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ABSTRACT

Identifying and categorizing brain tumors is crucial for gaining insights into their underlying

mechanisms and formulating a treatment plan. Yet, this process often takes a long time and relies

heavily on the expertise and experience of radiologists for manual evaluation of Magnetic

Resonance Images (MRI). However, Convolutional Neural Networks (CNNs) offer promising

tools to aid in brain tumor diagnosis using MRI scans. While MRI is reliable for tumor detection,

common artifacts like blurring, noise, contrast, and ringing can compromise the reliability of

CNN models. In this study, we investigate the impact of these artifacts on CNN performance by

introducing 10 levels of each artifact on MRI scans. We also generate artifacts with similar

Structural Similarity Index (SSIM) to assess diagnostic reliability across different image qualities.

We evaluate three state-of-the-art CNN models: ResNet50, Inceptionv3, and ResNeXt using the

degraded images. The findings from this study provide insights into how each of these artifacts

affect CNN models and could help assess the confidence levels of automatic diagnostic results

under varying image qualities.
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I. INTRODUCTION

A brain tumor is an irregular growth of brain tissue that disrupts normal brain functions. Any

unforeseen changes could impact human functioning due to the limited capacity and rigid

structure of the human skull, especially if they involve specific areas of the brain. Furthermore,

such changes may potentially metastasize to other organs, posing additional risks to overall

human function [1]. Brain cancer, categorized according to its characteristics, origin, growth rate,

and progression, distinguishes between benign and malignant tumors. Benign tumors typically

remain localized and seldom invade nearby healthy tissues, whereas malignant tumors tend to

spread to adjacent areas of the brain or spinal cord. Tumors are further classified as primary,

originating within the brain, or secondary, arising elsewhere and metastasizing to the brain.

Primary tumors are subclassified as glial (comprising glial cells) or non-glial (developing on or

within brain structures such as nerves, blood vessels, and glands), and may be benign or

malignant. Furthermore, clinicians classify tumors into four grades according to their growth rate

and into four stages according to their progression rate [2].

The number of cancer cases and its associated mortality rates are increasing globally [3].

Cancer is one of the primary factors contributing to mortality rates and poses a significant

obstacle to extending life expectancy in all countries around the world [4]. The reasons behind

the increase in the number of cancer cases and deaths are complex and are attributes to an

increase in lifespan or lifestyle choices [5]. Approximately 23.6 million new cancer cases

(excluding non-melanoma skin cancer) and nearly 10.0 million cancer-related deaths (excluding

non-melanoma skin cancer) were reported in 2019 worldwide [6]. In the same year, 347,992 new

cases of brain cancer were recorded and the total number of deaths from brain cancer worldwide

was 246,253 [7]. Brain and central nervous system cancer contribute significantly to the

worldwide burden of disease, ranking 19th in terms of frequency among all cancers (which

represents 1. 9% of all cancers) and 12th among the main causes of cancer-related deaths (which

comprises 2. 5% of all cancers) [8]. Brain and central nervous system cancer was placed as the
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eighth most impactful cause of Years of Life Lost (YLLs) among all cancers for both genders [9].

Detecting these tumors early is crucial, as it allows for timely intervention and

implementation of preventive measures, ultimately decreasing the risk of mortality [10] [11].

Magnetic Resonance Imaging (MRI) is an imaging technique that uses safe, non-ionizing

radiation to capture detailed 3D anatomical structures of the body without the need for surgical

incisions [12]. Using RF pulses and a strong magnetic field, it generates images [13].

Radiologists use magnetic resonance imaging to detect abnormalities in the brain, assess disease

progression, and strategize surgical interventions [14]. However, relying solely on human

diagnosis is prone to errors and inconsistencies, as different experts may interpret medical data

differently, leading to delays in diagnosing such a sensitive condition. Consequently, the precision

of tumor detection through the analysis of brain images from MRI fluctuates depending on the

expertise and experience of the healthcare practitioner [15]. Therefore, several recent studies have

focused on developing methods to identify and detect brain tumors using MRI images that use

machine learning techniques to analyze MRI scans and detect the presence of brain tumors, in

hopes of aiding in the early diagnosis and treatment of such conditions [16] [17].

Several types of artifact can arise during MRI scans, due to problems with software,

hardware, pulse sequences, or patient-related factors such as tissue variations or movement, and

sometimes a combination of these factors can contribute to a single artifact [18]. These artifacts

cause the degradation of the image quality of MRI scans, which negatively affects the

performance of CNNs when making medical diagnosis [19]. In this context, the primary

objective of this thesis is to perform a thorough examination of how the quality of medical images

influences the effectiveness of a CNN-based diagnostic system. We develop CNN-based

frameworks and assess how the quality of medical images affects the performance of each

CNN-based brain tumor detection algorithm, utilizing brain MRI images as input. We use

ResNet50, InceptionVv3 and ResNeXt as the CNN models that will perform brain tumor

classification. We look at 4 types of commonly occurring artifacts in this study: blurring, noise,

contrast, and ringing. We attempt to explain the effects of each artifact on each architecture by
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looking at feature maps produced by the ResNet50 architecture. We take the level of image

degradation into account by making use of SSIM metric.

The remainder of the report is structured as follows. Chapter 2 provides an overview of the

existing literature, including discussions on previous research to diagnosis diseases using image

processing and and the effect quality of images have on diagnosis, explaining the importance of

this thesis in classification of brain tumor using brain MRI images. Chapter 3 describes The

background for this study. Mainly it explains the the CNN architectures used in this

study-ResNet50, InceptionV3 and ResNeXt, The performance metrics used to estimate the

performance of the CNN models. It also explain confidence intervals which are used to determine

the confidence in the results outputted by the architectures and filter outputs that show the effect

the input images have on a CNN architecture. Chapter 4 explain the methods to generate the

dataset containing images with artifacts. It also describes SSIM, a metric we use in this study to

determine the quality of an input image. Chapter 5 outlines the experimental methodology

employed in this study, detailing the design, training and testing of the CNN architectures.

Chapter 6 presents the empirical findings of the study and discusses the implications of the

findings. Finally, Chapter 7 provides a conclusion summarizing the study, and suggesting avenues

for future research.
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II. RELATED WORKS

In recent years, machine learning has had a significant impact on disease detection using

images in various fields, including medical imaging, pathology, and radiology. Hazarika et

al. [20] proposed a modification to the LeNet model by incorporating MinPooling layers along

with MaxPooling layers to improve brain image analysis. Goyal et al. [21] used Mask R-CNN

for automatic kidney segmentation in coronal T2-weighted Fast Spin Eco MRI slices, augmenting

its performance through post-processing morphological operations. Wang et al. [22] introduced a

modified Inception-v3 CNN architecture to classify breast lesions as benign or malignant,

specifically designed for efficient feature extraction from automated breast ultrasound (ABUS)

imaging, considering the visualization of ABUS images in both transverse and coronal views.

Kanjanasurat et al. [20] integrated CNN and recurrent neural network (RNN) models by replacing

fully connected CNN layers with a variant of RNN, leveraging CNN feature extraction

capabilities and RNN dependency calculation and classification abilities, with CNN models such

as VGG19, ResNet152V2, and DenseNet121 combined with long short-term memory (LSTM)

and gated recurrent unit (GRU) RNN models. Lin et al. [23] proposed deep classifiers, utilizing

VGG, ResNet, and DenseNet architectures, to classify SPECT bone images for automated

diagnosis of metastasis, employing a pre-processing pipeline involving cropping and geometric

transformations to increase original data.

Multiple recent literature have attempted to diagnose brain cancer using Machine Learning

based systems. Latif et al. [24] introduced a glioma tumor classification method that employs

deep learning-based features extracted from MRI scans using a CNN and subsequently classified

using a Support Vector Machine classifier by feeding the features to the classifier. Majib et

al. [25] proposed VGG-SCNet (VGG Stacked Classifier Network), a hybrid model where features

are extracted from a top-performing transfer learning model and subsequently utilized as input

variables for constructing hybrid models, integrating algorithms such as Stacked Classifier,

AdaBoost, CatBoost, and XgBoost. Methil et al. [26] introduced a novel approach to the detection
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of brain tumors from various brain images, involving preprocessing methods such as histogram

equalization and opening, followed by CNN classification, with an experimental evaluation

carried out on a data set comprising different tumor shapes, sizes, textures, and locations.

Cinar et al. [27] aimed to diagnose brain tumors using MRI images, employing

convolutional neural network (CNN) models, specifically utilizing the ResNet50 architecture as

the base model with the last 5 layers removed and 8 new layers added for the diagnosis process.

Vankdothu et al. [28] proposed a fusion of CNN with LSTM units to enhance feature extraction

capabilities, resulting in superior image classification performance compared to standard CNN

methods. Anaraki et al. [29] utilized CNNs and genetic algorithms (GAs) to classify various

grades of Glioma brain tumors, wherein the CNN architecture is developed using GA rather than

traditional trial and error or predefined structures, and bagging as an ensemble algorithm is used

to reduce the variance of the prediction error. ZainEldin et al. [30] introduced the CNN brain

tumor classification model (BCM-CNN) using an adaptive dynamic sine-cosine fitness gray wolf

optimizer (ADSCFGWO) algorithm to optimize CNN hyperparameters, employing a training

model built with Inception-ResNetV2 with hyperparameters encompassing both network

structure and training, leveraging the strengths of the sine-cosine and grey wolf algorithms within

an adaptable framework. Yahyaoui et al. [31] presented a novel semantic method for MRI brain

tumor classification, integrating 2D and 3D MRI images, which addresses challenges in semantic

classification and fusion through preprocessing, classification using two deep learning models and

heterogeneous datasets (DenseNet for 2D image classification and 3D-CNN for glioma

classification), and fusion using specific domain ontology to merge output classes.

Based on recent research, CNNs have demonstrated impressive accuracy in detecting and

segmenting tumors, establishing themselves as the current state-of-the-art solution for certain

challenges in medical diagnosis [32]. However, the quality of the input images should be taken

into account when assessing the ability of any machine learning model to classify an image.

Goodfellow et al. [33] explain that as computer vision applications expand, understanding the

impact of image quality on computer vision systems becomes crucial, particularly due to the
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susceptibility of deep networks to adversarial samples despite their high performance. Hu et

al. [34] investigated the impact of image quality and lighting consistency on CNN performance in

weed mapping, using Faster Region-Based CNN (R-CNN) and Mask R-CNN architectures as

examples. Thambawita et al. [35] examined how image resolution affects endoscopy image

classification by assessing the performance of two CNN models under various quality distortions.

Sabottke et al. [36] investigated the performance of CNNs, specifically ResNet34 and

DenseNet121, in various chest radiograph diagnoses and image resolutions.

A review of the literature shows that the performance of CNNs is greatly affected by the

quality of the input images. Multiple factors affect the quality of input images. Several studies

have been conducted to study how different factors affect the quality of the input images. Sheikh

et al. [37] showed that image quality factors, such as resolution, noise, contrast, blur, and

compression, affect the visual information contained in the images. Basu et al. [38] introduce the

n-MNIST dataset, a modified version of the MNIST dataset that incorporates Gaussian noise,

motion blur, and reduced contrast, along with a modified deep belief network to improve accuracy

in this dataset. Dodge et al. [39] evaluated four advanced deep neural network models for image

classification across five types of quality distortions: blur, noise, contrast, JPEG, and JPEG2000

compression, highlighting that the etworks are susceptible to these quality distortions. Grm et

al. [40] explored the impact of image quality on face verification performance in various deep

CNN models, finding that high levels of noise, blur, missing pixels, and brightness negatively

affect performance, while contrast changes and compression artifacts have a limited impact.

Several of the artifacts discussed above appear on MRI images [41]. Therefore, it is paramount

that the effects of MRI images degraded with these artifacts on machine learning models.

In our investigation, we did not find a significant number of studies measuring how the

quality of (input) MRI scans affects the performance of CNN-based systems. Various

degradations, such as ringing effects, noise, and reconstruction artifacts, can affect the quality of

MRIs. Although we know that severe image degradation can affect diagnosis, it is difficult to

determine how confident we can be in results such as accuracy, precision, recall, and the F1 score.
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This is crucial because different MRI machines and factors such as patient movement can create

very different images for the same patient. Figuring out the range of input image quality for

which we can expect certain accuracy, precision, recall, and F1-score levels is vital for

widespread use of machine learning in brain tumor diagnosis.

For the aforementioned reason, the main objective of this study is to carefully examine how

the quality of medical images impacts the performance of a diagnostic system for brain tumors

from CNN-based magnetic resonance images. We focus on four commonly occurring artifacts in

magnetic resonance imaging and used state-of-the-art and widespread CNN architectures in this

study. We determine how each artifact affects the input image and the confidence of the results

calculated from CNN architectures. We also try to explain why an image degraded with an artifact

outputs good or bad classification results while being tested using a CNN architecture. Therefore,

we address a big challenge with deep learning methods, which is how much they rely on the

quality of the samples in the training dataset. We also try to explain the reason behind this

dependence.
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III. BACKGROUND ON MACHINE LEARNING

CNN Arhitectures

A Convolutional Neural Network (CNN), also referred to as ConvNet, is a type of neural

network designed specifically for handling data with a grid-like structure, such as images. It is a

type of deep learning model commonly used for image recognition, classification, and other

computer vision tasks. CNNs consists of multiple layers. Convolutional Layers apply convolution

operations to input images using learnable filters, known as kernels, to extract features such as

edges, textures, and shapes. Pooling Layers downsample the feature maps generated by

convolutional layers, reducing their spatial dimensions while retaining important information.

Common pooling operations include max pooling and average pooling. Activation functions

introduce non-linearity into the network, allowing it to learn complex relationships in the data.

Common activation functions include ReLU (Rectified Linear Unit), Sigmoid, and Tanh. Fully

Connected Layers are also known as dense layers, which connect every neuron in one layer to

every neuron in the next layer, enabling the network to learn high-level representations of the

input data. Normalization layers help stabilize and speed up training by normalizing the

activations of neurons within each layer. Batch normalization is a commonly used technique in

CNNs. The output layer produces the final predictions or classifications based on the features

learned by the preceding layers. The number of neurons in this layer depends on the task, with

softmax activation often used for classification tasks and linear activation for regression tasks.

ResNet50 [42] is a neural network model introduced by Microsoft Research consisting of 48

convolutional layers, complemented by 1 MaxPool layer and 1 Average Pool layer. This extensive

depth enables ResNet50 to dive into deeper architectures without encountering the problem of

vanishing gradients, facilitating more effective training. ResNet50 has been widely used in

various computer vision tasks, including image classification, object detection, and image

segmentation, achieving state-of-the-art performance on many benchmark datasets. Its structure
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Figure 1: The ResNet50 Architecture

comprises four key components: the convolutional layers, the identity block, the convolutional

block, and the fully connected layers. Figure 1 shows the resnet50 architecture.

An Inception Network, developed by Google researchers [43], is a complex neural network

characterized by successive blocks, where the output of each block serves as the input of the

subsequent one, and each block is referred to as an Inception Block. Inception blocks are made up

of multiple parallel convolutional layers with different filter sizes. These modules enable the

network to capture features at different scales and resolutions, allowing for more effective feature

extraction. Specifically, Inception-v3 represents a convolutional neural network comprising 48

layers, designed to process images with a size of 299 by 299 pixels. Its efficient architecture and

excellent performance make it a popular choice for various computer vision applications. Figure 2

shows the Inception-v3 architecture.
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Figure 2: The Inception-v3 Architecture

ResNeXt [44] is a CNN introduced by Facebook AI research. It is a deep convolutional

neural network architecture that builds upon the ResNet model by introducing a cardinality

parameter, which controls the number of independent paths within each residual block, allowing

the network to capture richer representations by aggregating features from multiple paths. This

approach enhances the network’s ability to learn diverse feature representations while maintaining

computational efficiency. A ResNeXt repeats a building block that aggregates a set of

transformations with the same topology. We used resnext50_32x4d version of the resNeXt model

in this study. This model contains 50 layers. Figure 3 shows the ResNeXt architecture.

Figure 3: The ResNeXt Architecture

To identify which type of tumor an image contains, we used a CNN-based classification

system. More specifically, we used the ResNet50, InceptionetV3 and Resnex architectures to

classify the images in the dataset as meningioma, glioma, or pituitary.

We use transfer learning for the purpose of this study, which is a technique where a
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pre-trained neural network is used as a starting point for training a new model on a different task

or dataset. This approach leverages the pre-trained network’s learned features, which are

generally useful across different tasks, while allowing the model to adapt and learn task-specific

features through fine-tuning. Instead of training the entire network from scratch, all evaluated

architectures were pre-trained using weights imported from the Imagenet dataset. The last layer of

each network was trained using the dataset from [45]. Training involved the allocation of 68.2%

of the images for training, 15.0% for validation, and 16.8% for testing purposes. To avoid the risk

that the architecture would be biased by specific characteristics of the patients, such as head

shape, the MRI scans of the patients in the training set were different from those of the test set

and vice versa. Also, we used cross-entropy as the loss function along with Stochastic Gradient

Descent (SGD) as the optimizer. The learning rate was set at 0.0003.

Performance Metrics

Performance metrics are essential in machine learning, as they provide quantitative measures

to evaluate, compare, and optimize the effectiveness of models. These metrics help to understand

model behavior, make informed decisions about model selection and deployment, and monitor

model health in production environments. Using these metrics, practitioners gain insight into the

strengths and weaknesses of their models, allowing them to iteratively improve performance and

ensure the reliability and effectiveness of machine learning solutions across various tasks and

applications. In this study, the performance of the CNN models are evaluated using four metrics:

accuracy, precision, recall and F1 score.

In deep learning performance metrics, TP (True Positives) refers to the number of correctly

predicted positive instances, TN (True Negatives) represents the number of correctly predicted

negative instances, FP (False Positives) indicates the number of negative instances incorrectly

classified as positive, and FN (False Negatives) denotes the number of positive instances

incorrectly classified as negative. These metrics are used to evaluate the accuracy and

effectiveness of classification models in tasks such as classification and object detection.
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Accuracy is the ratio of correct predictions (both true positives and true negatives) to the

total number of predictions made by the model. It measures the overall correctness of the model’s

predictions, and it is given by the following equation:

c (III.1)

Precision is the ratio of true positive predictions to the total number of positive predictions made

by the model. It measures the accuracy of positive predictions, and is given by the following

equation:

Precision =
TP

TP + FP
. (III.2)

High precision indicates that the model is making fewer false positive predictions. Recall

(Sensitivity) is the ratio of true positive predictions to the total number of actual positive instances

in the data. It measures the ability of the model to correctly identify positive instances and is

given by the following equation:

Recall =
TP

TP + FN
. (III.3)

High recall values indicate that the model is effective in capturing all positive instances. F1 Score

is the harmonic mean of precision and recall and is given by the following equation:

F1-Score =
2 ∗ Precision ∗Recall

Precision+Recall
. (III.4)

The F1-Score provides a balance between precision and recall, taking into account both false

positives and false negatives. It reaches its best value at 1 and its worst value at 0.

Confidance Intervals

A confidence interval in statistics is a range of values derived from sample data that is

believed to encompass the true value of a population parameter with a certain level of confidence.

It provides an estimate of the variability or uncertainty associated with a sample statistic, such as

12



the mean or proportion, by specifying a range of plausible values around the point estimate. The

confidence level indicates the probability that the interval contains the true population parameter,

typically expressed as a percentage (e.g., 95% confidence interval).

Confidence intervals are crucial in machine learning classification models because they offer

a measure of uncertainty surrounding the model’s predictions. By providing a range within which

the true value is likely to fall, confidence intervals help practitioners gauge the reliability of

classification results. This is particularly valuable in decision-making contexts where

understanding the certainty of predictions is essential for risk assessment or resource allocation.

For the purpose of this study, we performed each experiment 10 times and calculated the 99%

confidence intervals. The 99% confidence interval can be interpreted as there is a 99% probability

that the true prediction of a model lies within the range. We used the t.interval() function from the

scipy.stats library to get the confidence interval for the CNN models’ predictions.

Filter Outputs

For the last part of this study. we attempted to understand why the performance of the

networks shows different sensitivity to different artifacts. In machine learning models such as

random forests or decision trees, we can understand how they make decisions using a technique

called model explainability. Similarly, in CNNs, we can use filters and feature maps to see what

the model focuses on in an image. In CNNs, filters are like small grids that slide over the image,

extracting features. These filters determine which pixels or parts of the image the model will

focus on. Feature maps are the output of a filter passing through the pixel values of an input

image. These are what the filters see after scanning the image. This helps us to understand how

CNN interprets the input data. We examined the ResNet50 filter outputs separately for the four

artifacts to explain the sensitivity of the network to each of the artifacts.
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IV. DATASET GENERATION

Dataset With Artifacts

The data used in this research are derived from [45]. Data were collected from Nanfang

Hospital in Guangzhou, China, and the General Hospital of Tianjin Medical University in China,

covering the period 2005 to 2010. It contains 3,064 T1-weighted contrast-enhanced brain

magnetic resonance imaging (MRI). T1-weighted MRI boosts the signal of fatty tissue while

suppressing the signal of water [46]. MRI scans were obtained from 233 distinct patients. Each

patient is exclusively diagnosed with one of three specific tumor types: meningioma, glioma, or

pituitary. The dataset is unbalanced, comprising 708 images in meningioma class, 1426 in glioma

class, and 930 in pituitary class. The images are two-dimensional, with pixel values ranging from

0 to 255. They have a resolution of 512x512 pixels, with each pixel covering an area of 0.49x0.49

square millimeters. The slice thickness is 6 mm, and there is a 1 mm gap between slices. Figure 4

illustrates examples of images containing eningioma, glioma, or pituitary tumors [47] from the

dataset.

Figure 4: Three types of brain tumors: (a) meningioma (b) glioma and (c) pituitary tumor where red lines
indicate the tumor border

The dataset is divided into three subsets according to standard practice: a training set

(68.2%), a validation set (15. 0%) and a test set (16.8%). Since there is no direct direct one-to-one
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Table 1: Number of images per type of tumor in the Dataset

Tumor type Number of images
Meningioma 708

Glioma 1426
Pituitary 930

Table 2: Number of images and patients in the training, validation, and test sets in the Dataset

Set Number of images Number of patients
Training 2096 (68.2%) 162

Validation 453 (15.0%) 37
Test 515 (16.8%) 34
Total 3064 233

relationship between images and individual patients, as each patient often contributes multiple

tumor images to the dataset, it was crucial to preserve the link between patients and their images

to avoid unintended information leakage or bias. To ensure this, all images belonging to a specific

patient were grouped together within each set, thereby mitigating any potential impact of the

model recognizing the patient on tumor classification accuracy. The dataset’s image distribution is

detailed in Tables 1 and 2.

In real-world scenarios, MRI scans may present a wide array of artifacts or impairments,

both visible and invisible, that can negatively impact image quality. These artifacts may arise

from hardware malfunctions, software constraints, mishandling of scanning equipment by

humans, and issues related to patient movements, whether voluntary or involuntary. To evaluate

how these MRI scan degradation affects the performance of a CNN-based diagnostic system, we

created modified versions of the dataset images containing typical MRI artifacts, including noise,

blur, contrast , and ringing. These artifacts were artificially introduced using Python functions.

For each of the four artifact types, we generated a total of 10 degradation levels, ranging from ’1’

(minimal degradation with scarcely noticeable artifacts) to ’10’ (high degradation with highly

visible and disruptive artifacts). Figures 5, 6, 7, and 8 show examples of images that exhibit 10
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levels of blurring, noise, contrast, and ringing, respectively.

Figure 5: Sample images with different levels of blurring artifacts generated from MRI scans

Figure 6: Sample images with different levels of noise artifacts generated from MRI scans

All artifacts were generated following the work of Farias et al. [48]. Blurring or blur, a

common artifact in image acquisition, is identified by smoothing local intensity fluctuations in

pixel values. In magnetic resonance imaging, blurring can result from patient movement during

the scan or a limited number of samples. We simulate blur in the images by applying a Gaussian

low-pass filter, a technique commonly used to decrease image detail. The level of blurring was

adjusted by manipulating the standard deviation of the filter kernel using the GaussianBlur

function in Opencv2.1. By modifying the size and standard deviation of the filter kernel, we
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Figure 7: Sample images with different levels of contrast artifacts generated from MRI scans

Figure 8: Sample images with different levels of ringing artifacts generated from MRI scans

created various degrees of blur. The blur effect was achieved using the GaussianBlur function in

the OpenCV library [49], with parameters that include the size of the kernel Ksize, the horizontal

standard deviation σX , and the vertical standard deviation σY . The values of σX and σY were

adjusted within the range of 0.3 to 12 to produce different levels of blur.

Noise is a type of artifact that is often introduced by the process of acquisition and

reconstruction of magnetic resonance images. In addition, noise can be caused by external

interference or a low number of samples. In this work, we use a specific type of noise, the additive
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Gaussian noise, whose mathematical model is given by the following equation:

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (IV.1)

where µ is the mean of the noise values and σ2 is the variance. To introduce Gaussian additive

noise into the dataset images, we use the random_noise function from the skimage.util library,

which is an open-source library of the Python language [50]. To vary the intensity of the noise

(strength of degradation), we vary the values of the horizontal variance σ2
X and the vertical

variance σ2
Y between 0.26 and 16.32, keeping the noise mean zero (µ = 0). We generate noise

artifacts by adding Gaussian noise to MRI scans using the Opencv2 random noise function.

A common type of degradation in magnetic resonance images is contrast, or more

specifically, limited contrast. In a grayscale image, the dynamic range is defined as the valid range

of pixel intensities. The difference between the maximum and minimum values in this range is

defined as contrast, while the ratio between these two quantities is defined as the contrast ratio.

When the image intensities are not well distributed within the range, the image does not allow a

good discernment of its details. To generate images with various levels of contrast, we perform

intensity transformation operations, applying the following function to the intensities of the

reference image:

g(x, y) = αf(x, y) + β, (IV.2)

where the parameters α and β are the gain and bias parameters, respectively, which control

contrast and brightness. The values of α vary between 0.09 and 0.945, while the values of β are

defined to keep the histogram centered (values between 115.48 and 6.04).

The Gibbs phenomenon, also known as ringing, is a common deterioration observed in

magnetic resonance images [51]. It occurs due to a limited number of high-frequency samples,

leading to distinct repetitions of object edges that are transparent and smoothed in the images.

This effect is particularly noticeable in areas where there are signal transitions, manifesting as

multiple alternating lines of varying brightness near these transition zones. It is crucial to address
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this degradation as it alters the image structure, introducing misleading information that can be

mistaken for actual image features. To simulate MRI scans with ringing artifacts, we applied

frequency domain filtering to the image using ideal low-pass filters with different cutoff

frequencies. These filters were designed as circular band-pass regions in the frequency domain,

each with its unique characteristics. The brain image’s spectrum was then modified by

multiplying it with the spectrum of these filters. A larger radius in the filter indicates a higher

cutoff frequency, resulting in reduced ringing effects, whereas a smaller radius leads to more

pronounced ringing artifacts. Specifically, to generate varying levels of degradation, we adjusted

the radius of the passband region between 98 and 14.

Image Quality

Image quality pertains to the faithfulness and sharpness of an image, encompassing elements

like resolution, clarity, color precision, contrast, and general aesthetic appeal. This criterion is

subjective, being impacted by technical characteristics and the interpretation of observers. Key

aspects that contribute to image quality include, among others:

• Sharpness: The sharpness of an image refers to the clarity and precision of its edges and details. A

sharp image is characterized by clearly defined edges and minimal blurring.

• Color Accuracy: The accuracy of colors in an image compared to the original scene is crucial.

Precise color reproduction is vital for effectively communicating the intended message and

atmosphere of the image.

• Contrast: The difference in brightness between the lightest and darkest parts of an image. A good

balance of contrast enhances the visual impact and depth of an image.

• Dynamic Range: The range of tones between the darkest and lightest areas of an image. Higher

dynamic range allows for better capture of detail in shadows and highlights.

• Presence of Artifacts or distortions: Errors can be added to an image in any stage of the

communication pipeline, i.e. during the image capture, processing or editing, compression, and

19



transmission. When visible, these errors result in visible artifacts or distortions that reduce the

perceived image quality. One example of a common artifact is noise, which correspond to random

variations in the brightness or color intensities, often visible as graininess or speckles, particularly

in low-light conditions or high ISO settings.

The quality of an image is not fixed and can be perceived differently depending on its

intended purpose, the viewer’s preferences, and the standards of the industry or application where

it will be used. For instance, a high-quality image meant for professional printing may have

different requirements compared to an image intended for social media sharing or website

display. Objective quality metrics are numerical measures utilized to evaluate the quality of

digital images, videos, audio, or other multimedia content. These metrics offer a systematic and

automated approach to assess various quality aspects, enabling comparisons between different

content versions or encoding and processing techniques. In contrast to subjective quality

assessment, which depends on human judgment and perception, objective metrics seek to

quantify quality through mathematical algorithms and computational analysis.

Among the many available image quality metrics [52] is the SSIM (Structural Similarity

Index Measure), which estimates the similarity between two images based on their structural

information [53]. SSIM analyzes three primary attributes of an image: luminance, contrast, and

structure, and assesses the similarity between two images based on these characteristics. SSIM is

calculated using the following formula:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
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where:

x : the reference (undegraded) image

y : the processed (possibly degraded) image

µx, µy : means of x and y

σ2
x, σ

2
y : variances of x and y

σxy : covariance between x and y

C1, C2 : constants to stabilize the division with weak denominator

SSIM provides similarity scores within the range of 0 to 1. A score of 1 suggests high similarity

or identical images, whereas a score close to 0 indicates substantial dissimilarity and therefore

low quality.

Figures 9, 10, 11 and 12 show MRI scans degraded with different levels of blurring, noise,

contrast, and ringing, respectively, and their associated SSIM values. From the images, it can be

observed that a certain level of degradation does not yield the same SSIM value for every artifact.

So it is important to examine how MRI scans degraded with artifacts that have specific SSIM

affect the networks. We used scikit-learn to calculate SSIM between an original image and a

degraded version of the same image. For each artifact, we tried to generate degraded MRI scans

with SSIM in specific ranges to study how each artifact affects the predictions from CNN models.

Figure 9: Sample images with different levels of blurring artifacts generated from MRI scans
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Figure 10: Sample images with different levels of blurring artifacts generated from MRI scans

Figure 11: Sample images with different levels of blurring artifacts generated from MRI scans

Figure 12: Sample images with different levels of blurring artifacts generated from MRI scans
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V. EXPERIMENTAL METHODOLOGY

Figure 13: Framework of the experimental methodology used in this work

In this section, we present the systematic approach used for the classification of brain tumors

by magnetic resonance imaging using Convolutional Neural Network (CNN) architectures. Figure

13 shows the framework of the experimental methodology used to train and test CNN models and

analyze their performance. As described previously, at the beginning of the experiment, we

created a custom dataset class that augments each image into 8 different angles: 0, 45, 90, 120,

180, 270, 300, 330 degrees. We fuse this set with Pytorch’s DataLoader class so data can be

loaded, augmented, and trained in realtime instead of caching all training samples in memory for

augmenting. We used 3 CNN architectures in this study, ResNet50, InceptionV3 and ResNeXt, all

of which are described in Chapter 3.

Before starting the training, we redefined the last fully connected layer with sequential

convolution layers. The structure begins with a linear transformation from the input size to 2048

units, followed by a Scaled Exponential Linear Unit (SELU) activation function and a dropout

layer with a dropout probability of 0.4 to prevent overfitting. This sequence is repeated once again
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before the final linear transformation to the number of output classes (3) with a Log-Sigmoid

activation function, which is commonly used for classification tasks. Then, the last layer of each

network was trained using the dataset from [45].

To train the CNN architectures, we used cross-entropy as the loss function along with

Stochastic Gradient Descent (SGD) as the optimizer. The learning rate was set at 0.0003. After

saving the trained model, we add artifacts to the test image datsets following the steps explained

in Section 4. After the degraded dataset generation, we classify each image as one of 3 types of

tumor classes (meningioma, glioma, or pituitary) using the trained models.
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VI. EXPERIMENTAL RESULTS

Classification with artifacts

At the start of this study, we generated the degraded dataset following the description in

Chapter 4. Then, we trained the ReNet50, InceptionV3 and ResNeXt architectures using the

original dataset from [45]. After training the architectures, we tested them for the classification of

MRI brain scans with three tumor types: meningioma, glioma, or pituitary, using both the original

and created dataset.

Tables 3, 4, 5, and 6 show the average values for accuracy, precision, recall, and F1 score for

images containing blur, noise, contrast, and ringing artifacts, respectively, calculated for the

original image and 10 levels of degradation. The tables also show the SSIM value for each image

level to show how each level of degradation for each artifact affected the image quality. The first

column of the tables shows an example for the images being tested, the second column

corresponds to the associated SSIM value, while the rest of the columns present the metrics and

the corresponding values.
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Table 3: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Blurring Artifacts
using ResNet50, Inception V3 and Resnext models

Image SSIM Metrics ResNet50 InceptionV3 ResNeXt

1.00

Accuracy 94.130 95.000 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

0.99

Accuracy 93.913 95.000 93.478

Precision 94.292 95.464 93.899

Recall 9 93.913 95.000 93.478

F1-Score 93.788 94.894 93.311

0.99

Accuracy 93.913 95.000 93.478

Precision 94.292 95.464 93.899

Recall 93.913 95.000 93.478

F1-Score 93.788 94.894 93.311

0.99

Accuracy 93.913 95.217 93.478

Precision 94.391 95.665 93.764

Recall 93.913 95.217 93.478

F1-Score 93.761 95.137 93.310

0.97

Accuracy 93.695 94.130 94.130

Precision 94.264 94.361 94.438

Recall 93.695 94.130 94.130

F1-Score 93.430 94.070 93.958

0.95

Accuracy 94.130 95.000 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478
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F1-Score 94.005 94.894 93.311

0.93

Accuracy 90.869 84.347 92.608

Precision 91.829 86.920 92.640

Recall 90.869 84.347 92.608

F1-Score 90.457 84.703 92.434

0.90

Accuracy 88.478 78.913 91.956

Precision 89.369 83.840 91.940

Recall 88.478 78.913 91.956

F1-Score 87.797 79.294 91.797

0.88

Accuracy 88.043 74.130 87.608

Precision 89.121 80.884 87.462

Recall 88.043 74.130 87.608

F1-Score 87.319 74.484 87.315

0.86

Accuracy 86.739 72.173 85.434

Precision 88.073 79.989 85.669

Recall 86.739 72.173 85.434

F1-Score 85.765 72.363 84.910

0.85

Accuracy 86.956 71.739 83.695

Precision 88.227 79.765 84.086

Recall 86.956 71.739 83.695

F1-Score 86.087 71.785 82.949
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Table 4: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Noise Artifacts
using ResNet50, Inception V3 and Resnext models

Image Metrics ResNet50 InceptionV3 ResNeXt

1.00

Accuracy 94.130 95.000 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

0.79

Accuracy 88.695 93.043 83.695

Precision 90.916 93.584 88.122

Recall 9 88.695 93.043 83.695

F1-Score 88.354 92.863 81.997

0.55

Accuracy 67.826 92.608 69.565

Precision 79.630 92.840 82.642

Recall 67.826 92.608 69.565

F1-Score 65.346 92.472 67.486

0.40

Accuracy 66.086 78.695 64.347

Precision 77.664 81.246 78.536

Recall 66.086 78.695 64.347

F1-Score 61.976 78.667 60.316

0.30

Accuracy 63.478 59.347 67.391

Precision 74.408 70.362 77.391

Recall 63.478 59.347 67.391

F1-Score 57.871 56.289 62.670

0.24

Accuracy 58.043 44.782 70.217

Precision 46.745 59.929 76.625

Recall 58.043 44.782 70.217
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F1-Score 50.378 35.910 63.919

0.19

Accuracy 52.391 37.826 58.695

Precision 44.181 66.480 68.569

Recall 52.391 37.826 58.695

F1-Score 45.145 26.868 50.032

0.16

Accuracy 43.913 35.434 52.391

Precision 39.647 19.375 63.896

Recall 43.913 35.434 52.391

F1-Score 35.958 24.918 41.487

0.14

Accuracy 38.260 35.652 47.391

Precision 37.727 20.559 49.136

Recall 38.260 35.652 47.391

F1-Score 28.510 24.819 32.484

0.12

Accuracy 35.652 34.782 47.391

Precision 35.411 23.594 55.235

Recall 35.652 34.782 47.391

F1-Score 24.366 23.118 31.971

0.10

Accuracy 33.695 31.521 47.173

Precision 34.845 23.641 44.516

Recall 33.695 31.521 47.173

F1-Score 20.535 17.458 31.372
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Table 5: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Contrast Artifacts
using ResNet50, Inception V3 and Resnext models

Image SSIM Metrics ResNet50 InceptionV3 ResNeXt

1.00

Accuracy 94.130 93.695 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

0.80

Accuracy 94.347 94.130 93.695

Precision 94.848 94.720 94.215

Recall 94.347 94.130 93.695

F1-Score 94.193 93.988 93.491

0.70

Accuracy 94.347 93.695 91.521

Precision 95.005 94.316 92.876

Recall 94.347 93.695 91.521

F1-Score 94.128 93.540 91.003

0.65

Accuracy 90.217 93.695 89.347

Precision 91.879 94.392 91.517

Recall 90.217 93.695 89.347

F1-Score 89.359 93.525 88.446

0.61

Accuracy 88.043 93.478 85.217

Precision 90.384 94.111 89.279

Recall 88.043 93.478 85.217

F1-Score 86.710 93.310 83.537

0.56

Accuracy 83.478 92.826 82.608

Precision 86.859 93.473 88.076

Recall 83.478 92.826 82.608
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F1-Score 80.767 92.669 79.965

0.52

Accuracy 75.869 90.652 82.173

Precision 80.730 91.789 88.019

Recall 75.869 90.652 82.173

F1-Score 70.250 90.527 79.032

0.47

Accuracy 64.782 88.913 81.086

Precision 73.056 90.227 85.953

Recall 64.782 88.913 81.086

F1-Score 58.249 88.813 77.172

0.41

Accuracy 52.173 82.608 77.608

Precision 65.428 84.816 82.059

Recall 52.173 82.608 77.608

F1-Score 41.189 82.294 72.682

0.35

Accuracy 47.608 62.173 69.565

Precision 54.997 64.294 77.922

Recall 47.608 62.173 69.565

F1-Score 32.368 61.009 65.068

0.29

Accuracy 46.521 27.391 53.695

Precision 38.607 26.318 73.101

Recall 46.521 27.391 53.695

F1-Score 30.371 18.995 44.179
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Table 6: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Ringing Artifacts
using ResNet50, Inception V3 and Resnext models

Image SSIM Metrics ResNet50 InceptionV3 ResNeXt

1.00

Accuracy 94.130 93.695 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

0.99

Accuracy 94.565 95.217 93.913

Precision 94.965 95.683 94.362

Recall 94.565 95.217 93.913

F1-Score 94.438 95.135 93.717

0.99

Accuracy 94.347 95.217 93.695

Precision 94.739 95.683 94.141

Recall 94.347 95.217 93.6956

F1-Score 94.222 95.135 93.502

0.99

Accuracy 94.1304 95.000 93.260869

Precision 94.448 95.513 93.705

Recall 94.130 95.000 93.260

F1-Score 94.003 94.908 93.071

0.99

Accuracy 93.913 94.782 93.260

Precision 94.223 95.272 93.705

Recall 93.913 94.782 93.260

F1-Score 93.785 94.691 93.071

0.98

Accuracy 93.913 94.565 93.043

Precision 94.223 95.126 93.513

Recall 93.913 94.565 93.043
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F1-Score 93.785 94.436 92.830

0.98

Accuracy 93.913 94.130 93.260

Precision 94.339 94.592 93.705

Recall 93.913 94.130 93.2608

F1-Score 93.743 94.006 93.071

0.97

Accuracy 93.913 93.695 92.391

Precision 94.197 94.427 92.951

Recall 93.913 93.695 92.391

F1-Score 93.739 93.652 92.217

0.96

Accuracy 93.260 90.652 90.652

Precision 93.818 91.472 91.130

Recall 93.260 90.652 90.652

F1-Score 92.961 90.671 90.333

0.93

Accuracy 91.521 81.304 88.2608

Precision 91.867 84.771 88.412

Recall 91.521 81.304 88.260

F1-Score 91.244 81.454 87.908

0.90

Accuracy 90.434 71.739 84.347

Precision 90.790 81.032 84.372

Recall 90.434 71.739 84.347

F1-Score 90.1611 71.200 83.809

The image quality and CNN architecture influence performance metrics across all four types

of artifacts. To take a closer look at this effect, we plotted the results from all three CNN

architectures for each of the performance metrics and each of the four artifacts. Figure 14(a)-(d)

shows the plots of accuracy, precision, recall, and F1 score, respectively, achieved from ResNet50,

Inceptionv3 and ResNeXt models for images containing blur artifacts. As the blur increases, the
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(a) (b)

(c) (d)

Figure 14: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing blur artifacts

(a) (b)

(c) (d)

Figure 15: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing noise artifacts
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(a) (b)

(c) (d)

Figure 16: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing contrast artifacts

(a) (b)

(c) (d)

Figure 17: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing ringing artifacts

35



performance decreases, although it does not decrease a lot. Figure 15(a)-(d) shows the plots of

accuracy, precision, recall, and F1 score, respectively, achieved from ResNet50, Inceptionv3 and

ResNeXt models for images containing noise artifacts. As the noise increases, the performance

decreases significantly. Figure 16(a)-(d) shows the plots of accuracy, precision, recall, and F1

score, respectively, achieved from ResNet50, Inceptionv3 and ResNeXt models for images

containing contrast artifacts. As the contrast increases, the performance decreases significantly.

Figure 17(a)-(d) shows the plots of accuracy, precision, recall, and F1 score, respectively,

achieved from ResNet50, Inceptionv3 and ResNeXt models for images containing ringing

artifacts. As the ringing increases, the performance decreases, although it does not decrease much.

From figures 14, 15, 16, and 17, it can be observed that noise and contrast affect the

performance values more significantly compared to blurring and ringing. To explain this

difference, we can take a closer look at the SSIM values associated with each level of images

shown in Tables 3, 4, 5, and 6. The lowest value of SSIM for blur is 0.85 and ringing is 0.92. The

lowest value of SSIM for noise is 0.10 and contrast is 0.29. From these values, we can see that for

noise and contrast, images get significantly more degraded compared to blur and ringing, which

can explain the difference in performance values.

Confidence Intervals

In this section, we calculated the confidence intervals for accuracy of all four artifacts (blur,

noise, contrast, and ringing) tested using the three CNN architectures. We performed each

experiment 10 times and calculated the 99% confidence intervals. Tables 7, 8, 9, 10 show

confidence intervals for accuracy of blur, noise, contrast, and ringing, respectively. The first

column of the tables corresponds to the degradation lavels, the second, third, and fourth columns

reports the confidence intervals for accuracy while testing with ResNet50, InceptionV3 and

ResNeXt, respectively. From the values in the tables, we can notice that the difference between

the upper limit and the lower limit of the confidence intervals is very small. Therefore, the results

will remain highly consistent throughout multiple test runs.
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Table 7: Confidence Intervals for accuracy of prediction with MRI scans with blurring artifacts

Level
of

Degradation
ResNet50 Inceptionv3 Resnext

Level 1 93.91304347826087 95.0 93.47826086956522
Level 2 93.04347826086953, 93.04347826086956 95.0 93.47826086956522
Level 3 93.04347826086953, 93.04347826086956 95.21739130434783 93.47826086956522
Level 4 93.04347826086953, 93.04347826086956 95.21739130434783, 95.21739130434786 94.1304347826087
Level 5 91.95652173913044 94.1304347826087, 94.13043478260873 94.1304347826087, 94.13043478260873
Level 6 91.30434782608695, 91.30434782608698 84.34782608695652 93.69565217391302, 93.69565217391305
Level 7 89.1304347826087, 89.13043478260873 78.91304347826087 91.95652173913044
Level 8 88.04347826086956 74.1304347826087 91.95652173913044, 91.95652173913047
Level 9 86.73913043478261 74.1304347826087, 74.13043478260873 85.43478260869566
Level 10 83.69565217391302, 83.69565217391305 71.73913043478261 83.69565217391305

Table 8: Confidence Intervals for accuracy of prediction with MRI scans with noise artifacts

Level
of

Degradation
ResNet50 Inceptionv3 Resnext

Level 1 88.26086956521739 93.69565217391305 83.26086956521739
Level 2 81.57679693050096, 82.33624654775991 93.1370433268834, 94.03686971659485 83.28572316119093, 84.322972490983
Level 3 55.02850796922677, 56.841057248164525 91.84406265478763, 92.93854604086455 69.32320654478715, 70.32896736825629
Level 4 47.393639887271135, 49.08462098229408 78.70395214175845, 80.51343916258936 63.798500148002105, 65.33193463460658
Level 5 44.21176138927963, 45.223021219416026 58.78011290313251, 60.132930575128334 66.20749265069236, 68.66207256669895
Level 6 40.71181329229986, 42.46209975117841 44.55772435971331, 46.44227564028669 67.92611298052391, 69.50866962817175
Level 7 36.125032176170905, 37.39670695426388 37.96519306189826, 39.86089389462349 59.08607061436849, 61.78349460302284
Level 8 33.056179679360426, 33.85686379890045 34.70576792829051, 37.511623376057315 51.26496500262794, 52.60460021476336
Level 9 31.687580141163487, 32.3124198588365 33.780406025048364, 37.30655049669076 47.980261909883694, 48.93278156837718
Level 10 30.867249693201952, 31.219706828537188 32.486630489619486, 35.209021684293546 46.926334578249225, 48.20410020435946

Table 9: Confidence Intervals for accuracy of prediction with MRI scans with contrast artifacts

Level
of

Degradation
ResNet50 Inceptionv3 Resnext

Level 1 94.34782608695652 94.1304347826087 93.69565217391305
Level 2 94.34782608695652 94.1304347826087, 94.13043478260873 93.69565217391302, 93.69565217391305
Level 3 90.21739130434783 93.69565217391302, 93.69565217391305 89.34782608695652
Level 4 85.21739130434783, 85.21739130434786 93.69565217391302, 93.69565217391305 85.21739130434783
Level 5 83.04347826086953, 83.04347826086956 92.82608695652173 85.21739130434783, 85.21739130434786
Level 6 75.8695652173913 90.65217391304348 82.17391304347827
Level 7 64.78260869565217 88.91304347826087 81.08695652173913
Level 8 52.17391304347826 82.6086956521739 77.6086956521739
Level 9 47.608695652173914 62.17391304347826 69.56521739130434
Level 10 46.52173913043478 62.17391304347826, 62.17391304347827 53.69565217391305
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Table 10: Confidence Intervals for accuracy of prediction with MRI scans with ringing artifacts

Level
of

Degradation
ResNet50 Inceptionv3 Resnext

Level 1 94.1304347826087 95.21739130434783 93.91304347826087
Level 2 94.56521739130434 [95.21739130434783, 95.21739130434786] 93.69565217391305
Level 3 94.34782608695652 [95.21739130434783, 95.21739130434786] [93.69565217391302, 93.69565217391305]
Level 4 [94.1304347826087, 94.13043478260873] 94.56521739130434 93.26086956521739
Level 5 [94.1304347826087, 94.13043478260873] [94.78260869565214, 94.78260869565217] 93.04347826086956
Level 6 93.91304347826087 94.1304347826087 [93.04347826086953, 93.04347826086956]
Level 7 [93.69565217391302 , 93.69565217391305] [94.1304347826087, 94.13043478260873] 92.3913043478261
Level 8 [93.04347826086953 , 93.04347826086956] 93.69565217391302, 93.69565217391305 90.65217391304348
Level 9 91.52173913043478 81.30434782608695 88.26086956521739
Level 10 [90.21739130434783 , 90.21739130434786] 81.30434782608695, 81.30434782608698 84.34782608695652
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Feature Maps

In this section, we examine the response of the neural network architectures for the MRI

scan image shown in Figure 18. Figures 19, 20, 21 and 22 illustrate feature maps from the

ResNet50 network on the first and last convolutional layers for the original image without

artifacts and the same image degraded with blur, noise, contrast, and ringing artifacts,

respectively. For the image with artifact, we used ’level 5’ degradation for all four artifacts.

Figure 18: The reference image used to extract the feature maps.

Figure 19: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with blur artifact

In Figure 19, it is evident that the blurring process induces slight modifications in the filter
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responses within the initial and final layers of the convolutional neural network (CNN). Despite

these alterations, they are minimal. Specifically, for a degradation level of 5, the Structural

Similarity Index (SSIM) of the blurred image amounts to 0.95.

Figure 20: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with noise artifact

In Figure 20, it is evident that noise induces modifications in the filter response within the

initial layer of the CNN. The impact is notably pronounced in the final layer, suggesting that

minor adjustments in the first layer’s response result in more substantial effects in the following

layers. Specifically, for a degradation level of 5, the SSIM value for the noisy image is measured

at 0.24.

In Figure 21, it is evident that contrast induces notable alterations in the filter response

within the initial layer of the CNN. Likewise, substantial changes are observed in the final layer.

Contrast triggers a multitude of activations in the initial layer, which consequently impact the

responses in the ultimate layer. The Structural Similarity Index (SSIM) for the contrast image is
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Figure 21: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with contrast artifact

0.56 under level 5 degradation

In Figure 22, it is evident that the presence of ringing induces slight modifications in the

filter responses at the initial and final layers of the CNN. Specifically, the alterations are minimal.

When considering a degradation level of 5, the SSIM value for the ringing image is measured at

0.98. These observations suggest that the differences in filter outputs between the original image

and the image with ringing or blur artifacts are marginal, as indicated by the high SSIM values of

the degraded images. Conversely, for noise and contrast, substantial disparities are observed in the

filter outputs between the original image and the images with artifacts, which aligns with the low

SSIM values of the degraded images.
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Figure 22: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with ringing artifact.

SSIM Analysis

Up to this point, we examined an image dataset that contained various levels of artifacts. In

this section, we constructed a dataset where each of the four artifacts exhibits comparable SSIM

values. The SSIM values were grouped into the following intervals: 0.10-0.19, 0.20-0.29,

0.30-0.39, 0.40-0.49, 0.50-0.59, 0.60-0.69, 0.70-0.79, 0.80-0.89, and 0.90-0.99. Next, we

produced images with SSIM values that fell within the specified ranges for all four artifacts.

While we were not successful in generating images for all SSIM ranges across all artifacts, we

were able to do so for the majority of cases. This new dataset underwent testing for the

classification of brain MRI scans with meningioma, glioma, or pituitary tumors. This

classification task was carried out using ReNet50, InceptionV3, and ResNeXt architectures,

which were trained using the original dataset as detailed in [45].
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Tables 11, 12, 13, and 14 display the mean results for accuracy, precision, recall, and F1

score concerning MRI images that include blur, noise, contrast, and ringing artifacts. These

results are computed for both the initial image and images with different SSIM values, utilizing

ResNet50, Inception V3, and Resnext models. The initial column of each table provides an

illustration of the images under examination, while the subsequent columns present the metrics

alongside their respective values.
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Table 11: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Blurring Arti-
facts with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics ResNet50 InceptionV3 ResNeXt

Accuracy 94.130 93.695 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

Accuracy 89.782 83.043 92.608

Precision 90.596 85.049 92.664

Recall 89.782 83.043 92.608

F1-Score 89.268 83.637 92.485

Accuracy 85.652 75.869 81.304

Precision 86.962 80.027 81.928

Recall 85.652 75.869 81.304

F1-Score 84.654 77.036 80.357

Accuracy 81.956 77.173 75.869

Precision 83.900 79.924 78.369

Recall 81.956 77.173 75.869

F1-Score 80.339 78.034 73.997
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Table 12: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Noise Artifacts
with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics ResNet50 InceptionV3 ResNeXt

Accuracy 94.130 93.695 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

Accuracy 94.347 94.130 93.913

Precision 94.872 94.114 94.465

Recall 94.347 94.130 93.913

F1-Score 94.166 94.069 93.676

Accuracy 93.478 93.695 90.434

Precision 94.223 93.8541 91.807

Recall 93.478 93.695 90.434

F1-Score 93.140 93.617 89.881

Accuracy 83.695 91.739 84.565

Precision 87.720 92.003 88.584

Recall 83.695 91.739 84.565

F1-Score 83.196 91.567 83.712

Accuracy 71.739 90.217 77.391

Precision 81.481 90.274 85.453

Recall 71.739 90.217 77.391

F1-Score 69.920 90.117 76.928

Accuracy 67.173 88.260 67.826

Precision 78.654 88.105 81.869

Recall 67.173 88.260 67.826

45



F1-Score 64.488 88.135 67.032

Accuracy 65.652 83.043 62.173

Precision 77.003 83.129 79.510

Recall 65.652 83.043 62.173

F1-Score 61.418 83.082 60.783

Accuracy 61.956 71.304 56.086

Precision 74.459 73.255 75.610

Recall 61.956 71.304 56.086

F1-Score 56.888 71.821 52.672

Accuracy 54.130 45.217 56.739

Precision 44.443 60.816 68.925

Recall 54.130 45.217 56.739

F1-Score 46.691 38.992 52.089

Accuracy 44.782 40.869 50.652

Precision 39.718 50.193 56.618

Recall 44.782 40.869 50.652

F1-Score 37.027 30.748 43.995
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Table 13: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Contrast Arti-
facts with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics ResNet50 InceptionV3 ResNeXt

Accuracy 94.130 93.695 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

Accuracy 93.913 90.652 91.956

Precision 94.292 90.522 92.403

Recall 93.913 90.652 91.956

F1-Score 93.788 90.502 91.789

Accuracy 94.347 92.173 93.043

Precision 94.848 92.075 93.478

Recall 94.347 92.173 93.043

F1-Score 94.193 92.058 92.884

Accuracy 94.347 93.913 93.695

Precision 95.005 93.953 94.221

Recall 994.347 93.913 93.695

F1-Score 94.128 93.835 93.529

Accuracy 88.043 93.478 88.913

Precision 90.384 93.793 91.558

Recall 88.043 93.478 88.913

F1-Score 86.710 93.411 87.913

Accuracy 75.869 87.826 82.608

Precision 80.730 89.939 87.426

Recall 75.869 87.826 82.608
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F1-Score 70.250 87.909 79.653

Accuracy 52.173 75.869 79.565

Precision 65.428 81.710 83.752

Recall 52.173 75.869 79.565

F1-Score 41.189 76.026 75.860

Accuracy 47.608 63.913 74.130

Precision 54.997 69.806 78.229

Recall 47.608 63.913 74.130

F1-Score 32.368 63.278 69.698

Accuracy 23.043 30.869 23.043

Precision 5.310 9.529 5.310

Recall 23.043 30.869 23.043

F1-Score 8.631 14.563 8.631

Accuracy 51.739 58.695 53.043

Precision 73.032 58.498 43.096

Recall 51.739 58.695 53.043

F1-Score 39.910 56.799 41.529
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Table 14: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Ringing Arti-
facts with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics ResNet50 InceptionV3 ResNeXt

Accuracy 94.130 93.695 93.478

Precision 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score 94.005 94.894 93.311

93.478 90.869 92.173

Precision 93.903 91.553 92.563

Recall 94.565 93.478 92.173

F1-Score 93.236 90.916 91.995

Accuracy 85.217 67.826 76.086

Precision 85.278 77.948 76.866

Recall 94.347 85.217 76.086

F1-Score 84.950 67.898 74.370

Accuracy 70.217 57.173 67.173

Precision 69.664 76.095 70.173

Recall 93.913 70.217 67.173

F1-Score 69.515 55.9459 64.502

Accuracy 53.913 46.956 56.956

Precision 55.715 69.753 63.528

Recall 93.913 53.913 56.956

F1-Score 52.429 44.331 56.863

Accuracy 45.652 45.869 45.434

Precision 52.346 63.484 55.812

Recall 93.913 45.652 45.434
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F1-Score 42.624 38.858 47.057

Accuracy 34.565 38.478 35.217

Precision 50.905 21.706 945.514

Recall 93.260 34.565 35.217

F1-Score 22.440 27.667 32.809

Accuracy 23.695 34.130 21.956

Precision 20.648 18.909 7.276

Recall 91.521 23.695 21.956

F1-Score 11.882 24.280 8.879

Accuracy 23.043 31.086 22.826

Precision 5.310 32.593 12.3331

Recall 91.521 23.043 22.826

F1-Score 8.631 15.018 11.5034

Figure 23(a)-(d) shows the plots of accuracy, precision, recall, and F1 score, respectively,

achieved from ResNet50, Inceptionv3, and ResNeXt models for images containing blur artifacts

with varying SSIM values. As blurring increases, performance decreases. We do not see a

significant decrease in performance as we could only generate 3 blur images. Figure 24(a)-(d)

shows the plots of accuracy, precision, recall, and F1 score, respectively, achieved from

ResNet50, Inceptionv3 and ResNeXt models for images containing noise artifacts with varying

SSIM values. As the noise increases, the performance.

Figure 25(a)-(d) shows the plots of accuracy, precision, recall, and F1 score, respectively,

achieved from ResNet50, Inceptionv3 and ResNeXt models for images containing contrast

artifacts with varying SSIM values. As the contrast increases, the performance decreases.

However, for contrast with SSIM 0.23, the performance values are always significantly lower. To

explain this, take a look at the example of a contrast image with SSIM 0.23 in Table 13. The

contrast artifact degraded the image so that it is almost impossible to see the content of the image,

50



(a) (b)

(c) (d)

Figure 23: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing blur artifacts with varying
SSIM values

which is the reason behind its performance. Figure 26(a)-(d) shows the plots of accuracy,

precision, recall, and F1 score, respectively, achieved from ResNet50, Inceptionv3 and ResNeXt

models for images containing ringing artifacts with varying SSIM values. As the ringing

increases, the performance decreases significantly. Therefore, as SSIM increases, performance

almost always decreases.
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(a) (b)

(c) (d)

Figure 24: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing noise artifacts with vary-
ing SSIM values

(a) (b)

(c) (d)

Figure 25: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing contrast artifacts with vary-
ing SSIM values
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(a) (b)

(c) (d)

Figure 26: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing ringing artifacts with varying
SSIM values
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VII. CONCLUSION AND FUTURE WORK

Conclusion

In this study, we examined how the quality of medical image inputs influences the efficacy of

three CNN-based systems designed for brain tumor classification. Our objective was to assess the

impact of introducing artifacts like blurring, noise, ringing, and contrast into MRI scans on the

detection of brain tumors. Additionally, we explored the influence of these four artifacts when the

Structural Similarity Index (SSIM) values were within a similar range. We computed performance

metrics (accuracy, precision, recall, and F1 score) for 10 intensity levels of each of the five

common MRI artifacts. Furthermore, we assessed these metrics under conditions where the image

quality for these artifacts resulted in similar SSIM values, aiming to understand the individual

effects of each artifact on cancer detection. The results revealed a substantial impact of these

artifacts on performance metrics when images were impaired by artifacts.

Future Work

Our future work aims to investigate the effects of multiple artifacts occurring simultaneously

in each image. we also plan to evaluate more CNN architectures to gain more insight on how the

degradation caused by artifacts affect neural networks. We plan to extract feature maps for all the

evaluated models to determine now each artifact affect each network. Furthermore, we want to

look at possible solutions toh elp CNN make better diagnosis when the input image contains

artifacts.
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