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Abstract— In multi-agent systems, digital pheromone swarm-
ing algorithms are used to coordinate agents to achieve complex
and intelligent behaviors. Studies have shown that pheromone
swarming systems are versatile, efficient and resilient to failures,
and thus are applicable in various scenarios such as border
control, area coverage, target tracking, search and rescue, etc.
Due to their reliance on wireless communication channels – which
are vulnerable to interference and jamming attacks – it becomes
important to study the security of these systems under malicious
conditions. In this paper, we investigate the security of pheromone
swarming under different types of jamming attacks. In particular,
we expose new types of stealthy attacks that aim to maximize
the damage inflicted on the swarm while reducing the risk of
exposure. Unlike complete Denial of Service (DoS) attacks, the
attacks exposed select which signal to interfere with based on the
current state of the swarm. We have assessed the impact of the
attacks through new metrics that expose the tradeoff between
damage and cost. Our results show that the exposed attacks
are more potent than traditional DoS-like attacks. Our results
are obtained from simulation experiments and real physical
implementation using a number of iRobot Create robots in our
Mobile Cyber-Physical Systems lab.

I. INTRODUCTION

In nature, pheromones are a chemical means of communi-
cation used by swarming insects (e.g., ants, bees) to organize
themselves without relying on any centralized commands.
By depositing and detecting pheromone scent signals, insects
can coordinate attacks, communicate the location of a food
source, and efficiently organize themselves for travel. Swarm
intelligence – the characteristics and behavior of swarming
insects – has been extensively studied and applied to artificial
multi-agent systems [1], [2]. Research areas such as particle
swarm optimization and ant colony optimization take advan-
tage of the self-organizing behavior of insects to solve various
optimization problems.

In a digital world, virtual pheromones can be used to control
unmanned vehicles and autonomous robots. Digital pheromone
swarming systems use less intelligent agents and require less
manpower than systems with traditional control, but have
demonstrated greater adaptability, autonomy, and robustness
against failure. Digital pheromones have been shown to be
especially useful in the control of unmanned air (UAV) and
ground (UGV) vehicles for target tracking, search and rescue
missions, border control, among others [3]–[6].

While insects share information by sensing a pheromone
flavor, agents in a digital pheromone system communicate
virtual pheromones by exchanging messages over a network.

Recent advances in wireless technologies have offered conve-
nient communication channels between agents. Their shared
mediums, however, present serious challenges due to the
possibility of intentional interference by adversaries. It has
been shown that a determined jammer can easily bring down
the whole system [7]–[10]. This has prompted research in the
area of intelligent and reactive jammers that aim to minimize
the jamming time to avoid detection [11]–[13]. While anti-
jamming techniques (e.g., frequency hopping) can help with
non-adversarial noise, wireless systems remain vulnerable to
a powerful attacker that can jam a wide range of spectrums.

One of the most recent security incidents occurred in
December 2011 when an American Lockheed Martin RQ-170
Sentinel UAV was captured by Iranian forces. It was claimed
that the attack had taken place by first jamming signals to the
UAV and then by feeding false location information to land
the UAV [14]. While this incident involved only a single agent,
it becomes important to study the impact of jamming when
multiple agents are needed in different scenarios.

In this paper, we study the impact of jamming attacks on
the overall operation of the agents in a swarming system. We
identify vulnerabilities in digital pheromone swarming systems
where an attacker can capitalize on jamming wireless signals
between agents (in a distributed system) and/or between an
agent and a base station (in a centralized system). We adopt
an aggressive attack model in which the adversary knows the
current state of the system and can interfere with any signal
he/she wishes to. Furthermore, we consider a stealthy attack
that jams a minimal number of signals to evade detection, thus
prolonging the effect of the attack.
Research Questions: In this paper we seek to answer the
following questions:

• How susceptible are pheromone swarming methods to
attacks that can select when and which signal to jam?

• What metrics are valuable measures to assess the damage
caused by an attack and the cost of mounting the attack?

• How can we assess whether a digital pheromone system
is under attack?

Contributions: This work makes the following contributions:
1) We identify new classes of stealthy attacks that target

pheromone swarming methods whereby attacking deci-
sions are based on the current state of the system (e.g.,
location of the agents and their pheromone maps).

2) We develop new metrics that capture the tradeoffs be-



tween the damage inflicted on the system and the cost
incurred in mounting the attack.

3) We assess the impact of the identified attacks through
real implementation in various settings with real robots
in our Mobile Cyber-Physical Systems lab.

Paper organization: This paper is organized as follows. In
Section II we describe related work. Section III covers back-
ground material on pheromone swarming methods and iden-
tifies the stealthy attacks along with the assessment metrics.
In Section IV we present our simulation and implementation
results and we conclude the paper in Section V.

II. RELATED WORK

The work in this paper relates to two main areas of research:
(1) pheromone swarming methods and (2) security.
Pheromone swarming applications: Pheromone swarming
methods have been shown to be effective in applications such
as path planning [6], coordination and control of unmanned
vehicles [3], [4], [15], maintaining communication in a mobile
ad-hoc network [5], among many others. These applications
are vital in environments in which it is hazardous or impossible
to involve humans directly (e.g., harsh weather conditions,
chemical leaks, malicious territories, and disaster impacted
sites). For example, in [15] Sauter et al. have demonstrated
the use of pheromone swarming algorithms to control a het-
erogeneous set of air and ground unmanned vehicles. Digital
pheromones released from the ground robots are used for the
command and control of iRobot Mig 117 Bravo target drones
to perform surveillance and target identification. Similarly in
[4], algorithms based on digital pheromones are used to control
AAI Aerosonde Mk 4.1 UAVs and modified Pioneer 3-AT
UGVs in broad area surveillance and base protection scenarios.
Most of the work done in this area did not consider the
presence of adversaries. However, in many scenarios and in
particular military ones, an adversary may exploit a situation
to his/her own benefit to inflict further damage.
Security: A deployment of agents is susceptible to various
attacks ranging from the physical capture of individual agents
to jamming communication between the agents. Due to the
shared nature of the wireless channels, jamming has been
shown as a very effective technique in disrupting communica-
tion whether mounted as a complete Denial of Service (DoS)
attack [7]–[9] or in a more intelligent manner through ex-
ploiting the networking protocols (e.g., MAC layer) [11]–[13].
While many studies have focused on fault tolerance issues
due to random failures (e.g., [16]), the communication aspect
has received less attention. In particular, the jamming attacks
mentioned above target the networking protocols regardless
of the overall application and thus their effect remains unclear
on the operation of pheromone swarming systems. In military
applications, for example, attacks on communication can be
detrimental if UAVs are diverted into enemy territory due to
a blocked pheromone map communication or if a surveillance
mission is thwarted due to a communication failure about
a target area location. In [17], Winfield et al. investigated
different hazards that can occur in robot swarms. One of the

those hazards is the complete failure of the communication
module. This has the effect of the agent wandering off and not
participating in the swarm. In this study, we do not consider a
complete failure of the communication module, but rather the
interference with a subset of the communication. We believe
this work is the first to expose stealthy attacks that judiciously
decides whether to jam communication signals or not based
on the state of the swarm (i.e., location of the agents and their
pheromone maps).

III. A GENERAL MODEL

In this section, we cover some background material on
pheromone swarming methods. Then we describe our exposed
attacks along with our assessment metrics.

A. Background

In digital pheromone swarming methods, pheromones typi-
cally have three main characteristics: (1) they can be pumped
from a particular location, (2) they evaporate over time, and (3)
they propagate to surrounding areas. Pheromones can be rep-
resented as different “flavors” to carry different information or
instructions. For example, agent movement can be coordinated
using two pheromone “flavors”– attractive and repulsive – by
having agents move toward attractive pheromones and away
from repulsive pheromones. As an agent moves, it deposits
repulsive pheromones at its location to repel other agents
from the area, resulting in dispersive behavior. The repulsive
pheromones evaporate over time, allowing agents to revisit
an area once the pheromones have dissipated. A “pheromone
map” denotes the agent’s view of the pheromone levels in its
environment.

Pheromones propogate with a propogation constant α
and decay with an evaporation constant d. The propogated
pheromone strength s at a given time t is:

s(t) = S(t)/αx (1)

where S(t) is the pheromone’s current strength at its source
location and x is the distance from the source location. Since
the pheromone evaporates over time, its strength at its source
location for a given time t is:

S(t) = S0 − t · d (2)

where S0 is the pheromone’s initial strength and t is the time
passed since the pheromone was deposited.

One of the main strengths of pheromone swarming systems
is the probabilistic nature of agent movement. Each agent
independently decides how to move by computing movement
probabilities based on the pheromones in the surrounding envi-
ronment. In particular, agents have low probabilities of moving
into areas with repulsive pheromones and high probabilities of
moving into areas with attractive pheromones.

By adjusting the pheromone levels at particular areas in an
environment, one can influence the movement probabilities.
For example, attractive pheromones can be placed in specific
locations to create Areas of Interest (AOIs) that the agents
will visit more often than other areas. Similarly, repulsive



pheromones can be placed in specific locations to indicate
obstacles and barriers the agents need to avoid (e.g., country
borders).

For more information about pheromone swarming, we refer
the reader to the following references [2], [3].

B. Stealthy Attacks

A jamming attack involves interfering with a wireless signal
in order to prevent its reception and can be accomplished using
existing devices. While some of these devices are illegal in
some countries, many are commercially available.
Adversary Model: We consider an aggressive attack model
in which the state of system is assumed to be known to the
adversary. The state of the system encompasses the locations
of the agents and their pheromone maps. We assume that the
adversary can interfere with any signal he/she wishes to based
on the state of the agents. Furthermore, we consider a smart
adversary that jams the least number of signals to avoid detec-
tion. We aim to identify attacks that cause the agents to make
inefficient, incorrect, repetitive and/or hazardous movements.

In this work, we discuss four types of jamming attacks:
1) Complete (C) Attack: The complete (C) attack is a

Denial of Service (DoS) attack in which all the com-
munications between the agents are jammed. Complete
attack causes the agents to work independently rather
than as a swarm and serves as a basis for comparison.

2) Half Proximity (HP): In this attack, outgoing commu-
nications to any agents within a specified radius of the
broadcasting agent are jammed, but communications to
agents outside of the radius are allowed.

3) Full Proximity (FP): In this attack, outgoing commu-
nications to all agents are jammed if there is at least
one agent within a specified radius of the broadcasting
agent.

4) Probability Threshold (PT): In this attack, jamming
of an outgoing communication occurs only if it would
result in a difference in pheromone level maps above a
certain threshold between the local maps at the agents
and the real map that reflects the true pheromone levels
(which we denote by T).

Figure 1 illustrates which signals are jammed during the
two types of stealthy proximity attacks in comparison to the
complete attack. Figure 2 shows the criteria for jamming
signals during a probability threshold attack in a system
implemented with a server.

Fig. 1. A simplified representation of proximity and complete attacks for a
system of 3 agents. The oval represents the attack radius and the x represents
a jammed communication.

Fig. 2. A probability threshold attack representation for a system of 3
agents. ∆(C,T) represents the difference between an agent’s local map (C)
and the truth map (T). If the resulting cumulative map differences are above
a threshold PT, the signal will be jammed.

The concept behind a PT attack is to only jam signals
if it will cause sufficient damage to the system in terms
of local map deviations from a truth map T. Methods of
implementation may vary, but the schematic shown in Figure 2
uses a server to store a truth map of actual pheromones on the
map. To predict the damage to the system, the expected local
pheromone map Xi is computed for each agent i under the
assumption that the signal is not received. For each map Xi,
a value ∆(Xi,T) is computed to represent what the deviation
of each local map will be if the signal is jammed. The sum
of expected map deviations Σi ∆(Xi,T) is compared to pre-
decided threshold “PT”. If Σi ∆(Xi,T) < PT, the expected
damage is below the acceptable damage threshold and the
signal should not be jammed. If Σi ∆(Xi,T) ≥ PT, the
expected damage meets or exceeds the threshold and the signal
should be jammed.

C. Assessment Metrics

To assess the impact of attacks, capturing their stealthy
nature, we follow the definition of attack potency, π, proposed
in [18], whereby an attack’s potency is the ratio of the damage
caused to the cost incurred in mounting the attack.

π =
Damage

Cost
(3)

Damage and cost in Equation 3 can be instantiated based
on different metrics depending on the application studied. In
this paper, we focus on three forms of damage: (1) colli-
sions, (2) pheromone map differences and (3) the number of
steps the system fails to complete before the first collision
compared to no attack. A collision occurs when multiple
agents attempt to occupy the same grid location at the same
time. Pheromone map differences capture the difference in
movement probabilities between the local maps at the agents
– which may reflect outdated information due to the absence
of new signals – and the real pheromone map. The idea is
to cause the agents to deviate from their normal swarming
behavior by repetitive and inefficient coverage. The motivation
behind these instantiations of damage is to challenge the
system by causing unnecessary movements, disproportionate
coverage of the areas of interest, and/or potential expensive
repairs due to collision. We instantiate the cost of the attack as
the number of signals jammed by the adversary. This notion of



cost captures the exposure risk the attacker is willing to take.
We are interested in identifying attacks that cause damage with
the least amount of cost. With our instantiation of cost, the
potency reflects the damage per signal attacked.

IV. EXPERIMENTAL RESULTS

In this section, we present results from our simulation
experiments performed in two general setups and from our
implementation experiments using the iRobot Create robots.

A. Experimental Design

For both our simulated and physical experiments we des-
ignate attractive pheromones as positive integers, repulsive
pheromones as negative integers, and the absolute value of an
integer as the strength of repulsion or attraction. The physical
area where the agents are located is divided into a grid.
Depositing a pheromone in a grid cell is handled virtually
by adding the new pheromone’s integer value to the grid
cell’s existing value. Each agent stores a list of the pheromone
locations and levels on the grid and can broadcast this list to
other agents.

As an agent moves, it deposits a repulsive pheromone at
its old grid location and sends its pheromone list to a server
(Figure 3). The server acts as an aggregation point which
maintains a truth map of all incoming pheromone data, and
disseminates the pheromone lists received to other agents
on the grid. The implementation of the server allows us to
interrupt communications between the agents without having
to physically jam wireless signals and assess the damage. In

Fig. 3. A map communication schematic for a system of 3 agents. After
moving one step, an agent will communicate its pheromone list to the server,
which disseminates the list to every other agent in the system.

order to decide each move, an agent first computes how each
pheromone in its pheromone list propogates across the grid.
A pheromone is at full strength at its source location and
decreases according to Equation 1 radially outward from the
source until the strength value reaches 0. The agent sums the
propogated pheromone strength values for each grid cell to
determine a cumulative pheromone strength gradient.

After computing the pheromone strength gradient, the agent
probabilistically decides which cell to move to. Agents are able
to move in four directions: left, right, forward, and backward.
The propagated pheromone effect ei is calculated for each
of the four possible directions of movement based on the
cumulative pheromone strength s in the destination cell:

ei = Bs (4)

where B is a positive scaling constant. Although the strength
value s may be negative, ei is a scaled value and will always

be positive. The probability pi that an agent will move to a
particular adjacent cell is based on the cell’s pheromone effect
ei weighted against the pheromone effect of the other adjacent
cells:

pi =
ei
E

(5)

where E is the sum of ei values for all cells the agent could
potentially move to.

To ensure that our implementation exhibited the adaptive
and decentralized qualities of a swarming system, we set
behavior goals and observed the actual swarming behavior of
the agents. For a grid with no AOIs, agents must cover the
grid evenly. For a grid with AOIs, agents must cover all targets
proportionally according to the attractive pheromone strengths.
The desired grid coverage must be observed regardless of the
number of agents or targets, and can only be controlled by
changing pheromone strengths or evaporation rates.

We performed a series of characterization tests to examine
swarming behavior as we varied the negative pheromone
strength from -20 to -70, the positive pheromone strength from
20 to 220 and the evaporation constant from 1 to 10. We
selected a propogation constant α = 2, evaporation constant d =
4 for simulation and d = 1 for the physical implemenation, and
negative pheromone strength -44 so that in a 10x10 grid any
given negative pheromone will initially affect a large portion
of the grid but completely dissipate within 11 steps. These
values were chosen because they resulted in the most even
grid coverage. We selected a postive pheromone strength of
70 because this strength resulted in a 3:1 visitation ratio of
AOI to non-AOI cells on the grid while still maintaining even
grid coverage for non-AOI areas.

B. Simulation Results – Setup A

For setup A, we experimented with all four types of attacks
on a 10x10 grid. Configurations are represented as *R*T,
where R is the number of agents/robots in the system and
T is the number of targets/AOIs (e.g., 3R0T is a system of 3
robots and no targets). Each experiment runs for 1000 steps.
Based on our initial results, we concluded that HP attacks
were not as potent as the other attacks due to the redundancy
of the aggregation point-based communication [19]. Agents
outside of the attack radius still receive communications and
pass them on to all other agents, so any map differences would
correct themselves after only one step rather than compound
upon themselves the longer the robots were within the radii.
Thus, we do not present results for HP.

Our focus of damage metrics are collisions and map dif-
ferences. Map differences constitute a very basic measure of
deviation from ideal movement without specifying an exact
type of damage that actually occurs. Map differences capture
inefficiencies due to redundant work being done by the agents
as well as additional power consumption. Collisions, however,
are a specific measurement of a type of damage that can occur.

Figure 4 shows the cost of each type of attack computed
as the number of jammed signals. In all the configurations
we studied, the C attack had the highest cost. For a 3R0T



Fig. 4. Average number of signals jammed over 10 independent runs for
complete (C), full proximity (FP) and probability threshold (PT) attacks. The
FP attack radius varied from 1 to 5. The PT attack threshold varied from 0.4
to 0.1.

configuration, the FP attack ranged from around 10% to 50%
of the cost of the C attack as the attack radius increased and
the PT attack ranged from around 5% to 48% of the cost of
the C attack as the probability threshold decreased. Results are
averaged over 10 independent runs and the standard deviation
is indicated by the small error bars.

Figure 5 presents results from a 3R0T configuration under
different attack types. The number next to the attack type
indicates the radii for FP and threshold for PT. Figure 5 (a)
shows the potency measured as the number of collisions per
signal jammed. The FP attack was 1.5x to 13.5x more potent
than the C attack depending on the radius of attack chosen.
The PT attack was 1.8x to 14.7x more potent than the C attack
depending on the probability threshold chosen. In terms of
collisions, every choice of radius and threshold resulted in a
higher potency than the C attack, and was significantly higher
for smaller radii and larger thresholds. Figure 5 (b) shows the
potency measured as the difference in pheromone maps per
signal jammed. The FP attack was 1.3x to 1.4x more potent
than the C attack, depending on the attack radius chosen. Of
the seven probability thresholds tested in the PT attack, the
five highest thresholds were 1.1x to 1.4x more potent than the
C attack. The two lowest thresholds, 0.1 and 0.15, were less
potent.

Figure 5 (c) shows the number of collisions that occurred
over 1000 steps. With increasing attack radii, the FP attack
caused from 45% up to 99% of the collisions a C attack
caused. With decreasing probability thresholds, the PT attack
caused from 10% up to 87% of the collisions a C attack
caused. Figure 5 (d) shows the map differences over 1000
steps. The FP attack caused from 4% (at the lowest attack
radius) to 77% (at the highest attack radius) of the map
differences caused by the C attack. The PT attack caused from
1% (at the highest probability threshold) to 38% (at the lowest
probability threshold) of the map differences caused by the C
attack.

Figure 6 shows results from varying the number of robots

and targets in a configuration. Adding robots and targets did
not notably affect the potency of the attacks.

Figure 7 shows the coverage of different grid cells by agents
when a target is placed at location (8,8). Interestingly, the
target is visited more often while under attack than when
no attack is present (shown by the solid line). This occurs
because when agents fail to communicate, they remain aware
of the attractive pheromones present in the original grid but
become less aware of repulsive pheromones deposited by other
agents. Thus, jamming attacks can only cause robots to visit
targets more often than they naturally would have, and never
less often. This, however, causes inefficiencies since duplicate
work is done by the agents.

Fig. 6. Potency (collisions per signal jammed) for FP attacks in 3R0T, 3R1T,
3R2T, and 4R0T configurations.

Fig. 7. Frequency of visits to various locations on a 10x10 grid for no attack
(N), C, FP with a radius of 3, and PT with a threshold of 0.25.

C. Simulation Results – Setup B

Setup B is composed of 10 agents on a 15x15 grid. We vary
the number of targets from 0 (10R0T) up to 20 (10R20T).
Targets are placed at random on the grid with no more than
one target per grid cell. We present results comparing FP and
PT to C and random attacks. In these experiments, we perform
100,000 steps.



(a) Potency (collisions). (b) Potency (map differences).

(c) Damage (collisions). (d) Damage (map differences).
Fig. 5. Potency (top row) and Damage (bottom row) for a system with 3 agents and no targets under different attack policies.

Figure 8 shows the potency, measured as the number of
collisions per signal jammed, for various configurations under
different types of attacks. One can see that there is always one
of the identified attacks that is more potent than the C attack.
Moreover, FP and PT are more effective in systems with fewer
targets. As the number of targets increases, the impact of the
attacks seems to level off.

Fig. 8. Potency (collisions per signal jammed) for various configurations
with 10 robots.

Figure 9 reflects another aspect that is not captured by the

Fig. 9. Standard deviation in coverage for the target location with 10 agents
and 5 targets under different attack policies.

potency metric. In this figure we show the standard deviation
in the number of visits to the target locations using config-
uration 10R5T. Ideally, all targets should be visited equally.
Notice that all attacks cause more variance when compared to
no attack (N). When comparing this figure with the potency
metric, one can see that attacks that do not necessarily cause
high potency, tend to cause more variance. This dimension of
damage is important to capture since it reflects the degree of
unbalance in coverage.



To determine whether the state-based nature of our stealthy
attacks influenced effectiveness, we compared the stealthy
attacks to a random attack that does not consider the state
of the system. A random attack jams a specified percentage
of signals, but selects which signals to jam at random. Figures
10 and 11 show the collisions and map differences caused,
respectively, by the stealthy and random attacks in a system of
10 robots. The results show that our state-based attacks cause
more damage than random attacks for similar costs incurred.

Fig. 10. Collision damage for a system with 10 agents and no targets under
different attack policies.

Fig. 11. Map differences for a system with 10 agents and no targets under
different attack policies.

D. Implementation Results

While simulation results allowed us to test a wide variety
of configurations, a physical implementation is necessary to
observe any inconsistencies in behaviors due to the asyn-
chronous nature of the wireless communications between the
agents and the server. Since there is no guaranteed order of
communication, the server may receive multiple updates from
one robot, but only one update from another. In addition, the
amount of time it takes to move in each of the four possible
directions varies. It takes twice as long to turn an agent 180
degrees as it does to turn the agent 90 degrees. As a result, it
is important to determine whether timing inconsistencies and
asynchronous movements are detrimental to the performance
of stealthy attacks.

Our physical experiments are carried out using netbooks
mounted on iRobot Create robots on a 4x6 grid. Movement
around the grid is observed for up to 100 steps under four
attack types and two grid configurations. The four attack
types are no-attack, complete attack, full proximity attack with
radius 1 and probability threshold attack with threshold 0.2.
The two grid configurations are no target and one target at grid
position (3,5). Eight independent experiments were performed
per scenario for each of the two grid configurations and the
results presented are an average over the eight experiments.

When not under attack, no collisions were observed for the
entire 100 steps both with and without a target. Under attack
types, collisions were observed as soon as within 4 steps and
as late as 53 steps without a target. With a target, collisions
were observed within 3 to 95 steps. Since no attack resulted
in no damage and required no cost, it is used as a basis of
comparison. Damage is measured as the number of steps the
system fails to complete compared to the no-attack scenario.
For example, if the first collision occurs after 30 steps while
under attack and 100 steps were completed while not under
attack, the damage is 70 failed steps. The cost is measured
as the number of signals jammed in order to cause the first
collision. Attack potency, shown in Figure 12, is the number
of failed steps per signal jammed.

Fig. 12. Average attack potency measured as the number of steps until the
first collision divided by the signals jammed leading up to the first collision.

Of the three attack types tested on a target-less grid, FP
caused the earliest collisions and jammed the fewest signals.
On average, C caused a collision after 23 steps by jamming 46
signals, FP after 14 steps by jamming 3 signals and PT after
22 steps by jamming 14 signals. FP causes greater damage,
incurs a lower cost and is more potent than C. PT does not
cause greater damage than C, but it does incur a lower cost
and as a result is still more potent than C.

When a target is present on the grid, the movement prob-
abilities of each robot are altered according to the permanent
positive pheromone gradient and grid coverage is no longer
even. Compared to the potency on a grid without targets, the
attack potency of C decreased 9%, the potency of FP decreased
78% and the potency of PT increased 81% on a grid with one
target. As shown in Figure 12, both FP and PT were still more



potent than C when a target was added to the grid.
Grid coverage is an interesting damage metric because

simple swarming systems may not have collision avoidance
or damage recovery strategies in place. If a collision is
catastrophic, early collisions mean failure to complete even
the most basic mission (e.g., exploring a grid entirely). When
not under attack, the target-less grid in our implementation
was completely covered within 32 steps on average. When
under attack, “early” collisions were observed in 75% of C
trials, 100% of FP trials and 63% of PT trials.

Fig. 13. Standard deviation in coverage ratio of the target location.

Figure 13 shows the standard deviation in the target cov-
erage ratio over the eight runs. The target coverage ratio is
measured as the number of times the target is visited compared
to the total number of steps completed before the first colli-
sion. Under no attack the deviation is small, suggesting that
the target is visited consistently and proportionately. Under
attack conditions, more variance in target coverage suggests
unpredictable coverage of the target.

V. CONCLUSIONS

In this paper, we identified multiple jamming attacks that
were significantly more effective at causing damage to digital
pheromone swarming systems than traditional DoS attacks.
These attacks judiciously decide which signal to interfere with
based on the state of the agents. We have shown the potency
level in terms of collision damage can be 14 times that of DoS
attacks. We have also assessed the impact of the attacks on
our implementation test-bed and found that the potency level
of the stealthy attacks in terms of time until the first collision
can be 7.5 times that of DoS attacks. We have identified a
number of key parameters that affect the attack potency such
as the radius of attack, probability threshold, and the number
of agents and targets present. In all the cases studied, there
was always a stealthy attack that was more potent than DoS
attacks.

Choosing an effective attack type depends on the scenario
and the type of detection mechanisms employed in the system.
If an attack’s effect is detected according to an increase in the
number of collisions, a jamming attack similar to PT should be
chosen since it can cause a wide range of map differences with

a small number of collisions. If an attack’s effect is detected
by increased map differences, a jamming attack like FP should
be used since it causes a greater number of collisions within a
narrow range of map differences. The impact of damage type
can also be considered. If a collision would be catastrophic,
such as for a system of UAVs, a jamming attack with a high
collision potency can be chosen. If the system is protected with
collision recovery techniques, however, an attack that targets
coverage may be selected.
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