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RESUMO

O consumo de vídeos digitais cresce a cada ano. Vários países já utilizam tv digital e o tráfego de
dados de vídeos na internet equivale a mais de 60% de todo o tráfego de dados na internet. Esse
aumento no consumo de vídeos digitais exige métodos computacionais viáveis para o cálculo da
qualidade do vídeo.

Métodos objetivos de qualidade de vídeo são algoritmos que calculam a qualidade do vídeo.
As mais recentes métricas de qualidade de vídeo, apesar de adequadas possuem um tempo de exe-
cução alto. Em geral, os algoritmos utilizados são complexos e extraem características espaciais
e temporais ds vídeos.

Neste trabalho, realizamos uma análise dos efeitos da redução da resolução espacial no desem-
penho dos métodos de avaliação da qualidade do vídeo. Com base nesta análise, nós propomos
um framework, para a avaliação da qualidade de vídeo que melhora o tempo de execução das
métricas objetivas de qualidade de vídeo sem reduzir o desempenho na predição da qualidade do
vídeo. O framework consiste em quatro etapas. A etapa de classificação identifica os vídeos mais
sensíveis a redução da resolução espacial. A etapa de redução reduz a resolução espacial do vídeo
de acordo com a distorção. A etapa da predição da qualidade é realizada por meio de uma métrica
objetiva de qualidade. Finalmente, temos a etapa de ajuste dos índices de qualidade preditos.

Dois classificadores de vídeo são propostos para a primeira etapa do framework. O primeiro é
um classificador com referência baseado na atividade espacial do vídeo. O segundo é um classifi-
cador sem referência baseado na entropia espacial e espectral, utilizando Support Vector Machine
para classificar os vídeos. Os classificadores de vídeo têm um objetivo de selecionar o melhor
fator de redução da resolução espacial do vídeo. Com isso, melhoramos o tempo de execução de
todas as métricas de qualidade de vídeo testadas.

Também analisamos os efeitos da redução da resolução temporal no desempenho das métricas
de qualidade de vídeo. A análise mostra que as métricas de qualidade de vídeo que se baseiam
em características temporais são mais sensíveis à redução temporal. E, vídeos distorcidos por
distorções temporais, como perda de pacote, são mais sensíveis à redução temporal.



ABSTRACT

The consume of digital videos is increasing every year. Many countries already use digital tv, and
the traffic of internet video services are more than 60% of the total internet traffic. The growth of
digital video consume demands a viable method to measure the video quality.

Objective video quality assessment methods are algorithms that estimates video quality. Re-
cent video quality assessment methods are well correlated with subjective quality scores. How-
ever, most of these methods are very complex and takes long periods to compute.

A simple method to improve the running time of video quality assessment methods is reduc-
ing the video spatial resolution. We analyze the effects of spatial resolution reduction on the
performance of video quality methods. The spatial resolution reduction decreases the accuracy
performance of quality assessment methods for videos distorted by white noise, packet loss, and
compressed with MJPEG. We propose a four stage framework, which has the goal of improving
the runtime performance of video quality assessment methods without decreasing their quality
estimation performance. The first stage identifies videos more sensitive to spatial resolution re-
duction. The second stage reduces the video spatial resolution according to the video distortion.
The third stage estimates the video quality using an objective video quality method. Finally, the
final stage adjusts the estimate quality score according to the video spatial resolution.

We design two video classifiers for the first stage of the framework. The first classifier is a
full reference classifier based on a video spatial activity measure. The second is a no-reference
classifier based on the spatial and spectral entropy, which uses a Support Vector Machine (SVM)
algorithm. We use the video classifiers to choose the most appropriate video spatial resolution
before computing the quality using a video quality assessment method. We tested the framework
using six different video quality assessment methods. Results show that the proposed framework
improves the average runtime performance of all video quality assessment methods tested.

Also, we analyze the effects of a temporal resolution reduction on the performance of video
quality assessment methods. The analysis shows that video quality assessment methods based on
temporal features are more sensitive to temporal resolution reduction. Also, videos with temporal
distortions, like packet loss, are very sensitive to temporal resolution reduction.
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1 INTRODUCTION

In recent years there has been an increasing demand for video-based services. According to
Cisco in 2019, 80 percent of all consumer Internet traffic will be from video applications [5]. As
consume increases, the demand for better user experiences also increases. Many factors contribute
to the quality of the user experience, like the display in which the video is playing, the ambient
light, the user interest, and the video quality. Video quality is the quality of the video signal as
perceived by the user.

There are basically two ways of assessing the quality of a video: subjectively and objectively.
Subjective video quality assessment methods estimate the quality of a video by performing a se-
ries of pycho-physical experiments. In these experiments, subjects watch a series of videos and
give a quality score to each the video. The average of these scores is the Mean Opinion Scores
(MOS), which is a subjective quality estimate. This type of video quality assessment method is
known to be the most reliable method [6]. However, psycho-physical experiments are expensive,
very difficult to replicate, and require a minimum number of subjects taken from a diverse pool of
people to provide reliable results. Most of the times, objective video quality assessment method-
ologies are used. Objective methods are basically algorithms that automatically compute a quality
estimate score for the video. These methods are faster and cheaper than the subjective methods,
but they are less precise.

In the early days, image quality assessment methods were adapted to measure the video qual-
ity. In other words, image quality assessment methods, like Peak Signal-to-Noise Ratio (PSNR),
were computed for each frame and averaged to provide the video quality predicted score [7].
However, using image quality assessment methods has limitations. The main issue is that these
methods do not account for temporal distortions. To solve this problem, some research add tem-
poral information to image quality assessment methods to improve their prediction accuracy per-
formances. For example, Wang et al. propose adding a motion estimation stage to the Structural
Similarity Index (SSIM) [1], which adds more weight to slow moving regions [8]. Vu et al. adapt
the Most-Apparent-Distortion (MAD), an image quality assessment method, to video by using
spatial-temporal slices and optical-flow [9].

Nowadays, most of the proposed video quality assessment methods use spatial and temporal
features to evaluate video quality. For example, Pinson et al. extracted several features from
the distorted and reference video to estimate the video quality [10]. Some of the features ex-
tracted by this method include spatial activity, temporal activity, and color-based differences. Se-
shadrinathan used a 3D Gabor analysis to extract spatial, temporal and spatial-temporal features
from the distorted video and compared them with the same features extracted from the reference
video [11].

Although video quality assessment methods are becoming more precise, there are still chal-

1



lenges in this area. Chandler and Wang discuss some of these challenges related to image/video
quality assessment methods [12, 13]:

• How to deal with multiple distortions, many video quality assessment methods have a
very good performance when the content evaluated has the same distortion. Because,
only the level of distortion is modified from one video to another. However, different
video distortions affect the video in different ways, and sometimes the video quality
methods cannot interpreted which distortion is less visible.

• How to deal with image enhancements, some video/image post-processing can improve
the perceptual quality of the video/image, but the video quality assessment can inter-
preted this processing as a distortion.

• How to make the image/video quality assessment scores easy-to-use and easy-to-understand,
image/video quality assessment methods are becoming more complex over the years.
Many methods have great correlation with subjective scores, however they are com-
plex algorithms that are hard to understand and use.

• How to estimates video quality of High Dynamic Range (HDR) content, this type of
content are becoming more common and many video quality assessment methods are
not ready to evaluate this type of content.

Finally, one big challenge, that is mention in both articles, is reducing the runtime perfor-
mance. Some of the current video quality methods are so computationally complex that it is
impossible to use them in real time scenarios or any practical application. For example, the av-
erage runtime of a recent developed method, the ViS3, is more than 600 seconds for videos 10
seconds long [12]. Some video quality methods have options to reduce the runtime. For example,
Wang’s video quality method has an option to reduce the number of frames used by the algorithm
to estimate the video quality [8]. The VQM reduces the spatial and temporal resolution of the
video to improve the runtime performance [10]. And MOVIE analyzes the video in an 8-by-8
frame interval [11]. Although these methods offer options to improve the runtime performance,
they do not consider that different video distortions are more or less sensitive to reductions of
spatial or temporal resolution.

Our main objective is to create a framework to improve the runtime of video quality methods
without affecting their prediction accuracy performance. One of the simplest method to improve
runtime performance is to reduce the video spatial resolution. However, when the video reso-
lution is reduced, the video quality is alter and the accuracy performance of video quality
assessment methods can be decrease. So, we made several tests using six video quality as-
sessment methods and analyze their accuracy performance, when reducing the video spatial
resolution. We analyze the effects of reducing the spatial resolution and also try to understand
which video distortions are more or less sensitive to these reductions. We propose a four step
framework. The first step consists of identifying the videos which are more sensitive to spatial
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resolution reduction. The second step is to reduce the video resolution according to its distortion.
The third step consist of measures the video quality using an objective video quality assessment
method. Finally, the fourth step is to adjust the predicted score from video with different resolu-
tions to the same scale.

In this work, we design two video distortion classifiers to perform the first step of the proposed
framework. These classifiers identify videos more sensitive to spatial resolution reduction, so that
the spatial resolution can be adjusted accordingly. We tested the proposed framework with six
objective quality assessment methods. We notice an improvement in runtime performance for the
six methods and, surprisingly an improvement in the prediction accuracy performance.

Also, we perform tests to analyze the effects on the video quality assessment methods
accuracy performance, when the temporal resolution is reduced. Reducing the temporal
resolution is another simple and fast way to reduce the runtime performance of video quality
assessment methods.

We divide this work into six chapters. In Chapter 2, we explain how digital video is transmit-
ted and detail the most common video distortions. In Chapter 3, we describe the video quality
assessment methods used in this work. In Chapter 4, we detail the proposed framework and video
classifiers. In Chapter 5, we present the results of this work. Finally, in Chapter 6, we present the
conclusion and future works.
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2 DIGITAL VIDEO SYSTEM

Before a video reaches the final user, it has to go through some processing stages. Figure 2.1
shows an overview of a common digital video transmission system. First, the original video is
compressed to reduce its size and, consequently, increase the transmission speed. The encoding
stage includes the compression and the channel encoding. The result of the video compression
stage is a bitstream, in which the coded data is divided into packets for transmission. These pack-
ets are encoded according to the transmission protocol requirements. Then, the video is transmit-
ted through a channel that can be dynamic or static, packet-switched or circuit-switched. When
the video data reaches the receiver, it is decoded and decompressed in the decoding stage [14].

Figure 2.1: Overview of Video Transmission Diagram.

During the transmission process, the video can be distorted in different ways. The compres-
sion of the video, usually, is a lossy compression, meaning that some of the video data is discarded
and the received video cannot be perfectly reconstructed [15]. Depending on the type of compres-
sion and the compression rate, some visible artifacts can be present in the video. Also, during the
transmission through the physical channel, some of its packets can be lost, what may also affect
the video quality. After the video is received and decompressed, it can further be processed to a
better visualization on the device that it is been displayed. For example, if the video is in a lower
resolution than the display, the video can be upscaled to the display resolution. Finally, the video
can be corrupted by noise in many ways, during the transmission or processing stages [16]. Next,
we describe the most relevant video distortions and how they are generated in a modern
video transmission scenarios.

2.1 VIDEO PROCESSING AND VIDEO DISTORTIONS

Video distortions are perceptible differences between the degraded video and the correspond-
ing reference video. These distortions are the result of one or more errors introduced in the videos
during compression, post processing or transmission errors. Because compression algorithms are
very complex and have different stages, videos distorted by compression usually are affected by
more than one artifacts (a visible distortion). The post processing of a video usually has the goal
of attenuating artifacts. Finally, transmission errors occurs because of channel errors, like losses
and congestion problems.
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2.1.1 Video Compression Algorithms

Data compression techniques have the goal of representing the data in a more compact form
[15]. Videos are compressed to reduce storage and transmission costs. There are lossless and lossy
compression algorithms. Although lossless compression algorithm can reduce the video size and
recover it without any errors, the compression ratio that can be achieved with lossless compression
algorithm is limited [17]. Fortunally, since video sequences are usually very redundant, lossy
compression algorithms can achieve great compression rates with a good video quality. The most
popular lossy compression algorithms are MJPEG, MPEG-2, DIRAC-Wavelet, H.264 and HEVC.
Although lossy compression algorithms are more efficient in terms of compression rate, they may
introduce perceivable artifacts into the video.

The MJPEG compression algorithm is based on the JPEG image compression. JPEG makes
use of the Discrete Cosine Transform (DCT). First, the image is divided into 8x8 blocks and the
DCT of each block is computed. The DCT coefficients are quantized, removing most of the high
frequency coefficients. The quantized coefficients are rearranged and coded using a Huffman
coding algorithm [18]. In MJPEG each video frame is compressed as a JPEG image. Although
JPEG is very good at compressing images, using it to compress individuals video frames is not a
very good strategy. Video sequences have temporal redundancies that can be explored to allows
for a more efficient compression of video sequences. So, videos compressed by MJPEG have a
lower video quality than videos compressed by other compression standards, like MPEG-2 and
H.264, which take into account temporal redundancies.

Figure 2.2 shows an example of video frame compressed by MJPEG, which is affected by
blocking and blurring artifacts. The blocking artifact is a consequence of the quantization of the
DCT coefficients. Since the coefficients in each block are processed independently, regardless of
the spatial correlation between them, intensity differences between neighboring blocks cause the
edges/borders that characterize blockiness. The Human Visual System (HVS) can easily detect
blocking artifacts because of equidistant distribution of the blocks in the frame [19]. Blurring
artifacts, on the other hand are caused by any type of operation that discards high frequencies
DCT coefficients [19]. In image processing, the high frequencies coefficients are associated with
edges and abrupt changes in intensities [20]. Therefore, blurred images have less sharp edges and
borders.

MPEG-2 compression algorithm is a block-based motion-compensated video coding algo-
rithm. It is similiar to JPEG, but it uses motion estimation techniques to reduce temporal redun-
dancy. Since it also quantizes the DCT block coefficients, discarding most of the high frequencies
components, MPEG-2 may also introduce blockiness and blurring artifacts in the compressed
video. The motion estimation techniques search blocks in previous frames that are similar to
blocks in the current frame [21]. This way, only the coordinates of the similar blocks and the
difference between the similar blocks and the current blocks need to be encoded and sent to the
receiver. Videos compressed by MPEG-2 may also be affected by mosquito noise, as a conse-
quence of the motion estimation. This artifact occurs when the predicted block contains only part
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(a) Reference Frame

(b) MJPEG

Figure 2.2: Comparison between (a) the reference frame and (b) the frame compressed using a MJPEG algorithm.
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of a moving object. Mosquito noise is more visible in smooth texture regions around egdes [14].
Figure 2.3 shows a video frame compressed by MPEG-2 and the corresponding reference frame.

H.264 compression algorithm is also a block-based motion-compensated video coding algo-
rithm [22]. In H.264, the video is first divided into macroblocks (16x16 for the luminance com-
ponent and 8x8 for the chroma components), and, then, the DCT coefficients of each macroblock
are calculated and quantized. Next, a motion estimation algorithm is used to obtain inter-frame
predictions. Different from previous compression algorithms, each macroblock can be divided
into sub-macroblocks down to 4x4, which improves the quality of the prediction, specially for
fast motion regions. One of the major features of H.264 to improve video quality is the deblock-
ing filter to reduce the blocking artifacts. Blocking artifacts are common in other block-based
compression algorithms. Koh et al. show that the blocking is the most annoying artifact present
in videos compressed by MPEG-2 [23]. The use of deblocking filter improves the quality of the
video (by 9% in PSNR) [24]. Figure 2.4 shows a video frame compressed by H.264 compression
algorithm and the corresponding reference frame. We can notice that the blocking artifact is less
visible, comparing with the frames distorted by MJPEG and MPEG-2. However, video frames
compressed with H.264 still present blurring artifacts.

DIRAC-Wavelet compression algorithm was developed by the British Brodcasting Corpora-
tion (BBC) [25]. The major difference between the DIRAC-Wavelet algorithm and other com-
pression algorithms, like MPEG-2 and H.264, is that it uses wavelets instead of DCT, which
reduces the blockiness artifacts. But, the quantization of wavelet coefficients leads to ringing and
blurring artifacts. Ringing artifacts manifest themself as wave-like structures in edges regions.
Figures 2.5 shows an example of a video frame distorted by a DIRAC-Wavelet compression.
Notice that ringing artifacts are present in areas around high contrast edges.

H.265 or HEVC compression algorithm is an improved version of the H.264 compression.
One of the changes introduced by H.265 is the possibility of partitioning the video frame using
blocks of different sizes, which varies from 64x64 down to 8x8 [26]. The performance of H.265
is 50% better than the performance of H.264. For the same quality level, the bitrate obtained with
H.265 is half the bitrate obtained with H.264 [27]. Figure 2.6 shows a video frame distorted by
an H.265 compression. Videos compressed with H.265 at low bitrates contain mostly blurring
artifacts.

2.1.2 Upscaling Processing

Sometimes the display where the video is presented has a higher resolution than the video
itself. Algorithms of interpolation are then used to upscale the video resolution to the display
resolution. This type of processing is commonly used in streaming services applications, because
video resolutions vary according to the available bandwidth [28].

Interpolation algorithms used in upscaling consider the neighboring pixels to estimate a pixel
value. There are different interpolation algorithms. Nearest neighbor, biliniar and bicubic
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(a) Reference Frame

(b) MPEG-2

Figure 2.3: Comparison between (a) the reference frame and (b) the frame compressed using a MPEG-2 compression
algorithm.
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(a) Reference Frame

(b) H.264

Figure 2.4: Comparison between (a) the reference frame and (b) the frame compressed using an H.264 compression
algorithm.
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(a) Reference Frame

(b) DIRAC-Wavelet

Figure 2.5: Comparison between (a) the reference frame and (b) the frame compressed using a DIRAC-Wavelet
compression algorithm.
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(a) Reference Frame

(b) HEVC

Figure 2.6: Comparison between (a) the reference frame and (b) the frame compressed using an H.265 compression
algorithm.
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(a) Reference Frame

(b) H.264

(c) H.264 with Upscaling

Figure 2.7: Comparison between (a) the reference frame and (b) the frame compressed by an H.264 algorithm and
(c) the frame compressed by an H.264 algorithm with Upscaling.
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(a) Reference Frame

(b) White Noise

Figure 2.8: Comparison between (a) the reference frame and (b) the frame distorted by white noise.
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(a) Reference Frame

(b) Packet Loss

Figure 2.9: Comparison between (a) the reference frame and (b) the frame distorted by packet loss artifacts.

the most common interpolation algorithms [29]. The nearest neighbor algorithm is the
most simple interpolation algorithm, and generates image with less quality than the other
methods. The biliniar and bicubic generates images with better quality, because they use
more information to predicted the new pixel value. However, these interpolation algorithms
are low-pass filter and smooths the edge regions in the frames. Figure 2.7 shows an example
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of video frame distorted by upscaling. In this example, the video was compressed with H.264
and then upscaled to a higher resolution, using a bilinear interpolation algorithm. Notice that the
upscaled video frame is more blurred than the reference video frame.

2.1.3 Video Transmission

Video can be transmitted either in analog or digital channels. In analog transmissions, one of
the most common artifacts is noise, in particular white noise that is a random signal that occupies
the whole spectrum. Noise can also be added in video sequences during the acquisition and
processing [16]. Figure 2.8 shows a video frame distorted by white noise. Notice that in this case
the noise is an additive distortion, which affects the whole frame.

In digital transmission, before the compressed video is transmitted over a channel (e.g. a
wired or wireless transmission channel), it is divided into packets. Sometimes these packets are
discarded due to the traffic in the network. The impact of a packet loss in video quality depends
on the content of the video and the channel loss distribution [30]. Packet loss is characterized
by the presence of erroneously decoded blocks in the decoded video. In most video compres-
sion algorithms, frames that are coded without any reference to previous frames are send
periodically. These frames are called I-Frames, and they are used as a reference to decode
other frames. If the packet loss occurs in these I-Frames, the distortions are more severe and
may affect several frames [31]. Figure 2.9 shows a video frame distorted by packet loss. Notice
that the packet loss is a local distortion, i.e. it is spatially and temporally concentrated.

2.2 VIDEO DATABASE

Video quality database are a collection of videos and their distorted versions. Each dis-
torted video has a subjective score that represents the quality of the video. These databases
labeled the distorted videos by its distortion, as shown in the previously section. In this
work, we use four databases: LIVE, CSIQ, IVP and MCL-V. Each database has unique
specifications and they are describe in the next subsections

2.2.1 LIVE Video Quality Assessment Database

The LIVE Video Quality Assessment Database is one of the most popular video quality
database [32, 31]. It was released in 2010 by the Laboratory for Image & Video Engineering
(LIVE) of the University of Texas. This database has 10 reference videos and, for each reference
video, there are 15 test sequence with four types of distortions: MPEG-2 compression (4 test
videos per reference), H.264 compression (4 test videos per reference), simulated transmission of
H.264 compressed bitstreams through error-prone IP networks (3 test videos per reference) and
through error-prone wireless networks (4 test videos per reference). Figure 2.10 shows sample
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frames from each reference video in the LIVE database.

The videos are provided in uncompressed YUV420 format at a 768x432 resolution. Nine of
the ten reference videos are 10 seconds long and one video is 8.68 seconds long. Seven out of the
ten reference videos have 25 FPS and the other three videos have 50 FPS.

For the subjective testing, a single stimulus methodology was adopted. In this methodology,
the subject watches a single video and then gives a quality score to this video using a continuous
scale. All test videos were evaluated by 38 subjects. Subjects evaluated reference and the impaired
videos. The Difference Mean Opinion Scores (DMOS) between each impaired video and the
corresponding reference was computed to provide a subjective quality score.

Figure 2.10: Frames of all videos in LIVE Database

2.2.2 CSIQ Video Quality Database

The CSIQ Video Quality Database was released in 2013 by Laboratory of Computational Per-
ception & Image Quality at Oklahoma State University [4]. This database contains 12 reference
video sequences and 216 distorted video sequences. All videos were provided in uncompressed
YUV420 format with a spatial resolution of 832x480. Figure 2.11 shows sample frames from
each reference video in the CSIQ database.
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The distorted video sequences were generated using 6 types of distortion: H.264 compression,
H.265 compression, MJPEG compression, wavelet-based compression using the Snow codec,
H.264 videos subjected to simulated wireless transmission loss, and additive white noise. To
generate all test videos, each reference video was distorted with all distortions in three different
levels.

The Subjective Assessment Methodology for Video Quality (SAMVIQ) was used in the sub-
jective tests [33]. SAMVIQ is a multi-stimulus experimental methodology. Subjects are presented
with the reference and distorted sequences from the same content. They evaluate each sequence
in any order. They can even change the quality score given to a sequence previously seen. All
videos were evaluated by 35 subjects. The MOS for each video sequence was released with the
database.

Figure 2.11: Frames of all videos in CSIQ Database

2.2.3 IVP Subjective Quality Video Database

The IVP Subjective Quality Video Database was released in 2011 by the Image and Video
Processing Laboratory at The Chinese University of Hong Kong [34]. This database contains
10 reference video sequences and 128 distorted video sequences. The videos were provided in
uncompressed YUV420 format with resolution of 1920x1088. All videos have 25 FPS. Seven
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of the reference video sequences are 10 seconds long, two are 11.2 seconds long and one is 8.96
seconds long. Figure 2.12 shows sample frames from each reference video in the IVPL database.

The distorted video sequences were generated using 4 types of distortion: MPEG-2 com-
pression (3 test videos per reference), wavelet compression (3 test videos per reference), H.264
compression (4 test videos per reference) and packet loss cause by H.264 streaming through IP
networks (4 test videos per reference). The packet loss distortions are presented only for seven
(out of ten) reference video sequences.

All videos were evaluated by 42 subjects. The single stimulus methodology was used in the
subjective experiment. DMOS was provided as the subjective quality measure.

Figure 2.12: Frames of all videos in IVP Database

2.2.4 MCL-V Database

The MCL-V Database was released in 2014 by the USCMediaCommLab at the University of
Southern California [28]. This database contains 12 reference videos sequences and 96 distorted
video sequences. The distorted video sequences were generated using 2 types of distortion: H.264
Compression (4 distorted video sequences per reference) and H.264 Compression follow by scal-
ing (4 distorted video sequences per reference). Figure 2.13 shows frames from each reference
video in the MCL database.
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The video sequences were provided in uncompressed YUV420 format with a spatial resolution
of 1920x1080. Two of the reference video sequences have 24 FPS, six of them have 25 FPS and
the remaining sequences have 30 FPS. The videos sequences with 25 and 30 FPS are 6 seconds
long. And one of the video sequences with 24 FPS is 5.5 seconds long and the other video
sequence is 5 seconds long.

The videos were evaluated by 45 subjects. A pairwise comparison experimental methodology
was used in the subjective test. This methodology is recommended by ITU [35], and consists in
simultaneously presenting two video sequences from the same source, but with different quality
levels. Subjects are asked which of the video sequences has a better quality. The database provides
the MOS of each test sequence.

Figure 2.13: Frames of all videos in MCL-V Database
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3 VIDEO QUALITY ASSESSMENT METHODS

There are two ways to evaluate the video quality. The first way is the subjective quality as-
sessment method. In these methods, psychophysical experiments are performed in which subjects
evaluate video quality using a scale directly comparing video sequences. To perform a subjective
test properly, experimenters follow recommendations established by the International Telecom-
munication Union (ITU) [36]. Subjective methods are known to provide the most reliable results
for video quality, however, they are very expensive and time-consuming.

The second way is the objective assessment method. This method uses mathematical models,
which can be implemented in hardware or software, to evaluate video quality. Depending on the
information available, objective methods can be categorize into three groups:

• Full-Reference: the original and the test video are available to the method at the measure-
ment point.

• Reduced-Reference: some information about the original video and the test video are avail-
able to the method at the measurement point.

• No-Reference: only the test video is available to the method at the measurement point.

Full-Reference methods are often used in non-real-time scenarios, because these methods re-
quire information about the reference video, which is frequently not available in real-time applica-
tions. Codec comparison and optimization are examples of scenarios in which these methods can
be used. On the other hand, reduced-reference and no-reference methods are more appropriate
for real-time scenarios. Nevertheless, full-reference methods are more precise than no-reference
and reduced-reference methods.

Objective quality assessment methodologies can also be classified as data metrics or picture
metrics [37]. Data metrics measure only the fidelity of the video signal, i.e. how similiar are the
test and reference video. Data metrics do not consider the content of the video or how degrada-
tions are perceived by human viewers. These metrics, often, are simple and fast. Mean Squared
Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are data methods. One of the problems of
data metrics is that they do not consider the type of distortion present in the video. Figure 3.1
shows five images with different types of distortions and different quality levels, which have same
MSE score. As can be seen in these images, although the HVS perceived these distortions differ-
ently, MSE does not capture these differences. Another problem, with data metrics is that they do
not take into consideration the content of the video. And according to Wang, distortions may be
less visible in texture areas of the video frame or when the speed of motion is large [8]. Never-
theless, it is worth pointing out that data metrics can be used in other contexts, when we simply
want to measure the differences between two video signals.
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Figure 3.1: Comparison between the images with the same MSE score, but with different disotrtions. (a) Orignal
Image. (b) Contrast-stretched image. (c) Mean-shifted image. (d) JPEG compressed image. (e) Blurred image. (f)
Salt-pepper impulsive noise contaminated image. Orignal From [1].

In the last decades, researchers started developing pictures metrics, which are objective quality
assessment methods that take into consideration the intrinsic characteristics of a visual signal. In
other words, picture metrics analyze the visual data as visual information, considering the effects
of video distortions and content on the perceived quality. Picture metrics can be designed either
using a vision modeling approach or an engineering approach. The vision modeling approach
implements models of components of the HVS, like color perception, contrast sensitivity, and
pattern masking. One example of a video quality assessment method that uses a vision modeling
approach is the Sarnoff Just Noticeable Differences (JND) method, which is based on the chro-
matic and luminance differences that can be perceived by human viewers, i.e. the just noticeable
perceived difference [38]. Another example of a video quality assessment method that uses vi-
sual models is the Perceptual Distortion Metric (PDM), which is based on some aspects of the
human vision like perceptual color space, multi-channel representation of spatial and temporal
mechanisms, contrast sensitivity, and pattern masking [39].

The engineering approach is based on the analysis of certain features of the video, like the
spatial luminance gradient, the image structure, or specifics artifacts (like blur, noise, etc). Some
examples of video quality assessment methods that adopt an engineering approach are: the SSIM,
an image quality assessment method, that measures the mean, variance and covariance of patches
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of the image [1]; the Gradient Magnitude Similarity Deviation (GMSD), an image quality as-
sessment method that analyzes the spatial luminance gradient [40]; and the Spatial and Spatial-
Temporal Slices Gradient Magnitude Similarity Deviation (SSTS-GMSD) that is an extended
version of the GMSD, that analyzes the gradient of the Spatial-Temporal Slices (STS) of the
video [2].

On the other hand, there are methods that combine both approaches. One example is the
Video Quality Assessment via Analysis of Spatial and Spatial-Temporal Slices (ViS3), which
includes a data metric and a picture metric in its model [4]. First, a spatial distortion map is
computed using the Most Apparent Distortion algorithm (MAD), which takes into account on
how the HVS perceives video distortions [41]. Then, the spatial-temporal dissimilarity between
the reference and distorted videos is computed using spatial-temporal correlation and spatial-
temporal responses.

Recently, the use of machine learning algorithms for video quality assessment become ex-
tremely popular, specially for the no-reference quality assessment methods scenario. Most ma-
chine learning based quality assessment methods extract features from the videos and use ma-
chine learning techniques, like support vector regression or neural networks, to predicted the
video quality scores. Xu et al. propose a no-reference video quality assessment method that uses
an unsupervised feature learning approach that trains a support vector regression to predict video
quality [42]. Saad et al. use a spatio-temporal natural scene statistics model and a motion model
to train a support vector regression algorithm [43].

Although prediction accuracy performance of video quality assessment methods are improv-
ing, these methods are becoming more complex, requiring large running times. Both ViS3 and
Spatial-Temporal Reduced Reference Entropy Difference (STRRED) take several minutes to es-
timate the quality of a video 10 seconds long [4, 44]. MOVIE takes hours to estimate the quality
of a video 10 seconds long [11], because the algorithm uses a 3D Gabor filter. Improving the
runtime of video quality assessments methods is still an open challenge [12, 13].

In this work, we study the performance of full-reference and reduced-reference video quality
assessment methods. Among the assessment methods studied in this work are the full-reference
assessment methods: ViS3, SSTS-GMSD, GMSD, SSIM and PSNR; and the reduced-reference
assessment method STRRED. These methods are detailed in the next sections.

3.1 PSNR

The Peak Signal-to-Noise Ratio (PSNR) is a simple full-reference assessment method that is
based on MSE, that is the mean of the squared difference of to images, as given by the following
equation:
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MSE =

∑M−1
x=0

∑N−1
y=0 (Iref (x, y)− Idist(x, y))2

M ·N
, (3.1)

where Iref (x, y) is a pixel from the reference image, Idist(x, y) is a pixel from the distorted or
test image and MxN is the spatial dimension of these images. In this work, we consider only
the luminance component of the image to calculate the MSE. The PSNR is calculated using the
following equation:

PSNR = 10 · log10
MAX2

I

MSE
, (3.2)

where MAXI is the maximum possible value of the image (generally MAXI = 255). To use
PSNR as a video quality method we calculate the PSNR for each frame of the video and take the
average of the frame results to obtain the video quality score.

3.2 SSIM

The Structural Similarity (SSIM) is a full reference image quality assessment method devel-
oped by Wang [1]. SSIM compares three features of the reference and distorted image. These
features are luminance, contrast and structure, as shown in Figure 3.2.

Figure 3.2: Diagram of SSIM Algorithm.

SSIM performs its analysis on the luminance component of the image. To compute the SSIM
score, the image is first divided in 8x8 blocks. For each block the luminance, contrast and struc-
ture comparison measurements are performed. The luminance comparison is calculated by the
following equation:

l(x, y) =
2µxµy + C

µ2
x + µ2

y + C
, (3.3)
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where µx and µy are the mean intensity of the original image block and the distorted (test) image
block, respectively. And C is a small constant necessary to avoid instability.

The Contrast Comparison is calculated by the following equation:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (3.4)

where σx and σy are the standard deviation intensity of the original and distorted (test) image
block, respectively. And C2 is a small constant necessary to avoid instability.

The Structure Comparison is calculated by the following equation:

s(x, y) =
σxy + C3

σxσy + C3

, (3.5)

where σx and σy are the standard deviation intensity of the original and distorted block, σxy is
the covariance between the original image block and the distorted (test) image block, and C3 is a
small constant necessary to avoid instability. To combine these comparisons into a single SSIM
map, we use the following equation:

SSIM(x, y) = l(x, y)α · c(x, y)β · l(x, y)γ, (3.6)

where, to simplify, α = β = γ = 1. The average value of the SSIM map is the final score. To use
SSIM as a video quality method, we calculate the SSIM for each video frame and average these
values to obtain the video quality score.

3.3 GMSD

The Gradient Magnitude Similarity Deviation (GMSD) is a full reference image quality as-
sessment method developed by Xue et al. [40]. It is based on the gradient differences between
reference and distorted (test) gray-scaled images. The gradient magnitude is computed using
Prewitt filters for horizontal and vertical directions, as given by the following expressions:

hx =

∣∣∣∣∣∣∣
1/3 0 −1/3

1/3 0 −1/3

1/3 0 −1/3

∣∣∣∣∣∣∣ (3.7) hy =

∣∣∣∣∣∣∣
1/3 1/3 1/3

0 0 0

−1/3 −1/3 −1/3

∣∣∣∣∣∣∣ (3.8)

To compute the gradient magnitude image, we convolve the reference and distorted (test)
images with the Prewitt filters, as shown in the following equations:

mr =
√

(Iref ∗ hx)2 + (Iref ∗ hy)2, (3.9)
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md =
√

(Idist ∗ hx)2 + (Idist ∗ hy)2, (3.10)

where Iref is the reference image, Idist is the distorted image, mr is the gradient magnitude of
the reference image, md is the gradient magnitude of the distorted image, and ∗ represents the
convolution operation. Finally, we compare the gradient magnitude of the reference and distorted
images using the following equation:

GMSmap =
2mrmd + c

m2
r +m2

d + c
, (3.11)

where c is a small constant necessary to avoid instability. The GMSD final score is obtained by
calculating the standard deviation of the GMSmap. To use GMSD as a video quality method we
calculate the GMSD for each video frame and average these to obtain the video quality score.

3.4 SSTS-GMSD

The Spatial and Spatial-Temporal Slices Gradient Magnitude Similarity Deviation (SSTS-
GMSD) is a full-reference video quality assessment method based on GMSD, which was devel-
oped by Yan et al. [2]. It uses Spatial-Temporal Slices (STS) of the video to provide temporal
information to the GMSD. A video can be represented as a 3-D array, F (x, y, t), where the x
and y are spatial coordinates and the t is a temporal coordinate. The STS are represented by the
perpendicular dimension to x and y. Figure 3.3, depicts the STS. There are two types of STS: the
vertical STS, represented by x and t coordinates, and the horizontal STS represented by y and t
coordinates.

Figure 3.3: Example of Spatial Temporal Slices. Originals taken from [2].

The SSTS-GMSD algorithm computes the GMSD of the video frames (x,y), the horizontal
STS (x,t) and the vertical STS (y,t), as shown in Figure 3.4. Then, the GMSD scores are sorted in
descending order and the average value of the first 20% GMSD scores is computed, for each of
these dimensions. This creates the Spatial GMSD index (S-GMSD), the Horizontal-Slice index
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(H-GMSD), and the Vertical-Slice GMSD index (V-GMSD). The following equation shows how
these indices are combined into a single index that represents the quality of the video:

Figure 3.4: Diagram of SSTS-GMSD. Original from [2].

SSTS-GMSD =
√
S-GMSD · V -GMSD ·H-GMSD. (3.12)

3.5 STRRED

The Spatial-Temporal Reduced Reference Entropy Difference (STRRED) is a reduced refer-
ence video quality method developed by Soundararajan and Bovik [44]. It is based on a previously
work, the Reduced Reference Entropic Differencing (RRED) [45]. RRED is a reduced-reference
image quality assessment method based on the differences between the entropies of wavelet co-
efficients of the reference and distorted images. The STRRED estimates video quality based on
spatial and temporal distortions. The spatial distortions are measured using the Spatial Reduced
Reference Entropic Differences (SRRED), which is based on the frame’s RRED index with the ad-
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dition of a motion weight, make it more sensitive to distortions that occur in slow motion regions.
Temporal distortions are measured using the Temporal Reduced Reference Entropic Differences
(TRRED), which is based on the adjacent frames difference RRED index.

The SRRED algorithm calculates the entropic differences of the wavelet coefficients between
reference and distorted frames. First, the wavelet coefficients are calculated using a steerable
pyramid decomposition with multiple scales and orientations [3]. Figure 3.5 shows an example
of a steerable pyramid decomposition in three scales and three orientations. Each image in
the steerable pyramid decomposition is considered a sub-band.

Figure 3.5: Result of steerable pyramid decomposition in three scales and three orientations. Three sub-bands images
at each scale and the final lowpass image. Original from [3].

The wavelet coefficient in a sub-band is partitioned in non-overlapping blocks of size 3x3.
Each block in a sub-band k, k ∈ 1, 2, 3, ..., k, is indexed by m, m ∈ 1, 2, ...,Mk. Let C̄mkf

denote a vector of wavelet coefficients in the mth block, the kth sub-band, and the fthframe. The
vector C̄mkfr, a vector of wavelet coefficients from the reference video, is modeled as a continuous
Gaussian Scale Mixture (GSM) distribution [46], as defined in the following equation:

C̄mkfr = SmkfrŪmkfr, (3.13)

where Smkfr are independent of Ūmkfr, with Ūmkfr ∼ N (0,KUkf). The vectors of wavelet
coefficients from the distorted video are modeled in the same way, and they are defined as C̄mkfd.

The SRRED is defined by the following equation:

SRREDMk
k =

1

FMk

F∑
f=1

Mk∑
m=1

|γmkfrh(C ′mkfr|Smkfr = smkfr)−γmkfdh(C ′mkfd|Smkfd = smkfd)|,

(3.14)

where F is the total of frames in the video, Mk is the total number of blocks in the sub-band,
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h(C ′mkfr|Smkfr = smkfr) and h(C ′mkfd|Smkfd = smkfd) are the entropies of C ′mkfr and C ′mkfd
conditioned on the maximum likelihood estimates of Smkfr and Smkfd. Finally, γmkfr and γmkfd
are scale factors defined by the following equations:

γmkfr = log(1 + s2mkfr) (3.15)

γmkfd = log(1 + s2mkfd) (3.16)

The TRRED algorithm is based on the entropic differences of the wavelet coefficients of the
current frame and the next frame, in both the reference and distorted videos. Let D̄mkf denote the
vector of wavelet coefficients differences of the current frame (f ) and the next frame (f + 1) of
the mth block, and the kth sub-band. The block D̄mkfr, from the reference video, is modeled as a
continuous GSM distribution [46], as defined by the following equation:

D̄mkfr = TmkfrV̄mkfr, (3.17)

where Tmkfr is independent of V̄mkfr, with V̄mkfr ∼ N (0,KV kf). The vectors of wavelet co-
efficients differences of the current and next frames from the distorted video are modeled in the
same way, and defined as D̄mkfd.

The TRRED is defined by the following equation:

TRREDMk
k =

1

FMk

F∑
f=1

Mk∑
m=1

|δmkfrh(D′mkfr|Tmkfr = tmkfr)−δmkfdh(D′mkfd|Tmkfd = tmkfd)|,

(3.18)
where F is the total of frames in the video, Mk is the total number of blocks in the sub-band,
h(D′mkfr|Tmkfr = tmkfr) and h(D′mkfd|Tmkfd = tmkfd) are the entropies of D′mkfr and D′mkfd,
which are conditioned on the maximum likelihood estimates of Tmkfr and Tmkfd, and δmkfr and
δmkfd are scale factors defined by:

γmkfr = log(1 + s2mkfr) log(1 + t2mkfr) (3.19)

γmkfd = log(1 + s2mkfd) log(1 + t2mkfd) (3.20)

Finally the SRRED and the TRRED is combined into a single STRRED quality index. For
the kth sub-band, the STRRED index is defined as:

STRREDk = SRREDk · TRREDk (3.21)

Although the video is decomposed in many sub-bands. These sub-bands have different orien-
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tations and size. The STRRED is only computed for the sub-band with the vertically orientation
and 1/4 of the video size, because it corresponds to the best prediction accuracy quality score
performance among the different orientations and scales.

3.6 VIS3

Video Quality Assessment via Analysis of Spatial and Spatial-Temporal Slices (ViS3) is a
full-reference video quality assessment method developed by Vu et al. [4]. This method computes
video quality in two stages. First, it estimates the degradations due to spatial distortions. This
stage is called ViS1. In the second stage, it estimates the degradations due to joint spatial and
temporal distortions. This stage is called ViS2.

Figure 3.6 shows an overview of the ViS1 algorithm. To compute the visible distortion map,
the reference frame and the distorted frame are converted to perceived luminance values using the
following equation:

L = (α + kI)
γ
3 , (3.22)

where I is the video frame, α = 0, k = 0.02874 and γ = 2.2. These parameters are adjusted
for 8-bit pixel values and sRGB displays. An error frame (∆L) is computed using the following
equation:

∆L = Lref − Ldist, (3.23)

where Lref and Ldist are the reference and distorted frames converted to perceived luminance.
Then, a contrast sensitivity function is applied to the reference frames and error frames using the
following equation:

L̃ = F−1[H(u, v) ·F [L]], (3.24)

where F and F−1 correspond to the Discrete Fourier Transform (DFT) and the Inverse DFT,
and H(u, v) is the Contrast Sensitivity Function in its DFT version, as defined in [41].

After this preprocessing, a local Root Mean Squared (RMS) contrast map is computed for the
reference frame. The frame is divided in 16x16 blocks, with a 75% of overlap among neighboring
blocks. The RMS contrast is computed for each block using the following equation:

Cref =
σ̃(b)

µref (b)
, (3.25)

where µref (b) is the average pixel value of block b of L̃, and σ̃(b) is the minimum of the standard
deviations of the four non overlapping 8x8 blocks within block b.

Then, the local RMS contrast for the error frame (∆L) is computed. The frame is divided in
16x16 blocks, with 75% overlap between neighboring blocks and the RMS contrast is computed
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Figure 3.6: Diagram of ViS1 Algorithm. Original from [4].

for each block using the following equation:

Cerr(b) =


σerr(b)
µref (b)

if µref (b) > 0.5

0 otherwise,
(3.26)

where µref (b) is the standard deviation of the block b of the error frame (∆L). This adapted RMS
contrast algorithm takes into account the human visual system insensitivity to changes in darker
areas, by making the values of darker areas equal to zero. Then, the local distortion visibility map
is computed using the following equation:

ζ(b) =


ln[Cerr(b)]− ln[Cref (b)] if ln[Cerr(b)]− ln[Cref (b)] > −5

ln[Cerr(b)] + 5 if ln[Cerr(b)] > −5 ≥ ln[Cref (b)]

0 otherwise.

(3.27)

Finally, the visible distortion map is computed using a point-by-point multiplication between
the local distortion visibility map (ζ) and the MSE of the reference and distorted frames, as given
by the following equation:

ΥD = ζ(b) ·MSE(b). (3.28)

The statistical difference map measures the differences of the local statistics of multiscale log-
gabor filter response of reference and distorted frames. The reference and distorted frames are
filtered with a log-Gabor filter bank (with five scales s ∈ 1, 2, 3, 4, 5 and four orientations o ∈
1, 2, 3, 4). The result are sets of log-Gabor subbands of the reference (Rs,o) and distorted (R̂s,o)
frames. Each log-Gabor subband is divided in 16x16 blocks, with 75% overlapping between
neighboring blocks, and then the standard deviation, skewness, and kurtosis are computed for
each block. The statistical difference of the block b is computed as:
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ΥA(b) =
5∑
s=1

4∑
o=1

ws[|σs,o(b)− σ̂s,o(b)|+ 2|ζs,o(b)− ζ̂s,o(b)|+ |κs,o(b)− κ̂s,o(b)|], (3.29)

where σs,o(b), ζs,o(b) and κs,o(b) are the standard deviation, skewness and kurtosis of block b and
subband (Rs,o), respectively. And σ̂s,o(b), ζ̂s,o(b) and κ̂s,o(b) are the standard deviation, skewness
and kurtosis of block b and subband (R̂s,o).

Motion vectors are computed to model the effects of motion on video quality. In areas with
larges amount of movement the distortions are less visible. Alternatively, in areas with less mo-
tion the distortions are more visible. Motion vectors are computed using the Lucas-Kanade
method [47]. In this method, two matrices of motion vectors are obtained, Mv for the vertical
motion and Mh for the horizontal motion. The motion magnitude matrix is computed as:

M =
√
M2

v +M2
h . (3.30)

The visible distortion map, statistical difference map, and the motion magnitude map are
computed for a Group of Video Frames (GOF). The point-by-point average value of these maps
in a GOF represents the map values for the GOF, as shown in the following equations:

ῩD
k =

1

N

N∑
τ=1

ῩD
N(k−1)+τ (3.31)

ῩA
k =

1

N

N∑
τ=1

ῩA
N(k−1)+τ (3.32)

ῩM
k =

1

N

N∑
τ=1

M̄N(k−1)+τ (3.33)

where N is the number of frames in the GOF. ViS3 uses N = 8.

Finally, ViS1 is a combination of the visible distortion map, statistical difference map and
motion magnitude map, as shown in the following equation:

V iS1 =
1

K

K∑
k=1

√√√√ 1

WH

W∑
x=1

H∑
y=1

[ῩD
k (x, y)]α̂(x,y) · ῩA

k (x, y)]1−α̂(x,y),√
1 + ῩM

k (x, y)
(3.34)

where α̂(x, y) is a parameter given by the following equation:
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α̂(x, y) =
1

1 + β1 · [ῩD
k (x, y)]β2

, (3.35)

where β1 = 0.46711 and β2 = 0.12964. Basically, the ViS1 score is a weighted product of the
visible distortion map and the statistical difference map, divided by the motion magnitude map.

In ViS2, the frames are converted to the perceived luminance, as shown in Equation 3.22.
The spatial-temporal slices are extracted from the videos, similarly to what is done in SSTS-
GMSD. Let Sx(t, y) and Ŝx(t, y) denote the vertical slices of the reference and distorted videos,
and x ∈ [1,W ], where W is the video spatial width. Sy(x, t) and Ŝy(x, t) denote the horizontal
slice of the reference and distorted video, respectively, and y ∈ [1, H], where W is the video
spatial height. Figure 3.7 shows an overview of the ViS2 algorithm. First, the spatial-temporal
correlation map and spatial-temporal response difference map are computed. Then, both maps
are combined to compose the spatial-temporal dissimilarity map.

Figure 3.7: Diagram of ViS2 Algorithm. Original from [4].

To compute the spatial-temporal correlation map, the spatial-temporal slice is divided in 16x16
blocks, with a 75% overlap among neighboring blocks. Local linear correlation coefficients of
the spatial-temporal slices are extracted from the reference and distorted videos, respectively, as
defined in the following equation:

ρ̃(b) =


0, if ρ(b) < 0

1, if ρ(b) > 0.9

ρ(b) otherwise

(3.36)

where ρ is the linear correlation coefficient and b is the block of the spatial-temporal slice.

A spatial-temporal response map is computed using separate 1-D filters to each dimension
of the spatial-temporal slice. The spatial filter is a set of log-Gabor 1-D filters, gs, with s ∈
1, 2, 3, 4, 5. The frequency response of the filter is defined in the following equation:

Gs(ω) = exp

−(ln
∣∣∣ ωωs ∣∣∣)2

2(lnBs)2

 , (3.37)
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where ωs is the center frequency of the filter gs, Bs is the bandwidth of the filter gs and ω ∈
[−ωs, ωs] is the 1-D spatial frequency.

The two temporal filters hz, z ∈ 1, 2 are defined as:

hz(t) = tnzexp(−t)

[
1

nz!− t2

(nz+2)!

]
, (3.38)

where n1 = 6 and n2 = 9. The spatial-temporally filtered images obtained by filtering Sx(t, y)

are given by:

Rs,z
x (t, y) = [Sx(t, y) ∗y gs] ∗t hz, (3.39)

The spatial-temporally filtered images obtained by filtering Sy(t, y) are given by:

Rs,z
y (x, t) = [Sy(x, t) ∗x gs] ∗t hz, (3.40)

where ∗d is the convolution along dimension d and d ∈ x, y, t, s ∈ 1, 2, 3, 4, 5 and z ∈ 1, 2. So,
in total, there are 10 spatial-temporal filtered image for each spatial-temporal slice, Sx(t, y) and
Sy(t, y). Similarly, R̂s,z

x and R̂s,z
y are computed as the spatial-temporally filtered images of Ŝx and

Ŝy. The absolute difference of the spatial-temporally filtered images are computed by:

∆Rs,z
x (t, y) =

∣∣∣Rs,z
x (t, y)− R̂s,z

x (t, y)
∣∣∣ , (3.41)

∆Rs,z
y (x, t) =

∣∣∣Rs,z
y (x, t)− R̂s,z

y (x, t)
∣∣∣ , (3.42)

The response difference map is computed as a natural logarithm of a weighted sum of all
adjusted standard deviation maps. Dx and Dy are the log of response difference maps of the ver-
tical and horizontal spatial-temporal slices, respectively, which are computed using the following
equations:

Dx(t, y) = ln

{
1 + A

5∑
s=1

2∑
z=1

ws[σ̃
s,z
x (t, y)]2

}
, (3.43)

Dy(x, t) = ln

{
1 + A

5∑
s=1

2∑
z=1

ws[σ̃
s,z
y (t, y)]2

}
, (3.44)

where ws are weights, ws = 0.5, 0.75, 1, 5, 6, A = 104 is a scaling factor, σ̃s,zx and σs,zy are maps
of adjusted standard deviation. σ̃s,zx and σs,zy are computed by:
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σ̃s,zx (b) =

0, if µs,zx < p

σs,zx (b)
√

µs,zx (b)
p+µs,zx (b)

otherwise
, (3.45)

σ̃s,zy (b) =

0, if µs,zy < p

σs,zy (b)
√

µs,zy (b)

p+µs,zy (b)
otherwise

, (3.46)

The spatial-temporal dissimilarity value for the vertical and horizontal spatial-temporal slices
are computed as the RMS value of a combination of the spatial-temporal correlation map and the
log of the response difference map, as shown in the following equations:

∆̄FY
c =

√√√√ 1

FH

F∑
t=1

H∑
y=1

[Dx(t, y) ·
√

1− Px(t, y)]2, (3.47)

∆̄XT
r =

√√√√ 1

WF

W∑
x=1

F∑
t=1

[Dy(x, t) ·
√

1− Py(x, t)]2, (3.48)

where Px and Py are the spatial-temporal correlation maps of the vertical and horizontal spatial-
temporal slices, Dx and Dy are the log of the response difference maps of the vertical and hori-
zontal spatial-temporal slices, W is the width of the video, H is the height of the video and F is
the number of frames.

The ViS2 score represents the spatial-temporal dissimilarity value and is computed with the
following equation:

V iS2 =

√√√√ 1

W

W∑
c=1

[ ¯∆FY
c ]2 +

1

H

r=1∑
H

[ ¯∆XF
r ]2 (3.49)

Finally, Figure 3.8 shows how to calculated the ViS3 scores, which is a combination of
ViS1 and ViS2 scores into a single scalar. The ViS3 score represents the overall perceived
video quality. And, it is a geometric mean of ViS1 and ViS2, given by:

V iS3 =
√
V iS1 · V iS2 (3.50)
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Figure 3.8: Diagram of ViS3 Algorithm. Original from [4].
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4 PROPOSED FRAMEWORK AND VIDEO CLASSIFIERS

One of the challenges of video quality assessment methods is to improve the runtime perfor-
mance of the algorithms [13]. The runtime performance of most of these metrics depends on
the video resolution. Therefore, reducing the video spatial resolution improves their runtime.
However, accuracy performance can be affected when the spatial resolution is reduced. More
specifically, video distortions that affect high frequencies are the most sensitive to video spatial
downsampling (MJPEG compression, packet loss and white noise). Some examples of distor-
tions that are sensitive to downsampling include distortions introduced by MJPEG compression
algorithms (e.g. blocking artifacts), packet loss and noise.

We propose a downsampling video framework that improves the runtime performance of video
quality assessment methods by reducing the video resolution, but does not interfere with the
accuracy performance. Before reducing the spatial resolution, the technique identifies videos that
are more sensitive to this reduction. This framework is illustrated in Figure 4.1.

Figure 4.1: High Level Overview of the Downsampling Video Framework.

The framework has four main stages: the video classifier, the video downsampler, the quality
assessment method and the logistic transform. The video classifier stage identifies the types
of videos more sensitive to a spatial resolution reduction. The downsampler stage reduces the
video spatial resolution, accordingly, with the goal of optimizing resolution according to the
video sensitivity. Finally, the logistic transform stage adjusts the predicted score to a common
scale.

We design two different video classifiers that have the goal of identifying the types of dis-
tortions in the video and choose the most adequate downsampling ratio. Video classifiers are
algorithms that classify videos by analyzing one or more features. Videos can be classified ac-
cording to their content, distortion type or others characteristics. Next, we describe the two video
classifiers proposed in this work: a spatial activity difference classifier and a SSEQ classifier.
Next, we describe the downsampling and logistic transform stage of the framework.
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4.1 SPATIAL ACTIVITY DIFFERENCE CLASSIFIER

The first proposed video classifier is the spatial activity difference classifier. This classifier is
based on a analysis of the Spatial Activity (SA) of the videos [48]. In our work, we have noticed
that videos distorted by MJPEG compression, white noise and packet loss have a higher Spatial
Activity than the videos with others types of distortions, when considering video sequences with
the same content. This can be observed in Figure 4.2, where the white regions are the regions with
a higher SA. Because the frames filtered with Sobel have subtle intensity changes, for a better
visualization, we perform a post processing of these frames using a histogram equalization [20].
Blocking and erroneously decoded blocks leave false edges in the frame and the Sobel filter
can detect them. Therefore, the idea behind this classifier is to use the SA difference between
the reference and distorted videos to separate video distortions in two classes. The first class
correspond to videos distorted by white noise, packet loss and MJPEG compression, while the
second class corresponds to videos distorted by H.264, MPEG-2, HEVC, wavelet compressions
and upscaling.

4.1.1 Spatial Activity

The SA feature is given by:

SA(tn) = RMS(Sobel(I(tn))), (4.1)

where I(tn) is the luminance component of the video frame tn, RMS is the RMS function over
the entire image, and Sobel is the Sobel Filter. The Sobel filter used in this work has two 3x3
kernels, one to detect horizontal edges, given by:

Gx =

∣∣∣∣∣∣∣
−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣ . (4.2)

And the other kernel detects vertical edges, given by:

Gy =

∣∣∣∣∣∣∣
−1 −2 −1

0 0 0

1 2 1

∣∣∣∣∣∣∣ . (4.3)

Then, the luminance component of the video frame is filtered with the Sobel filter and com-
bined in the following form:

Sobel(tn) =
√

(Gx ∗ In)2 + (Gy ∗ In)2, (4.4)
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(a) Reference Frame (b) Spatial Activity = 91.11

(c) MJPEG Compression (d) Spatial Activity = 101.38

(e) White Noise (f) Spatial Activity = 119.76

(g) H.264 Compression (h) Spatial Activity = 88.75

(g) HEVC Compression (h) Spatial Activity = 83.71

Figure 4.2: Frames and the result of the frame filtered with Sobel.
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where ∗ is the symbol for a convolution between the kernel (Gx or Gy) and the luminance com-
ponent of the video frame (In). We use the implementation provided by the Monitoring Of Au-
diovisual Quality by Key Indicators (MOAVI) group [49]. To calculate the video Spatial Activity,
we average the SA values of all frames in the video.

4.1.2 Spatial Activity Difference Algorithm

Figure 4.3 shows the diagram of the proposed classification method. First, we compute the
SA of the reference and distorted videos, and, then, we calculate their difference. Considering
that the videos we are trying to identify have a higher (MJPEG compression and white noise) or
a slightly lower space activity (packet loss) than the reference video, the SA difference must be
lower than a threshold. We tested 9 values of thresholds, ranging from -4 to 4, in order to identify
the best threshold. Then, we use the F1 score, which measures the accuracy of a classifier (see
Appendix I), to select the best threshold. The F1 Score varies between 1 (best) and 0 (worst).
Table 4.1 shows the results of using these 9 thresholds. We tested the different thresholds
using all videos of the LIVE, CSIQ, IVPL and MCL-V database. For five different temporal
resolutions, notice that a threshold lower than 1 does not provides a good performance. Results
show that the best threshold value is 2. We also test the classifier performance for videos in
different temporal resolutions. We noticed that it is not necessary to analyze all frames of the
video sequence to obtain a good classification. It is sufficient to analyze 2 frames per second.
Surprisingly, the classification results obtained by performing this temporal downsampling are
better than the classification results obtained by analyzing all frames in the video.

Figure 4.3: Diagram of Spatial Activity Classifier Proposed.

Table 4.1: F1 Score When Varing Threshold of Spatial Activity Difference.

FPS Spatial Activity Difference
-4 -3 -2 -1 0 1 2 3 4

Original FPS 0.6145 0.6216 0.6491 0.6752 0.7032 0.7805 0.7957 0.7869 0.7368
10 FPS 0.6109 0.6216 0.6491 0.6784 0.7032 0.7830 0.7957 0.7902 0.7415
8 FPS 0.6145 0.6216 0.6491 0.6816 0.7032 0.7753 0.7997 0.7907 0.7431
4 FPS 0.6145 0.6216 0.6491 0.6752 0.7093 0.7830 0.8076 0.7858 0.7415
2 FPS 0.6145 0.6216 0.6491 0.6784 0.7062 0.7830 0.8042 0.7832 0.7411
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4.2 SSEQ CLASSIFIER

The second classification method proposed in this work is based on the Spatial–Spectral
Entropy-based Quality (SSEQ), which is a no-reference image quality assessment method pro-
posed by Liu et al. (50). Only the SSEQ feature extraction is used in this work. The proposed
classifier uses a Support Vector Machine (SVM) to classify the video distortions. There are four
classes of video distortions: white noise, packet loss, MJPEG compression and “others distor-
tions” (includes H.264, MPEG-2, HEVC, wavelet compressions and upscaling).

4.2.1 SSEQ Feature Extration Stage

SSEQ uses a 2-stage framework. First, the feature extraction stage extracts features from
the image and uses them in a distortion classification stage. Second, a quality prediction stage
estimates the video quality [51]. In this work, we only use the feature extraction stage of the
SSEQ. A high-level overview of the SSEQ feature extraction stage is presented in Figure 4.4.

Figure 4.4: Diagram of SSEQ Feature Extraction.

The SSEQ Feature Extraction stage is described as follows. First, the frame is downsampled
by a factor of 2. A bicubic interpolation method is used in the downsampling step, generating
frames with 3 different sizes (1x, 0.5x and 0.25x of the original resolution). For each size, the
frame is divided into 8x8 blocks, and the spatial entropy and the spectral entropy are computed for
each block of the frame. The spatial entropy of a block is calculated as in the following equation:

Es = −
x=0∑
M−1

y=0∑
N−1

p(x, y) · log2(p(x, y)), (4.5)

where MxN is the block size and p(x, y) is the probability of the pixel value within the block.
We compute the spatial entropy (Es) for each block in the frame and we obtain S(se1, se2, ...,

sem), which is a set of spatial entropy values per block, where sei is the spatial entropy of ith
block. To compute the spectral entropy, we first obtain the discrete cosine transform (DCT) of
each block [52]. Then, we normalize the DCT coefficients, except for the DC coefficient, as given
by:
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P (u, v) = − C(u, v)2∑x=0
M−1

∑y=0
N−1C(u, v)

, (4.6)

where C(u, v) is the DCT coefficient block. The spectral entropy of a block is defined by:

Ef = −
x=0∑
M−1

y=0∑
N−1

P (x, y) · log2(P (x, y)), (4.7)

We compute the spectral entropy (Ef ) for each block in the frame and we obtain Fr(fe1,
fe2, ..., fem), which is a set of spectral entropy values per block, where fei is the spectral entropy
of ith block.

SSEQ uses a feature pooling strategy to improve the classifier performance. The pooling
method used is the percentile pooling. The S and F values are sorted in ascending order and
we select only the 60% central values, creating two sets: Sc(seb0.2mc, seb0.2mc+1, ..., seb0.8mc) and
Frc(feb0.2mc, feb0.2mc+1, ..., feb0.8mc). Finally the features for each scale are the mean value of
Sc and of Frc and the skewness value of S and Fr:

fv = (mean(Sc), skewness(S),mean(Fc), skewness(F )). (4.8)

The SSEQ feature vector for a frame contains 12 elements, which corresponds to the 3 frame
sizes and 4 features.

4.2.2 SSEQ Classifier Algorithm

We extract the SSEQ features of each frame in the video, what generates a set of feature
vectors Fv = fv1, fv2, ..., fvn, where fvi is the feature vector of the ith frame. Then, the average
of each feature will create a SSEQ feature vector for the entire video, as illustrated in Figure 4.5.

The SSEQ image quality assessment uses a SVM to classify image distortions, and the
results are very good. And, SVM are already used in many video applications with good
results [53, 54, 55]. So, we also use a SVM to classify video distortions.

SVM were first introduce by Cortes and Vapnik as a binary classifier [56]. Given a
training set, the SVM builds an optimal separating hyperplane, defined as the one with
the maximal margin of separation between the two classes. And the margin is the sum of
the distances of the hyperplane from the closest point of the two classes. The multiclass
problems are resolved as a combination of binary problems (57).

We had to divide the videos in groups of training and testing, to generate a SVM model. In
Figure 4.6, we shown an overview of the SSEQ classifier algorithm. First, we divide the videos in
a training set. Then, we extract the SSEQ features of all training videos and label them according
to their distortion. Then, we train the SVM with these parameters (SSEQ features and video
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Figure 4.5: SSEQ Video Feature Extraction.

Table 4.2: F1 Score of SSEQ classifier when reducing FPS.

FPS
Original 10 8 4 2

F1 Score 0.7999 0.8021 0.8016 0.8043 0.7981

distortion labels). The SVM creates a model that is used to classify others videos in the test
set. In other words, SSEQ features are extracted from a test video and used as parameters of the
trained SVM, what gives the estimated video distortion labels.

Figure 4.6: High level overview of SSEQ algorithm for traning and test.

We tested the SSEQ classifier using all videos from LIVE, CSIQ, IVPL and MCL-V
databases. We divided the videos in training and testing sets. The training set consists of
80% of all videos, and the testing set consist of 20% of all videos. There are no content
overlapping in the sets. Also to analyze the computational time of the SSEQ features extraction
stage, we test the SSEQ video classifier with different frame rates, as shown in Table 4.2. We use
the F1-Score to measure the accuracy of the classifier. We notice that even if we reduce the video
temporal resolution to 2 FPS, the performance of SSEQ classifier is practically unaltered.

Table 4.3 shows the mean confusion matrix for 1000 simulations of the SSEQ classifier com-
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puted with videos with 2 FPS. The confusion matrix shows the proportion of positive and negative
results of the video classifier (see Appendix I). These results show that the classifier can correctly
identify videos distorted by MJPEG compression and white noise. But, it struggles to identify
videos distorted by packet loss. We believe, packet loss is a complicated distortion to identify,
because it is a localized distortion that does not affect all frames in the same way. Table 4.4
shows the median of precision, recall, and F1 score over 1000 simulations of the SSEQ classifier.
In more than half of these simulations the SSEQ classifier identifies all videos distorted by white
noise and MJPEG compression, but only 60% of the videos distorted by packet loss. Also, from
all videos classified as distorted by packet loss, only 37% are actually videos distorted by packet
loss. Although this classifier cannot identify packet loss, we will shown in next sections that the
performance of this classifier is satisfactory for our propose.

Table 4.3: Mean Confusion Matrix of SSEQ Distortion Classifier through 1000 simulations.

Label
Others MJPEG White Noise Packet Loss

Others 0.8891 0.0149 0.000 0.0960
MJPEG 0.0622 0.9378 0.0000 0.0000
WhiteNoise 0.0000 0.0000 0.9935 0.0065

E
st

im
at

ed

Packet Loss 0.6031 0.0005 0.0050 0.3914

Table 4.4: Evaluation of SSEQ Distortion Classifier. Median values of Precision, Recall and F1 Score through 1000
simulations.

Precision Recall F1 Score
Others 0.9000 0.7901
MJPEG 1.000 1.000 0.799
White Noise 1.000 1.000
Packet Loss 0.3750 0.6000

4.3 ADJUSTED PREDICT SCORE

One of our goals is to test the performance of video quality assessment methods spatial res-
olution of the videos is reduced. In this work, we noticed that all metrics are sensitive to video
resolution reduction. When the spatial resolution is reduced, the video quality is lower than for a
video in the original resolution. For example, in Figure 4.7, we notice that for videos in 384x216
resolution, ViS3’s predicted scores vary from 10−2 to 10, but, for the same videos in 768x432
resolution, they vary from 10−1 to 10. So, when we evaluate quality using a reduced version of a
video, the quality score tends to be lower than the score obtained with the original resolution.

In this work, we reduce the videos to 768x432 or 384x216, depending on the video distor-
tion. The 768x432 resolution were chosen, because it is a resolution commonly used and it
is the resolution for LIVE Database. The LIVE database has the lower spatial resolution
between the databases used in this work. In order for the predicted scores have the same pre-
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Figure 4.7: Plot of ViS3 versus Mean Opnion Score. The videos used were from CSIQ Database and they were
downsampling to 768x432 and 384x216.

cision, independent of the video resolution, we use a logistic function to normalize the predicted
scores. Figure 4.8 shows an overview operations performed to adjust the predicted score. As
mentioned earlier, the downsampling operation is performed using the bicubic interpolation in
each frame [58]. This technique generally gives better results than other interpolation algorithms,
like nearest neighbor and bilinear. Also, bicubic interpolation is the standard used in softwares
like ffmpeg, Matlab and Adobe Photoshop [20].

Figure 4.8: High Level Overview of the Adjustment of Predicted Score.

We chose the logistic function to normalize the scores from different resolutions because it
is the scaling transform recommended by the Video Quality Experts Group (VQEG) to remove
non-linearity behaviors and facilitate the comparison among scores provided by different video
quality assessment methods [59]. The logistic function is given by the following equation:

f(x) =
τ1

1 + τ2 · exp(−τ3 · x)
, (4.9)

where x is the predicted score and τ1, τ2 and τ3 are parameters used to provide the best fit of
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the predicted score to the subjective score. After using the logistic function, each score is in the
same scale as the subjective scores, therefore, we can compare the scores for videos in different
resolutions.
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5 RESULTS

As mentioned in previous chapters, one of the challenges for video quality assessment meth-
ods is the runtime performance [12, 13]. These methods are becoming more complex over the
decades, with some of the algorithms being very slow to compute. Reducing the spatial resolu-
tion of a video is one of the simplest and fastest methods to improve the running time of a video
quality assessment method. However, reducing the video resolution can introduce new distortions
and affect the quality prediction accuracy. In this work, we analyze the effects of reducing the
video resolution on video quality assessment methods.

Based on the idea of reducing the spatial resolution, we proposed a framework, which
improves the running time performance of video quality assessment methods, without af-
fecting its accuracy performance. In the previous chapters, we detailed this framework and
proposed two video classifiers that can be used in the framework. In this chapter, we study which
distortions are more sensitive to the video resolution reduction. We use the proposed classifiers
to identify these videos, perform a video resolution reduction and tested the framework using
both classifiers. Also, we compute the running time of the video quality assessment methods to
compare it to the running times of the same method using the proposed framework.

This chapter is divided in two sections. In the first section, we describe the experimental setup
used in our experiments. In the second section, we discuss our experimental results.

5.1 EXPERIMENTAL SETUP

The experiments were performed on an Intel i7-4790 processor at 3.60GHz. For all video
quality assessment methods, except for the SSTS-GMSD, the Matlab code was provided by the
authors. To evaluate the performance of each algorithm, we chose four video quality databases,
which have different resolutions and distortions.

To evaluate the accuracy performance of the video quality assessment methods we use
four video quality databases, previously described in Section 2. Table 5.1 shows the specifi-
cations of the four video databases. Notice that the databases are very different form each
other. IVP and MCL-V have videos in higher resolution than LIVE and CSIQ. However,
CSIQ has more distortions and different temporal resolution. In the real world, videos do
not have the same resolution or same distortions, so it is important these differences in the
databases to better represent the videos in the real world.
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Table 5.1: Comparison Between Video Databases

Reference
Videos

Total
Videos

Spatial
Resolution

Temporal
Resolution Type of Distortions

LIVE 10 150 768x432 25, 50
MPEG-2, H.264

Packet Loss

CSIQ 12 216 832x480
24, 25, 30

50, 60

H.264, H.265, Wavelet,
MJPEG, White Noise,

Packet Loss

IVP 10 128 1920x1088 25
MPEG-2, H.264,

Wavelet, Packet Loss
MCL-V 12 96 1920x1080 24, 25, 30 H.264, Upscaling

5.2 EXPERIMENTAL RESULTS

In this section, we present all the tests we perform in this work. First, we study the ef-
fects on video quality assessment methods when reducing the video spatial resolution. Then,
we study how different video distortions affect the video quality assessment methods per-
formance, when reducing the video spatial resolution. From that results, we obtain the
necessary information to proposed our framework, and we present the results of our frame-
work with two video classifier. Finally, we present additional tests on the performance of
video quality assessment methods when reducing the temporal resolution.

To study how the video resolution can affect the method accuracy performance, we perform
some tests with videos of four different databases using different video quality assessment meth-
ods with different video spatial resolutions. To evaluate the prediction quality accuracy of each
video quality assessment method, we calculate the SCC between subjective scores provided by
the databases and objectives scores predicted by these methods [59]. The SCC values vary from
1 (best) to 0 (worst). When the SCC is closer to 1, it means that the predicted scores given by
the quality assessment methods are similar to the subjective scores provided by the database (see
Appendix II).

It is worth mentioning again that, for some video quality assessment methods, reducing the
video resolution can cause a decrease in prediction quality accuracy. Tables 5.2- 5.5 shows the
SCC values for a set of video quality assessment methods, tested on the LIVE, CSIQ, IVP, and
MCL-V databases. Notice that for the IVP and MCL-V databases, there is an improvement
on accuracy performance when the video resolution reduces, but for LIVE and CSIQ Database
the accuracy performance decreases. The accuracy performance of PSNR, SSIM and GMSD in-
creases for the LIVE database, but only the accuracy performance of SSIM increases for the CSIQ
Database. It is worth pointing out that the CSIQ Database has more distortions than the others
databases, while MCL-V and IVP databases have videos with a higher resolution (1920x1080 for
MCL-V and 1920x1088 for IVP).

In summary, the accuracy performance of the methods vary according to the databases, i.e.
according to the content and type of distortions in each database. So, to verify if the video
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Table 5.2: Spearman Correlation Coefficient on the LIVE database.

768x432 640x360 480x270 384x216
ViS3 0.8168 0.7995 0.7786 0.7595
STRRED 0.8007 0.7902 0.7691 0.7570
SSTS-GMSD 0.8389 0.8255 0.7988 0.7777
GMSD 0.7262 0.7354 0.7348 0.7264
SSIM 0.5251 0.6131 0.6696 0.7002
PSNR 0.5233 0.5750 0.6084 0.6285

Table 5.3: Spearman Correlation Coefficient on the CSIQ database.

768x432 640x360 480x270 384x216
ViS3 0.8581 0.8574 0.8271 0.7897
STRRED 0.8035 0.7881 0.7666 0.7424
SSTS-GMSD 0.8457 0.8411 0.7950 0.7458
GMSD 0.8449 0.8449 0.8107 0.7729
SSIM 0.6236 0.6566 0.7016 0.7241
PSNR 0.5896 0.5853 0.5696 0.5585

Table 5.4: Spearman Correlation Coefficient on the IVP database.

1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216
ViS3 0.8023 0.8822 0.8995 0.8968 0.9094 0.8981 0.8912
STRRED 0.7378 0.7426 0.7308 0.7296 0.7177 0.7160 0.7144
SSTS-GMSD 0.7560 0.8236 0.8683 0.8830 0.8880 0.8880 0.8722
GMSD 0.6924 0.7973 0.8493 0.8671 0.8791 0.8833 0.8672
SSIM 0.3739 0.4749 0.5277 0.5677 0.6077 0.6629 0.6965
PSNR 0.6566 0.7050 0.7312 0.7707 0.8086 0.8333 0.8374

Table 5.5: Spearman Correlation Coefficient on the MCL-V database.

1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216
ViS3 0.6361 0.6902 0.7167 0.7307 0.7408 0.7516 0.7674
STRRED 0.7433 0.7433 0.7738 0.7938 0.7964 0.8035 0.8177
SSTS-GMSD 0.6855 0.7395 0.7575 0.7768 0.7850 0.7989 0.8000
GMSD 0.6449 0.7068 0.7234 0.7369 0.7483 0.7625 0.7708
SSIM 0.4018 0.5408 0.6062 0.6415 0.6632 0.6961 0.7105
PSNR 0.4640 0.5328 0.5791 0.6097 0.6347 0.6668 0.6876

distortion has influence on the accuracy performance of the methods, we analyze the data in
groups separated by the types of distortion. These results are presented in Tables 5.6- 5.9.

Table 5.6 shows the accuracy performance of each method when the video resolution is re-
duced, for the CSIQ Database. the accuracy performance of PSNR and SSIM improves when
the video resolution is reduced. For PSNR, the improvement is 25.47% for videos distorted by
H.264 compression, 33.30% for videos distorted by MPEG2 compression and 12.49% for videos
distorted by packet loss. For SSIM, the improvement is 4.23% for videos distorted by H.264 com-
pression, 21.37% for videos distorted by MPEG2 compression and 32.88% for videos distorted
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Table 5.6: Spearman Correlation Coefficient on the LIVE database.

Metric Distortion Video Resolution
768x432 640x360 480x270 384x216

ViS3 H.264 0.7685 0.7598 0.7371 0.7405
MPEG2 0.7362 0.7639 0.7806 0.7774
Packet Loss 0.8372 0.8298 0.8195 0.8270

STRRED H.264 0.8193 0.8223 0.8113 0.8304
MPEG2 0.7193 0.6986 0.6703 0.6769
Packet Loss 0.7934 0.7904 0.7693 0.7510

SSTS-GMSD H.264 0.7974 0.7788 0.7615 0.7623
MPEG2 0.8125 0.8121 0.8362 0.8470
Packet Loss 0.8151 0.8148 0.8044 0.7963

GMSD H.264 0.6471 0.6452 0.6302 0.6349
MPEG2 0.6915 0.6836 0.6725 0.6778
Packet Loss 0.7457 0.7626 0.7775 0.7800

SSIM H.264 0.6561 0.7171 0.6961 0.6839
MPEG2 0.5609 0.6112 0.6679 0.6808
Packet Loss 0.5151 0.5716 0.6337 0.6845

PSNR H.264 0.4730 0.5424 0.5856 0.5934
MPEG2 0.3830 0.4510 0.4825 0.5106
Packet Loss 0.5799 0.6294 0.6550 0.6523

by packet loss. For GMSD, the accuracy performance improves for videos distorted by packet
loss (4.59% of improvement), but decreases for videos distorted by H.264 and MPEG2 compres-
sion by 1.88% and 2.14%, respectively. For SSTS-GMSD, the accuracy performance improves
for videos distorted by MPEG2 compression, with an improvement of 4.25%, but decreases for
videos distorted by H.264 compression and packet loss by 4.40% and 2.30% respectively. For
STRRED, the accuracy performance improves for videos distorted by H.264 Compression by
1.35%, but decreases for videos distorted by MPEG2 Compression and packet loss by 5.89%
and 5.35% respectively. Finally, for ViS3, the accuracy performance improves for videos with
MPEG2 Compression by 5.61%, but decreases for videos distorted by H.264 Compression and
Packet Loss by 3.64% and 1.22% respectively.

Table 5.7 shows the accuracy performance of each method when the video resolution is re-
duced, for the CSIQ Database. Notice that the accuracy performance of ViS3, SSTS-GMSD,
SSIM and PSNR increases when the resolution is reduced, for videos distorted by H.264, H.265
and Wavelet Compression. The gain for videos distorted by H.264 Compression is 0.58% for
ViS3, 1.42% for SSTS-GMSD, 6.74% for SSIM and 7.08% for PSNR. The gain for videos dis-
torted by H.265 Compression is 1.24% for ViS3, 0.06% for SSTS-GMSD, 9.13% for SSIM and
5.60% for PSNR. The gain for videos distorted by Wavelet Compression is 2.89% for ViS3,
1.88% for SSTS-GMSD, 5.30% for SSIM and 7.78% for PSNR. The accuracy performance of all
methods decreases for videos distorted by MJPEG compression, packet loss and white noise. For
all methods, the worst accuracy performance corresponds to the resolution 384x216 for videos
distorted by MJPEG compression. The decrease in accuracy performance for videos distorted
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Table 5.7: Spearman Correlation Coefficient on the CSIQ database.

Metric Distortion Video Resolution
768x432 640x360 480x270 384x216

ViS3 H.264 0.9300 0.9400 0.9421 0.9354
H.265 0.9331 0.9413 0.9537 0.9447
MJPEG 0.7776 0.7817 0.6829 0.5748
Packet Loss 0.8381 0.8319 0.8051 0.7907
Wavelet 0.9161 0.9238 0.9398 0.9426
White Noise 0.9210 0.9192 0.9081 0.8929

STRRED H.264 0.9768 0.9753 0.9686 0.9637
H.265 0.9112 0.9238 0.9230 0.9202
MJPEG 0.5964 0.4839 0.1611 0.0625
Packet Loss 0.8468 0.8551 0.8435 0.8353
Wavelet 0.9457 0.9351 0.9290 0.9266
White Noise 0.9192 0.9079 0.8772 0.8528

SSTS-GMSD H.264 0.9277 0.9292 0.9318 0.9282
H.265 0.9454 0.9552 0.9480 0.9472
MJPEG 0.8893 0.8885 0.8528 0.7840
Packet Loss 0.8108 0.8031 0.7743 0.7495
Wavelet 0.8705 0.8718 0.8754 0.8754
White Noise 0.8847 0.8708 0.8072 0.7529

GMSD H.264 0.9441 0.9503 0.9532 0.9503
H.265 0.9408 0.9439 0.9326 0.9279
MJPEG 0.8994 0.9192 0.8741 0.7586
Packet Loss 0.8631 0.8577 0.8512 0.8111
Wavelet 0.8764 0.8762 0.8623 0.8610
White Noise 0.9094 0.9068 0.8808 0.8391

SSIM H.264 0.8903 0.9143 0.9485 0.9503
H.265 0.8654 0.9053 0.9290 0.9444
MJPEG 0.8373 0.8456 0.8041 0.7797
Packet Loss 0.8556 0.8535 0.8517 0.8492
Wavelet 0.8154 0.8317 0.8597 0.8587
White Noise 0.9269 0.9292 0.9223 0.9122

PSNR H.264 0.8687 0.8914 0.9218 0.9302
H.265 0.8556 0.8782 0.8986 0.9035
MJPEG 0.4672 0.4296 0.2847 0.1694
Packet Loss 0.8481 0.8409 0.8322 0.8245
Wavelet 0.7941 0.8265 0.8479 0.8559
White Noise 0.9048 0.9060 0.9079 0.8947

by MJPEG compression is 26.08% for ViS3, 89.51% for STRRED, 9.46% for SSTS-GMSD,
16.54% for GMSD, 6.89% for SSIM and 63.75% for PSNR.

Table 5.8 shows the accuracy performance for the IVP Database. Notice that the accuracy
performance of videos distorted by Packet Loss decreases for the video methods (ViS3, STRRED
and SSTS-GMSD) for most spatial resolutions. Nevertheless, it improves when the video reso-
lution is 768x432. For GMSD, the best accuracy performance is obtained for videos distorted
by Packet Loss when the video resolution is 640x360. The accuracy performance for videos dis-
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Table 5.8: Spearman Correlation Coefficient on the IVP database.

Metric Distortion Video Resolution
1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216

ViS3 Wavelet 0.9186 0.9212 0.9132 0.9253 0.9368 0.9212 0.9306
H.264 0.8477 0.8735 0.8681 0.8538 0.8787 0.8864 0.8906
MPEG2 0.7918 0.8274 0.8527 0.8509 0.8394 0.8558 0.8658
Packet Loss 0.7504 0.8057 0.7947 0.7750 0.7526 0.7280 0.6962

STRRED Wavelet 0.8554 0.8839 0.8932 0.8914 0.8910 0.8870 0.8843
H.264 0.8614 0.8505 0.8493 0.8477 0.8435 0.8454 0.8458
MPEG2 0.6752 0.6400 0.6427 0.6400 0.6360 0.6489 0.6570
Packet Loss 0.6650 0.7028 0.6765 0.6661 0.6650 0.6158 0.5977

SSTS- Wavelet 0.8216 0.8509 0.8710 0.8763 0.8812 0.8968 0.9075
GMSD H.264 0.8463 0.8587 0.8651 0.8726 0.8809 0.8841 0.8876

MPEG2 0.7824 0.8073 0.8318 0.8443 0.8501 0.8714 0.8812
Packet Loss 0.7663 0.7871 0.7937 0.7750 0.7603 0.7154 0.6907

GMSD Wavelet 0.8229 0.8763 0.8941 0.8790 0.9008 0.9110 0.9101
H.264 0.8630 0.8780 0.8826 0.8856 0.8880 0.8897 0.8902
MPEG2 0.8283 0.8256 0.8220 0.8211 0.8291 0.8251 0.8283
Packet Loss 0.7121 0.8150 0.8413 0.8407 0.8467 0.8128 0.7849

SSIM Wavelet 0.7846 0.8029 0.8060 0.8140 0.8287 0.8492 0.8407
H.264 0.6636 0.7752 0.8146 0.8310 0.8407 0.8462 0.8418
MPEG2 0.5884 0.6436 0.6574 0.6783 0.6836 0.6690 0.6529
Packet Loss 0.0482 0.1910 0.2638 0.3136 0.3985 0.4729 0.5161

PSNR Wavelet 0.8598 0.8603 0.8594 0.8759 0.8723 0.8914 0.8905
H.264 0.8218 0.8488 0.8681 0.8765 0.8811 0.8901 0.8901
MPEG2 0.6948 0.7130 0.7384 0.7620 0.7539 0.7673 0.7749
Packet Loss 0.6393 0.6793 0.7115 0.7340 0.7630 0.7822 0.8051

Table 5.9: Spearman Correlation Coefficient on the MCL-V database.

Metric Distortion Video Resolution
1920x1080 1280x720 960x540 768x432 640x360 480x270 384x216

ViS3 H.264 0.5868 0.6625 0.6960 0.7273 0.7445 0.7655 0.7780
Upscaling 0.6890 0.7043 0.7245 0.7283 0.7304 0.7333 0.7440

STRRED H.264 0.7716 0.7716 0.7807 0.8055 0.8010 0.8035 0.8139
Upscaling 0.7040 0.7040 0.7436 0.7732 0.7714 0.7858 0.8123

SSTS- H.264 0.6921 0.7189 0.7423 0.7769 0.7867 0.7950 0.8058
GMSD Upscaling 0.6806 0.7477 0.7629 0.7785 0.7778 0.7843 0.7960
GMSD H.264 0.6452 0.7057 0.7332 0.7484 0.7635 0.7685 0.7905

Upscaling 0.6376 0.6789 0.6898 0.7021 0.6988 0.7100 0.7292
SSIM H.264 0.3545 0.5375 0.6172 0.6533 0.6764 0.7222 0.7360

Upscaling 0.4400 0.5300 0.5931 0.6242 0.6408 0.6616 0.6754
PSNR H.264 0.4215 0.5115 0.5634 0.5872 0.6203 0.6651 0.6761

Upscaling 0.4925 0.5382 0.5851 0.6216 0.6402 0.6537 0.6834

torted by Wavelet and H.264 Compression improves for almost all methods, except for STRRED
for videos distorted by H.264.

Table 5.9 shows the accuracy performance for each method when the video resolution is re-
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Table 5.10: Spearman Correlation Coefficient of VIS3 on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8864 0.8988 0.9093 0.9125
H.264 0.8354 0.8469 0.8479 0.8473
H.265 0.9331 0.9413 0.9537 0.9447
MJPEG 0.7776 0.7817 0.6829 0.5748
MPEG2 0.8561 0.8766 0.8851 0.8848
Upscaling 0.7283 0.7304 0.7333 0.7440
Packet Loss 0.8174 0.8179 0.8087 0.8028
White Noise 0.9210 0.9192 0.9081 0.8929

Table 5.11: Spearman Correlation Coefficient of STRRED on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8505 0.8499 0.8548 0.8638
H.264 0.8822 0.8816 0.8810 0.8859
H.265 0.9112 0.9238 0.9230 0.9202
MJPEG 0.5964 0.4839 0.1611 0.0625
MPEG2 0.7993 0.7891 0.7874 0.7935
Upscaling 0.7732 0.7714 0.7858 0.8123
Packet Loss 0.7881 0.7906 0.7793 0.7672
White Noise 0.9192 0.9079 0.8772 0.8528

duced for the MCL-V Database. In this database, the accuracy performance of all methods are
improved when the video resolution is reduced. For videos distorted by H.264 Compression the
improvement is 32.58% for ViS3, 5.48% for STRRED, 16.43% for SSTS-GMSD, 22.52% for
GMSD, 107.62% for SSIM and 60.40% for PSNR. And for videos distorted by Upscaling the
improvement is 7.98% for ViS3, 15.38% for STRRED, 16.96% for SSTS-GMSD, 14.36% for
GMSD, 53.50% for SSIM and 38.76% for PSNR.

From these results, we can notice that for all methods, the accuracy performance decreases
when videos distorted by MJPEG compression and white noise have their resolution reduced. For
videos distorted by packet loss, the accuracy performance of most methods is better when the
video resolution is 640x360 or above.

To better evaluate the prediction quality accuracy of each method for each type of video dis-
tortions, we combine all videos with the same distortion type from all databases into the same
group. The accuracy performance of each method is evaluated by comparing the predicted scores
with the subjective scores provided by the databases. Unfortunately, each database provides sub-
jective scores using different experimental methodologies, different subject pools, and different
physical environments. As described in the previously subsection, the LIVE and IVP databases
provide a DMOS for each distorted video, while the CSIQ and MCL-V databases provide a MOS
of each distorted video. So, to properly combine these subjective scores into a single scale, we
use the Iterated Nested Least-Squares Algorithm (INLSA) [60]. We make the video resolution
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Table 5.12: Spearman Correlation Coefficient of SSTS-GMSD on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8035 0.8109 0.8234 0.8367
H.264 0.8520 0.8520 0.8539 0.8583
H.265 0.9454 0.9552 0.9480 0.9472
MJPEG 0.8893 0.8885 0.8528 0.7840
MPEG2 0.8776 0.8905 0.9032 0.9074
Upscaling 0.7785 0.7778 0.7843 0.7960
Packet Loss 0.7785 0.7876 0.7794 0.7703
White Noise 0.8847 0.8708 0.8072 0.7529

Table 5.13: Spearman Correlation Coefficient of GMSD on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.8430 0.8618 0.8655 0.8698
H.264 0.8405 0.8439 0.8482 0.8516
H.265 0.9408 0.9439 0.9326 0.9279
MJPEG 0.8994 0.9181 0.8741 0.7506
MPEG2 0.8282 0.8326 0.8360 0.8425
Upscaling 0.7031 0.7057 0.7207 0.7289
Packet Loss 0.7828 0.7941 0.7979 0.7949
White Noise 0.9094 0.9068 0.8808 0.8347

Table 5.14: Spearman Correlation Coefficient of SSIM on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.7981 0.8197 0.8469 0.8497
H.264 0.7962 0.8170 0.8344 0.8398
H.265 0.8654 0.9053 0.9290 0.9444
MJPEG 0.8373 0.8456 0.8041 0.7797
MPEG2 0.7682 0.7954 0.8160 0.8190
Upscaling 0.6242 0.6408 0.6616 0.6754
Packet Loss 0.5446 0.5732 0.6112 0.6517
White Noise 0.9269 0.9292 0.9223 0.9122

vary from 768x432 to 384x216. The lowest video resolution among all databases is 768x432.

Tables 5.10-5.15 show the results of each method’s accuracy performance separated by video
distortion. Notice that for the video methods, ViS3, STRRED and SSTS-GMSD, reducing the
video resolution decreases their accuracy performance, for videos distorted by MJPEG, packet
loss and white noise.

Table 5.13 shows the GMSD’s accuracy performance for each video distortion. The accuracy
performance decreases for videos distorted by white noise, H.265, and MJPEG compression. But
the accuracy performance decrease for H.265 Compression (1.37%) is lower than for MJPEG and
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Table 5.15: Spearman Correlation Coefficient of PSNR on all databases.

Distortion Video Resolution
768x432 640x360 480x270 384x216

Wavelet 0.7756 0.8004 0.8184 0.8293
H.264 0.7488 0.7743 0.7994 0.8105
H.265 0.8556 0.8782 0.8986 0.9035
MJPEG 0.4672 0.4296 0.2847 0.1694
MPEG2 0.7012 0.7289 0.7520 0.7632
Upscaling 0.6216 0.6402 0.6537 0.6834
Packet Loss 0.6591 0.6915 0.7115 0.7187
White Noise 0.9048 0.9060 0.9079 0.8947

white noise (16.54% and 8.21%). Even with the loss in accuracy performance for videos distorted
by H.265 compression, the accuracy performance is still good.

For SSIM and PSNR when the resolution is reduced, the accuracy performance improves for
almost all video distortions, except for videos distorted by white noise and MJPEG. Nevertheless,
the accuracy performance of these methods are the worst among all methods, which is probably
because these methods are actually image quality assessment methods.

If we reduce the resolutions of videos distorted by white noise and MJPEG compression the
accuracy performances of the all video quality methods decrease. For videos distorted by packet
loss, the accuracy performances of ViS3, STRRED and SSTS-GMSD decrease. For this reason,
we propose to use the two classification methods to identify videos distorted by packet loss,
MPJEG compression and white noise, and reduce the resolution of these videos to 768x432. The
videos identified as distorted by the other types of distortions should have their spatial resolution
reduced to 384x216.

5.2.1 Spatial Difference Classifier Results

The first classifier, based on Spatial Difference, divided the videos into two groups: videos
distorted by packet loss, MPJEG compression and white noise; and videos distorted by upscaling,
H.264, MPEG-2, H.265 and wavelet compressions. Table 5.16 shows the accuracy performance
of each method using the spatial activity difference classifier. For comparison purposes, we also
show the accuracy performance using: (1) the original resolution, (2) all videos in 384x216 and
(3) an ideal classification. For ideal classification, we label all videos according to its distortion
and then reduce the spatial resolution to 384x216 (MJPEG, packet loss, white noise) or 768x432
(others distortions). We notice that the accuracy performance is better than using the original
resolution for all databases, except for STRRED in LIVE and CSIQ. Therefore, if we reduce
the video resolution according to its distortion, the video quality assessment method accuracy
performance can be improved.

Then, we analyze the accuracy performance using the classifier. We notice this approach is
better than using the videos in the original resolution for CSIQ, IVP and MCL-V Databases. For
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Table 5.16: Spearman Correlation Coefficient of all methods using Spatial Activity Difference Classifier.

Metric Type of Classification LIVE CSIQ IVP MCL-V All
ViS3 Original Resolution 0.8168 0.8325 0.7948 0.6361 0.7466

All Videos in 384x216 0.7595 0.7897 0.8912 0.7674 0.8030
Ideal Classification 0.7964 0.8646 0.8905 0.7674 0.8381
SA Difference Classification 0.7610 0.8632 0.8809 0.7727 0.8294

STRRED Original Resolution 0.8007 0.8129 0.7374 0.7433 0.6961
All Videos in 384x216 0.7570 0.7424 0.7144 0.8177 0.7774
Ideal Classification 0.7954 0.8460 0.7356 0.8119 0.8176
SA Difference Classification 0.7363 0.7622 0.6774 0.7938 0.7698

SSTS-GMSD Original Resolution 0.8389 0.8415 0.7560 0.6855 0.7403
All Videos in 384x216 0.7777 0.7458 0.8722 0.8000 0.7855
Ideal Classification 0.7364 0.8281 0.8699 0.8000 0.8028
SA Difference Classification 0.7720 0.8491 0.8780 0.8011 0.8250

GMSD Original Resolution 0.7262 0.8409 0.6924 0.6449 0.6781
All Videos in 384x216 0.7264 0.7729 0.8672 0.7708 0.7874
Ideal Classification 0.6787 0.8475 0.8611 0.7708 0.8020
SA Difference Classification 0.7217 0.8603 0.8708 0.7718 0.8225

SSIM Original Resolution 0.5251 0.5794 0.3560 0.4018 0.4833
All Videos in 384x216 0.7002 0.7241 0.6965 0.7105 0.7333
Ideal Classification 0.6567 0.6728 0.7624 0.7105 0.7217
SA Difference Classification 0.6849 0.7373 0.6775 0.6613 0.7324

PSNR Original Resolution 0.5233 0.5787 0.6566 0.4640 0.5795
All Videos in 384x216 0.6285 0.5628 0.8374 0.6876 0.6857
Ideal Classification 0.6239 0.6284 0.8663 0.6876 0.7132
SA Difference Classification 0.6158 0.5974 0.8039 0.5964 0.6879

LIVE Database, the accuracy performance using the classifier is worst than using the videos in the
original resolution for ViS3, STRRED, SSTS-GMSD and GMSD. On the other hand, for SSIM
and PSNR the accuracy performance is better using the classifier.

The overall accuracy performance, considering all databases, for all methods using the clas-
sifier is better than using the videos in their original resolution. In some cases, the accuracy
performance using the classifier is better than using the ideal classification. Probably, because
the video content has an influence in the quality method accuracy performance. The spatial ac-
tivity difference classifier is better to identify video contents that are more sensitive to resolution
reduction.

Finally, the accuracy performance for videos in 384x216 resolution, i.e. if we reduce reso-
lutions, regardless the distortion, is worst than using the classifier, except for SSIM. Therefore,
if we want to improve the running time of this video quality assessment method and maintain
their accuracy performance, we have to identify the video distortion and reduce its resolution
accordingly.

From the SCC of the video quality assessment methods, we know that the predicted scores
obtained via the proposed framework are more correlated with subjective scores than predicted
scores obtained without using the framework. However, it is important to evaluate if the difference
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Table 5.17: T-Test results between the SCC of various video quality assessment methods for all databases. The video
quality assessment methods evaluate the videos in their original spatial resolution (Ori), 384x216 resolution (Min),
using the framework with an ideal classifier (Ideal), and with SA classifier (SA).

ViS3 STRRED SSTS-GMSD
Ori Min Ideal SA Ori Min Ideal SA Ori Min Ideal SA

ViS3 Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 0 1 1 1 1 1 1 1 -1 -1
SA 1 1 -1 0 1 1 -1 1 1 -1 -1 -1

STRRED Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 -1 1 1 1 0 0 1 1 -1 -1
SA 1 1 -1 -1 1 1 0 0 1 -1 -1 -1

SSTSGMSD Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 1 -1 1 1 1 -1 1 1 0 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 0 1
SA 1 1 1 1 1 1 1 1 1 1 -1 0

GSMD Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 -1 -1
SA 1 1 1 1 1 1 1 1 1 1 -1 -1

SSIM Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
SA 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1

PSNR Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
Ideal -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
SA -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1

GMSD SSIM PSNR
Ori Min Ideal SA Ori Min Ideal SA Ori Min Ideal SA

ViS3 Ori 1 -1 -1 -1 1 -1 -1 0 1 1 1 1
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SA 1 1 -1 -1 1 1 1 1 1 1 1 1

STRRED Ori 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SA 1 1 -1 -1 1 1 1 1 1 1 1 1

SSTSGMSD Ori 1 -1 -1 -1 1 -1 -1 -1 1 1 1 1
Min 1 1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 1 1 1 1 1 1 1 1 1 1
SA 1 1 1 1 1 1 1 1 1 1 1 1

GSMD Ori 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Min 1 0 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 0 1 1 1 1 1 1 1 1 1
SA 1 1 -1 0 1 1 1 1 1 1 1 1

SSIM Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 0 -1 1 1 1 1 1
Ideal 1 -1 -1 -1 1 1 0 1 1 1 1 1
SA 1 -1 -1 -1 1 -1 -1 0 1 1 1 1

PSNR Ori -1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 0 -1 1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 1 0 1
SA 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
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Figure 5.1: Box plot of SCC across 1000 simulations, where we ramdonly chose 80% of the reference videos and
their distortions versions.

in results are statistically significant. To evaluate the statistical significance of the differences
in accuracy performance with and without the framework, we performed a t-test on the SCC
values obtained in 1,000 simulations [61]. In these simulations, we randomly chose 80% of
the reference videos and their distorted versions for each simulation. The results of the t-test
are shown in Table 5.17. The value "1" in the table indicates that the method in the row is
statistically superior to the method in the column, and the value "-1" indicates that the method in
the row is statistically inferior to the method in the column. Finally, the value "0" indicates that
both methods are statistically indistinguishable. Notice that for the overall accuracy performance,
considering all databases, the improvement using the framework with the spatial activity classifier
is statistically significant. Figure 5.1 shows the box plot of the SCC across the 1000 simulations.

As said in the beginning of this chapter, the objective of reducing the video resolution is to
reduce the running time of the video quality assessment method. The proposed classifier has the

Table 5.18: Average running time for performing an objective quality assessment with and without spatial activity
classifier (in seconds).

ViS3 STRRED SSTS-GMSD SSIM GMSD PNSR
Original Resolution 639.135 215.973 13.557 13.108 5.951 5.033
SA Difference Classifier 223.784 94.384 8.911 11.221 5.330 5.029
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goal of identifying which videos can have its resolution reduced, avoiding a decrease in accuracy
performance of the video quality assessment method. As mentioned in Chapter 4, we proposed
a methodology to evaluate the video quality, composed of three stages. The first stage consist of
identifying video distortion. The second stage reduces the video resolution to the smallest pos-
sible resolution, according to the video distortion. The third stage adjusts the predicted quality
score, according to the video resolution. From the results in Table 5.16, we know that using the
framework is a good way to maintain the accuracy performance of a quality assessment method.
But, if we want to improve the runtime performance of video quality assessment methods, the
running time of the classifier plus the running time of these methods has to be smaller than the
running time of the video quality assessment method using the video in its original spatial res-
olution. Table 5.18 presents the average running time of the video quality assessment methods
ran on videos in their original resolution and on videos with the resolution reduced, using the
proposed methodology with the spatial difference classifier. From these results, we notice that,
even adding the time spent to identify the video resolution and resizing the video, the proposed
methodology is faster than the original video quality assessment method. When image quality
assessment methods (GMSD,SSIM and PSNR) are used to measure video quality, the improve-
ment in running time is small (SSIM is 1.17x faster, GMSD is 1.11x faster). Nevertheless, for

Table 5.19: Median Spearman Correlation Coefficient of all methods using SSEQ Distortion Classifier in 1000
simulations.

Metric Type of Classification LIVE CSIQ IVP MCL-V All
ViS3 Original Resolution 0.8499 0.8574 0.8470 0.5882 0.7532

All Videos with 384x216 0.7740 0.8085 0.9014 0.6765 0.7953
Ideal Classification 0.8202 0.8736 0.8998 0.6765 0.8294
Predicted Classification 0.7882 0.8521 0.8946 0.6765 0.8164

STRRED Original Resolution 0.8263 0.8093 0.7583 0.9941 0.7061
All Videos with 384x216 0.7873 0.7565 0.7931 0.9853 0.7957
Ideal Classification 0.7941 0.8331 0.7748 0.9853 0.8263
Predicted Classification 0.7931 0.8055 0.7871 0.9853 0.8136

SSTS-GMSD Original Resolution 0.8625 0.8389 0.7600 0.7529 0.7526
All Videos with 384x216 0.8327 0.7961 0.9146 0.9118 0.8230
Ideal Classification 0.8411 0.8741 0.8971 0.9118 0.8501
Predicted Classification 0.8314 0.8565 0.9078 0.9118 0.8430

GMSD Original Resolution 0.7967 0.8636 0.6705 0.7529 0.6757
All Videos with384x216 0.7784 0.7761 0.8757 0.9118 0.8045
Ideal Classification 0.7850 0.8862 0.8703 0.9118 0.8419
Predicted Classification 0.7780 0.8644 0.8706 0.9118 0.8347

SSIM Original Resolution 0.6535 0.6039 0.4105 0.4618 0.4877
All Videos with384x216 0.8167 0.7426 0.7597 0.9618 0.7715
Ideal Classification 0.7375 0.7764 0.8331 0.9618 0.7906
Predicted Classification 0.7595 0.7282 0.7477 0.9618 0.7585

PSNR Original Resolution 0.7112 0.6162 0.7187 0.5118 0.6052
All Videos with384x216 0.7517 0.5887 0.8238 0.9294 0.7204
Ideal Classification 0.6934 0.6489 0.8656 0.9294 0.7402
Predicted Classification 0.6211 0.6108 0.8446 0.9294 0.7028
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more complex video quality assessment methods, the improvement in time is considerable (ViS3
is 2.85x faster, STRRED is 2.29x faster and SSTS-GMSD is 1.51x faster).

5.2.2 SSEQ Classifier Results

The SSEQ Classifier uses a machine learning technique to classify the videos according to
their distortion. The videos in all databases are divided in training and testing groups. 80% of
the reference videos and their associated distorted versions were used for training and 20% of
the reference videos and their associated distorted versions were used for testing. We use a C-
SVM with linear kernel, as it was done in the original SSEQ algorithm for images. We combine
videos in all databases and divided the whole set in training and testing groups. The training
group consists of 472 to 480 video sequences, from which 120 video sequences are from LIVE
Database, 180 video sequences are from CSIQ Database, 72 video sequences are from MCL-V
Database and 100 to 108 video sequences are from IVP. Some reference video sequences in IVP
Database do not have Packet Loss video sequences associated, that is why the number of video
sequences in the train sets varies. The test set consist of 110 to 118 video sequences, from which
30 video sequences are from LIVE Database, 36 video sequences are from CSIQ Database, 24
video sequences are from MCL-V Database and 20 to 28 video sequences are from IVP. The
training and testing sets do not share test sequences corresponding to the same content (original).

Figure 5.2: Box plot of SCC across 1000 test simulations, where we ramdonly chose 20% of the reference videos
and their distortions versions.
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Table 5.20: T-Test results between the SCC of various video quality assessment methods for all databases. The video
quality assessment methods evaluate the videos in their original spatial resolution (Ori), 384x216 resolution (Min),
using the framework with an ideal classifier (Ideal), and with SSEQ classifier (SSEQ).

ViS3 STRRED STS-GMSD
Ori Min Ideal SSEQ Ori Min Ideal SSEQ Ori Min Ideal SSEQ

ViS3 Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 0 1 1 1 1 1 1 1 -1 -1
SSEQ 1 1 -1 0 1 1 -1 1 1 -1 -1 -1

STRRED Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 0 -1 -1 1 0 -1 -1 1 -1 -1 -1
Ideal 1 1 -1 1 1 1 0 0 1 1 -1 -1
SSEQ 1 1 -1 -1 1 1 0 0 1 -1 -1 -1

SSTSGMSD Ori 0 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 1 -1 1 1 1 -1 1 1 0 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 0 1
SSEQ 1 1 1 1 1 1 1 1 1 1 -1 0

GSMD Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1
Ideal 1 1 1 1 1 1 1 1 1 1 -1 -1
SSEQ 1 1 1 1 1 1 1 1 1 1 -1 -1

SSIM Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
SSEQ 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1

PSNR Ori -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Min -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
Ideal -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1
SSEQ -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1

GMSD SSIM PSNR
Ori Min Ideal SSEQ Ori Min Ideal SSEQ Ori Min Ideal SSEQ

ViS3 Ori 1 -1 -1 -1 1 -1 -1 0 1 1 1 1
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SSEQ 1 1 -1 -1 1 1 1 1 1 1 1 1

STRRED Ori 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
Min 1 -1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 -1 -1 1 1 1 1 1 1 1 1
SSEQ 1 1 -1 -1 1 1 1 1 1 1 1 1

SSTSGMSD Ori 1 -1 -1 -1 1 -1 -1 -1 1 1 1 1
Min 1 1 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 1 1 1 1 1 1 1 1 1 1
SSEQ 1 1 1 1 1 1 1 1 1 1 1 1

GSMD Ori 0 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1
Min 1 0 -1 -1 1 1 1 1 1 1 1 1
Ideal 1 1 0 1 1 1 1 1 1 1 1 1
SSEQ 1 1 -1 0 1 1 1 1 1 1 1 1

SSIM Ori -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
Min 1 -1 -1 -1 1 0 -1 1 1 1 1 1
Ideal 1 -1 -1 -1 1 1 0 1 1 1 1 1
SSEQ 1 -1 -1 -1 1 -1 -1 0 1 1 1 1

PSNR Ori -1 -1 -1 -1 1 -1 -1 -1 0 -1 -1 -1
Min 1 -1 -1 -1 1 -1 -1 -1 1 0 -1 1
Ideal 1 -1 -1 -1 1 -1 -1 -1 1 1 0 1
SSEQ 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
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Table 5.21: Average running time for performing an objective quality assessment with and without SSEQ classifier
(in seconds).

ViS3 STRRED SSTS-GMSD SSIM GMSD PNSR
Original Resolution 647.5480 219.9712 13.7975 13.6208 6.1423 5.1625
SA Difference Classification 278.4741 157.7950 73.9999 76.2293 70.5274 70.2187

In summary, for 1,000 simulations, the databases are randomly divided in traning and testing
groups, respecting content non overlap. Table 5.19 shows the median of the SCC values obtained
for these 1,000 simulations.

We compare the results obtained with the SSEQ classifier with the results obtained with the
videos in the original resolution, the videos in 384x216 resolution, and using an ideal classifi-
cation. Figure 5.2 shows the box plot of SCC across 1,000 simulations for the overall accuracy
performance combining all databases. From these results, we notice that using the ideal classifi-
cation generates the best results for all methods.

The gain in accuracy performance using the ideal classification is 10.14% for ViS3, 17.30%
for STRRED, 13.32% for SSTS-GMSD, 25.01% for GMSD, 60.85% for SSIM and 22.17% for
PSNR. SSEQ classifier gives the overall second best results for most methods, with the exception
of SSIM and PSNR. The gain in accuracy performance using the SSEQ classifier is 8.37% for
ViS3, 15.70% for STRRED, 12.64% for SSTS-GMSD, 23.94% for GMSD, 53.74% for SSIM
and 15.96% for PSNR. The highest gains correspond to the MCL-V and IVP databases, which
have the videos with a higher resolution. Also, the gain in accuracy performance of image quality
methods, is higher than the other methods. And, when using the SSEQ classifier, SSTS-GMSD
has the second best accuracy performance of all methods.

The statistical significance of the differences in accuracy performance was made using the
t-test across the 1,000 test simulations. Tables 5.20 shows the results of the t-test. The improve-
ment when using the framework with the SSEQ classifier is statistically significant. Notice that
the results of STRRED using the ideal classifier and of the SSEQ classifier are equivalent, even
though the SCC of STRRED with ideal classifier is greater than the SCC of STRRED with SSEQ
classifier. It is worth noticing that all methods, excet for PSNR, have a better accuracy perfor-
mance using the framework than the ViS3 accuracy performance on videos with their original
resolution.

Table 5.21 presents the average running time for video quality assessment methods for videos
in their original resolution and with the proposed methodology using the SSEQ classifier. Unfor-
tunately, the SSEQ classifier is slower than the SA Classifier, because it extracts more features
from the video. Only the running time of ViS3 and STRRED is improved when using the SSEQ
classifier (ViS3 is 2.32x faster and STRRED is 1.39x faster).
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Table 5.22: Spearman Coefficient Correlation of the methods when varying the video FPS.

Métrica Banco FPS
de Dados Original 24 16 8 4

ViS3 LIVE 0.8168 0.8191 0.8108 0.8021 0.7586
CSIQ 0.8325 0.8379 0.8347 0.8040 0.7573
IVP 0.7948 0.7931 0.7998 0.7439 0.7466
MCL-V 0.6361 0.6500 0.6933 0.6693 -

STRRED LIVE 0.8007 0.8074 0.8002 0.7888 0.7773
CSIQ 0.8129 0.7995 0.7964 0.7799 0.7617
IVP 0.7374 0.7396 0.7475 0.7403 0.7393
MCL-V 0.7433 0.7431 0.7381 0.7281 0.7222

SSTS-GMSD LIVE 0.8389 0.8262 0.8182 0.7967 0.7813
CSIQ 0.8415 0.8492 0.8474 0.8430 0.8299
IVP 0.7560 0.7490 0.7553 0.7662 0.7863
MCL-V 0.6855 0.6881 0.6937 0.6932 0.7008

GMSD LIVE 0.7262 0.7311 0.7108 0.7358 0.6900
CSIQ 0.8409 0.8391 0.8390 0.8383 0.8364
IVP 0.6924 0.6839 0.6785 0.6894 0.6691
MCL-V 0.6449 0.6490 0.6477 0.6514 0.6608

SSIM LIVE 0.5251 0.5210 0.5010 0.5400 0.5137
CSIQ 0.5794 0.5793 0.5786 0.5852 0.5765
IVP 0.3560 0.3556 0.3493 0.3568 0.3404
MCL-V 0.4018 0.4009 0.4050 0.3976 0.4066

PSNR LIVE 0.5251 0.5096 0.4921 0.5348 0.5376
CSIQ 0.5794 0.5791 0.5761 0.5842 0.5847
IVP 0.6566 0.6469 0.6376 0.6501 0.6274
MCL-V 0.4640 0.4683 0.4659 0.4693 0.4771

5.2.3 Influence of Frame Rate in Video Quality Metrics

Other way to improve the runtime performance of video quality assessment methods is to
reduce the frame rate of the videos. Table 5.22 shows the SCC of the video quality assessment
methods when reducing the video frame rate to 24, 16, 8 and 4 FPS. There are no ViS3 results
for videos with 4 FPS in MCL-V database, because these videos do not have enough temporal
information required by ViS3. From these results, we notice that ViS3 and STRRED accuracy
performances are better with a higher FPS. We believe this happens because these algorithms
analyze the temporal information of the video to measure the its quality. For example, ViS3 uses
motion vectors to give weight the to specific areas in the spatial distortion map. Therefore, in this
case, by reducing the temporal resolution we might introduce temporal transitions to the video.
STRRED, on the other hand, analyses the differences among neighboring frames in the video.
Therefore, if there is a large time interval between to two consecutive frames, there will be a large
temporal difference between them. Nevertheless, for these two video quality assessment methods
we can reduce the FPS down to 16, without greatly affecting the accuracy performance.

The accuracy performance of SSTS-GMSD is higher for higher FPS, both for LIVE and CSIQ
databases, and for lower FPS, both for IVP and MCL-V databases. We believe this happens
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Figure 5.3: SSIM score of ’Blue Sky’ video distorted by H.264 Compression, MPEG-2 Compression and Packet
Loss.

because SSTS-GMSD also performs a temporal analysis. At the same time, the CSIQ, LIVE and
IVP Databases have videos distorted by packet loss, which is a temporal distortion. The videos
in the CSIQ and LIVE databases are in 768x432 and 832x480 resolution, respectively, and 24,
25, 30, 50 and 60 FPS, while videos in the IVP and MCL-V databases are in 1088x1920 and
1080x1920 resolution, respectively, and 25 and 30 FPS. Therefore, when we discard frames from
videos in the CSIQ and LIVE databases, a lot more information is being discarded.

For GMSD and SSIM, using videos sequences in 8 FPS is a reasonable trade-off between
accuracy performance and runtime performance. The GMSD accuracy performance for the LIVE
and MCL-V databases are better with videos sequence in 8 FPS than in the original FPS. For
CSIQ and IVPL, there is a loss in accuracy performance is 0.3% and 0.4%, respectively, when
we compare videos in the original FPS with videos in 8 FPS. The SSIM accuracy performance
is best for videos in 8 FPS for LIVE, CSIQ and IVP databases. For the IVP database, the loss
in accuracy performance is 1.04% when we compare videos in the original FPS with videos in
8 FPS. The best accuracy performance for PSNR is for videos in 4 FPS for LIVE, CSIQ and
MCL-V database. For IVP database, the PSNR accuracy performance with videos in 4 FPS is
0.99% worst than with videos in the original FPS.

The GMSD, SSIM and PSNR image quality assessment methods can be used to measure
video quality by using them to measure the quality of each frame and averaging the frame quality
scores to obtain the overall video quality score. Figures 5.3 (a), (b), and (c) show the SSIM frame
scores for a video sequence distorted by H.264 Compression, MPEG-2 compression and Packet
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Table 5.23: Spearman Coefficient Correlation of the metrics when varying the video FPS for each video distortion.

Metric Distortion FPS
Original 24 16 8 4

ViS3 Wavelet 0.6537 0.6329 0.6345 0.5772 0.5132
H.264 0.7413 0.7479 0.7486 0.7481 -
H.265 0.9174 0.9236 0.9151 0.8878 0.8124
MJPEG 0.7349 0.7671 0.7560 0.6533 0.5613
MPEG2 0.5278 0.5308 0.5239 0.5028 0.5140
Upscaling 0.6890 0.6927 0.7369 0.7200 -
Packet Loss 0.8163 0.8128 0.7993 0.7643 0.7335
White Noise 0.9202 0.9156 0.9125 0.8826 0.8669

STRRED Wavelet 0.7825 0.7608 0.7579 0.7419 0.7303
H.264 0.7718 0.7790 0.7768 0.7787 0.7605
H.265 0.9135 0.9187 0.9230 0.9310 0.9212
MJPEG 0.7290 0.7223 0.7145 0.6857 0.6752
MPEG2 0.6772 0.6615 0.6530 0.6289 0.6262
Upscaling 0.7040 0.7067 0.7006 0.6954 0.6902
Packet Loss 0.8016 0.8067 0.8068 0.8014 0.7792
White Noise 0.9305 0.9377 0.9179 0.9192 0.9292

SSTS- Wavelet 0.5981 0.5915 0.5783 0.5546 0.5345
GMSD H.264 0.8025 0.7936 0.7921 0.7802 0.7861

H.265 0.9287 0.9359 0.9418 0.9375 0.9261
MJPEG 0.8803 0.8821 0.8736 0.8690 0.8396
MPEG2 0.6272 0.6136 0.6062 0.6053 0.6181
Upscaling 0.6795 0.6806 0.6854 0.6936 0.6945
Packet Loss 0.7899 0.7842 0.7797 0.7708 0.7516
White Noise 0.8819 0.8860 0.8811 0.8682 0.8456

GMSD Wavelet 0.5812 0.5798 0.5818 0.5805 0.5636
H.264 0.7531 0.7517 0.7451 0.7640 0.7787
H.265 0.9418 0.9441 0.9398 0.9416 0.9369
MJPEG 0.8842 0.8842 0.8847 0.8893 0.8744
MPEG2 0.5501 0.5634 0.5371 0.5435 0.5569
Upscaling 0.6376 0.6378 0.6371 0.6400 0.6549
Packet Loss 0.7770 0.7795 0.7708 0.7657 0.7172
White Noise 0.9094 0.9102 0.9102 0.9130 0.9066

SSIM Wavelet 0.6130 0.6141 0.6167 0.6106 0.6029
H.264 0.6257 0.6228 0.6223 0.6333 0.6464
H.265 0.8136 0.8139 0.8100 0.8124 0.8172
MJPEG 0.7969 0.7969 0.7969 0.8054 0.7974
MPEG2 0.4814 0.4854 0.4825 0.4791 0.5224
Upscaling 0.4400 0.4408 0.4467 0.4406 0.4425
Packet Loss 0.4485 0.4504 0.4433 0.4541 0.4166
White Noise 0.9300 0.9300 0.9282 0.9274 0.9300

PSNR Wavelet 0.6696 0.6716 0.6697 0.6711 0.6623
H.264 0.6631 0.6616 0.6554 0.6714 0.6866
H.265 0.7846 0.7938 0.7701 0.8015 0.7969
MJPEG 0.5086 0.5112 0.5086 0.5086 0.5341
MPEG2 0.5371 0.5389 0.5282 0.5465 0.5475
Upscaling 0.4925 0.5015 0.4996 0.5045 0.5151
Packet Loss 0.6509 0.6489 0.6401 0.6373 0.6252
White Noise 0.9063 0.9030 0.9063 0.9071 0.9009
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Loss, respectively. Notice that the neighboring frames have similar SSIM frame scores for videos
distorted by compression. SSIM frame scores for videos distorted by Packet Loss are very differ-
ent when a packet loss occurs, but similar for the rest of the frames. For temporal distortions, like
packet loss, discarding frames from the video gives reduces the accuracy of the predicted score
more than reducing the spatial resolution. So, unless the video has temporal distortions, it is fine
to discard some frames when using GMSD, SSIM and PSNR. Table 5.23 shows that, in most
cases, the methods can perform best for packet loss when using videos in the original temporal
resolution or with 24 FPS.

5.2.4 Discussion

One of open challenges in image/video quality assessment is the computational time per-
formance [12, 13]. We notice from Table 5.18 that ViS3 and STRRED takes more than three
minutes, on average, to execute. Considering that all videos are, approximately, 10 seconds long,
these methods cannot be used in real time or practical applications.

A simple method to reduce the computational time is to reduce the video spatial resolution,
but, sometimes, this strategy can decrease the accuracy performance of the methods, as seen in Ta-
bles 5.2 5.3. However, for IVP and MCL-V databases the accuracy performance improves when
the video spatial resolution is reduced. Each database has its set of video distortions and from
the results shown in Tables 5.6- 5.9, we notice that the methods have a different accuracy perfor-
mance for each distortion when the video spatial resolution is reduced. We create two distortion
classifiers to identify distortions that video quality method has better accuracy performance at
768x432 and distortions that video quality method has better accuracy performance at 384x216.
Tables 5.16 and 5.19 show the accuracy performance using these classifiers. In both cases the
overall accuracy performance using the classifier is better than when the videos are in their origi-
nal resolution. We notice that for image quality assessment methods (PSNR, SSIM and GMSD)
the accuracy performance improvement is greater than for other methods. We have shown that
it is important to have a distortion classifier, given that the accuracy performance when using all
videos in 384x216 is worse than using the classifier.

Figures 5.4 and 5.5 shows the runtime performance of the spatial activity classifier and the
SSEQ classifier. The spatial activity classifier is a very fast method, being faster to use the video
quality assessment method with the classifier than the method by itself. From the results of the
method accuracy performance, we noticed that the framework with the spatial activity classifier
improves both the computational and accuracy performances. The SSEQ classifier is slower
than the spatial activity classifier, since it extracts 12 features from the video, and the spatial
activity classifier extracts only one feature. But, the SSEQ classifier is able to improve the runtime
performance of the ViS3 and STRRED.

Finally, we analyze how temporal resolution reduction affects the video quality accuracy per-
formance. Video quality assessment method that analyze temporal information had their accuracy
performance reduced. However image quality assessment method are not very affected by tem-
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poral resolution reduction.

Computational Time (in seconds)
101 102 103

S
pe

ar
m

an
 C

or
re

la
tio

n 
C

oe
ffi

ci
en

t

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

ViS3

ViS3

STRRED

STRRED

STS-GMSD

STS-GMSD

SSIM

SSIM

GMSD

GMSD

PSNR

PSNR

SA Classifier
Original Resolution

Figure 5.4: Spearman correlation coefficient versus computational time (in log space). Comparing the accuracy
performance when using the Spatial Activity classifier and the video in their original resolution.
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6 CONCLUSIONS

Over the decades, video quality assessment methods have been design with the goal of esti-
mating video quality. Unfortunately, these methods have become more complex and most meth-
ods cannot be used in real time scenarios or any practical application. For example, ViS3 and
STRRED take minutes to estimate the quality of a video 10 seconds long. Therefore, one of
the challenges of video quality assessment methods is how to improve the running time perfor-
mance [12].

One of the fastest and simplest methods to improve the running time performance is reducing
the spatial resolution. So, in this work, we analyzed the accuracy performance of video quality
assessment methods when the spatial resolution is reduced. Six video quality assessment meth-
ods are used in this work: the PSNR, SSIM, GMSD, SSTS-GMSD, STRRED and ViS3. PSNR,
SSIM, GMSD are image quality assessment methods, which can be used to compute video qual-
ity by averaging the predicted scores obtained for each frame. SSTS-GMSD is a video quality
assessment method based on the GMSD; STRRED is a video quality assessment method based
on the entropic difference between the wavelet coefficients; and ViS3 is a video quality assess-
ment method that computes the spatial distortions and the spatiotemporal dissimilarity between
the reference and distorted video. These methods were chosen because each of them evaluate
different features from the video to calculated its quality.

The spatial resolution analysis shows that the method’s accuracy performance is affected dif-
ferently when the spatial resolution is reduced. Videos distorted by MJPEG compression, packet
loss and white noise are the most sensitive to the reduction of spatial resolution.

In this work, we proposed a framework to improve the running time of video quality methods,
without decreasing the video quality assessment methods accuracy performance. This frame-
work contains four stages: identification of video distortion, spatial downsampling of the video
according to the distortion, estimation of the video quality using objective video quality assess-
ment methods, and adjustment of the predicted quality scores. For the first stage, we propose two
classification methods to identify videos that are more sensitive to the spatial resolution reduction.

The first classification method is based on the spatial activity of the video. We notice that
the videos distorted by MJPEG compression, packet loss and white noise have a higher spatial
activity than its reference video. The overall results using this classification method are faster and
better than using the only the video quality assessment method.

The second classification method is based on spatial an spectral entropies. It was originally
developed as part of a image quality assessment method [50]. We adapted it to work as a video
classification, using the average value of the frame features as the feature vector. This classifi-
cation method uses a support vector machine to classify the videos. The results using this clas-
sification method have a better overall accuracy performance than using only the video quality
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assessment method. But, it has a slow feature extraction process, and because of it, this method
only improves the speed of the STRRED and ViS3. Therefore, using the framework can im-
prove the running time of the video quality assessment method without affecting the accuracy
performance. However, the classification method has to be fast and precise.

We also perform a temporal resolution analysis. This analysis shows that the video quality
assessment methods, which use temporal analysis, have a loss in accuracy performance when the
temporal resolution of videos is reduced. Independent of the video quality assessment method,
the method’s accuracy performance of videos distorted by packet loss have a loss in performance
for lower video resolution. Because packet loss is a temporal distortion that appear in any frame
of the video, when we reduce the temporal resolution the frames affected by packet loss can be
discarded.

6.1 FUTURE WORKS

We studied the influence of the video distortion on the performance of video quality assess-
ment methods when reducing the spatial resolution. When comparing the results for the spatial
activity classifier and the ideal classification, we noticed that sometimes the spatial activity clas-
sifier gives better results. This means that it is not only the video distortion that influences the
accuracy performance, when reducing the spatial resolution. Probably, the content of the videos
also influences the method’s performance. So, future works include analyzing the influence of the
video content on the method’s accuracy performance.

Also future work includes, performing an analysis of the influence of both spatial and temporal
resolution reductions on the accuracy performance of video quality assessment method. Also, it
would be important to find the optimal spatial and temporal resolutions, to improve the proposed
framework. Although the temporal resolution is important for the methods that analyze temporal
distortions, for GMSD, SSIM and PSNR a reduction of the temporal resolution does not affect
the accuracy performance.

Finally, we could test our framework with a set of no-reference video quality assessment
methods and use the SSEQ as the video classifier.

68



7 CONTRIBUTIONS

Our final objective is to create a framework, that is able to reduce the runtime perfor-
mance of video quality assessment methods. To achieve this objective, we did several analy-
sis and proposed two video classifier. These analysis and classifiers are also contributions of
our work.

We analyze the accuracy performance of six video quality metrics in four video databases,
when the spatial video resolution is reduced. We did an analysis combining all databases
to identify which video distortions are more sensitive to spatial resolution reduction. And
from that analysis we were able to proposed two simple and fast video classifiers, that iden-
tify videos more sensitive to spatial resolution reduction.

Also, we perform a temporal resolution analysis using the same video quality assessment
methods and databases. From that analysis, we conclude that video quality assessment
methods, which use temporal analysis are more affected by the temporal resolution reduc-
tion. And, we perform an analysis, combining all databases, to identify the video distortions
more sensitive to temporal resolution reduction.

Finally, our major contribution is our proposed framework, which from our results is
able to improve the runtime and accuracy performance of video quality assessment meth-
ods.
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I. EVALUTUATION MEASURES

To evaluate classification methods is common to use the recall, precision an F1-Score [63].
The results of a classification method can be represented in a confusion matrix. The example of a
confusion matrix in a binary classification is shown in Table I.1.

Table I.1: Example of a Confusion Matrix

Real Positive Real Negative
Predicted Positive True Positive False Positive
Predicted Negative False Negative True Negative

The confusion matrix represents all the results of a classifier into a single table. Predicted
Positive are the cases, which the method classify as positive. Predicted Negative are the cases,
which the method classify as negative. Real Positive are the cases that are labeled as positive.
And Real Negative are the cases labeled as negative. The true positive are the cases which the
classifier correctly predicted as positive or negative cases, respectively. The false positive and
false negative are the cases which the classifier wrongly predicted as positive or negative cases,
respectively.

I.1 RECALL

Recall measures the proportion of the real positive cases correctly classify by the classification
method. It is most relevant in applications that aim to identify real positive cases. Recall is defined
by:

Recall =
True Positive
Real Positive

, (I.1)

I.2 PRECISON

Precision measures the proportion of the predicted positive cases correctly classify by the
classification method. It is a measure of the true positive accuracy. Precision is define by:

Precision =
True Positive

Predicted Positive
, (I.2)
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I.3 F1-SCORE

F-Measure is a single measure that combines the results of precision and recall. F-Measure is
a harmonic mean of precision and recall, define by:

F −Measure =
1

α 1
Precision

+ (1− α) 1
Recall

=
(β2 + 1)Precision ·Recall
β2Precision+Recall

(I.3)

where β2 = 1−α
α

, β is a parameter that controls the balance of precision and recall. F1 Score is
the special case when β = 1, in other words, the F-Measure equally weights precision and recall.
F1 Score is defined by:

F1 =
2 · Precision ·Recall
Precision+Recall

, (I.4)
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II. SPEARMAN CORRELATION

The Spearman Correlation was proposed by Spearman in 1904 [64]. It measures the prediction
monotonicity of a model. In this work, we use the Spearman Correlation to compare the prediction
quality scores, given by the video quality assessment methods, with the subjective quality scores.
Let xi denote the predict score and yi denote the subjective score, where i ∈ 1, 2, ...,M . The
Spearman Correlation Coefficient SCC is defined by the following equation:

SCC =

∑M
i=1(χi − χ̄)(γi − γ̄)√∑M

i=1(χi − χ̄)2
√∑M

i=1(γi − γ̄)2
, (II.1)

where χi is the rank of xi and γi is the rank of yi in the ordered data series, χ̄ and γ̄ are the
respect midrank. The SCC makes no assumption about the shape of the relationship between xi
and yi.
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