A straightforward modification of the UCB
policy is to account for variance [22]. It chooses the
arm that maximizes:

µ̄m +

√
2 ∗ log t ∗ v̄m

s
+ c ∗ 3 ∗ b ∗ logt

s
(7)

where v̄m is the current sample variance, c and s are
constant positive numbers (s usually is Pm(t)), and b
is the bound on the rewards. It adds in the information
that it knows about the bound on the rewards to try and
fine-tune which arm is the most likely to pay out well.

• KL-UCB: This policy is from [23]. It always selects
the arm with the maximizes:

Pm(t) ∗BKLD(µ̄m, log t+ c ∗ log log t) (8)

where BKLD is the Bernoulli Kullback-Leibler diver-
gence – a measure of information gain – so it tries to
select the arm with the most likely gain.

• MOSS (Minimax Optimal Strategy in the Stochas-
tic case): This policy from [24] selects the arm that
maximizes:

µ̄m +

√
max(log ( T

Pm(t)∗m ), 0)

Pm(t)
(9)

where T is the horizon. It is inspired by the UCB
algorithm, and it looks for the arm with the highest
upper confidence bound.

• Empirical Likelihood UCB: This policy is from [25].
It is a variation on the KLUCB policy, in which the goal
is to try to pick the arm with the greatest information
gain.

• KL-UCB-exp: This policy is found in [23] and is a
variation of the KL-UCB. It uses a divergence that
expects an exponentially distributed reward input, but
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Fig. 1. Moving Target Defense Scenarios

has the same goal of selecting the arm with the most
likely gain.

• Random: This is a simple policy that we added as a
baseline. Instead of making any complicated choices, it
simply picks an arm at random from the ones currently
available to it.

C. Moving Target Defense (MTD)

A MTD is a defensive strategy applied to a configurable
system with the goal of adding some randomness to inval-
idate any knowledge that a potential attacker could have
gained over time. A configurable system Γ consists of a set
of states S, a set of actions Λ, and a transition function τ
that maps S × Λ → S. A state si ∈ S is a unique system
setting, and an action α ∈ Λ is a set of steps that will
change one state into another valid state. A MTD system
Σ is thus defined as a configurable system Γ, a set of goals
G (including goals for both the system’s proper operation
go, and its security gs), and a set of policies P (rules for
what constitutes a valid system configuration). The set of all
valid states Sv is referred to as the configuration space, and
a MTD aims to make things more difficult for an attacker by
moving the current state throughout the configuration space.
For a more thorough definition, see [17].

To implement a MTD strategy, two essential components
must be added – an adaptation engine and a configuration

manager [19]. The adaptation engine decides what changes
should be made to the system, and how often they should
be made. The configuration manager makes and enforces the
changes. If desired, an additional analysis engine component
can be added that feeds current system information into the
adaptation engine to help make more informed decisions.

To apply the formal definition to our cloud system, Si

describes a mapping of each VM to a physical node with S
being the set of all possible permutations of the mapping.
α is the migration commands to move a VM from one
node to another, with Λ being the set of all such possible
migrations. The transition function τ would be where the
details of a particular strategy would be encoded. The set
of goals G would include things like go1, “allow customer
access to VM,” and gs1, “prevent customer traffic from being
intercepted.” Finally, the set of policies P would include
rules/constraints such as p1: “The sum of the disk space
required by all VM on a node must not exceed the disk
space of that node.” With this, it is easy to see that a cloud
environment works well as a configurable system.

We developed three MTD strategies for use with our sys-
tem. The first one we call Complete Restructure, because it
has the goal of changing the location of every single VM in
the system. In this strategy, the transition function τ would
consist of only tuples (si, ak) → sj that result in a new
configuration where none of the VMs in sj are located on
the same physical node as they were in si.

We also use a more relaxed version which we denote
Hide Max, where we only migrate the VM that rewards the
attacker the highest (e.g., the critical VM the processes credit
card transactions), assuming it is known to the defender. The
transition function τ would consist of only tuples (si, ak)→
sj that result in a new configuration where the only change
is that the maximum rewarding VM has swapped locations
with another VM.

Our third strategy is denoted Duplicate and Deactivate,
because it keeps a copy of every VM on every node, and
deactivates all but one of each at any given time. In this
case, the transition function τ would consist of only tuples
(si, ak)→ sj that result in a new configuration where every
VM in sj is listed only once along with the node it is
activated on.

Since the adaptation engine is responsible for deciding
when to trigger the defense, we set it as a fixed interval that
we can manually vary to assess its effect on the performance.
The configuration manager is responsible for initiating the
migrations, which is a tool that is already provided by most
cloud systems.

D. Sample Attacks and Defenses

For illustration purposes, we consider the following three
MAB attack scenarios along with the MTD strategies to
combat them.
Scenario I: Consider an attacker that has loaded malicious
code directly onto a physical node in the cloud – an attack
that can be done through a VM Escape exploit [1]. This
would allow the attacker to sniff for packets transmitted



and received and identify other nodes that he/she can target
(e.g., the node that is generating traffic with credit card
transactions). The MTD strategy would change the layout
of the system and change which packets the attacker can
see, since the VM it was sniffing the packets of will no
longer be located on the same physical node. This will then
invalidate all of the knowledge that the attacker has gained
about where the packets with the credit card information
are located. Additionally, because the attacker doesn’t know
that the VM have been moved, it may not equate the lack
of packets with a move for quite a while. Figure 1 (top)
illustrates the outcomes of this MTD strategy in a setting in
which the target VM – marked as a red dashed VM – has
been migrated to a different physical machine, so the attacker
cannot sniff its packets anymore.
Scenario II: In this scenario, we consider an attacker who
has placed their code on multiple VMs that they have legally
created. They can send traffic between those VMs – which
may or may not be located on the same physical node
– in an attempt to map the underlying physical network
topology. Once this is achieved, the attacker can determine
the bottleneck links and attack them – even from outside
the cloud – to degrade the performance of the entire cloud
[1]. A process for carrying out this type of attack is given
in [2]. The MTD can once again create a moving target
by migrating the VM between hosts every so often. In this
scenario, the attacker’s knowledge is invalidated by the fact
that it itself was moved. The new virtual network structure
would be completely different; connections that formerly
went over physical links could be on the same physical node
now, resulting in no congestion at all. Figure 1 (middle)
illustrates the outcomes of a possible MTD strategy in which
the defense prevented the attacker from inferring the physical
links since both VMs are migrated to the same machine.
Scenario III: Here, the attacker has managed to load mali-
cious code onto their VM and use a virtualization vulnera-
bility to access information that belong to other VMs on the
same host (e.g., a VM monitoring attack [1]). Unlike scenario
I, the attacker does not have full access to the cloud’s
network; instead, they have full access to the physical node’s
memory. They can snoop around the live memory of the
other VMs, looking for sensitive information to steal from the
currently running processes. The idea of this MTD strategy
is to create a copy of every VM on multiple hosts, but have
all of them suspended, except for one. This means that the
attacker can see all of the VMs even without access to the
network. However, they cannot see all of the information
on currently running processes, only the information for the
VMs active on that node. The MTD strategy is to change
which node each VM is currently active on, thus changing
the processes that can be snooped on. Unlike scenario I, the
attacker does not have control of the network, so it cannot
follow the VM when it moves. Figure 1 (bottom) illustrates
this case, where the green dotted VMs are the active ones,
the black solid VMs are the suspended ones, the red dashed
VMs is the one the attacker is looking for, and the red dashed
node is the one the attacker is located on.

IV. EVALUATION

In this section, we report of the effectiveness of our MTD
strategies against MAB attack policies through simulation
experiments as well as implementation experiments with
OpenStack in our lab.

A. The setup

To study a good range of attack policies, we used the open
source maBandits package [25] as a base and modified the
implementation to run our MTD strategies. The maBandits
package assumes a finite horizon and takes advantage of that
to pre-calculate all reward payouts for each of the arms at
every step, if they are chosen at that point. The program
then proceeds to test each policy in order, letting it choose
which arm to pull for each turn, and returning the appropriate
reward from the table it has pre-calculated. The policy then
updates its internal state and comes back for the next turn.
The program continues the game this way until the horizon
is reached. It then starts a new game with the same policy
and repeats it all, doing this for every policy. Once this
has completed, it averages the results from each policy in
terms of regret and how many times the attacker chose a
sub-optimal arm to pull. The full details and original source
are available from [25].

We simulated our MTD strategies through an adaptation
engine that, when triggered, would swap the rewards ob-
tained by the MAB policy. This would cause the distribution
and reward payout of each arm to swap as well. The
adaptation engine is triggered at a set interval which we
varied manually to assess the impact of the swap frequency
on the affect of the MAB policies.

In our experiments, we set the horizon to 2000 turns and
results are averaged over 20 independent runs. We ran tests
with 10 arms with normalized rewards in which the sum of
the expected rewards for all the arms was equal to 1.

B. Simulation experiments

As a base case to see the impact of our defense strategies,
we removed the variance from the rewards and computed
the regret as in Equation 3. Figure 2 shows the results when
we had one machine pay a reward of 1 while the other
ones paid 0, and we implemented our Hide Max MTD to
hide that machine. The results in Figure 2 show the effect
of no defense (top) in comparison to the defense being
triggered every 500 turns, 50 and 5, turns, respectively. One
can see that as we increase the frequency of our swapping
defense, the effectiveness of the attack strategies all decrease
dramatically (captured by the increase in the regret). There is
a noticeable change between shuffling every 500 and every 5
turns, at which point the attacks are nearly indistinguishable
from a random strategy.

Figure 3 shows the effect of the swapping frequency on
the average regret under each policy at the end of the game.
With a MTD applied every 50 turns, the regret has the
highest decrease and from the attacker’s perspective, the
more frequently the defense is activated, the more similar
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Fig. 2. Hide Max; No Variance; No Discount

the attack policies’ performances become, with all of them
approaching the performance of the random strategy.

In our next set of experiments, we consider the effect of
the discount factor γ as in Equation 5 where the attacker is
on a time sensitive schedule and must collect rewards as near
the start of the game as possible. An example of this would
be an attacker that is being actively monitored by a security
program, and the more attacks it commits, the more likely
it will be caught and removed from the system. We set our
discount to be 0.999. Figure 4 shows the results with the
discount factor. One can see that the effect of the defense
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Fig. 3. Final Regrets of Hide Max; No Variance; No Discount

is even more pronounced in this situation, with even the
defense every 500 turns showing a significant advantage over
no defense at all. Once again, swapping every 5 turns lead
to all the attacks performing on par with a random strategy.

For the next experiments, we removed the discount factor
and introduced variance in the rewards. This was done
through generating Poisson distributed random values with a
mean (and variance) of 1, just like in the first experiment. As
shown in Figure 5, the average case performance is nearly
identical or better than that of the case with no variance
from 2. In fact, the most noticeable difference is the UCB-V
algorithm with a defense frequency of 50, which shows a
marked improvement for the defence when the variance is
added into the data. The other best and worst case results
can vary a little, but not dramatically.

To further explore the effect of variance on our defense,
we decided to look at a range of variances. We did this
by making sure that the mean of the rewards was always
1, but we changed the variance to be 1, 0.1, and 0.01 (the
distribution is no longer Poisson). Figure 6 shows the final
regret under different variance values when one arm is paying
a reward with mean 1 and the Hide Max MTD strategy is
used every 50 turns. One can see that the the more varied the
data is, the better our defense performs. The Worst Regret
line refers to the policy that had the lowest regret against
our defense, while the Best Regret refers to the one with
the highest regret (excluding the exponentially tuned KL-
UCB-exp, since it uniformly performed as poorly as the
random policy). Looking at the figure, it quickly becomes
apparent that as the variance is increasing, the worst and
best performances are approaching each other, and are also
approaching the random performance. This means that, since
most every real world situation will involve some degree of
variance, our defense will perform even better than under
normal variant conditions.

Another aspect we investigated is how the saturation of
rewards affects the effectiveness of the Complete Restructure
strategy. By saturation of rewards, we mean what percentage
of the potential arms actually give a reward. To do this,
instead of having just 1 arm with an expected reward of 1, we
had 2 arms with an expected reward of 0.5, or 3 arms with
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Fig. 4. Hide Max; No Variance; Discount factor = 0.999

an expected reward of 0.33, etc. The results are presented in
Figure 7. It is clear that as the reward saturation increases,
the effectiveness of our strategy decreases. Figure 7 (bottom)
shows for the defense frequency of 5 that the regret of the
policy that our defense performs the worst against goes from
90% of the random strategy at 10% saturation down to 50%
of the random at 50% saturation. That’s a drastic change, and
not in the defense’s favor. However, this is not as much of a
problem as it might seem at first. If we compare the results
of a defense frequency of 5 to that of 50, we see that both
the policy that we perform the best against and the policy we
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Fig. 5. Hide Max; Variance of 1; No Discount

perform the worst against show a significant improvement as
the defense frequency gets smaller. This means that, while
our defense may not be as effective at higher saturations, it
is still significantly more effective than doing nothing.

We consider the case in which there is an uneven distribu-
tion of rewards. Figure 8 shows results when the arms have
different payouts: 1 arm gave an expected reward of 0.6, and
2 arms gave an expected reward of 0.2 each time. We did so
to observe differences between the Complete Restructure and
Hide Max strategies in this unbalanced situation. One can see
that the two defense strategies have nearly identical results.
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Fig. 7. Complete Restructure; Variance of 1; No Discount

The only difference seems to be the best and worst case
performances (shown by the lighter grey areas), which are
slightly larger for the Complete Restructure strategy, though
even that could simply be the product of different random
numbers generated between the runs. In fact, it does not
seem to make much of a difference whether you shuffle all
the arms or just the maximum valued one, at least in a case
where one VM pays significantly higher rewards than all the
others. Likewise, if you do not know which VM is the most
desirable target, it will not hurt your effectiveness to simply
shuffle them all to be safe.

Figure 9 shows the results for our Duplicate and Deactivate
strategy. It is apparent that the Duplicate and Deactivate
strategy is not as effective as the Hide Max or Complete
Restructure strategies. It is, however, more effective than
no defense at all. One of the most interesting things from
Figure 9 is that the average regret seems nearly constant from
changing the activated VM every 500 turns all the way down
to 15. The main thing that seems to change is the range of
best and worst case scenarios (the light-gray areas). This is
most likely because the less frequently the system changes,
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Fig. 8. Defense Every 500; Variance of 1; No Discount

the easier it is to be either extremely lucky (or unlucky) for
a long period of time with the randomized configuration.

C. Implementation Experiments

To demonstrate the feasibility of our defense strategies
and assess its performance in a real-world setup, we created
a cloud using OpenStack Kilo devstack running across 3
machines, each with 4 Intel Xeon 2.66GHz processors and
4GB of RAM. The network speed between the nodes was
940Mb/s, measured at 380Mb/s in practice. We tested to see
how long live migrations took to complete, as well as the
memory and network usage of the physical nodes during
migrations. The VM image we used was Ubuntu Trusty
14.04, and it was given 100GB of ephemeral storage and
256MB RAM.

According to [26], the way that OpenStack implements
live migrations is by taking the current memory of the VM
on the physical node it is on and copying it over to the new
node it is moving to. It copies it over as quickly as it can,
but since the VM is still in use, the state of the memory is
still changing even while it is being copied. Therefore, by
the time that the entire memory has been copied, it is no
longer the same across the two physical nodes. To fix this,
the parts of the memory that have been changed, called “dirty
pages”, are then copied over. Of course, the memory is still
changing while this is going on as well, so it must find more
dirty pages to move. This continues until the remaining dirty
pages are small enough that they can be moved all at once in
a very small amount of time. The VM is suspended during
this time and when it finishes, the migration is complete
and the VM is resumed on the new node and deleted from
the previous node. It is important to note that the network
speed can be a limiting factor. If the dirty pages cannot be
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(d) Defense Every 15

Fig. 9. Duplicate and Deactivate; No Variance; No Discount

transferred between physical nodes faster than the VM is
creating them, the migration will never complete.

It is clear from this process that the length of time the
migration takes is dependent on the size of the VM memory,
and on how long it took to get the memory synced between
the machines. To test this length of time, we used a “stress”
program to specify how much memory we wanted to be used
on the VM at any given time. The process to discover if a
migration has been completed has a slight delay built into it,
so there could be up to 2 seconds of variance between the
results. To help minimize this, we ran each configuration 3

TABLE I
TIME FOR LIVE MIGRATION FOR STRESSED MEMORY (256 MB TOTAL)

Stress (MB) Migration Time (s) Down Time (s)
0 22.6 2.0

16 23.4 2.5
32 22.8 2.7
64 27.5 3.3

128 29.4 3.2
200 29.4 2.8

times and computed the average times. We used the “ping”
command with a 0.1 second interval to test how long the
VM was unreachable during the migration.

Table I illustrates our results. One can see that as the stress
on the memory increases, so too does the length of time
it takes to complete the migration. However, even with the
stress levels being as high as 200MB, most of the memory of
the VM, the migration took less than 30 seconds to complete
on average with around 3 seconds of down time, which are
very reasonable numbers.
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(c) Memory Usage

Fig. 10. Physical Nodes During Unstressed VM Migration

We also collected some data from the physical nodes dur-
ing the migration of an unstressed VM. We tested migrating
the VM back and forth from Machine C to Machine B,
starting on C, once every minute. During this process, we
tracked both the inbound and outbound network traffic, and
the usage of the memory on all of the nodes, with data



points collected once every second. The results can be seen
in Figure 10.

What these results show is that during the migration
process there is a sudden flurry of activity, and as soon as
the migration has completed the system returns to a more
stable state. A large amount of bandwidth is used to transfer
the data, but only between the nodes that are the endpoints
of the migration. The third node in this scenario doesn’t
show any increase in network traffic or memory usage at
all. The reason Machine A’s base memory usage is higher
than the other two nodes is because it is also functioning
as the controller node, so is responsible for other functions
of the cloud, while the other two nodes in our cloud were
only responsible for running VMs. The memory plot also
shows how the memory of the node the VM is running on
is constant until the migration is nearly complete, at which
point it is deleted and the memory freed, while the memory
of the node that is being migrated to slowly grows throughout
the migration. Our results well matche those reported in [27]
where the down time was less than 1 second for all sizes of
VMs during live migration, and their actual migration time
was almost always less than 20 seconds, presumably due
to the fact that their cloud was running on more powerful
servers and networking components.

V. CONCLUSIONS

In this paper, we developed a set of MTD strategies against
a class of MAB policy-based attacks. The MAB policies
capture the adversarial nature of attackers in the cloud in
terms of exploring the VMs and exploiting the ones that yield
high rewards. Our results show that the MTD strategies are
indeed effective against the various types of MAB policies.
With frequent changes to the system, the MAB policies
become indistinguishable from a random strategy – one in
which the attacker has gained no knowledge to exploit. We
have investigated the performance under different parameters
such as the discount factor and the variance in the rewards
obtained. The presence of the discount factor made no
changes to the effectiveness of our defenses where as the
variance has made our defenses even more effective. To tie
our defense frequency to real-world scenarios, we created
an OpenStack setup to show the feasibility of our defense
mechanisms. Our setup illustrates that migration times are
short enough to implement effective MTD strategies with
almost no downtime for the customers. Since network traf-
fic only exists between the nodes directly involved in the
migration, we can see that in a system with more physical
nodes, multiple migrations can be carried out simultaneously
between any nodes not currently involved in a migration,
reducing the time it would take to migrate all VMs.
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