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ABSTRACT

Identifying and categorizing brain tumors is crucial for gaining insights into their underlying
mechanisms and formulating a treatment plan. Yet, this process often takes a long time and relies
heavily on the expertise and experience of radiologists for manual evaluation of Magnetic
Resonance Images (MRI). However, Convolutional Neural Networks (CNNs) offer promising
tools to aid in brain tumor diagnosis using MRI scans. While MRI is reliable for tumor detection,
common artifacts like blurring, noise, contrast, and ringing can compromise the reliability of
CNN models. In this study, we investigate the impact of these artifacts on CNN performance by
introducing 10 levels of each artifact on MRI scans. We also generate artifacts with similar
Structural Similarity Index (SSIM) to assess diagnostic reliability across different image qualities.
We evaluate three state-of-the-art CNN models: ResNet50, Inceptionv3, and ResNeXt using the
degraded images. The findings from this study provide insights into how each of these artifacts
affect CNN models and could help assess the confidence levels of automatic diagnostic results

under varying image qualities.

X



I. INTRODUCTION

A brain tumor is an irregular growth of brain tissue that disrupts normal brain functions. Any
unforeseen changes could impact human functioning due to the limited capacity and rigid
structure of the human skull, especially if they involve specific areas of the brain. Furthermore,
such changes may potentially metastasize to other organs, posing additional risks to overall
human function [1]. Brain cancer, categorized according to its characteristics, origin, growth rate,
and progression, distinguishes between benign and malignant tumors. Benign tumors typically
remain localized and seldom invade nearby healthy tissues, whereas malignant tumors tend to
spread to adjacent areas of the brain or spinal cord. Tumors are further classified as primary,
originating within the brain, or secondary, arising elsewhere and metastasizing to the brain.
Primary tumors are subclassified as glial (comprising glial cells) or non-glial (developing on or
within brain structures such as nerves, blood vessels, and glands), and may be benign or
malignant. Furthermore, clinicians classify tumors into four grades according to their growth rate
and into four stages according to their progression rate [2].

The number of cancer cases and its associated mortality rates are increasing globally [3].
Cancer is one of the primary factors contributing to mortality rates and poses a significant
obstacle to extending life expectancy in all countries around the world [4]. The reasons behind
the increase in the number of cancer cases and deaths are complex and are attributes to an
increase in lifespan or lifestyle choices [5]. Approximately 23.6 million new cancer cases
(excluding non-melanoma skin cancer) and nearly 10.0 million cancer-related deaths (excluding
non-melanoma skin cancer) were reported in 2019 worldwide [6]. In the same year, 347,992 new
cases of brain cancer were recorded and the total number of deaths from brain cancer worldwide
was 246,253 [7]. Brain and central nervous system cancer contribute significantly to the
worldwide burden of disease, ranking 19th in terms of frequency among all cancers (which
represents 1. 9% of all cancers) and 12th among the main causes of cancer-related deaths (which

comprises 2. 5% of all cancers) [8]. Brain and central nervous system cancer was placed as the



eighth most impactful cause of Years of Life Lost (YLLs) among all cancers for both genders [9].

Detecting these tumors early is crucial, as it allows for timely intervention and
implementation of preventive measures, ultimately decreasing the risk of mortality [10] [11].
Magnetic Resonance Imaging (MRI) is an imaging technique that uses safe, non-ionizing
radiation to capture detailed 3D anatomical structures of the body without the need for surgical
incisions [12]. Using RF pulses and a strong magnetic field, it generates images [13].
Radiologists use magnetic resonance imaging to detect abnormalities in the brain, assess disease
progression, and strategize surgical interventions [14]. However, relying solely on human
diagnosis is prone to errors and inconsistencies, as different experts may interpret medical data
differently, leading to delays in diagnosing such a sensitive condition. Consequently, the precision
of tumor detection through the analysis of brain images from MRI fluctuates depending on the
expertise and experience of the healthcare practitioner [15]. Therefore, several recent studies have
focused on developing methods to identify and detect brain tumors using MRI images that use
machine learning techniques to analyze MRI scans and detect the presence of brain tumors, in
hopes of aiding in the early diagnosis and treatment of such conditions [16] [17].

Several types of artifact can arise during MRI scans, due to problems with software,
hardware, pulse sequences, or patient-related factors such as tissue variations or movement, and
sometimes a combination of these factors can contribute to a single artifact [18]. These artifacts
cause the degradation of the image quality of MRI scans, which negatively affects the
performance of CNNs when making medical diagnosis [19]. In this context, the primary
objective of this thesis is to perform a thorough examination of how the quality of medical images
influences the effectiveness of a CNN-based diagnostic system. We develop CNN-based
frameworks and assess how the quality of medical images affects the performance of each
CNN-based brain tumor detection algorithm, utilizing brain MRI images as input. We use
ResNet50, InceptionVv3 and ResNeXt as the CNN models that will perform brain tumor
classification. We look at 4 types of commonly occurring artifacts in this study: blurring, noise,

contrast, and ringing. We attempt to explain the effects of each artifact on each architecture by



looking at feature maps produced by the ResNet50 architecture. We take the level of image
degradation into account by making use of SSIM metric.

The remainder of the report is structured as follows. Chapter 2 provides an overview of the
existing literature, including discussions on previous research to diagnosis diseases using image
processing and and the effect quality of images have on diagnosis, explaining the importance of
this thesis in classification of brain tumor using brain MRI images. Chapter 3 describes The
background for this study. Mainly it explains the the CNN architectures used in this
study-ResNet50, InceptionV3 and ResNeXt, The performance metrics used to estimate the
performance of the CNN models. It also explain confidence intervals which are used to determine
the confidence in the results outputted by the architectures and filter outputs that show the effect
the input images have on a CNN architecture. Chapter 4 explain the methods to generate the
dataset containing images with artifacts. It also describes SSIM, a metric we use in this study to
determine the quality of an input image. Chapter 5 outlines the experimental methodology
employed in this study, detailing the design, training and testing of the CNN architectures.
Chapter 6 presents the empirical findings of the study and discusses the implications of the
findings. Finally, Chapter 7 provides a conclusion summarizing the study, and suggesting avenues

for future research.



II. RELATED WORKS

In recent years, machine learning has had a significant impact on disease detection using
images in various fields, including medical imaging, pathology, and radiology. Hazarika et
al. [20] proposed a modification to the LeNet model by incorporating MinPooling layers along
with MaxPooling layers to improve brain image analysis. Goyal ef al. [21] used Mask R-CNN
for automatic kidney segmentation in coronal T2-weighted Fast Spin Eco MRI slices, augmenting
its performance through post-processing morphological operations. Wang et al. [22] introduced a
modified Inception-v3 CNN architecture to classify breast lesions as benign or malignant,
specifically designed for efficient feature extraction from automated breast ultrasound (ABUS)
imaging, considering the visualization of ABUS images in both transverse and coronal views.
Kanjanasurat ef al. [20] integrated CNN and recurrent neural network (RNN) models by replacing
fully connected CNN layers with a variant of RNN, leveraging CNN feature extraction
capabilities and RNN dependency calculation and classification abilities, with CNN models such
as VGG19, ResNet152V2, and DenseNet121 combined with long short-term memory (LSTM)
and gated recurrent unit (GRU) RNN models. Lin et al. [23] proposed deep classifiers, utilizing
VGG, ResNet, and DenseNet architectures, to classify SPECT bone images for automated
diagnosis of metastasis, employing a pre-processing pipeline involving cropping and geometric
transformations to increase original data.

Multiple recent literature have attempted to diagnose brain cancer using Machine Learning
based systems. Latif et al. [24] introduced a glioma tumor classification method that employs
deep learning-based features extracted from MRI scans using a CNN and subsequently classified
using a Support Vector Machine classifier by feeding the features to the classifier. Majib et
al. [25] proposed VGG-SCNet (VGG Stacked Classifier Network), a hybrid model where features
are extracted from a top-performing transfer learning model and subsequently utilized as input
variables for constructing hybrid models, integrating algorithms such as Stacked Classifier,

AdaBoost, CatBoost, and XgBoost. Methil ef al. [26] introduced a novel approach to the detection



of brain tumors from various brain images, involving preprocessing methods such as histogram
equalization and opening, followed by CNN classification, with an experimental evaluation
carried out on a data set comprising different tumor shapes, sizes, textures, and locations.

Cinar et al. [27] aimed to diagnose brain tumors using MRI images, employing
convolutional neural network (CNN) models, specifically utilizing the ResNet50 architecture as
the base model with the last 5 layers removed and 8 new layers added for the diagnosis process.
Vankdothu et al. [28] proposed a fusion of CNN with LSTM units to enhance feature extraction
capabilities, resulting in superior image classification performance compared to standard CNN
methods. Anaraki et al. [29] utilized CNNs and genetic algorithms (GAs) to classify various
grades of Glioma brain tumors, wherein the CNN architecture is developed using GA rather than
traditional trial and error or predefined structures, and bagging as an ensemble algorithm is used
to reduce the variance of the prediction error. ZainEldin et al. [30] introduced the CNN brain
tumor classification model (BCM-CNN) using an adaptive dynamic sine-cosine fitness gray wolf
optimizer (ADSCFGWO) algorithm to optimize CNN hyperparameters, employing a training
model built with Inception-ResNetV2 with hyperparameters encompassing both network
structure and training, leveraging the strengths of the sine-cosine and grey wolf algorithms within
an adaptable framework. Yahyaoui ef al. [31] presented a novel semantic method for MRI brain
tumor classification, integrating 2D and 3D MRI images, which addresses challenges in semantic
classification and fusion through preprocessing, classification using two deep learning models and
heterogeneous datasets (DenseNet for 2D image classification and 3D-CNN for glioma
classification), and fusion using specific domain ontology to merge output classes.

Based on recent research, CNNs have demonstrated impressive accuracy in detecting and
segmenting tumors, establishing themselves as the current state-of-the-art solution for certain
challenges in medical diagnosis [32]. However, the quality of the input images should be taken
into account when assessing the ability of any machine learning model to classify an image.
Goodfellow et al. [33] explain that as computer vision applications expand, understanding the

impact of image quality on computer vision systems becomes crucial, particularly due to the



susceptibility of deep networks to adversarial samples despite their high performance. Hu et

al. [34] investigated the impact of image quality and lighting consistency on CNN performance in
weed mapping, using Faster Region-Based CNN (R-CNN) and Mask R-CNN architectures as
examples. Thambawita et al. [35] examined how image resolution affects endoscopy image
classification by assessing the performance of two CNN models under various quality distortions.
Sabottke et al. [36] investigated the performance of CNNss, specifically ResNet34 and
DenseNet121, in various chest radiograph diagnoses and image resolutions.

A review of the literature shows that the performance of CNNss is greatly affected by the
quality of the input images. Multiple factors affect the quality of input images. Several studies
have been conducted to study how different factors affect the quality of the input images. Sheikh
et al. [37] showed that image quality factors, such as resolution, noise, contrast, blur, and
compression, affect the visual information contained in the images. Basu et al. [38] introduce the
n-MNIST dataset, a modified version of the MNIST dataset that incorporates Gaussian noise,
motion blur, and reduced contrast, along with a modified deep belief network to improve accuracy
in this dataset. Dodge et al. [39] evaluated four advanced deep neural network models for image
classification across five types of quality distortions: blur, noise, contrast, JPEG, and JPEG2000
compression, highlighting that the etworks are susceptible to these quality distortions. Grm et
al. [40] explored the impact of image quality on face verification performance in various deep
CNN models, finding that high levels of noise, blur, missing pixels, and brightness negatively
affect performance, while contrast changes and compression artifacts have a limited impact.
Several of the artifacts discussed above appear on MRI images [41]. Therefore, it is paramount
that the effects of MRI images degraded with these artifacts on machine learning models.

In our investigation, we did not find a significant number of studies measuring how the
quality of (input) MRI scans affects the performance of CNN-based systems. Various
degradations, such as ringing effects, noise, and reconstruction artifacts, can affect the quality of
MRIs. Although we know that severe image degradation can affect diagnosis, it is difficult to

determine how confident we can be in results such as accuracy, precision, recall, and the F1 score.



This is crucial because different MRI machines and factors such as patient movement can create
very different images for the same patient. Figuring out the range of input image quality for
which we can expect certain accuracy, precision, recall, and F1-score levels is vital for
widespread use of machine learning in brain tumor diagnosis.

For the aforementioned reason, the main objective of this study is to carefully examine how
the quality of medical images impacts the performance of a diagnostic system for brain tumors
from CNN-based magnetic resonance images. We focus on four commonly occurring artifacts in
magnetic resonance imaging and used state-of-the-art and widespread CNN architectures in this
study. We determine how each artifact affects the input image and the confidence of the results
calculated from CNN architectures. We also try to explain why an image degraded with an artifact
outputs good or bad classification results while being tested using a CNN architecture. Therefore,
we address a big challenge with deep learning methods, which is how much they rely on the
quality of the samples in the training dataset. We also try to explain the reason behind this

dependence.



III. BACKGROUND ON MACHINE LEARNING

CNN Arhitectures

A Convolutional Neural Network (CNN), also referred to as ConvNet, is a type of neural
network designed specifically for handling data with a grid-like structure, such as images. It is a
type of deep learning model commonly used for image recognition, classification, and other
computer vision tasks. CNNs consists of multiple layers. Convolutional Layers apply convolution
operations to input images using learnable filters, known as kernels, to extract features such as
edges, textures, and shapes. Pooling Layers downsample the feature maps generated by
convolutional layers, reducing their spatial dimensions while retaining important information.
Common pooling operations include max pooling and average pooling. Activation functions
introduce non-linearity into the network, allowing it to learn complex relationships in the data.
Common activation functions include ReLU (Rectified Linear Unit), Sigmoid, and Tanh. Fully
Connected Layers are also known as dense layers, which connect every neuron in one layer to
every neuron in the next layer, enabling the network to learn high-level representations of the
input data. Normalization layers help stabilize and speed up training by normalizing the
activations of neurons within each layer. Batch normalization is a commonly used technique in
CNNs. The output layer produces the final predictions or classifications based on the features
learned by the preceding layers. The number of neurons in this layer depends on the task, with
softmax activation often used for classification tasks and linear activation for regression tasks.

ResNet50 [42] is a neural network model introduced by Microsoft Research consisting of 48
convolutional layers, complemented by 1 MaxPool layer and 1 Average Pool layer. This extensive
depth enables ResNet50 to dive into deeper architectures without encountering the problem of
vanishing gradients, facilitating more effective training. ResNet50 has been widely used in
various computer vision tasks, including image classification, object detection, and image

segmentation, achieving state-of-the-art performance on many benchmark datasets. Its structure
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Figure 1: The ResNet50 Architecture

comprises four key components: the convolutional layers, the identity block, the convolutional
block, and the fully connected layers. Figure 1 shows the resnet50 architecture.

An Inception Network, developed by Google researchers [43], is a complex neural network
characterized by successive blocks, where the output of each block serves as the input of the
subsequent one, and each block is referred to as an Inception Block. Inception blocks are made up
of multiple parallel convolutional layers with different filter sizes. These modules enable the
network to capture features at different scales and resolutions, allowing for more effective feature
extraction. Specifically, Inception-v3 represents a convolutional neural network comprising 48
layers, designed to process images with a size of 299 by 299 pixels. Its efficient architecture and
excellent performance make it a popular choice for various computer vision applications. Figure 2

shows the Inception-v3 architecture.
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Figure 2: The Inception-v3 Architecture

ResNeXt [44] is a CNN introduced by Facebook Al research. It is a deep convolutional
neural network architecture that builds upon the ResNet model by introducing a cardinality
parameter, which controls the number of independent paths within each residual block, allowing
the network to capture richer representations by aggregating features from multiple paths. This
approach enhances the network’s ability to learn diverse feature representations while maintaining
computational efficiency. A ResNeXt repeats a building block that aggregates a set of
transformations with the same topology. We used resnext50_32x4d version of the resNeXt model

in this study. This model contains 50 layers. Figure 3 shows the ResNeXt architecture.
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Figure 3: The ResNeXt Architecture

To identify which type of tumor an image contains, we used a CNN-based classification
system. More specifically, we used the ResNet50, InceptionetV3 and Resnex architectures to
classify the images in the dataset as meningioma, glioma, or pituitary.

We use transfer learning for the purpose of this study, which is a technique where a

10



pre-trained neural network is used as a starting point for training a new model on a different task
or dataset. This approach leverages the pre-trained network’s learned features, which are
generally useful across different tasks, while allowing the model to adapt and learn task-specific
features through fine-tuning. Instead of training the entire network from scratch, all evaluated
architectures were pre-trained using weights imported from the Imagenet dataset. The last layer of
each network was trained using the dataset from [45]. Training involved the allocation of 68.2%
of the images for training, 15.0% for validation, and 16.8% for testing purposes. To avoid the risk
that the architecture would be biased by specific characteristics of the patients, such as head
shape, the MRI scans of the patients in the training set were different from those of the test set
and vice versa. Also, we used cross-entropy as the loss function along with Stochastic Gradient

Descent (SGD) as the optimizer. The learning rate was set at 0.0003.

Performance Metrics

Performance metrics are essential in machine learning, as they provide quantitative measures
to evaluate, compare, and optimize the effectiveness of models. These metrics help to understand
model behavior, make informed decisions about model selection and deployment, and monitor
model health in production environments. Using these metrics, practitioners gain insight into the
strengths and weaknesses of their models, allowing them to iteratively improve performance and
ensure the reliability and effectiveness of machine learning solutions across various tasks and
applications. In this study, the performance of the CNN models are evaluated using four metrics:
accuracy, precision, recall and F1 score.

In deep learning performance metrics, TP (True Positives) refers to the number of correctly
predicted positive instances, TN (True Negatives) represents the number of correctly predicted
negative instances, FP (False Positives) indicates the number of negative instances incorrectly
classified as positive, and FN (False Negatives) denotes the number of positive instances
incorrectly classified as negative. These metrics are used to evaluate the accuracy and

effectiveness of classification models in tasks such as classification and object detection.

11



Accuracy is the ratio of correct predictions (both true positives and true negatives) to the
total number of predictions made by the model. It measures the overall correctness of the model’s

predictions, and it is given by the following equation:

c (I11.1)

Precision is the ratio of true positive predictions to the total number of positive predictions made
by the model. It measures the accuracy of positive predictions, and is given by the following
equation:

TP

Precision = ————. 1I1.2
recision = P (II1.2)

High precision indicates that the model is making fewer false positive predictions. Recall
(Sensitivity) is the ratio of true positive predictions to the total number of actual positive instances
in the data. It measures the ability of the model to correctly identify positive instances and is
given by the following equation:

TP

Recall = ——+ . L3
= TPYEN (IIL.3)

High recall values indicate that the model is effective in capturing all positive instances. F1 Score

is the harmonic mean of precision and recall and is given by the following equation:

2 x Precision * Recall
F1-S = ) 111.4
core Precision + Recall ( )

The F1-Score provides a balance between precision and recall, taking into account both false

positives and false negatives. It reaches its best value at 1 and its worst value at 0.

Confidance Intervals

A confidence interval in statistics is a range of values derived from sample data that is
believed to encompass the true value of a population parameter with a certain level of confidence.

It provides an estimate of the variability or uncertainty associated with a sample statistic, such as

12



the mean or proportion, by specifying a range of plausible values around the point estimate. The
confidence level indicates the probability that the interval contains the true population parameter,
typically expressed as a percentage (e.g., 95% confidence interval).

Confidence intervals are crucial in machine learning classification models because they offer
a measure of uncertainty surrounding the model’s predictions. By providing a range within which
the true value is likely to fall, confidence intervals help practitioners gauge the reliability of
classification results. This is particularly valuable in decision-making contexts where
understanding the certainty of predictions is essential for risk assessment or resource allocation.
For the purpose of this study, we performed each experiment 10 times and calculated the 99%
confidence intervals. The 99% confidence interval can be interpreted as there is a 99% probability
that the true prediction of a model lies within the range. We used the t.interval() function from the

scipy.stats library to get the confidence interval for the CNN models’ predictions.

Filter Outputs

For the last part of this study. we attempted to understand why the performance of the
networks shows different sensitivity to different artifacts. In machine learning models such as
random forests or decision trees, we can understand how they make decisions using a technique
called model explainability. Similarly, in CNNs, we can use filters and feature maps to see what
the model focuses on in an image. In CNN:gs, filters are like small grids that slide over the image,
extracting features. These filters determine which pixels or parts of the image the model will
focus on. Feature maps are the output of a filter passing through the pixel values of an input
image. These are what the filters see after scanning the image. This helps us to understand how
CNN interprets the input data. We examined the ResNet50 filter outputs separately for the four

artifacts to explain the sensitivity of the network to each of the artifacts.
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IV. DATASET GENERATION

Dataset With Artifacts

The data used in this research are derived from [45]. Data were collected from Nanfang
Hospital in Guangzhou, China, and the General Hospital of Tianjin Medical University in China,
covering the period 2005 to 2010. It contains 3,064 T1-weighted contrast-enhanced brain
magnetic resonance imaging (MRI). T1-weighted MRI boosts the signal of fatty tissue while
suppressing the signal of water [46]. MRI scans were obtained from 233 distinct patients. Each
patient is exclusively diagnosed with one of three specific tumor types: meningioma, glioma, or
pituitary. The dataset is unbalanced, comprising 708 images in meningioma class, 1426 in glioma
class, and 930 in pituitary class. The images are two-dimensional, with pixel values ranging from
0 to 255. They have a resolution of 512x512 pixels, with each pixel covering an area of 0.49x0.49
square millimeters. The slice thickness is 6 mm, and there is a I mm gap between slices. Figure 4
illustrates examples of images containing eningioma, glioma, or pituitary tumors [47] from the

dataset.

Figure 4: Three types of brain tumors: (a) meningioma (b) glioma and (c) pituitary tumor where red lines
indicate the tumor border

The dataset is divided into three subsets according to standard practice: a training set

(68.2%), a validation set (15. 0%) and a test set (16.8%). Since there is no direct direct one-to-one
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Table 1: Number of images per type of tumor in the Dataset

Tumor type | Number of images

Meningioma 708
Glioma 1426
Pituitary 930

Table 2: Number of images and patients in the training, validation, and test sets in the Dataset

Set Number of images | Number of patients
Training 2096 (68.2%) 162
Validation 453 (15.0%) 37
Test 515 (16.8%) 34
Total 3064 233

relationship between images and individual patients, as each patient often contributes multiple
tumor images to the dataset, it was crucial to preserve the link between patients and their images
to avoid unintended information leakage or bias. To ensure this, all images belonging to a specific
patient were grouped together within each set, thereby mitigating any potential impact of the
model recognizing the patient on tumor classification accuracy. The dataset’s image distribution is
detailed in Tables 1 and 2.

In real-world scenarios, MRI scans may present a wide array of artifacts or impairments,
both visible and invisible, that can negatively impact image quality. These artifacts may arise
from hardware malfunctions, software constraints, mishandling of scanning equipment by
humans, and issues related to patient movements, whether voluntary or involuntary. To evaluate
how these MRI scan degradation affects the performance of a CNN-based diagnostic system, we
created modified versions of the dataset images containing typical MRI artifacts, including noise,
blur, contrast , and ringing. These artifacts were artificially introduced using Python functions.
For each of the four artifact types, we generated a total of 10 degradation levels, ranging from 1’
(minimal degradation with scarcely noticeable artifacts) to 10’ (high degradation with highly

visible and disruptive artifacts). Figures 5, 6, 7, and 8 show examples of images that exhibit 10
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levels of blurring, noise, contrast, and ringing, respectively.

Original Image Image level 1 Image level 2 Image level 3 Image level 4 Image level 5

Image level 6 Image level 7 Image level 8 Image level 9 Image level 10

Figure 5: Sample images with different levels of blurring artifacts generated from MRI scans

Original Image Image level 1 Image level 2 Image level 3 Image level 4 Image level 5

Image level & Image level 7 Image level 8 Image level 9 Image level 10

Figure 6: Sample images with different levels of noise artifacts generated from MRI scans

All artifacts were generated following the work of Farias et al. [48]. Blurring or blur, a
common artifact in image acquisition, is identified by smoothing local intensity fluctuations in
pixel values. In magnetic resonance imaging, blurring can result from patient movement during
the scan or a limited number of samples. We simulate blur in the images by applying a Gaussian
low-pass filter, a technique commonly used to decrease image detail. The level of blurring was
adjusted by manipulating the standard deviation of the filter kernel using the GaussianBlur

function in Opencv2.1. By modifying the size and standard deviation of the filter kernel, we
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Original Image Image level 1 Image level 2 Image level 3 Image level 4 Image level 5

Image level & Image level 7 Image level 8 Image level 9 Image level 10

Figure 7: Sample images with different levels of contrast artifacts generated from MRI scans

Original Image Image level 1 Image level 2 Image level 3 Image level 4 Image level 5

Image level 6 Image level 7 Image level 8 Image level 9 Image level 10

Figure 8: Sample images with different levels of ringing artifacts generated from MRI scans

created various degrees of blur. The blur effect was achieved using the GaussianBlur function in
the OpenCYV library [49], with parameters that include the size of the kernel K;,., the horizontal
standard deviation ox, and the vertical standard deviation oy . The values of ox and oy were
adjusted within the range of 0.3 to 12 to produce different levels of blur.

Noise is a type of artifact that is often introduced by the process of acquisition and
reconstruction of magnetic resonance images. In addition, noise can be caused by external

interference or a low number of samples. In this work, we use a specific type of noise, the additive
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Gaussian noise, whose mathematical model is given by the following equation:

1 )2
flr) = e IV.1)
oV 2

where p is the mean of the noise values and o is the variance. To introduce Gaussian additive
noise into the dataset images, we use the random_noise function from the skimage.util library,
which is an open-source library of the Python language [50]. To vary the intensity of the noise
(strength of degradation), we vary the values of the horizontal variance 0% and the vertical
variance o between 0.26 and 16.32, keeping the noise mean zero (1 = 0). We generate noise
artifacts by adding Gaussian noise to MRI scans using the Opencv2 random noise function.

A common type of degradation in magnetic resonance images is contrast, or more
specifically, limited contrast. In a grayscale image, the dynamic range is defined as the valid range
of pixel intensities. The difference between the maximum and minimum values in this range is
defined as contrast, while the ratio between these two quantities is defined as the contrast ratio.
When the image intensities are not well distributed within the range, the image does not allow a
good discernment of its details. To generate images with various levels of contrast, we perform
intensity transformation operations, applying the following function to the intensities of the

reference image:

9(r,y) = af(z,y) + B, (IV.2)

where the parameters « and [ are the gain and bias parameters, respectively, which control
contrast and brightness. The values of « vary between 0.09 and 0.945, while the values of /3 are
defined to keep the histogram centered (values between 115.48 and 6.04).

The Gibbs phenomenon, also known as ringing, is a common deterioration observed in
magnetic resonance images [51]. It occurs due to a limited number of high-frequency samples,
leading to distinct repetitions of object edges that are transparent and smoothed in the images.
This effect is particularly noticeable in areas where there are signal transitions, manifesting as

multiple alternating lines of varying brightness near these transition zones. It is crucial to address
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this degradation as it alters the image structure, introducing misleading information that can be
mistaken for actual image features. To simulate MRI scans with ringing artifacts, we applied
frequency domain filtering to the image using ideal low-pass filters with different cutoff
frequencies. These filters were designed as circular band-pass regions in the frequency domain,
each with its unique characteristics. The brain image’s spectrum was then modified by
multiplying it with the spectrum of these filters. A larger radius in the filter indicates a higher
cutoff frequency, resulting in reduced ringing effects, whereas a smaller radius leads to more
pronounced ringing artifacts. Specifically, to generate varying levels of degradation, we adjusted

the radius of the passband region between 98 and 14.

Image Quality

Image quality pertains to the faithfulness and sharpness of an image, encompassing elements
like resolution, clarity, color precision, contrast, and general aesthetic appeal. This criterion is
subjective, being impacted by technical characteristics and the interpretation of observers. Key

aspects that contribute to image quality include, among others:
Sharpness: The sharpness of an image refers to the clarity and precision of its edges and details. A
sharp image is characterized by clearly defined edges and minimal blurring.

Color Accuracy: The accuracy of colors in an image compared to the original scene is crucial.
Precise color reproduction is vital for effectively communicating the intended message and

atmosphere of the image.

Contrast: The difference in brightness between the lightest and darkest parts of an image. A good

balance of contrast enhances the visual impact and depth of an image.

Dynamic Range: The range of tones between the darkest and lightest areas of an image. Higher

dynamic range allows for better capture of detail in shadows and highlights.

Presence of Artifacts or distortions: Errors can be added to an image in any stage of the

communication pipeline, i.e. during the image capture, processing or editing, compression, and
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transmission. When visible, these errors result in visible artifacts or distortions that reduce the
perceived image quality. One example of a common artifact is noise, which correspond to random
variations in the brightness or color intensities, often visible as graininess or speckles, particularly

in low-light conditions or high ISO settings.

The quality of an image is not fixed and can be perceived differently depending on its
intended purpose, the viewer’s preferences, and the standards of the industry or application where
it will be used. For instance, a high-quality image meant for professional printing may have
different requirements compared to an image intended for social media sharing or website
display. Objective quality metrics are numerical measures utilized to evaluate the quality of
digital images, videos, audio, or other multimedia content. These metrics offer a systematic and
automated approach to assess various quality aspects, enabling comparisons between different
content versions or encoding and processing techniques. In contrast to subjective quality
assessment, which depends on human judgment and perception, objective metrics seek to
quantify quality through mathematical algorithms and computational analysis.

Among the many available image quality metrics [52] is the SSIM (Structural Similarity
Index Measure), which estimates the similarity between two images based on their structural
information [53]. SSIM analyzes three primary attributes of an image: luminance, contrast, and
structure, and assesses the similarity between two images based on these characteristics. SSIM is

calculated using the following formula:

(2papty + C1)(204y + C2)
(12 + p2 + Cr)(02 + 02 + Ca)

SSIM(z,y) =
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where:

x : the reference (undegraded) image
y : the processed (possibly degraded) image
[z, by - means of x and y
2 o2 : variances of z and y
04y © covariance between x and y

C1, C5 : constants to stabilize the division with weak denominator

SSIM provides similarity scores within the range of O to 1. A score of 1 suggests high similarity
or identical images, whereas a score close to 0 indicates substantial dissimilarity and therefore
low quality.

Figures 9, 10, 11 and 12 show MRI scans degraded with different levels of blurring, noise,
contrast, and ringing, respectively, and their associated SSIM values. From the images, it can be
observed that a certain level of degradation does not yield the same SSIM value for every artifact.
So it is important to examine how MRI scans degraded with artifacts that have specific SSIM
affect the networks. We used scikit-learn to calculate SSIM between an original image and a
degraded version of the same image. For each artifact, we tried to generate degraded MRI scans

with SSIM in specific ranges to study how each artifact affects the predictions from CNN models.

Original Image (resi:

ized 256x256), SSIM: 1.0 Image level 1, SSIM: 0.9999561475836958 Image level 5, SSIM: 0.9565801704281173 Image level 10, SSIM: 0.8510796813038407

Figure 9: Sample images with different levels of blurring artifacts generated from MRI scans
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Original Image (resized 256x256), SSIM: 1.0 Image level 1, SSIM: 0.7946193585851792 Image level 5, SSIM: 0.24133816443261197 Image level 10, SSIM: 0.10740679447221158

Figure 10: Sample images with different levels of blurring artifacts generated from MRI scans

Original Image (resized 256x256), SSIM: 1.0 Image level 1, SSIM: 0.8019009826240507 Image level 5, SSIM: 0.5678371453736707 Image level 10, SSIM: 0.2941145062455464

Figure 11: Sample images with different levels of blurring artifacts generated from MRI scans

Original Image (resized 256x256), SSIM: 1.0 Image level 1, SSIM: 0.9961745680318946 Image level 5, SSIM: 0.9884625110253948 Image level 10, SSIM: 0.9091445664137148

Figure 12: Sample images with different levels of blurring artifacts generated from MRI scans
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V. EXPERIMENTAL METHODOLOGY

Data augmentation Tumor type

Training
Preprocessing and Prediction

CNM models for classifications
ResNet50
InceptionVv'3
ResMeXt

MRI Scan Dataset

Adding
l artifacts Test

Blurring Moise Contrast Ringing

Figure 13: Framework of the experimental methodology used in this work

In this section, we present the systematic approach used for the classification of brain tumors
by magnetic resonance imaging using Convolutional Neural Network (CNN) architectures. Figure
13 shows the framework of the experimental methodology used to train and test CNN models and
analyze their performance. As described previously, at the beginning of the experiment, we
created a custom dataset class that augments each image into 8 different angles: 0, 45, 90, 120,
180, 270, 300, 330 degrees. We fuse this set with Pytorch’s Datal.oader class so data can be
loaded, augmented, and trained in realtime instead of caching all training samples in memory for
augmenting. We used 3 CNN architectures in this study, ResNet50, InceptionV3 and ResNeXct, all
of which are described in Chapter 3.

Before starting the training, we redefined the last fully connected layer with sequential
convolution layers. The structure begins with a linear transformation from the input size to 2048
units, followed by a Scaled Exponential Linear Unit (SELU) activation function and a dropout

layer with a dropout probability of 0.4 to prevent overfitting. This sequence is repeated once again
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before the final linear transformation to the number of output classes (3) with a Log-Sigmoid
activation function, which is commonly used for classification tasks. Then, the last layer of each
network was trained using the dataset from [45].

To train the CNN architectures, we used cross-entropy as the loss function along with
Stochastic Gradient Descent (SGD) as the optimizer. The learning rate was set at 0.0003. After
saving the trained model, we add artifacts to the test image datsets following the steps explained
in Section 4. After the degraded dataset generation, we classify each image as one of 3 types of

tumor classes (meningioma, glioma, or pituitary) using the trained models.
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VI. EXPERIMENTAL RESULTS

Classification with artifacts

At the start of this study, we generated the degraded dataset following the description in
Chapter 4. Then, we trained the ReNet50, InceptionV3 and ResNeXt architectures using the
original dataset from [45]. After training the architectures, we tested them for the classification of
MRI brain scans with three tumor types: meningioma, glioma, or pituitary, using both the original
and created dataset.

Tables 3, 4, 5, and 6 show the average values for accuracy, precision, recall, and F1 score for
images containing blur, noise, contrast, and ringing artifacts, respectively, calculated for the
original image and 10 levels of degradation. The tables also show the SSIM value for each image
level to show how each level of degradation for each artifact affected the image quality. The first
column of the tables shows an example for the images being tested, the second column
corresponds to the associated SSIM value, while the rest of the columns present the metrics and

the corresponding values.
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Table 3: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Blurring Artifacts
using ResNet50, Inception V3 and Resnext models

Image SSIM | Metrics | ResNet50 | InceptionV3 | ResNeXt
Original Image Accuracy | 94.130 95.000 93.478
¥ Precision | 94.515 95.464 93.899
L0 Recall 94.130 95.000 93.478
F1-Score | 94.005 94.894 93.311
Image level 1 Accuracy | 93.913 95.000 93.478
Precision | 94.292 95.464 93.899
0 Recall | 993913 95.000 93.478
F1-Score | 93.788 94.894 93.311
Accuracy | 93.913 95.000 93.478
Precision | 94.292 95.464 93.899
"2 Recall | 93913 | 95000 | 93.478
F1-Score | 93.788 94.894 93.311
Accuracy | 93.913 95.217 93.478
Precision | 94.391 95.665 93.764
0.99
Recall 93.913 95.217 93.478
F1-Score | 93.761 95.137 93.310
Accuracy | 93.695 94.130 94.130
Precision | 94.264 94.361 94.438
0.97
Recall 93.695 94.130 94.130
F1-Score | 93.430 94.070 93.958
Accuracy | 94.130 95.000 93.478
Precision | 94.515 95.464 93.899
0.95
Recall 94.130 95.000 93.478
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F1-Score | 94.005 94.894 93.311
Image level 6 Accuracy 90869 84.347 92608
Precision | 91.829 86.920 92.640

0.93
Recall 90.869 84.347 92.608
F1-Score | 90.457 84.703 92.434
Accuracy | 88.478 78.913 91.956
Precision | 89.369 83.840 91.940

0.90
Recall 88.478 78.913 91.956
F1-Score | 87.797 79.294 91.797
Accuracy | 88.043 74.130 87.608
Precision | 89.121 80.884 87.462

0.88
Recall 88.043 74.130 87.608
F1-Score | 87.319 74.484 87.315
Accuracy | 86.739 72.173 85.434
Precision | 88.073 79.989 85.669

0.86
Recall 86.739 72.173 85.434
F1-Score | 85.765 72.363 84.910
Accuracy | 86.956 71.739 83.695
Precision | 88.227 79.765 84.086

0.85
Recall 86.956 71.739 83.695
F1-Score | 86.087 71.785 82.949
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Table 4: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Noise Artifacts
using ResNet50, Inception V3 and Resnext models

Image Metrics | ResNet50 | InceptionV3 | ResNeXt
Original Image Accuracy 94.130 95.000 93.478
; Precision |  94.515 95.464 | 93.899
1.00
Recall 94.130 95.000 | 93.478
F1-Score 94.005 94.894 | 93.311
Accuracy 88.695 93.043 | 83.695
Precision 90.916 93.584 | 88.122
0.79
Recall 9 88.695 93.043 | 83.695
F1-Score 88.354 92.863 | 81.997
Accuracy 67.826 92.608 | 69.565
Precision 79.630 92.840 | 82.642
0.55
Recall 67.826 92.608 | 69.565
F1-Score 65.346 92.472 | 67.486
Image level 3 Accuracy 66.086 78.695 64.347
Precision 77.664 81.246 | 78.536
0.40
Recall 66.086 78.695 | 64.347
F1-Score 61.976 78.667 | 60.316
Image level 4 Accuracy 63.478 59.347 67.391
; Precision |  74.408 70362 | 77.391
0.30
Recall 63.478 59.347 | 67.391
F1-Score 57.871 56.289 | 62.670
Image level 5 Accuracy 58.043 44782 | 70.217
Precision 46.745 59.929 | 76.625
0.24
Recall 58.043 44782 | 70.217
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F1-Score 50.378 35910 | 63.919

Image level 6 Accuracy 52.391 37.826 | 58.695
Precision 44.181 66.480 | 68.569

o1 Recall 52.391 37.826 | 58.695

F1-Score 45.145 26.868 | 50.032

Image level 7 Accuracy 43913 35.434 | 52.391
Precision 39.647 19.375 | 63.896

oo Recall 43.913 35.434 | 52.391

F1-Score 35.958 24918 | 41.487

Image level 8 Accuracy 38.260 35.652 | 47.391
Precision 37.727 20.559 | 49.136

P Recan | 38260 | 35652 | 4791

F1-Score 28.510 24.819 | 32.484

Image level 9 Accuracy 35.652 34782 | 47.391
Precision 35.411 23.594 | 55.235

o2 Recall 35.652 34782 | 47.391

F1-Score 24.366 23.118 | 31.971

Image level 10 Accuracy 33.695 31.521 | 47.173
Precision 34.845 23.641 | 44516

o0 Recall 33.695 31.521 | 47.173

F1-Score 20.535 17.458 | 31.372
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Table 5: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Contrast Artifacts
using ResNet50, Inception V3 and Resnext models

Image SSIM | Metrics | ResNet50 | InceptionV3 | ResNeXt
Original Image Accuracy 94.130 93.695 93.478
A Precision | 94.515 95.464 93.899
1.00
Recall 94.130 95.000 93.478
F1-Score 94.005 94.894 93.311
Accuracy 94.347 94.130 93.695
Precision 94.848 94.720 94.215
0.80
Recall 94.347 94.130 93.695
F1-Score 94.193 93.988 93.491
Accuracy 94.347 93.695 91.521
Precision 95.005 94.316 92.876
0.70
Recall 94.347 93.695 91.521
F1-Score 94.128 93.540 91.003
Accuracy 90.217 93.695 89.347
Precision 91.879 94.392 91.517
0.65
Recall 90.217 93.695 89.347
F1-Score 89.359 93.525 88.446
Accuracy 88.043 93.478 85.217
Precision 90.384 94.111 89.279
0.61
Recall 88.043 93.478 85.217
F1-Score 86.710 93.310 83.537
Accuracy 83.478 92.826 82.608
Precision 86.859 93.473 88.076
0.56
Recall 83.478 92.826 82.608
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F1-Score 80.767 92.669 79.965
Image level 6 Accuracy 75.869 90.652 82.173
Precision 80.730 91.789 88.019
0.52
Recall 75.869 90.652 82.173
F1-Score 70.250 90.527 79.032
Image level 7 Accuracy 64.782 88.913 81.086
Precision 73.056 90.227 85.953
0.47
Recall 64.782 88.913 81.086
F1-Score 58.249 88.813 77.172
Image level 8 Accuracy 52.173 82.608 77.608
Precision 65.428 84.816 82.059
041
Recall 52.173 82.608 77.608
F1-Score 41.189 82.294 72.682
Image level 9 Accuracy 47.608 62.173 69.565
Precision 54.997 64.294 77.922
0.35
Recall 47.608 62.173 69.565
F1-Score 32.368 61.009 65.068
Image level 10 Accuracy 46.521 27.391 53.695
Precision 38.607 26.318 73.101
0.29
Recall 46.521 27.391 53.695
F1-Score 30.371 18.995 44.179
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Table 6: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Ringing Artifacts
using ResNet50, Inception V3 and Resnext models

Image SSIM | Metrics | ResNet50 | InceptionV3 | ResNeXt
Original Image Accuracy 94.130 93.695 93.478
Y Precision | 94.515 95.464 93.899
1.00
Recall 94.130 95.000 93.478
F1-Score 94.005 94.894 93.311
Accuracy 94.565 95.217 93913
Precision 94.965 95.683 94.362
0.99
Recall 94.565 95.217 93.913
F1-Score 04.438 95.135 93.717
Accuracy 94.347 95.217 93.695
Precision 94.739 95.683 94.141
0.99
Recall 94.347 95.217 93.6956
F1-Score 94.222 95.135 93.502
Accuracy | 94.1304 95.000 93.260869
Precision 94.448 95.513 93.705
0.99
Recall 94.130 95.000 93.260
F1-Score 94.003 94.908 93.071
Accuracy | 93.913 94.782 93.260
Precision 94.223 95.272 93.705
0.99
Recall 93.913 94.782 93.260
F1-Score 93.785 94.691 93.071
Accuracy | 93.913 94.565 93.043
Precision 94.223 95.126 93.513
0.98
Recall 93.913 94.565 93.043
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F1-Score 93.785 94.436 92.830
Image level 6 Accuracy 93913 94.130 93260
A Precision | 94.339 94.592 93.705
0.98
Recall 93.913 94.130 93.2608
F1-Score 93.743 94.006 93.071
Image level 7 Accuracy 93.913 93.695 92.391
A Precision | 94.197 94.427 92.951
0.97
Recall 93.913 93.695 92.391
F1-Score 93.739 93.652 92.217
Accuracy | 93.260 90.652 90.652
Precision 93.818 91.472 91.130
0.96
Recall 93.260 90.652 90.652
F1-Score 92.961 90.671 90.333
Image level 9 Accuracy 91.521 81.304 88.2608
Precision 91.867 84.771 88.412
0.93
Recall 91.521 81.304 88.260
F1-Score 91.244 81.454 87.908
Accuracy | 90.434 71.739 84.347
Precision 90.790 81.032 84.372
0.90
Recall 90.434 71.739 84.347
F1-Score | 90.1611 71.200 83.809

The image quality and CNN architecture influence performance metrics across all four types
of artifacts. To take a closer look at this effect, we plotted the results from all three CNN
architectures for each of the performance metrics and each of the four artifacts. Figure 14(a)-(d)
shows the plots of accuracy, precision, recall, and F1 score, respectively, achieved from ResNet50,

Inceptionv3 and ResNeXt models for images containing blur artifacts. As the blur increases, the
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Figure 14: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing blur artifacts

Accuracy vs. Noise Level Precision vs. Noise Level

—e— ResNet50
—¥— Inceptionv3
—4— ResNeXt

Accuracy (%)
"

g
Precision (%)
"

g

40- 40+
30 30
201 —— ResNet50 201
—v— Inceptionv3
10 —a— ResNext 107
G T2 3 a5 6 7 5 9 10 o T 2 3 4 s 6 7 5 5 10
Noise Level Noise Level
(a) (b)
Recall vs. Noise Level . F1-Score vs. Noise Level

—e— ResNet50

90- 90+
—v— Inceptionv3
80- 80- —¥— ResNeXt
70-

Recall (%)
@

3
F1-Score (%)
@

3

40- 40+
30 30
201 —e— ResNet50 20!
—v— Inceptionv3
10 —a— ResNext 10
G T2 3 a5 6 7 5 9 10 o T2 3 4 5 6 7 5 5 10
Noise Level Noise Level

() (d)

Figure 15: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing noise artifacts

34



Accuracy vs. Noise Level Precision vs. Noise Level

1 1
90- 90-
80- 80
70- 70-

Accuracy (%)
"

g
Precision (%)
"

g

40- 40+
30 30
20} —o— ResNet50 20! —e— ResNet50
—v— Inceptionv3 —v— Inceptionv3
10 —+— ResNext 10 —a ResNeXt
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Noise Level Noise Level

(a) (b)

100 Recall vs. Noise Level 1 F1-Score vs. Noise Level
90- 90-
80 80
70- 70~
g 60 g 60
= ©
T 50 g 501
] @
& 40 40+
i
30 30 ——e
20 —e— ResNet50 20 —e— ResNet50
—¥— Inceptionv3 —¥— Inceptionv3
10 —+— ResNext 10 —v— ResNext
R 1 2 3 2 5 6 7 [ 9 10 0 1 2 3 2 5 6 7 8 9 10
Noise Level Noise Level

(© ()

Figure 16: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing contrast artifacts
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Figure 17: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing ringing artifacts
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performance decreases, although it does not decrease a lot. Figure 15(a)-(d) shows the plots of
accuracy, precision, recall, and F1 score, respectively, achieved from ResNet50, Inceptionv3 and
ResNeXt models for images containing noise artifacts. As the noise increases, the performance
decreases significantly. Figure 16(a)-(d) shows the plots of accuracy, precision, recall, and F1
score, respectively, achieved from ResNet50, Inceptionv3 and ResNeXt models for images
containing contrast artifacts. As the contrast increases, the performance decreases significantly.
Figure 17(a)-(d) shows the plots of accuracy, precision, recall, and F1 score, respectively,
achieved from ResNet50, Inceptionv3 and ResNeXt models for images containing ringing
artifacts. As the ringing increases, the performance decreases, although it does not decrease much.
From figures 14, 15, 16, and 17, it can be observed that noise and contrast affect the
performance values more significantly compared to blurring and ringing. To explain this
difference, we can take a closer look at the SSIM values associated with each level of images
shown in Tables 3, 4, 5, and 6. The lowest value of SSIM for blur is 0.85 and ringing is 0.92. The
lowest value of SSIM for noise is 0.10 and contrast is 0.29. From these values, we can see that for
noise and contrast, images get significantly more degraded compared to blur and ringing, which

can explain the difference in performance values.

Confidence Intervals

In this section, we calculated the confidence intervals for accuracy of all four artifacts (blur,
noise, contrast, and ringing) tested using the three CNN architectures. We performed each
experiment 10 times and calculated the 99% confidence intervals. Tables 7, 8, 9, 10 show
confidence intervals for accuracy of blur, noise, contrast, and ringing, respectively. The first
column of the tables corresponds to the degradation lavels, the second, third, and fourth columns
reports the confidence intervals for accuracy while testing with ResNet50, InceptionV3 and
ResNeXt, respectively. From the values in the tables, we can notice that the difference between
the upper limit and the lower limit of the confidence intervals is very small. Therefore, the results

will remain highly consistent throughout multiple test runs.
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Table 7: Confidence Intervals for accuracy of prediction with MRI scans with blurring artifacts

Level
of ResNet50 Inceptionv3 Resnext
Degradation
Level 1 93.91304347826087 95.0 93.47826086956522
Level 2 93.04347826086953, 93.04347826086956 95.0 93.47826086956522
Level 3 93.04347826086953, 93.04347826086956 95.21739130434783 93.47826086956522
Level 4 93.04347826086953, 93.04347826086956 | 95.21739130434783, 95.21739130434786 94.1304347826087
Level 5 91.95652173913044 94.1304347826087, 94.13043478260873 | 94.1304347826087, 94.13043478260873
Level 6 91.30434782608695, 91.30434782608698 84.34782608695652 93.69565217391302, 93.69565217391305
Level 7 89.1304347826087, 89.13043478260873 78.91304347826087 91.95652173913044
Level 8 88.04347826086956 74.1304347826087 91.95652173913044, 91.95652173913047
Level 9 86.73913043478261 74.1304347826087, 74.13043478260873 85.43478260869566
Level 10 | 83.69565217391302, 83.69565217391305 71.73913043478261 83.69565217391305

Table 8: Confidence Intervals for accuracy of prediction with MRI scans with noise artifacts

Level
of ResNet50 Inceptionv3 Resnext
Degradation

Level 1 88.26086956521739 93.69565217391305 83.26086956521739

Level 2 81.57679693050096, 82.33624654775991 93.1370433268834, 94.03686971659485 83.28572316119093, 84.322972490983
Level 3 55.02850796922677, 56.841057248164525 91.84406265478763, 92.93854604086455 69.32320654478715, 70.32896736825629
Level 4 47.393639887271135, 49.08462098229408 | 78.70395214175845, 80.51343916258936 | 63.798500148002105, 65.33193463460658
Level 5 44.21176138927963, 45.223021219416026 | 58.78011290313251, 60.132930575128334 | 66.20749265069236, 68.66207256669895
Level 6 40.71181329229986, 42.46209975117841 44.55772435971331, 46.44227564028669 | 67.92611298052391, 69.50866962817175
Level 7 36.125032176170905, 37.39670695426388 | 37.96519306189826, 39.86089389462349 | 59.08607061436849, 61.78349460302284
Level 8 33.056179679360426, 33.85686379890045 | 34.70576792829051, 37.511623376057315 | 51.26496500262794, 52.60460021476336
Level 9 31.687580141163487, 32.3124198588365 33.780406025048364, 37.30655049669076 | 47.980261909883694, 48.93278156837718
Level 10 | 30.867249693201952, 31.219706828537188 | 32.486630489619486, 35.209021684293546 | 46.926334578249225, 48.20410020435946

Table 9: Confidence Intervals for accuracy of prediction with MRI scans with contrast artifacts

Level
of ResNet50 Inceptionv3 Resnext
Degradation
Level 1 94.34782608695652 94.1304347826087 93.69565217391305
Level 2 94.34782608695652 94.1304347826087, 94.13043478260873 | 93.69565217391302, 93.69565217391305
Level 3 90.21739130434783 93.69565217391302, 93.69565217391305 89.34782608695652
Level 4 85.21739130434783, 85.21739130434786 | 93.69565217391302, 93.69565217391305 85.21739130434783
Level 5 83.04347826086953, 83.04347826086956 92.82608695652173 85.21739130434783, 85.21739130434786
Level 6 75.8695652173913 90.65217391304348 82.17391304347827
Level 7 64.78260869565217 88.91304347826087 81.08695652173913
Level 8 52.17391304347826 82.6086956521739 77.6086956521739
Level 9 47.608695652173914 62.17391304347826 69.56521739130434
Level 10 46.52173913043478 62.17391304347826, 62.17391304347827 53.69565217391305
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Table 10: Confidence Intervals for accuracy of prediction with MRI scans with ringing artifacts

Level
of ResNet50 Inceptionv3 Resnext
Degradation

Level 1 94.1304347826087 95.21739130434783 93.91304347826087

Level 2 94.56521739130434 [95.21739130434783, 95.21739130434786] 93.69565217391305

Level 3 94.34782608695652 [95.21739130434783, 95.21739130434786] | [93.69565217391302, 93.69565217391305]
Level 4 [94.1304347826087, 94.13043478260873] 94.56521739130434 93.26086956521739

Level 5 [94.1304347826087, 94.13043478260873] | [94.78260869565214, 94.78260869565217] 93.04347826086956

Level 6 93.91304347826087 94.1304347826087 [93.04347826086953, 93.04347826086956]
Level 7 [93.69565217391302 , 93.69565217391305] | [94.1304347826087, 94.13043478260873] 92.3913043478261

Level 8 [93.04347826086953 , 93.04347826086956] | 93.69565217391302, 93.69565217391305 90.65217391304348

Level 9 91.52173913043478 81.30434782608695 88.26086956521739

Level 10 | [90.21739130434783 , 90.21739130434786] | 81.30434782608695, 81.30434782608698 84.34782608695652
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Feature Maps

In this section, we examine the response of the neural network architectures for the MRI
scan image shown in Figure 18. Figures 19, 20, 21 and 22 illustrate feature maps from the
ResNet50 network on the first and last convolutional layers for the original image without
artifacts and the same image degraded with blur, noise, contrast, and ringing artifacts,

respectively. For the image with artifact, we used ’level 5° degradation for all four artifacts.

Figure 18: The reference image used to extract the feature maps.
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Figure 19: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with blur artifact

In Figure 19, it is evident that the blurring process induces slight modifications in the filter
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responses within the initial and final layers of the convolutional neural network (CNN). Despite
these alterations, they are minimal. Specifically, for a degradation level of 5, the Structural

Similarity Index (SSIM) of the blurred image amounts to 0.95.
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Figure 20: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with noise artifact

In Figure 20, it is evident that noise induces modifications in the filter response within the
initial layer of the CNN. The impact is notably pronounced in the final layer, suggesting that
minor adjustments in the first layer’s response result in more substantial effects in the following
layers. Specifically, for a degradation level of 5, the SSIM value for the noisy image is measured
at 0.24.

In Figure 21, it is evident that contrast induces notable alterations in the filter response
within the initial layer of the CNN. Likewise, substantial changes are observed in the final layer.
Contrast triggers a multitude of activations in the initial layer, which consequently impact the

responses in the ultimate layer. The Structural Similarity Index (SSIM) for the contrast image is
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Figure 21: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with contrast artifact

0.56 under level 5 degradation

In Figure 22, it is evident that the presence of ringing induces slight modifications in the
filter responses at the initial and final layers of the CNN. Specifically, the alterations are minimal.
When considering a degradation level of 5, the SSIM value for the ringing image is measured at
0.98. These observations suggest that the differences in filter outputs between the original image
and the image with ringing or blur artifacts are marginal, as indicated by the high SSIM values of
the degraded images. Conversely, for noise and contrast, substantial disparities are observed in the
filter outputs between the original image and the images with artifacts, which aligns with the low

SSIM values of the degraded images.
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Figure 22: Feature maps from the ResNet50 network on the first and last convolutional layers for original
image without artifacts and the same image degraded with ringing artifact.

SSIM Analysis

Up to this point, we examined an image dataset that contained various levels of artifacts. In
this section, we constructed a dataset where each of the four artifacts exhibits comparable SSIM
values. The SSIM values were grouped into the following intervals: 0.10-0.19, 0.20-0.29,
0.30-0.39, 0.40-0.49, 0.50-0.59, 0.60-0.69, 0.70-0.79, 0.80-0.89, and 0.90-0.99. Next, we
produced images with SSIM values that fell within the specified ranges for all four artifacts.
While we were not successful in generating images for all SSIM ranges across all artifacts, we
were able to do so for the majority of cases. This new dataset underwent testing for the
classification of brain MRI scans with meningioma, glioma, or pituitary tumors. This
classification task was carried out using ReNet50, InceptionV3, and ResNeXt architectures,

which were trained using the original dataset as detailed in [45].
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Tables 11, 12, 13, and 14 display the mean results for accuracy, precision, recall, and F1
score concerning MRI images that include blur, noise, contrast, and ringing artifacts. These
results are computed for both the initial image and images with different SSIM values, utilizing
ResNet50, Inception V3, and Resnext models. The initial column of each table provides an
illustration of the images under examination, while the subsequent columns present the metrics

alongside their respective values.
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Table 11: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Blurring Arti-
facts with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics | ResNet50 | InceptionV3 | ResNeXt

Original Image Accuracy 94.130 93.695 93.478

Precision | 94.515 95.464 93.899

Recall 94.130 95.000 93.478
F1-Score | 94.005 94.894 93.311
Accuracy | 89.782 83.043 92.608
Precision | 90.596 85.049 92.664

Recall 89.782 83.043 92.608
F1-Score | 89.268 83.637 92.485

SSIM 0.83 Accuracy 85.652 75.869 81.304
Precision | 86.962 80.027 81.928
Recall 85.652 75.869 81.304

F1-Score | 84.654 77.036 80.357

SSIM 0.78 Accuracy | 81.956 77.173 75.869
Precision | 83.900 79.924 78.369
L v Recall 81.956 77.173 75.869

F1-Score 80.339 78.034 73.997
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Table 12: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Noise Artifacts
with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics | ResNet50 | InceptionV3 | ResNeXt

Accuracy | 94.130 93.695 93.478

Original Image

Precision | 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score | 94.005 94.894 93.311

SSIM 0.94 | Accuracy | 94.347 94.130 93.913
Precision | 94.872 94.114 94.465

Recall 94.347 94.130 93.913

F1-Score | 94.166 94.069 93.676

SSIM 0.81 | Accuracy | 93.478 93.695 90.434

Precision 94.223 93.8541 91.807

Recall 93.478 93.695 90.434
F1-Score | 93.140 93.617 89.881
SSIM 0.74 | Accuracy | 83.695 91.739 84.565

Precision 87.720 92.003 88.584
Recall 83.695 91.739 84.565

F1-Score | 83.196 91.567 83.712

SSIM 0.61 | Accuracy 71.739 90.217 77.391
Precision 81.481 90.274 85.453
Recall 71.739 90.217 77.391

F1-Score | 69.920 90.117 76.928

SSIM 0.51 Accuracy 67.173 88.260 67.826
Precision | 78.654 88.105 81.869
Recall 67.173 88.260 67.826
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F1-Score | 64.488 88.135 67.032

SSIM 0.43 | Accuracy | 65.652 83.043 62.173
Precision | 77.003 83.129 79.510

Recall 65.652 83.043 62.173

F1-Score | 61.418 83.082 60.783

SsIM 0.33 | Accuracy | 61.956 71.304 56.086
Precision | 74.459 73.255 75.610

Recall 61.956 71.304 56.086

F1-Score | 56.888 71.821 52.672

ssiM 0.21 | Accuracy | 54.130 45.217 56.739
Precision | 44.443 60.816 68.925

Recall 54.130 45.217 56.739

F1-Score | 46.691 38.992 52.089

SSIM 0.17 | Accuracy | 44.782 40.869 50.652
Precision | 39.718 50.193 56.618

Recall 44.782 40.869 50.652

F1-Score | 37.027 30.748 43.995
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Table 13: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Contrast Arti-
facts with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics | ResNet50 | InceptionV3 | ResNeXt

Accuracy | 94.130 93.695 93.478

Original Image

Precision | 94.515 95.464 93.899

Recall 94.130 95.000 93.478

F1-Score | 94.005 94.894 93.311

ssiM0.98 | Accuracy | 93.913 90.652 91.956

Precision 94.292 90.522 92.403

Recall 93.913 90.652 91.956

F1-Score | 93.788 90.502 91.789

SsiIM 0.8 | Accuracy | 94.347 92.173 93.043
Precision | 94.848 92.075 93.478

Recall 94.347 92.173 93.043

F1-Score | 94.193 92.058 92.884

SSIM 0.7 Accuracy | 94.347 93.913 93.695
Precision | 95.005 93.953 94.221

Recall 994.347 93.913 93.695

F1-Score 94.128 93.835 93.529

SSIM 0.61 | Accuracy 88.043 93.478 88.913
- Precision 90.384 93.793 91.558
Recall 88.043 93.478 88.913

F1-Score 86.710 93411 87.913

SSIM 0.52 Accuracy 75869 87.826 82.608
Precision | 80.730 89.939 87.426
Recall 75.869 87.826 82.608
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F1-Score | 70.250 87.909 79.653

SSIM 0.41 | Accuracy | 52.173 75.869 79.565
Precision | 65.428 81.710 83.752

Recall 52.173 75.869 79.565

F1-Score | 41.189 76.026 75.860

SSIM 0.35 | Accuracy | 47.608 63.913 74.130
Precision | 54.997 69.806 78.229

Recall 47.608 63.913 74.130

F1-Score | 32.368 63.278 69.698

SSIM 0.23 | Accuracy | 23.043 30.869 23.043
Precision 5.310 9.529 5.310

Recall 23.043 30.869 23.043

F1-Score 8.631 14.563 8.631

SSIM 0.19 | Accuracy | 51.739 58.695 53.043
Precision | 73.032 58.498 43.096

Recall 51.739 58.695 53.043

F1-Score | 39.910 56.799 41.529
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Table 14: Values for Accuracy, Precision, Recall, and F1 Score for MRI Images Containing Ringing Arti-
facts with varying SSIM values using ResNet50, Inception V3 and Resnext models

Image Metrics | ResNet50 | InceptionV3 | ResNeXt

Accuracy | 94.130 93.695 93.478

Original Image

7 Precision 94.515 95.464 93.899
L_/ Recall 94.130 95.000 93.478
F1-Score | 94.005 94.894 93.311

SSIM 0.96 93.478 90.869 92.173
Precision 93.903 91.553 92.563
Recall 94.565 93.478 92.173

F1-Score | 93.236 90.916 91.995

SSIM 0.82 | Accuracy | 85.217 67.826 76.086
Precision | 85.278 77.948 76.866
Recall 94.347 85.217 76.086
F1-Score | 84.950 67.898 74.370
SSIM 0.71 | Accuracy | 70.217 57.173 67.173

Precision 69.664 76.095 70.173
Recall 93.913 70.217 67.173

F1-Score | 69.515 55.9459 64.502

SSIM 0.62 | Accuracy | 53913 46.956 56.956
Precision 55.715 69.753 63.528
Recall 93.913 53.913 56.956

F1-Score 52.429 44 331 56.863

SS5IM 0.54 Accuracy 45.652 45.869 45.434
Precision 52.346 63.484 55.812
Recall 93913 45.652 45.434
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F1-Score | 42.624 38.858 47.057

SSIM 0.41 | Accuracy | 34.565 38.478 35.217
Precision 50.905 21.706 945.514
Recall 93.260 34.565 35.217

F1-Score | 22.440 27.667 32.809

SSIM 0.30 | Accuracy | 23.695 34.130 21.956
Precision | 20.648 18.909 7.276
Recall 91.521 23.695 21.956
F1-Score | 11.882 24.280 8.879
SSIM 0.26 | Accuracy | 23.043 31.086 22.826
Precision 5.310 32.593 12.3331
Recall 91.521 23.043 22.826
F1-Score 8.631 15.018 11.5034

Figure 23(a)-(d) shows the plots of accuracy, precision, recall, and F1 score, respectively,
achieved from ResNet50, Inceptionv3, and ResNeXt models for images containing blur artifacts
with varying SSIM values. As blurring increases, performance decreases. We do not see a
significant decrease in performance as we could only generate 3 blur images. Figure 24(a)-(d)
shows the plots of accuracy, precision, recall, and F1 score, respectively, achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing noise artifacts with varying
SSIM values. As the noise increases, the performance.

Figure 25(a)-(d) shows the plots of accuracy, precision, recall, and F1 score, respectively,
achieved from ResNet50, Inceptionv3 and ResNeXt models for images containing contrast
artifacts with varying SSIM values. As the contrast increases, the performance decreases.
However, for contrast with SSIM 0.23, the performance values are always significantly lower. To
explain this, take a look at the example of a contrast image with SSIM 0.23 in Table 13. The

contrast artifact degraded the image so that it is almost impossible to see the content of the image,
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Figure 23: Graphs of values for (a) accuracy, (b) precision, (c) recall, and (d) F1 score achieved from
ResNet50, Inceptionv3 and ResNeXt models for images containing blur artifacts with varying
SSIM values

which is the reason behind its performance. Figure 26(a)-(d) shows the plots of accuracy,
precision, recall, and F1 score, respectively, achieved from ResNet50, Inceptionv3 and ResNeXt
models for images containing ringing artifacts with varying SSIM values. As the ringing
increases, the performance decreases significantly. Therefore, as SSIM increases, performance

almost always decreases.
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Figure 24:

Figure 25:

Accuracy vs. SSIM
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VII. CONCLUSION AND FUTURE WORK

Conclusion

In this study, we examined how the quality of medical image inputs influences the efficacy of
three CNN-based systems designed for brain tumor classification. Our objective was to assess the
impact of introducing artifacts like blurring, noise, ringing, and contrast into MRI scans on the
detection of brain tumors. Additionally, we explored the influence of these four artifacts when the
Structural Similarity Index (SSIM) values were within a similar range. We computed performance
metrics (accuracy, precision, recall, and F1 score) for 10 intensity levels of each of the five
common MRI artifacts. Furthermore, we assessed these metrics under conditions where the image
quality for these artifacts resulted in similar SSIM values, aiming to understand the individual
effects of each artifact on cancer detection. The results revealed a substantial impact of these

artifacts on performance metrics when images were impaired by artifacts.

Future Work

Our future work aims to investigate the effects of multiple artifacts occurring simultaneously
in each image. we also plan to evaluate more CNN architectures to gain more insight on how the
degradation caused by artifacts affect neural networks. We plan to extract feature maps for all the
evaluated models to determine now each artifact affect each network. Furthermore, we want to
look at possible solutions toh elp CNN make better diagnosis when the input image contains

artifacts.
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