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ABSTRACT

Brain tumors are abnormal cell growths that affect the brain or central nervous system

(CNS) and are estimated to be the cause of death for more than 200,000 individuals each year.

However, the prognosis for patients with brain tumors can be improved by early diagnosis

and treatment. The gold standard test for brain tumor diagnosis is the cranial Magnetic

Resonance Imaging (MRI) and artificial intelligence (AI) methods have shown potential to

improve radiologist efficiency and reduce human errors by predicting brain tumor diagnosis

from Magnetic Resonance (MR) images. Like other imaging methods, MRI is susceptible to

image distortions or degradations that impair the clinical utility of such images and negatively

impact AI methods used to analyze brain MRI images.

To obtain degradation-robust brain diagnosis from 2D MRI images, we propose a two-stage

diagnosis method. First, we use a U-shaped transformer model, called Uformer, to perform

image restoration, removing image distortions, and then we use Convolutional Neural Network

(CNN) models, namely EfficientNet, to obtain diagnosis predictions from the restored images.

To train the restoration model, we propose an artifact generation function that trains the

restoration model to restore images affected by an arbitrary number of degradation types.

We evaluated degraded images from various datasets, observing that images are often af-

fected by more than one artifact type and that different artifacts affect each other, changing

the characteristics of individual artifacts. We also observed that different artifact types have

different degrees of impact in computer-aided diagnostic accuracy, with noise having the most

significant impact and ghosting having the least impact. Our proposed artifact generation

function takes into account these characteristics to generate realistic artificial artifacts.

Our experiments also show that image quality also has a negative impact during the training

of deep learning models. Artifacts in the training images can lower the accuracy of models or

cause overfitting that makes the models unreliable. We compared various image restoration and

classification models, different methods to generate the training data, and multiple datasets

to train the models. We tested our methods with artificial artifacts to evaluate the impact of



specific artifacts and intensities, but also tested the solution on five different datasets, including

cross-validation between datasets, which included real cases of degraded images, showing the

potential of our approach for real-world applications. The method is shown to improve image

quality, computer-aided diagnostic accuracy, and model generalization.

Keywords: Brain tumor, MRI, CNN, image artifacts, image restoration, image diagnosis.



RESUMO

Título: Um Método de Aprendizado Profundo Robusto À Degradação para o Diagnóstico de

Tumores Cerebrais Auxiliado por Computador em Imagens de Ressonância Magnética

Tumores cerebrais são crescimentos anormais de células do cérebro ou do sistema nervoso

central, os quais são responsáveis por uma estimativa de mais de 200.000 mortes por ano no

mundo todo. O prognóstico para pacientes com câncer cerebral pode, porém, ser melhorado

com diagnóstico e tratamento precoce. O teste mais recomendado para o diagnóstico de tumo-

res cerebrais é a ressonância magnética (RM) cranial e métodos de inteligência artificial (IA)

demonstraram potentcial em aumentar a eficiência de radiologistas e reduzir o erro humano

no diagnóstico de tumores do cérebro a partir de imagens de ressonância magnética. Assim

como em outras modalidades de imagens, ressonâncias magnéticas podem ser afetadas por dis-

torções ou degradações que pioram a utilidade clínica dessas imagens e prejudicam métodos

automáticos de diagnóstico por imagem.

Para obter um diagnóstico de tumor cerebral a partir de imagens de ressonância magné-

tica 2D de forma robusta contra degradações de imagens, nós propomos uma solução em duas

etapas. Na primeira etapa nós utilizamos um modelo transformer em forma de U, chamado

Uformer, para remover distorções e restaurar as imagens e em seguida utilizamos uma rede

neural convolucional (RNC), particularmente a EfficientNet, para classificar a imagem restau-

rada e obter um diagnóstico quanto a tumores cerebrais. Para treinar o modelo de restauração

de imagens, nós definimos uma função para gerar um número arbitrário de tipos de distorções

em imagens, assim treinando o modelo para remover combinações arbitrárias de degradações

em imagens de ressonância magnética do cérebro.

Nós realizamos uma avaliação de imagens de ressonância magnética contendo degradações,

identificando os tipos mais comuns de artefatos de imagem em RM, sendo elencados os artefatos

de ruído, borrão, artefato de Gibbs, mal contraste e artefatos de compressão JPEG. Também

bservamos que imagens são tipicamente afetadas por mais de um tipo de artefato e que os

próprios artefatos são por outros artefatos, alterando suas características individuais. A distri-



buição de ruído, por exemplo, pode ser afetada por mal contraste, borrão, artefato de Gibbs

e de compressão JPEG. Apesar de todos os tipos de artefatos observados terem significativo

impacto na qualidade das imagens, esses artefatos não tem impacto equivalente na facilidade

de diagnóstico de imagens degradadas, com ruído resultando em grandes reduções na acurá-

cia de diagnóstico, enquanto artefatos de contraste e de ghosting tem impacto mais reduzido.

Levando essas características em consideração, nossa função geradora de artefatos foi definida

para gerar artefatos de forma realista.

Artefatos de imagem reduzem a acurácia de modelos no momento de gerar a predição de

diagnóstico, porém um risco talvez ainda maior é no momento de treinar modelos com imagens

de baixa qualidade. A presença de artefatos nas imagens de treinamento pode fazer com que

modelos aprendam a correlacionar esses artefatos com diagnósticos específicos, um tipo de

sobreajuste que pode resultar em elevadas acurácias no momento de teste do modelos, mas

gerando modelos não confiáveis para a aplicação em casos reais.

A solução foi avaliada por meio da qualidade das imagens restaurada, medidas pela métrica

MSSIM e por análises qualitativas; e pela acurácia na predição do diagnóstico das imagens.

Artefatos artificiais foram adicionados a imagens de boa qualidade para testar a qualidade do

método para artefatos específicos e diferentes intensidades de degradações. A solução também

foi testado com 5 bases de dados de classificação de tumores cerebrais a partir de imagens de

ressonância magnética. Essas bases incluem casos reais de imagens degradadas, demonstrando

assim a efetividade da solução proposta para situações reais de imagens com degradações. Com

as várias bases de dados também foram realizados testes cruzados, em que uma base de dados

era utilizada para treinar o modelo e outras bases eram utilizadas para testes. Esses testes

cruzados demonstraram o quanto a inclusão da etapa de restauração melhora a capacidade de

generalização da solução.

Testes extensivos foram realizados para avaliar os diferentes aspectos da solução. O modelo

Uformer foi comparado com outros modelos de restauração de imagem como UNet e autoen-

coders. O modelo EfficientNet foi comparado com outras redes neurais para classificação de

imagem, incluindo transformers para visão (ViT), redes residuais e ConvNeXts. Bases de da-

dos variadas foram utilizadas para treinar os modelos, observando-se o impacto que bases de

dados diferentes têm na acurácia, qualidade de imagem e capacidade de generalização da solu-

ção. Métodos variados para gerar artefatos artificiais foram testados para treinar o modelo de



restauração, demonstrando quais aspectos são relevantes na geração de degradações artificiais.

O solução também foi comparada com um método alternativo ou complementar de treinar o

modelo de classificação em imagens com degradações artificiais, o qual ainda demonstra que a

inclusão da etapa de restauração continua sendo efetiva. Os testes extensivos corroboram que

a solução tem bons impactos na melhora de qualidade de imagens de ressonância magnética,

aumento da acurácia na predição de diagnóstico e melhora na generalização dos modelos de

classificação de imagens.

Palavras-chave: Tumor cerebral, RM, RNC, artefatos de imagem, restauração de imagens,

diagnóstico por imagem.
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CHAPTER 1

INTRODUCTION

Brain tumors are abnormal cell growths that affect the brain or central nervous system

(CNS) (DEANGELIS, 2001; ISLAM et al., 2024) and are estimated to affect between 7 and 11

individuals per 100,000 persons-year worldwide, leading to an estimated 200,000 deaths each

year (MAHDAVI et al., 2023; ILIC; ILIC, 2023). The 5-year survival rate of patients diagnosed

with brain cancer can be as low as a disconcerting 6.9%, for the particular case of glioblastoma

tumor(KHALIGHI et al., 2024).

However, the prognosis for people with brain tumors can be improved by early detection

and treatment, even allowing surgical resection of early stage tumors (MAHDAVI et al., 2023;

ISLAM et al., 2024). The gold standard test for brain tumor diagnosis is cranial magnetic re-

sonance imaging (MRI) (DEANGELIS, 2001; CHANDARANA et al., 2018). MRI is a medical

non-invasive imaging modality that employs radio frequency waves in the presence of carefully

controlled magnetic fields to produce high fidelity images of internal anatomical structures

(KATTI et al., 2011; HYUN et al., 2018; JHAMB et al., 2015). Compared to other methods

such as X-ray and computed tomography (CT), the advantages of MRI include the fact that

it does not expose patients to potential hazardous radiation and produces high-resolution ima-

ges that can even detect structural lesions or nonenhancing tumors that could be missed by

other methods(KATTI et al., 2011; DEANGELIS, 2001; BRENNER; HALL, 2007). Its main

disadvantage is the fact that it requires a long exposure time to produce the images.

In order to assist in faster tumor detection, artificial intelligence (AI)-based diagnosis

methods have shown potential to improve radiologists’ efficiency and reduce human error (KHA-

LIGHI et al., 2024), with several deep learning (DL)-based methods proposed for automatic

brain tumor diagnosis (REHMAN et al., 2020; BADŽA; BARJAKTAROVIĆ, 2020; TUM-

MALA et al., 2022; YAZDAN et al., 2022; ISLAM et al., 2024). As is the case for other

imaging methods, MRI can be subject to image distortions that may be introduced during
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acquisition, processing or compression (OKSUZ, 2021). Not only do these distortions affect

the perceived quality of these images, they can also negatively affect the clinical utility of those

images (RODRIGUES et al., 2022). Machine learning diagnosis methods are specially affected

by such image degradations, which may result in lower prediction confidence, lower accuracy

and even incorrect predictions with high confidence (OKSUZ, 2021; DODGE; KARAM, 2016;

FARIAS et al., 2022; BAUCHSPIESS; FARIAS, 2024; REBUFFI et al., 2021). In addition to

lower inference performance, image distortions during DL model training can cause “noise le-

arning,” resulting in overfitting (YING, 2019; JABBAR; KHAN, 2015; POTHUGANTI, 2018).

Correcting such image artifacts and distortions is therefore crucial for effective brain tumor

analysis (KHALIGHI et al., 2024).

Several works have been proposed to remove or alleviate image distortions in MRI and other

modalities of medical images. Such works were used to restore images with noise (EL-SHAFAI et

al., 2022a; ZHONG et al., 2020a), poor contrast (MZOUGHI et al., 2019), blurring (YIM et al.,

2020; LIM et al., 2020), Gibbs ringing (MUCKLEY et al., 2021) and ghosting(LEE et al., 2016b;

JUREK et al., 2023), among others. Most image restoration works use methods that focus on

only one specific artifact type, but several images affected by a combination of multiple artifact

types can be recognized when evaluating MRI images from popular brain tumor datasets, which

are shown in Figure 1.1. Taken from the (NICKPARVAR, 2021) dataset, Fig. 1.1 (a) shows

a scan with ghosting, noise and blurring artifacts, Fig. 1.1(b) shows a scan with contrast and

JPEG compression artifacts and Fig. 1.1(c) shows a scan affected by ghosting, noise, blurring

and poor contrast. Taken from the (SIAR; TESHNEHLAB, 2022) dataset, Fig. 1.1(d) shows a

MRI scan affected by noise and Gibbs ringing artifacts.

We introduce a two-phase approach that aims at first restoring brain MRI scans, followed

by classifying the presence and type of tumor in the enhanced image, offering a diagnosis

prediction resistant to degradation. This method is tailored to work with images impacted

by various types of artifacts, including those previously illustrated, ensuring that the image

restoration system can handle images with mixed types of artifacts. Illustrated in Fig. 1.2,

a Uformer model (WANG et al., 2022) is used to restore the images, and an EfficientNet

model (TAN; LE, 2019) is used to classify the restored images.

To train the restoration model, pairs of degraded and nondegraded images are required.
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(a) (b)

(c) (d)

Figure 1.1: Various MRI scans with different artifacts: (a) ghosting, noise, and blurring; (b)
contrast and JPEG compression; (c) ghosting, noise, blur, and contrast; (d) noise and Gibbs
ringing.

We use good quality images as the non-degraded images and artificially add degradations to

generate the corresponding degraded image. To make the restoration model more effective in

real world scenarios, artificial degradations should resemble those of real cases. We evaluated

real cases of degraded brain MRI to identify the most common artifact types, estimate the

magnitude distribution of these artifacts, and understand the impact of multiple artifacts si-

multaneously affecting a single image. Common artifacts identified were Rician noise, blurring,

Gibbs ringing, poor contrast, Nyquist ghost, and JPEG compression artifact. One relevant

observation is that different types of artifact affect each other, and the image restoration model

has to account for that to restore images more effectively. Based on this study, we defined an

artifact generation function that generates realistic degraded images, accounting for artifact

types, intensities, and how images are affected by multiple artifacts simultaneously.

Our method was tested on five different datasets with real cases of image degradation and

also on artificially degraded images. The results show that the inclusion of the image resto-



4

Figure 1.2: Proposed framework split into five modules: Dataset, preprocessing, artifact gene-
rator, restoration model and classification model. Modified from (BAUCHSPIESS; FARIAS,
2024).

ration step leads to more accurate diagnosis predictions, showing that the restoration models

trained on artificially degraded images generalize well to real cases. By cross-validating between

different datasets, our results show that our two-stage approach significantly improves the ge-

neralization of the computer-aided diagnostic method. In our experiments, we also observed

how image quality affects the generalization capabilities of image classification models, with

poor quality images leading to significant model overfitting.

We conducted extensive experiments to evaluate the different aspects of the proposed so-

lution. Experiments included changing various aspects of the artifact generation function,

comparing different image restoration models and various image classification models, and

changing the datasets used to train the models. The solution was evaluated qualitatively and

quantitatively, using accuracy and MSSIM metrics and confusion matrices.

The organization of the text is as follows. Chapter 2 presents a review of various techniques

for image restoration, detailing the types of images and artifacts considered and the methods

for diagnosing brain pathology by MRI. In Chapter 3, we provide an overview of brain tumors,

including the subtypes examined in this study, and the basic concepts of magnetic resonance

imaging. This chapter further outlines the artifact types and evaluation metrics utilized, along

with a discussion on the layer types and architectures used to develop neural network models

and their training methodologies. The chapter concludes with an outline of the baseline mo-
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dels and datasets used for testing, including qualitative dataset analysis. In Chapter 4, the

Methods section elaborates on the suggested solution in more detail, examining the definition

of the artifact generation function, as well as the approaches for training and assessing the

models. Chapter 5, the Experiments section, outlines a series of findings that demonstrate the

performance of the solution and analyze its various components. These experiments investi-

gate the correlation between image quality and accuracy, the effect of differing artifact types

and intensities, the results of diverse artifact generation techniques, the efficacy of multiple

image restoration models, and the performance of various image classification models. The

dissertation is ultimately wrapped up in Chapter 6, the Conclusion section.



CHAPTER 2

STATE OF THE ART

In this chapter, we review the state-of-the-art in image restoration, with a focus on medical

images and methods to predict daignosis based on medical images.

2.1 IMAGE RESTORATION

Mzoughi et al. stating that reduced MRI acquisition time results in degraded image contrast

and SNR, which reduces the precision of clinical and computer-aided diagnosis (MZOUGHI et

al., 2019). Their work proposes the use of a bilinear filter to reduce noise and a contrast

stretching function to adjust contrast. The contrast stretching function multiplies each voxel

by a parameter that depends on image mean and variance and if the tumor is high-grade or

low-grade, with low-grade tumors requiring an increase in contrast to better distinguish the

tumor. This contrast enhancement method may be used to improve the accuracy of tumor

classification as high-grade or low-grade (MZOUGHI et al., 2020).

El-Shafai et al. trained an autoencoder to denoise CT and X-Ray torax images with ar-

tificially added Gaussian, salt-and-pepper, and speckle noise and used Convolutional Neural

Networks (CNNs) to classify those images (EL-SHAFAI et al., 2022a). Their results show

that using the autoencoder denoising as a pre-processing step increased the classification CNN

accuracy.

Zhong et al. proposed to train a residual CNN to denoise CT images of multiple parts of the

body (ZHONG et al., 2020a). This CNN model estimates the difference between the clean and

noisy image, which is subtracted from the input image to obtain the estimated clean image.

Their work argues that pre-training the model to denoise natural images before training on CT

images results in improved model performance.

Yim et al. proposed to train two autoencoders, one for denoising and one for deblurring,
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and then concatenate these models with a convolutional layer and retrain this final model,

applied to lung CT images (YIM et al., 2020). Results indicate that this models obtain better

quality image than a simple CNN in terms of Peak Signal to Noise Ratio (PSNR), Mean Square

Error (MSE) and Stuctural Similarity Index Measure (SSIM). Muckley et al. proposed using

a residual model based on the UNet family to remove MRI noise and Gibbs ringing artifacts

(MUCKLEY et al., 2021).

Wang et al. proposed a residual UNet model for natural image restoration called Uformer

(WANG et al., 2022). The model architecture is based on the vision transformer architecture,

to which depth-wise convolutions were added to the feed forward block. The degradations

considered were various types of noise, blur, and rain artifacts. Color images taken from

smartphones and handheld cameras were considered.

Zamir et al. proposed another residual UNet model based on the addition of convolutions

to the transformer architecture, with the aim of restoration of natural images (ZAMIR et al.,

2022). The model adds depth-wise convolution to both the self-attention and the feedforward

blocks of the transformer architecture and adds a gating mechanism to the feedforward block.

Rain, noise, and blur artifacts, including motion blur and defocus blur, were considered.

Lee et al. proposed to restore MRI images affected by Nyquist ghost artifact without

reference, using the ALOHA algorithm (LEE et al., 2016a; LEE et al., 2016b). The method

is shown to perform even better than reference-based models, without as many requirements.

Lim et al. trained a residual CNN to spatially vary blur correction in real time for MRI (LIM

et al., 2020). The model is evaluated both quantitatively with quality metrics, including PSNR

and SSIM, and qualitatively through visual inspection.

Jurek et al. revert images to the k-space and introduce Nyquist ghost and ramp sampling

effects in this order and then add noise in the image domain (JUREK et al., 2023). The noise

is obtained from an air scan. The model trained with all effects resulted in loss of edges as well

as noise removal; for this reason the model was then trained only with phase effects and noise,

with better results. This work also considered the blurring function of imaging systems to be

a Point Spread Function that approximates the Gaussian function, with standard deviation

around 0.65, and when applicable adds this blurring before noise. The model used to denoise

the image was a residual CNN, so the CNN estimates the noise to be subtracted from the
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Table 2.1: Comparison of different image restoration methods, based on artifact type, image
type and algorithm used to restore the images.

Paper Artifacts Image type Method
(LEE et al., 2016b) Ghosting MRI ALOHA

(MZOUGHI et al., 2019) Rician noise, Brain MRI Bilinear filter,
contrast contrast stretching

(YIM et al., 2020) Gaussian noise, Lung CT Autoencoder
Gaussian blur

(ZHONG et al., 2020a) Gaussian noise CT Residual CNN
(LIM et al., 2020) Blur MRI Residual CNN

(MUCKLEY et al., 2021) Gibbs ringing, MRI, natural Residual UNet
Gaussian noise images

(EL-SHAFAI et al., 2022a) Gaussian, Torax CT, Autoencoder
salt and pepper X-Ray

and speckle noise
(WANG et al., 2022) Noise, blur Natural images Conv+transformer

residual UNet
(ZAMIR et al., 2022) Noise, blur Natural images Conv+transformer

residual UNet
(JUREK et al., 2023) Rician noise, Brain MRI Residual CNN

ramp-sampling
effects, ghosting,
Gaussian blur

Proposed Rician noise, Brain MRI Conv+transformer
ghosting, residual UNet

Gibbs ringing,
Gaussian blur,
Poor Contrast,

JPEG compression

image. The work proposes first applying the Nyquist ghost correction and then applying the

denoising method, arguing that the reverse order yielded worse results. Two reference methods

were considered: averaging of repeated scans and the blockwise Non-Local Means (NLM).

We selected the Uformer model introduced by (WANG et al., 2022) as our baseline model.

The study used 2D brain magnetic resonance images and evaluated artifact types including

Rician noise, Gaussian blur, Gibbs ringing, ghosting, low contrast, and JPEG compression

artifacts. Table 2.1 presents a comparison among various works, highlighting the artifact

types, image types, and restoration techniques used.
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2.2 BRAIN IMAGE CLASSIFICATION

Korolev et al. proposed to use 3D CNNs with and without residual to classify 3D MRI

images into Alzheimer’s disease, late mild cognitive impairment, early mild cognitive impair-

ment and normal cohort (KOROLEV et al., 2017). Their results indicate that CNNs with and

without residuals perform similarly. Rehman et al. evaluated a range of convolutional neural

network models alongside an optimization algorithm to categorize two-dimensional MRI data

into three distinct types of brain tumors: meningioma, glioma, and pituitary (REHMAN et al.,

2020). The method included a contrast stretching pre-processing step.

Badza and Barjaktarovic proposed their own CNN model to classify 2D MRI as meningioma,

glioma, and pituitary (BADŽA; BARJAKTAROVIĆ, 2020). They observed that the dataset

tested (CHENG et al., 2016) included multiple scans of the same subjects. They separated the

images into train sets and test sets in two manners. In the first manner, scans were separated

by subject, i.e. images belonging to the same subject were all put in the train set or all put

in the test set. In the second manner, the scans were separated individually, so that one scan

from a subject could be in the train set and another scan from the same subject could be in

the test set. They observed that this second manner led to higher test accuracy, indicating a

kind of overfitting in which the model recognized the subject rather than the tumor type.

Tummala et al. proposed to use an ensemble of vision transformers (ViT) (DOSOVITSKIY

et al., 2020) to classify 2D MRI into meningioma, glioma, and pituitary (TUMMALA et al.,

2022). They increased performance by increasing image resolution and combining the outputs

of multiple models. Yazdan et al. proposed a multiscale CNN to classify 2D MRI into four

classes: meningioma, glioma, pituitary and non-tumor (YAZDAN et al., 2022). They included

a pre-processing step to remove Rician noise, using a Fuzzy Similarity-based Non-Local Means

(FSNLM) filter to improve accuracy. The pre-processing step was shown to improve accuracy

both on the dataset original data as well as on the dataset with synthetic noise added. Islam

et al. proposed to use EfficientNet (TAN; LE, 2019) CNN architecture to classify 2D MRIs

into meningioma, glioma, and pituitary tumor classes (ISLAM et al., 2024). They argue that

the EfficientNet architecture achieves higher accuracy with fewer computational resources than

other CNN architectures.
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Table 2.2: Comparison of different image classification methods, based on the target classes,
type of image and the type of model used to predict the output.

Paper Classes Image type Method
(KOROLEV et al., 2017) Alzheimer disease 3D MRI 3D CNN
(REHMAN et al., 2020) Brain tumor 2D MRI CNN

(BADŽA; BARJAKTAROVIĆ, 2020) Brain tumor 2D MRI CNN
(TUMMALA et al., 2022) Brain tumor 2D MRI ViT
(YAZDAN et al., 2022) Brain tumor 2D MRI CNN
(ISLAM et al., 2024) Brain tumor 2D MRI EfficientNet

Proposed Brain tumor 2D MRI EfficientNet

For our work, we used EfficientNet models to classify 2D MRI images in different brain

tumor categories. Five different brain tumor datasets were considered, which included the

categories glioma, meningioma, pituitary, non-tumor and generic tumor classes; with different

combinations depending on the dataset. Multiple models were trained depending on the classes

included in each dataset. Tests were performed on datasets with undegraded and distorted

images, as well as images with synthetically added artifacts, and we evaluate the accuracy

improvement when an image restoration step is included. Table 2.2 summarizes the methods,

based on the type of pathology predicted, the data type used and the method or neural network

architecture used for classification.



CHAPTER 3

FUNDAMENTALS

In this chapter, we review concepts and fundamentals required for the research.

3.1 BRAIN TUMOR

Brain tumors encompass various neoplasms, each characterized by distinct biology, progno-

sis, and treatment approaches; however, a more precise term is intracranial neoplasms because

some tumors, such as meningiomas, are not related to brain tissue (DEANGELIS, 2001). These

tumors can cause focal or generalized neurological symptoms such as headaches, nausea, vomi-

ting, sixth-nerve palsy, hemiparesis, aphasia, and seizures. Brain tumors vary widely in type.

High-grade gliomas and meningiomas are the predominant forms of primary brain tumors in

adults (BONDY et al., 2008). Another fairly prevalent tumor is the pituitary tumor, which

makes up approximately 15% of intracranial neoplasms (CHATZELLIS et al., 2015). The

preferred diagnostic method for brain tumors is magnetic resonance imaging with gadolinium

enhancement (DEANGELIS, 2001). In this section a concise overview is provided, accompanied

by MRI scans of these three types of tumors.

3.1.1 Glioma

The term glioma encompasses all forms of tumors believed to originate from glial cells

(SCHWARTZBAUM et al., 2006), and can also be known as glial tumors (DEANGELIS, 2001).

Gliomas exhibit a heterogeneous appearance and have poorly defined boundaries. The margins

of active tumors do not align closely with contrast enhancement features, and pathological con-

trast enhancement is generally associated with more aggressive tumors (UPADHYAY; WALD-

MAN, 2011). Figure 3.1 presents several slices of MRI showing glioma tumors (CHENG et al.,

2016).
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Figure 3.1: Glioma samples taken from a brain tumor dataset (CHENG et al., 2016).

3.1.2 Meningioma

Meningioma tumors arise from meningothelial cells in the outer membrane of the brain and

are found primarily at the base of the skull, over cerebral convexities, and within the parasellar

areas (DEANGELIS, 2001). These tumors are often asymptomatic and are often discovered

accidentally during autopsies. On MRI scans, meningiomas are usually observed near the bones.

Figure 3.2 presents several slices of MRI showing meningioma tumors, sourced from (CHENG

et al., 2016).

3.1.3 Pituitary tumors

Pituitary tumors are marked by excessive growth of cells in the anterior pituitary and

dysregulated overproduction of specific hormones(MELMED, 2015; DAI et al., 2021a). These

tumors are predominantly benign and are known as pituitary adenomas, with a small number

classified as pituitary carcinomas. The range of symptoms, such as hypertension, psychological

problems, headaches, and soft tissue swelling, varies depending on the cell type and hormones
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Figure 3.2: Meningioma samples taken from a brain tumor dataset (CHENG et al., 2016).

involved. Fig. 3.3 illustrates example MRI scan slices of pituitary tumors (CHENG et al., 2016).

3.2 MAGNETIC RESONANCE IMAGING - MRI

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging modality for mapping

internal structures of the body. It uses non-ionizing electromagnetic radio frequency (RF)

radiation in the presence of carefully controlled magnetic fields to produce high-quality cross-

sectional images of the body in any plane (KATTI et al., 2011). MRI machines produce

relatively strong magnetic fields that cause the nuclei of atoms in the body, including hydrogen,

to align with it. When energy in the form of RF electromagnetic waves is directed at it, protons

in tissue that have Larmor frequency matching that of the RF wave absorb energy and rotate

away from the direction induced by the magnetic field; the longer the exposition, the larger

the rotation. When radio waves are turned off, the radiation energy is released to surrounding

molecules and the protons realign with the magnetic field, a process called T1 recovery, and

the energy loss is detected as a signal (KATTI et al., 2011; WESTBROOK, 2016).

MRI has some different modalities that lead to images with different characteristics. Two
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Figure 3.3: Pituitary tumor samples taken from a brain tumor dataset (CHENG et al., 2016).

common modalities are the T1 weighted (T1) and the T2 weighted (T2). For brain tumor

diagnosis, T1 is considered good for tumor segmentation, and T2 makes the fluid around the

tumor visible (DAIMARY et al., 2020). In T1 brain scans white matter (WM) is lighter than

gray matter (GM), while in T2 scans white matter is darker than the gray matter 1 Fig.3.4

exemplifies the T1-CE and T2 MRI modalities for brain scans with glioma tumors.

The raw data obtained from MRI scanning devices are spatial frequency information of an

object, usually referred to as K-space data (MEZRICH, 1995; MORATAL et al., 2008; JHAMB

et al., 2015). The K-space data contains the density of nuclear magnetic resonance signals

generated from the body. To obtain a conventional image or spatial volume from k-space data,

the inverse Fourier transform is applied (GALLAGHER et al., 2008; CÁRDENAS-BLANCO

et al., 2008). The signal obtained from the inverse Fourier transform is a complex signal, with

real and imaginary parts, but it is common practice in MR to obtain the magnitude of this

signal, resulting in real-value magnitude images.

Brain MRI scans are usually 3D volumes that can be sliced into 2D images, typically in 3

orientation planes: axial, sagittal, and coronal (PADMANABAN et al., 2020; DAIMARY et
1https://radiopaedia.org/articles/mri-sequences-overview
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Figure 3.4: Brain MRI scan modalities. Left: T1-CE brain scans taken from (CHENG et al.,
2016). Right: T2 brain scans taken from (QADRI et al., 2022).

al., 2020). The axial plane goes from the top to the bottom of the head, the coronal plane goes

from front to back, and the sagittal plane goes from side to side. Fig. 3.5 illustrates the 3

planes.

Figure 3.5: Brain MRI planes. From left to right: Axial, coronal and sagittal.Images taken
from the Figshare dataset (CHENG et al., 2016).
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3.3 MRI ARTIFACTS

MRI artifacts are degradations that affect the quality of the image and affect the classifi-

cation performance of neural networks (FARIAS et al., 2022). Types of MRI artifacts include

noise, Gibbs ringing, blurring, ghosting, and poor contrast. Image compression can also gene-

rate artifacts such as JPEG compression artifacts. In this section, we review these six types of

image artifacts that can affect MRI scans.

3.3.1 Noise

Noise in MRI images is described as complex additive signals, in which its real and ima-

ginary components are independent, identically distributed, zero mean Gaussian distributions

(CÁRDENAS-BLANCO et al., 2008). A noisy k-space MR signal is then defined as

S = SR +N (0, σ2) + j · (SI +N (0, σ2)), (3.1)

where SR and SI are, respectively, the real and imaginary parts of the signal and N (0, σ2)

is the noise drawn from a normal (Gaussian) distribution with mean value 0 and standard

deviation σ. Note that the noise has a real and an imaginary part, both drawn from the same

distribution. Those values are, however, independent, i.e. the actual value of the real part does

not influence the value of the imaginary part and vice versa. Fig. 3.6 illustrates the signal in

the k-space with added noise.

The spatial MRI signal is obtained through the inverse Fourier transform, which keeps the

additive properties of the noise:

F−1(S) = F−1(SR) + F−1(N (0, σ2)) + j · (F−1(SI) + F−1(N (0, σ2))). (3.2)

However, when the magnitude MRI image is obtained from these complex signals,

Magnitude =
√

(F−1(SR) + F−1(N (0, σ2)))2 + (F−1(SI) + F−1(N (0, σ2)))2, (3.3)

there is a change to this distribution, due to the non-linear nature of this transform.

The probability distribution of magnitude MRIs in the presence of noise is characterized by

the Rician distribution (RICE, 1944; GUDBJARTSSON; PATZ, 1995), defined by:

PM(M) =
M

σ2
e−(M2+A2)/2σ2

I0

(
A ·M
σ2

)
, (3.4)
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Figure 3.6: Frequency signal with added noise, with real (R) and imaginary (I) parts.

where M is the measured pixel intensity, A is the pixel intensity without noise, I0 is the zeroth

order Bessel function, and σ is the standard deviation of the Gaussian noise in the complex

image. It should be noted that this distribution is influenced by the signal-to-noise ratio (SNR,

A/σ) and is not the noise distribution on its own (CÁRDENAS-BLANCO et al., 2008), although

several works refer to noise in MRI as Rician noise (COUPÉ et al., 2010; BASU et al., 2006).

Gudbjartsson and Patz point out that for A = 0, the Rician distribution is equivalent to the

Rayleigh distribution (RAYLEIGH, 1896; BECKMANN, 1964), while for SNR (A/σ) > 2 the

distribution approximates the Gaussian distribution as seen in Fig. 3.7(GUDBJARTSSON;

PATZ, 1995). Like the Rayleigh distribution, the Rician distribution is exclusively positive.

Another observation is that the image noise adds a bias shift in the image mean, such that the

mean image value may be defined approximately by:

M̄ =
√
A2 + σ2. (3.5)

To generate artificial Rician noise in magnitude images we apply

RicianNoise(I, σ) = magnitude (I +N (0,σ) + j · (N (0,σ))) . (3.6)

where j is the imaginary unit, I is the clean image and N (0,σ) is a function to generate

noise from a Gaussian distribution with mean zero and standard deviation σ. We defined the

standard deviation of the noise function based on an intensity parameter as

σ = 0.025 · intensity, (3.7)
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Figure 3.7: Rician probability distribution for different SNR. Extracted
from(GUDBJARTSSON; PATZ, 1995).

with which we generated Rician noise examples with intensities ranging from 1 to 10, shown in

Figure 3.8.

3.3.2 Gibbs-Ringing

The Gibbs artifact, also known as a ringing or truncation artifact, is characterized by

spurious ringing near sharp edges of reconstructed images when the Fourier space is truncated

at acquisition or compression, and thus lacks an adequate number of high-frequency terms

(VERAART et al., 2016; GALLAGHER et al., 2008; WILBRAHAM, 1848, 1848). In Figure

3.9, this can be seen as a ripple effect associated with the sharp edges of the cranium in the

MRI.

The most common method to suppress this artifact in images is to apply spatial smoothing

(blurring); however, this method inherently lowers the image resolution and adds partial volume

effects (VERAART et al., 2016). Gibbs-ringing can be artificially generated by masking the

frequency domain image, such that only lower frequencies are considered. This is the ideal

low-pass filter. To illustrate this artifact, a circular mask was defined with radius according to

radius = (10− intensity)/9 · 50 + 16, (3.8)
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Figure 3.8: MRI with artificially applied Rician noise with levels from 1 to 10, increasing from
left to right and top to bottom.
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Figure 3.9: MRI with artificially applied Gibbs ringing artifact with levels from 1 to 10, odd
values on the left and even values on the right increasing from top to bottom.
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in which intensity is a control parameter. Figure 3.9 illustrates the effect of this filter for

intensity values from 1 to 10. As can be seen in the figure, for higher intensities, the rings tend

to be fewer and coarser, and there is loss of details in the image, as only lower frequencies are

used to reconstruct the image.

3.3.3 Blurring

Blur might be defined as "to render indistinct". In the technical context of vision, it implies

the smearing of an image, through some sort of low-pass filtering (WATSON; AHUMADA,

2011). This may result in loss of image detail, such as images with less clear borders and

image regions. Image blurring has multiple sources and types. Blurring in magnetic resonance

imaging may occur due to the presence of ferromagnetic sources or as a result of methods to

remove other distortions in images (BUI et al., 2000).

To generate blurring in the MRI scans, we applied a Gaussian blur average filter to these

images. To define different intensities of the blurring artifact the standard deviation value of

the Gaussian filter kernel was defined as

σ = 0.015 + 0.4985 · intensity, (3.9)

such that by increasing the standard deviation of the filter, more detail is lost in the scans, as

shown in Fig. 3.10.

3.3.4 Contrast

The contrast of an image is represented as the disconnection between the brightest and

darkest spots of an image(MAHMOOD et al., 2019). Poor contrast in images is usually related

to a low pixel intensity difference between darker and brighter regions of the image, making it

harder to distinguish between different regions or edges in the image. Contrast enhancement is

beneficial for many vision tasks, such as color segmentation, edge detection, image sharpening,

and visualization (LI et al., 2014) and for accurate segmentation of medical images(ZHAO et

al., 2024).
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Figure 3.10: MRI with artificially applied blurring artifact with levels from 1 to 10, increasing
from left to right and top to bottom.
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We can introduce contrast artifacts in an image using the following equation:

Id = Io × α + β, (3.10)

where Id is the image with contrast artifacts and Io is the original image, α is a contrast

parameter and β is a brightness which we define based on an intensity variable as

α = (11− intensity)× 0.009

β = 255× (1− α)
(3.11)

. Based on these equations, we generate 10 examples of low-contrast images with intensities 1

through 10, shown in Fig.3.11.

3.3.5 Ghosting

Gradient delay associated with alternating readout polarity leads to misalignment between

positive and negative echoes during MRI data sampling, resulting in a Nyquist ghost artifact

in the reconstructed images (LIU et al., 2023). These artifacts appear as repeated versions of

the main object, translated and with lower intensity.

To generate ghosting, we used a function provided by the TorchIO library (<torchio.

readthedocs.io>), which allows us to set the number of ghosts, its intensity, and on which

axis the ghosts are spread. We generated 10 ghosting examples at intensities 1 through 10 in

Fig. 3.12.

3.3.6 JPEG compression

JPEG is a common image compression method and stands for Joint Photographic Experts

Group, which is the name of the committee that created the standard(WALLACE, 1992).

JPEG is a commonly used method of lossy compression for digital images, particularly for

photographs. In JPEG, it is possible to set a compression quality level, and the lower the

quality, the smaller the compressed file. Images compressed with lower levels of quality may

have different types of artifacts, such as loss of details, quantization noise, blockiness, color

inaccuracies, and false contours, among others.

torchio.readthedocs.io
torchio.readthedocs.io
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Figure 3.11: MRI with artificially applied contrast artifact with levels from 1 to 10, increasing
from left to right and top to bottom.
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Figure 3.12: MRI with artificially applied ghosting artifact with levels from 1 to 10, increasing
from left to right and top to bottom.
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We generated JPEG compression artifacts using the Opencv imencode function, with which

is possible to set the compression quality percentage. We set the intensity of the JPEG com-

pression artifact as a function of the quality percentage, controlled by an intensity control

parameter, as

JPEGquality = 100− 9 · intensity, (3.12)

and generate examples of 10 compression intensities, shown in Fig. 3.13 , where the blockiness

aspect can be identified, mostly in the bottom two images.

3.4 PERFORMANCE METRICS

Defining quality standards for medical content remains a non-trivial task, as the focus

should be on the diagnostic value evaluated by the expert (RODRIGUES et al., 2022). In most

healthcare applications, end-user quality perception is likely to be strongly influenced by the

clinical utility of the content, rather than strictly aesthetic criteria (RODRIGUES et al., 2022).

An indirect way to measure the diagnostic value of a set of images is to measure the accuracy

of the machine learning models used to perform diagnostic predictions on those images.

The peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM)

are the two most commonly used quality metrics for image restoration (ABDELHAMED et

al., 2018). Although both PSNR and mean SSIM (MSSIM) are good metrics for medical

image quality, PSNR is not well correlated with human evaluations (RODRIGUES et al., 2022;

OSZUST, 2016). In this work, we focus on the MSSIM metric for image restoration quality

measurement.

3.4.1 Structural Similarity Index Measure (SSIM)

The structural similarity index measure (SSIM), proposed by (WANG et al., 2004), performs

an image quality assessment based on the degradation of structural information by comparing

two images. The method first computes local statistics in an 11x11 window, using a circular

symmetric Gaussian weighting function so that pixels closer to the center of that window have

a larger weight.
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Figure 3.13: MRI with JPEG compression artifact with intensity levels from 1 to 10, increasing
from left to right and top to bottom.
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Given two non-negative image signals, x and y, the local statistics are the weighted average

µx =
∑
i

wixi, (3.13)

the weighted standard deviation

σx =

(∑
i

wi(xi − µx)
2

)1/2

(3.14)

and the weighted covariance

σxy =
∑
i

wi(xi − µx)(yi − µy), (3.15)

where wi is the weight drawn from the circular symmetric Gaussian weighting function.

These statistics are used to perform three comparisons between the two signals. These three

comparisons are: a luminance comparison defined as

l(x,y) =
2µxµy + Cl

µ2
x + µ2

y + Cl

, (3.16)

a contrast comparison defined as

c(x,y) =
2σxσy + Cc

σ2
x + σ2

y + Cc

, (3.17)

and the structure comparison defined as

s(x,y) =
σxy + Cs

σxσy + Cs

, (3.18)

in which Cl, Cc and Cs are constants used to avoid denominators close to zero, and µx, µy, σx, σyσxy

are the statistic values calculated with equations 3.13, 3.14, 3.15 for signals x and y.

With an adjustment of the constant values and multiplying the three comparison values,

the SSIM is obtained in a single function as

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3.19)

in which C1 and C2 are constants used to avoid denominator too close to 0. C1 is set to 0.01

and C2 to 0.03.

To obtain the similarity of the entire images, a sliding-window method is applied, obtaining

the SSIM value for every spatial position in the images. The final similarity between both

images is obtained as the mean SSIM (MSSIM) value of the whole images as

MSSIM(im1,im2) =
1

M

M∑
i

SSIM(im1[i],im2[i]), (3.20)
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in which im1 and im2 are the two images being compared, M is the total number of 11x11

windows in the images and im1[i] and im2[i] are the i − th windows in images im1 and im2,

respectively. In the survey by (RODRIGUES et al., 2022), the SSIM metric had the best corre-

lation with the evaluation of professionals in work using ultrasound and computed tomography

(CT) images, in particular brain CT.

3.4.2 Accuracy

Accuracy may be defined as the ratio of correctly predictions out of all predictions as

Accuracy =
CorrectPredictions

Totalpredictions
(3.21)

and is the most common performance metric for classification problems (ISLAM et al., 2024). In

this work, the accuracy metric is also used as an indirect performance metric for the restoration

model. The better an image is restored, the better a classification model will perform on that

image.

3.5 NEURAL NETWORK FUNDAMENTALS

In this section, we define the functions used in the design of neural networks that were used

in the development of this work.

The basic function of a neural network is the perceptron(ROSENBLATT, 1958), with a

perceptron layer being defined as

f(X) = φ(WTX + B), (3.22)

in which X is the input of the function, W are the layer weights, B are the bias terms

and φ is a non-linear activation function. W and B are parameters that are adjusted during

the training, or learning, procedure of the neural network, with an algorithm called the delta

rule, in which the trainable parameters of the neural network are adjusted so that its output

approaches the expected output from the training data.
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A multilayer perceptron (MLP) can then be defined as a sequence of perceptrons as

fn(X) = φ(WTfn−1(X) + B), (3.23)

for a MLP with n perceptron layers, fn being the n-th perceptron layer and other terms being

equivalent to that of equation 3.22. The most common method of training neural networks with

multiple layers is the backpropagation algorithm, in which the error propagates from the final

layer of the network to earlier layers based on error gradient propagation (RUMELHART et

al., 1986a; RUMELHART et al., 1986b). A common problem in training deep neural networks

are the vanishing gradient, in which the scale of the gradients decreases at each layer, making

model training particularly challenging for very deep neural networks (HOCHREITER, 1998).

One popular variation of the neural network for image tasks is the convolutional neural

network (CNN)(FUKUSHIMA, 1980), which replaces the simple linear function of the percep-

tron for a convolution operation, as

f(I) =
C∑
c=0

wc ∗ Ic, (3.24)

where textbfI is the input with C channels, c is the channel index, wc is the convolutional

kernel for the c-th channel and f is the convolutional function. The convolutional layer is

usually followed by a non-linear activation function.

While the perceptron layer generates sets of scalar outputs, the convolutional layer generates

sets of n-dimensional arrays, usually two-dimensional for images. Since the convolution operator

applies the same weights to every position of the input, the convolutional layer detects patterns

with position invariance. A convolutional layer is usually defined by the size of the convolutional

kernel (1x1, 3x3, etc.). Since the convolutional kernel is usually smaller than the input image,

the layer usually only detects local patterns within the image, and several layers are required

to recognize larger or global patterns.

3.5.1 Activation Functions

The main purpose of the activation functions in a neural network is to add nonlinearity to

the model, enabling it to adapt to nonlinear problems. Activation functions have also been

used to project values to constrained ranges, for example [0,1] or [-1,1].
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3.5.1.1 Sigmoid and Hyperbolic Tangent

The sigmoid function (ROSENBLATT, 1958) is defined as

σ(x) =
1

1 + e−x
(3.25)

which is a monotonic function, i.e. its values only increase, constrained to the range (0,1). The

function may be seen as a smooth differentiable version of the step function and its output

may be interpreted as a probability of a true value. The differentiable property of this function

enables it to be used in a model trained with back-propagation.

An alternative, the hyperbolic tangent (LECUN et al., 2015) function is defined as

tanh(x) =
e2x − 1

e2x + 1
, (3.26)

having a similar S shape as the sigmoid function, but the tanh is symmetric around the 0 value,

being constrained to the range (-1,1) instead of (0,1).

3.5.1.2 Softmax

The softmax function was proposed as a normalized exponential function that turns a matrix

of values into an array of probabilities (BRIDLE, 1990). The function defined by

softmax(xk) =
exk∑
i e

xi
, (3.27)

where return values are in the range 0-1 just like the sigmoid function. However, contrary to

the sigmoid function, the output of each element in the Softmax function is dependent on the

other values of the input array, with all the output elements adding up to 1. In this manner,

the Softmax function treats each output as mutually exclusive, i.e. one and only one output

is expected to be true and the Softmax function gives the probability of each input being the

true value.

The Softmax function is often used at the output of networks in multiclass classification

problems, in which only one class is expected to be the correct class. However, some works such

as (VASWANI et al., 2017) have used the function as an activation function in intermediate

layers of deep neural networks, using it to generate a mask for a weighted average operation.



3.5 – Neural Network Fundamentals 32

Figure 3.14: Graphical view of the ReLU (left) and leaky ReLU (right) functions, extracted
from (HE et al., 2015)

3.5.1.3 Rectifier Linear Activation Unit

The Rectifier Linear Activation Unit (ReLU) (NAIR; HINTON, 2010; JARRETT et al.,

2009; KRIZHEVSKY et al., 2012; KRIZHEVSKY et al., 2017) is an activation function defined

as

f(x) = max(0,x). (3.28)

In this function, only negative values are modified, set to zero. Since positive values are not

affected by this function, it allows the gradient to propagate unchanged to earlier layers in the

back-propagation algorithm. As a consequence, these functions make it easier and faster to

train deeper neural networks.

One downside of the ReLU is that for negative values the gradient becomes zero. A gene-

ralization of the ReLU that deals with this problem is the leaky ReLU (MAAS et al., 2013)

defined as

f(x) = max(αx,x), (3.29)

where negative values are multiplied by a constant value α, usually set to 0.001, so that there

is a non-zero derivative for negative values. For α = 0, the function becomes equivalent to the

ReLU function.

3.5.1.4 Non-Monotonic activation functions

While most previously mentioned functions are monotonic, i.e. have only increasing or de-

creasing values, more recent works have shown that non-monotonic activation functions achieve

better network performance in various tasks, including natural language processing and com-

puter vision.
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Figure 3.15: Visual comparison of the ReLU, ELU and GELU activation functions, extracted
from (HENDRYCKS; GIMPEL, 2016).

The Gaussian Error Linear Units (GELUs)(HENDRYCKS; GIMPEL, 2016) is a non-saturating,

non-monotonic activation function defined by

GELU(x) = xΦ(x), (3.30)

where Φ(x) is the standard Gaussian distribution function. The GELU activation function may

be approximated by

GELU(x) = 0.5x(1 + tanh(
√
2/π(x+ 0.044715x3))) (3.31)

and can be seen as a smoothed version of ReLU, having the same two asymptotes. A visual

comparison of the ReLU and GELU functions can be seen in Figure 3.15.

Another popular non-monotonic, non-saturating activation function is the Sigmoid Linear

Unit (SiLU), also referred to as swish (RAMACHANDRAN et al., 2017) defined by

SiLU(x) = xσ(x) (3.32)

where σ(x) is the sigmoid function, though it is argued that this function has poorer perfor-

mance compared to GELU(HENDRYCKS; GIMPEL, 2016). These non-monotonic activation

functions were shown to have consistent improved performance over the variations of the Rec-

tifier Linear Units and have been adopted in several modern neural networks.

3.5.2 Normalization

Normalization for neural networks usually refers to the adjustment of data to have 0 mean

and unit standard deviation, that is, a standard deviation equal to 1. This is defined in equation



3.5 – Neural Network Fundamentals 34

form as

x′ =
x− µ

σ
, (3.33)

where x is the input data, µ is its mean value and σ is its standard deviation. It is common for

images to be normalized before being passed as input to a neural network, taking into account

the mean and variance of the entire dataset or popular datasets such as the ImageNet dataset

(DENG et al., 2009).

3.5.2.1 Batch Normalization

As normalization of the images helped improve image recognition, normalizing the output of

intermediate layers of deep neural networks with a layer called batch normalization (BN) results

in faster training and more accurate models (IOFFE; SZEGEDY, 2015). Batch normalization

normalizes data following the equation

y =
x− E[x]√
V ar[x] + ϵ

· γ + β, (3.34)

where ϵ is a small value to avoid division by 0, γ and β are learnable parameters initialized

with 1 and 0, respectively, E[x] is the channels-wise mean value of all elements in a batch and

V ar[x] is the variance of those values.

In this context, batch refers to the subset of data used in each training iteration. When this

function is set to inference or evaluation mode, E[x] and V ar[x] are replaced by the running

mean and variance instead of the batch mean and variance, so it will work for individual images.

Note that the subtraction of the mean value nullifies the effect that the bias would have in the

previous linear layers. For this reason, it is standard practice to remove the bias term from

linear layers when training with normalization layers, though the β term replaces the effect of

bias.

3.5.2.2 Sample Normalization

One problem with batch normalization is its increased error when training with small bat-

ches, e.g., with fewer than 16 samples, as shown by (WU; HE, 2018). To avoid this problem,

alternative normalization layers have been proposed in which the mean and standard deviation
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Figure 3.16: Visual comparison of different normalization layers based on the subset of data
used. Taken from (WU; HE, 2018)

are calculated per sample instead of per batch, which work better for smaller batch sizes.

Like batch normalization, the instance normalization (IN) layer proposed by (ULYANOV

et al., 2016) calculates the mean and standard deviation per channel, but for each individual

sample instead of the whole batch. The layer normalization (LN) function defined by (BA et

al., 2016) calculates the mean and standard deviation for all channels in a layer, separated

by sample. As a generalization between these two approaches, (WU; HE, 2018) proposed the

group normalization (GN) layer, in which the mean and standard deviation are calculated per

channel group. Figure 3.16 provides a visual comparison between BN, IN, LN and GN.

One difference between batch normalization and sample normalization layers is the fact

that sample normalization layers are the same at training and test time. No running mean and

standard deviation are calculated during training to be used at test time, instead those values

are calculated for each test sample.

3.5.3 Down-sampling and Up-sampling

Convolutional layers are responsible for processing images or feature maps with a spatial

configuration denoted by W×H. The computational load of these layers is directly proportional

to this configuration size, whereas the convolutional kernel processes only a limited portion

of these matrices. The term down-sampling encompasses operations aimed at diminishing the

spatial dimensions of these matrices, which can be generally expressed as

Ox,y = F (Ik1x,k2y) (3.35)

, where Ox,y represents the output at the spatial position (x,y), F denotes the downsampling

function, I signifies the input plane, and (k1,k2) is the downsampling factor, commonly known

as stride.
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The simplest downsampling operation is the identity function, simply skipping data and

outputting every k-th value (HE et al., 2016). Other common operations are the average poo-

ling (HUANG et al., 2017) and Max Pooling (KRIZHEVSKY et al., 2012), which, respectively,

take the mean and maximum value in a region around the k-th value of the input. Another

option, the stride convolution(HE et al., 2016) is a convolutional layer that skips the input

positions.

After downsampling, the receptive field of a convolutional kernel will be a larger percentage

of the input plane and consequently process higher-level features, closer to the global features

of an image. The reduced spatial size of downsampled planes also reduce the computational

cost of following layers; for this reason, it is common to increase the number of planes after

down-sampling, or rather down-sampling is applied before increasing the number of channels

to avoid excessive computational cost.

Upsampling serves as the inverse operation to downsampling, functioning to augment the

spatial dimensions of feature maps. This technique is employed when the production of a

higher resolution output, characterized by more intricate details, is necessary. Techniques for

upsampling encompass interpolation methods and transposed convolution, also known as the

deconvolutional layer (ZEILER et al., 2010).

3.5.4 Residual Connections

The residual function was proposed as the basic building block of deep neural networks by

(HE et al., 2016), defining the residual function as

f(x) = R(x) + x, (3.36)

where R(x) is a residual function, containing the linear layers and activation functions of the

neural network, which is added to the input of the function. The addition of the input, x, is

also referred to as skip connection or main branch, while the residual function may be referred

to as residual branch.

One advantage of the residual function is that the skip connection allows for the gradient to

flow more easily to earlier layers, allowing the training of even extremely deep neural networks

with over a thousand layers, although the use of residual functions has also been shown to
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improve the performance of models with fewer than 10 layers (ZAGORUYKO; KOMODAKIS,

2016).

When the residual branch down-samples the feature maps or changes the number of output

channels, the residual function is changed to

f(x) = R(x) + I(x), (3.37)

where I(x) is a function, known as identity mapping, parameterized or not, that changes its

input to the same shape as the output of the residual branch. The identity mapping has fewer

layers and parameters than the residual branch, so that the gradient is still less affected by this

branch than by the residual branch. Common identity mapping functions are average pooling

with channel zero padding and strided convolution. However, some works have preferred to

completely remove the skip connection when the output of the residual branch does not have

the same shape as its input (TAN; LE, 2019).

3.5.5 Attention mechanisms

Attention may be understood as the mechanism in which part of the information is selected

to be processed, while the rest of the information is ignored. In machine learning, particularly

deep learning, this can be done by assigning weights in the range [0,1] to each input value. If an

input is multiplied by a weight close to 0, that input has little to no effect on the output of the

layer, so that this input is ignored and consequently the layer pays attention to the other input

values that were assigned larger weights. Two attention mechanisms used in computer vision

are the scaled dots product attention used by transformer models (VASWANI et al., 2017) and

the squeeze-and-excitation layer (HU et al., 2018).

3.5.5.1 Squeeze-and-Excitation layer

Hu et al. introduced a channel self-attention mechanism referred to as a squeeze and exci-

tation (SE) layer (HU et al., 2018). This component, depicted in Figure 3.17, is characterized

by the function

SE(x) = σ(ff(GAP (x))) · x, (3.38)
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Figure 3.17: Squeeze-and-Excitation layer. Image taken from (HU et al., 2018).

where GAP denotes the global average pooling function, which calculates the channel-wise

average. The sigmoid function is denoted by σ, and ff represents a feed-forward neural network

comprising two linear layers interposed by a ReLU activation function. A critical parameter

for the SE layer is the number of hidden units within the feed-forward neural network, which

is typically set to one-quarter of the input channels.

The sigmoid function makes it so that the soft weights applied to each channel are in the

range [0,1]. Channels multiplied by values close to 0 are disabled, and therefore the network

will pay attention to the features of the channels that were not disabled. Since the layer uses

the average value of each channel, instead of the entire channel, this layer has significantly less

computational cost than a convolutional layer. The GAP function also helps include global

information in convolutional layers that only process local features.

3.5.5.2 Transformer

The transformer model proposed by (VASWANI et al., 2017) has become a new standard

in artificial intelligence. The model, initially proposed for language translation, is based on an

attention mechanism that processes token vectors associated with each words. The model has

since been adapted to other tasks, including image recognition and restoration.

The transformer attention function, known as scaled dot product attention, shown in Figure

3.18, takes as input three matrices identified as query (Q), key (K) and value (V), in which

each matrix row is a vector associated with one token. Each row in the key and value matrices

is associated with the same token. Each query vector may come from a different source than

the key and value vectors, but if it comes from the same source, the attention function becomes

a self-attention function.
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Figure 3.18: Scaled dot product attention. Image taken from (VASWANI et al., 2017).

The scaled dot-product attention is defined by

eij =
< qi,kj >√

dk
, (3.39)

where qi is the i-th query vector, kj is the j-th key vector, dk is the length of each vector and

eij may be referred to as energy between query i and key j, following the nomenclature used

in (BAHDANAU et al., 2014). When the direction of the vectors q and k is more similar, the

energy value will be greater. One may then interpret this as the key vector being a descriptor

for each token, the query vector being an information being searched (queried) and that the

energy indicates how much of a match the key token is to the queried information.

The Softmax function is then used to adjust the energy values to the [0,1] range, as

pij =
exp(eij)∑
m exp(eim)

, (3.40)

where pij could be interpreted as the relative level of importance that the j-th key token has

to the i-th query token. The term dk was added to the equation 3.39 to avoid large values that

would result in extremely low gradients in the softmax function, thus improving training.

The final output for each query vector is then defined by

ci =
∑
j

pij · vj, (3.41)

where cj is a vector with the same length as the vj vector, and is equivalent to a weighted

average of the value vectors, giving larger weights to the tokens that have more importance to

the i-th token.
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Figure 3.19: Multi-head self attention. Image taken from (VASWANI et al., 2017).

This process may be implemented for all query-key pairs using optimized matrix operations

as

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V. (3.42)

Instead of performing a single attention function in each block, (VASWANI et al., 2017) pro-

poses to project linearly the h-times Q, K, V vectors and perform h-times attention functions

in parallel, shown in Figure 3.19. Each parallel attention unit is referred to as a head and the

output of each head is defined as

headi = Attention(QWqi,KWki,V Wvi). (3.43)

The output of each head is then concatenated and linearly projected into a single output,

such that the output of the multi-head attention unit is defined by

MultiHeadAttention(Q,K,V ) = concat(head1,..,headh)Wo. (3.44)

Subsequently, the multi-head attention mechanism is encompassed within a residual block,

and each residual block is followed by a layer normalization operation. In addition to the

attention component, the transformer architecture incorporates a feed-forward residual block.

Consequently, the transformer encoder is composed of alternating feed-forward and multi-head

self-attention blocks. The attention mechanism inherent in the transformer model processes all

input tokens; therefore, a positional encoding must be appended to each token to ensure the

model considers the positional context of each word within a sentence.
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Figure 3.20: Vision transformer (ViT) architecture. Image taken from (DOSOVITSKIY et al.,
2020).

3.5.5.3 Vision Transformer

The original transformer model (VASWANI et al., 2017) was proposed for language tasks,

but (DOSOVITSKIY et al., 2020) adapted the model for image classification, defining the

Vision Transformer (ViT), shown in Figure 3.20, surpassing CNN performance and setting a

new state of the art in the ImageNet dataset.

To adapt images to the transformer model, each image is split into 16x16 patches and each

patch is then projected into a vector token. This can be done with a 16x16 convolution with

stride of 16. In addition to these input tokens, one additional token is added, the classification

token, with learnable parameters. After the transformer encoder processes all tokens, the

classification token is then extracted, and used as input features in a MLP to perform the

classification.

The vision transformer only performs self attention, meaning the query, key and value

vectors are all projections from the input tokens. For image classification, the vision transformer

only has the encoder part of the transformer. The transformer blocks were slightly adapted,

mainly by the normalization layer placement. The layers in the vision transformer encoder are

defined by two residual blocks

x′
i = xi−1 +MHSA(LN(xi−1)) (3.45)
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Figure 3.21: Sample representations of attention from the output token on the input space from
a ViT model. Image taken from (DOSOVITSKIY et al., 2020).

and

xi = x′
i +MLP (LN(x′

i)), (3.46)

where xi are the tokens at the i-th residual block pair, MHSA is the Multi-head self-attention

function, MLP is a multi-layer perceptron and LN is the Layer Normalization function (BA

et al., 2016). As a standard, the linear projections increase the number of channels of xi, C,

to 4C within each residual function. It is possible to notice a similarity between the residual

MHSA and the ResNext block (XIE et al., 2017), in which spatial operations are performed in

groups operations, in the middle of two point-wise linear projections. The attention function

may be projected on the input as a highlight of the relevant regions of the image, as shown in

Figure 3.21.

Several works improved the vision transformer design by adopting common CNN design

practices. One such adaptation is to divide the vision transformer into stages in which each

stage reduces the resolution of the previous stage while simultaneously increasing the number of

channels, similar to the hierarchical structure of CNNs (HEO et al., 2021; WANG et al., 2021;

GRAHAM et al., 2021), as shown in Figure 3.22. This adaptation is shown to obtain better

model accuracy and throughput (images/second), compared to the single-stage transformer.

(HEO et al., 2021) argues that this hierarchical structure with stages with different scales
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Figure 3.22: Hierarchical transformer architecture with shifted windows. Image taken from
(HUANG et al., 2021)

helps to improve the generalization of the model, as the original ViT does not improve the

validation performance when training performance increases. (WANG et al., 2021) shows that

the multistage structure, enables the model to be trained task besides classification, such as

object detection and image segmentation.

Another modification of ViT to make it more similar to CNNs is to remove the classification

token and instead perform an average pool of tokens at the end of the encoder to generate the

classification features (GRAHAM et al., 2021). One processing bottleneck of the transformer

architecture is the fact that matrix multiplications in the attention layers have computational

cost quadratically proportionate to the number of input tokens (the input resolution), so that

the computational cost of the multi-head self-attention function is

cost(MHSA) = C(WH)2, (3.47)

where C is the number of channels in the attention function, and (WH) are the number of

tokens, associated with the input resolution, (W,H), in which W is the input width and H is

the input height.

An approach to reduce this computational cost in the attention function is to split the

input channels into windows and apply the attention function within each window, instead of

the entire input (LIU et al., 2021; CHU et al., 2021), as shown in Figure 3.23. With this window

splitting approach, the computational cost of the window multi-head self-attention becomes

cost(WMHSA) = C(winwwinh)
2 W

winw

H

winh

, (3.48)

where winw and winh are the windows width and height, respectively, and WH
winwwinh

is the total

number of windows in the input. In this case, when the resolution increases the number of
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Figure 3.23: Feature maps split in windows for window-attention function. Image taken from
(LIU et al., 2021)

windows increases and the computational cost increases only linearly. With this adaptation,

however, the self-attention function no longer performs global attention, instead local attention

is performed.

An alternative approach to the vision transformer architecture involves the integration of

convolutional layers within the transformer framework, resulting in a hybrid transformer-CNN

architecture. Through a series of experimental evaluations, (DAI et al., 2021b; RAMACHAN-

DRAN et al., 2019; GRAHAM et al., 2021) demonstrated that deploying convolutional blocks

in the initial stages of the network, followed by transformer blocks in the latter stages, provi-

des superior performance compared to any configuration ranging from entirely convolutional

to entirely transformer-based blocks. Unlike CNNs, vision transformers inherently lack an in-

ductive bias to concentrate on spatially proximal elements; incorporating convolutions in the

architecture introduces such a bias (GRAHAM et al., 2021).

3.5.6 Autoencoder

An autoencoder (AE) is a neural network that is used to reconstruct input data (LI et al.,

2023). Since it doesn’t require labels it is usually considered an unsupervised training model

and method. An autoencoder is typically split into two parts, the encoder and the decoder.

The encoder part learns the features of the input data and transfers them to another data space

with a meaningful representation. The decoder part of the autoencoder restores the data from
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this representative space to the original data space, restoring the image to its original form.

The denoising autoencoder (DAE) (VINCENT et al., 2008) is a variation of the conventional

autoencoder in which noise is added to the input data, but its target output is the original

input data without the added noise. The learning objective of these models is to reconstruct

the original input from the contaminated input.

3.5.7 U-shaped networks

CNNs used for classification tasks typically apply successive down-sampling layers, lowering

feature resolution until the final label output. However, for several visual tasks, such as segmen-

ting biomedical images, the output needs to have a resolution similar to that of the input image.

One popular model that generates this output is the proposed UNet model (RONNEBERGER

et al., 2015) for biomedical image segmentation.

The UNet architecture consists of a contracting path and a corresponding expansive path.

Each stage of the contracting path ends with a downsampling layer, while each stage of the

expansive layers starts with an upsampling layer, so that each contracting stage has a correspon-

ding expansive stage with similar resolution. In addition to those stages there is a bottleneck

stage in between the contracting and expansive paths. The visual representation of this network

resembles an U shape, as shown in Fig. 3.24.

When features undergo downsampling, subsequent convolutional layers achieve an increased

receptive field relative to the input image, owing to the reduced resolution, thus enhancing con-

textual feature representation. However, this reduction in resolution compromises the precision

of feature localization. To attain both comprehensive contextual representation and precise fe-

ature localization, each expansive stage initiates by concatenating the high-context upsampled

feature with the high-resolution output of its corresponding contracting stage. Consequently,

the expansive path benefits from precise feature localization derived from the contracting path,

while preserving contextual richness from the upsampled features.

The design of UNet inspired the design of several other neural network architectures for

tasks with high-resolution output, including biomedical image segmentation (ZHOU et al.,

2018; JHA et al., 2019; TOMAR et al., 2022) and image restoration (MUCKLEY et al., 2021;
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Figure 3.24: UNet architecture for biomedical image segmentation. Image taken from (RON-
NEBERGER et al., 2015).

WANG et al., 2022; ZAMIR et al., 2022).

3.6 MODELS TRAINING

Machine learning models have two types of parameters, the model parameters that can be

initialized and updated through the learning process, and the hyperparameters that have to be

defined before the learning process and are used to configure the model or specify the learning

algorithm (YANG; SHAMI, 2020). The model configuration hyperparameters are the ones that

define the model architecture, such as the number, size, and type of layers, e.g., the layer types

described in Section 3.5 and its dimensions. The other type of hyperparameter specifies the

learning procedure, also known as model training or fitting, in which other aspects are defined

such as the training method and the learning rate value. In this section, we present the funda-

mentals for training a deep learning model with the gradient descent algorithm (RUMELHART

et al., 1986b).

The training procedure of a neural network model with backpropagation typically can be
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done as a sequence of steps:

1. Initialization of parameters: Initial weights of the model are defined.

2. Data sampling: A subset of the training data is selected to be used as input data for the

model.

3. Data preprocessing: performs modifications to the input data and sometimes to the target

expected output as well.

4. Forward pass: The model predicts the output for the input data given.

5. Loss estimation: the difference between the predicted and expected output is measured

on the basis of a loss function.

6. Backpropagation: The loss is propagated to all layers of the model through the backpro-

pagation algorithm and the gradients at each parameter are estimated.

7. Weight update: The network parameters are updated on the basis of the gradients and

an optimization algorithm.

8. End condition: If the total number of training iterations or epochs, or another stop

condition was reached, the training stops. Otherwise, the gradients at each layer are

zeroed and the training procedure returns to step 2.

Common problems in training a neural network are underfitting, overfitting, exploding, and

vanishing gradient problems. The problems of vanishing/exploding gradients are associated

with unstable gradients during back-propagation in multilayer models, as described in Section

3.5. Underfitting refers to the problem when the proposed model is not capable of capturing

the variability of the data or the training was not long enough to properly fit the model to the

data (JABBAR; KHAN, 2015; POTHUGANTI, 2018).

Overfitting refers to the problem in machine learning when a model does not generalize well

to unseen data, i.e. the model performance on new unseen data is worse than on data from the

training set (YING, 2019; JABBAR; KHAN, 2015; POTHUGANTI, 2018). Common solutions

to the overfitting problem include early stopping, network reduction, regularization, and dataset

expansion. In early stopping, the training procedures stop once the validation accuracy stops
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improving, before the total defined training iterations. Network reduction works by removing

less relevant data from the model and reducing its complexity. Dataset expansion consists of

increasing the number of training samples, which can be done by acquiring more data, creating

more data, or creating modified versions of existing data, known as data augmentation. The

larger the model, the more data that are required for that model to be effective (KOLESNIKOV

et al., 2020).

Common aspects of the training procedure that warrant some attention are: parameter

initialization, data augmentation, regularization, optimizers or optimization algorithm, loss

functions and learning rate scheduling.

3.6.1 Parameters initialization

The final parameters of a neural network at the end of training depend on the initial values

of the neural network. Linear layers are usually initialized with random values; however, some

studies have shown that specific distributions of these values can lead to more stable training

and a more accurate final model. Another method of initializing the values of model parameters

is by copying the parameters of another equivalent model trained on a different dataset, in a

process known as transfer learning.

3.6.1.1 Normalized Initialization

Since the exploding and vanishing gradient problems (HOCHREITER, 1998) occur due to

a change in the scale of gradients during back-propagation, these problems could be avoided

if the gradient calculations in each layer did not change the scale of the error being back-

propagated. (GLOROT; BENGIO, 2010) proposed to achieve this by initializing weights so

that the output of each linear layer would have zero mean and unit variance, which could be

referred to as normalized initialization. (HE et al., 2015) adapted the initialization method to

take into account the effect the ReLU activation function would have on the gradient, enabling

stable training of deeper CNN models. Weights are initialized with random values sampled
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from a normal distribution, N (0, σ2) where

σ =
af_gain√

W/O
, (3.49)

where W is the number of weights in the layer, O is the number of output planes for that layer

and af_gain is a gain related to activation function after that layer, usually
√
2 for the ReLU

function. A similar process is used when initializing weights with different distributions, such

as the uniform distribution and different activation functions.

3.6.1.2 Transfer Learning

Training deep learning models with strong performance requires a large amount of data and

compute, which may be prohibitive for a specific deep learning task (KOLESNIKOV et al.,

2020). A solution to this problem, known as transfer learning, is to first train a model on a

large generic dataset and then use its weights to initialize models for subsequent task, with

reduced data and computation. With transfer learning, only task-specific layers of the network

are replaced and initialized with a random distribution, e.g. the classification layer of a network

is replaced with a layer with the correct number of target classes. Models pre-trained on large

datasets are often available online and can be used as model initialization for new tasks.

3.6.2 Regularization

Regularization aims to limit the influence of useless features in the training process, usually

by adding a penalty term to the training process. Such methods include regularization of the

L2 norm and the dropout layer.

3.6.2.1 Weight Decay

The L2 norm regularization, also known as weight decay regularization in deep learning

papers, uses the Euclidean distance as the penalty term (HANSON; PRATT, 1988; GOOD-

FELLOW et al., 2016; YING, 2019; ANDRIUSHCHENKO et al., 2023) defined as

Ω(θ) = ∥θ∥2 =
√
Σiθ2i , (3.50)
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where θ are the model parameters. Based on the Pytorch implementation (PASZKE et al.,

2017), weight decay can be introduced in the weight update from equation ?? with a weight

decay parameter λ as

θk = θk−1 − η(∇θJ(θ) + λΩ(θ)). (3.51)

3.6.2.2 Dropout

Dropout is a method to prevent overfitting in which units in the network are randomly

dropped (SRIVASTAVA et al., 2014), or alternatively, their value is set to 0 (zero). This

method aims to prevent units from co-adapting. The dropout has a single parameter p that

indicates the probability that a unit is dropped during the test time. Variations of the dropout

include the spatial dropout (TOMPSON et al., 2015), which drops an entire plane, and the

drop-block (GHIASI et al., 2018), which drops a region within the feature map.

3.6.3 Learning Rate Scheduling

The learning rate is usually considered the main hyperparameter in neural network training.

Instead of defining a fixed learning rate, a more effective practice is to adjust the learning rate

throughout the training procedure, usually starting at a large value and decreasing through the

training. This process is referred to as the learning rate schedule.

Although standard practice starts with a high learning rate, deeper models might struggle

to stabilize training at high learning rates. For this reason (HE et al., 2016) proposed to linearly

increase the learning rate from a very low value to the maximum value during initial iterations,

helping stabilize training. This process is referred to as learning rate warm-up.

Although the standard practice was to decay the learning rate by multiplying it by a constant

value (< 1), called step learning rate decay; (LOSHCHILOV; HUTTER, 2016) showed that

decay of the learning rate according to the cosine function led to better performance. (HE et

al., 2019) proposed a simplified version of this cosine decay as

ηt = ηmin +
1

2

(
1 + cos

(
tπ

T

))
(ηmax − ηmin), (3.52)

where t is the iteration number, T is the total number of iterations, ηmax and ηmin are the



3.6 – Models training 51

Figure 3.25: Learning rate schedule with warmup and cosine decay. Image taken from (HE et
al., 2019)

maximum and minimum learning rate, respectively, and ηt is the learning rate at iteration t.

The complete learning rate schedule then consists of a warm-up stage followed by cosine

decay, as exemplified in Figure 3.25. In this case, the variable t and parameter T in equation

3.52 only consider the iterations after the warm-up is done.

As an alternative to the decrease in learning rate, (SMITH et al., 2017) proposed to increase

the batch size instead to a similar effect. Based on this work, it should be noted that learning

rate should be proportionate to the batch size.

3.6.4 Optimizers

Optimizers refers to the algorithms used to update the parameters of deep neural networks.

Most of these algorithms use the backpropagation algorithm to obtain the error gradient of each

network parameter and use these values to update the neural network parameters. Two of those

algorithms available in the Pytorch framework are the stochastic gradient descent (RUDER,

2016) and the AdamW (LOSHCHILOV, 2017) optimizers.

3.6.4.1 Stochastic Gradient Descent

The gradient descent algorithm updates the parameters based on the gradient computed

from the training data. Three different gradient descent algorithms may be defined based on

how much data is used in each update step (RUDER, 2016). Batch gradient descent uses the

entire training set at each iteration, stochastic gradient descent uses a single sample, and mini-

batch gradient descent uses an arbitrary number of samples at each training step. The Pytorch
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framework, however, uses the term stochastic gradient descent (SGD) to refer to this algorithm

in a more general manner, independently of the amount of data used in each iteration. The

basic SGD algorithm is defined by

θt = θt−1 − η∇θJ(θt−1, x
(i:i+n), y(i:i+n)), (3.53)

where θt are the parameters at iteration t, η is the learning rate hyperparameter and∇J(θ, x(i:i+n, y(i:i+n))

are the gradients calculated with training samples i to i+ n and the parameters from iteration

t− 1.

To accelerate the SGD in relevant directions and dampening oscillations, the SGD algorithm

can be improved by a momentum term (QIAN, 1999; RUDER, 2016) and the algorithm is

updated to
vt = γvt−1 + η∇θJ(θ)

θt = θt−1 − vt,
(3.54)

where vt is a velocity variable, γ is the momentum hyperparameter, usually set to 0.9 or similar

values, and the remaining algorithm is equivalent to equation 3.53. The momentum SGD

algorithm can be further improved as the Nesterov accelerated gradient (NAG) (SUTSKEVER

et al., 2013; RUDER, 2016) algorithm defined as

vt = γvt−1 + η∇θJ(θ − γvt−1)

θt = θt−1 − vt,
(3.55)

where the gradient is calculated based on the predicted value of the parameter instead of the

current value.

3.6.4.2 AdamW

(KINGMA, 2014) proposed Adam, an optimizer based on adaptive estimates of lower-order

moments. Like SGD, it starts by calculating the gradients during backpropagation at iteration

t as

gt = ∇θJ(θt−1). (3.56)

The adam optimizer then computes the bias-corrected first moment estimate, m′
t, and the
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bias-corrected second raw moment estimate, v′t,

mt = β1 ·mt−1 + (1− β1) · gt

vt = β2 · vt−1 + (1− β2) · g2t

m′
t = mt/(1− βt

1)

v′t = vt/(1− βt
2),

(3.57)

where β1 and β2 are momentum parameters, usually set to 0.9 and 0.999, respectively. With

the moments estimates, the parameters are then updated by

θt = θt−1 − α ·m′
t/(
√
v′t + ϵ), (3.58)

where α is the learning rate, usually set to 0.001 and ϵ is a constant included to avoid division

by zero, usually set to e−8.

In the Adam optimizer, the weight decay regularization would usually be incorporated in

equation 3.56. (LOSHCHILOV, 2017) proposed the Adam with decoupled weight regulari-

zation, also known as AdamW, in which the weight decay regularization is instead added at

equation 3.58. The modified equation with decoupled weight decay becomes

θt = θt−1 − ηt(α ·m′
t/(
√
v′t + ϵ) + λθt−1), (3.59)

where λ is the weight decay hyperparameter and ηt is a scheduled multiplier, which can be

obtained through a learning rate scheduling function, as defined in Section 3.6.3.

3.6.5 Loss functions

A loss function is used to compare the predicted output of a model with its desired output,

or ground truth, measuring the difference or similarity between the predicted and expected

outputs (TERVEN et al., 2024; ZHAO et al., 2015; CIAMPICONI et al., 2023). Minimizing

the loss value is the goal of the machine learning training procedure. The loss value is what is

back-propagated in the back-propagation algorithm. Defining the best loss function for a given

task is essential. For image classification, cross entropy loss (KULLBACK; LEIBLER, 1951) is

usually used, while for image restoration the Charbonier loss (CHARBONNIER et al., 1994)

may be used.
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3.6.5.1 Cross Entropy Loss

The cross entropy loss (MAO et al., 2023), also known as Kullback-Leibler divergence

(KULLBACK; LEIBLER, 1951; KIM et al., 2021), is usually the function used for image

classification optimization, in particular the softmax cross entropy loss (KIM et al., 2021),

which is defined as

L(x,y) = − 1

N

N∑
n=0

C∑
c=0

wclog
exn,c∑C
i=0 e

xn,i

yn,c, (3.60)

where N is the number of samples in the iteration, C is the number of classes, wc is a weight

associated with class c, which may be used to deal with class imbalance in the dataset. xn,c

and yn,c are, respectively, the predicted and expected output for sample n and class c.

3.6.5.2 Charbonier Loss

The charbonier loss(CHARBONNIER et al., 1994; ZAMIR et al., 2020; WANG et al., 2022),

in the context of image restoration is defined as

L(I,I ′) =
√
∥ I − I ′ ∥2 +ϵ2, (3.61)

where I ′ is the expected output, I is the restored imaged and ϵ is a constant, usually set to

10−3.

3.6.6 Data Augmentation

Data augmentation is a technique to generate new data with various orientations by chan-

ging some characteristics of the training data itself (MAHARANA et al., 2022; SHORTEN;

KHOSHGOFTAAR, 2019). Data augmentation generates more data from a limited amount of

data and reduces overfitting(MAHARANA et al., 2022). These methods can be applied offline,

by saving multiple variations of images in an augmented dataset; or online by only modifying

images during training at each iteration as part of the pre-processing step.

Common data augmentation methods for computer vision include removing or masking

parts of the image (DEVRIES; TAYLOR, 2017; ZHONG et al., 2020b; SINGH et al., 2018;

CHEN et al., 2020), combining different images (INOUE, 2018; ZHANG, 2017; VERMA et al.,
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2019; YUN et al., 2019; SUMMERS; DINNEEN, 2019; TAKAHASHI et al., 2019), and basic

image manipulations(SHORTEN; KHOSHGOFTAAR, 2019), including automatic machine le-

arning methods to search for data augmentation policies(CUBUK et al., 2019; LIM et al., 2019;

MÜLLER; HUTTER, 2021).

A standard data augmentation strategy for computer vision is the random crop and random

horizontal flip (HE et al., 2016; HUANG et al., 2017). Horizontal flip consist of mirroring an

image horizontally, given a probability, usually 50%. Random crop can be done in two ways.

For smaller images it’s usually done by adding empty pixels to each side of the image and then

cropping a random region of the original image size. This random crop method has an effect

of shifting the image, training the neural network model for translation invariance. The other

method is to crop a random region of the image and then resizing it to a target size. This

second method has effects of shifting, resizing and changing image width/height ratio, training

the model for invariance in those aspects.

The Autoaugment(CUBUK et al., 2019) and TrivialAugment(MÜLLER; HUTTER, 2021)

data augmentation methods apply two image manipulation functions in sequence to each image,

and each function has a probability and a magnitude parameter. The probability parameter

means that specific image manipulation function will only be applied given that probability.

As a result, though two image manipulations are provided, there is a chance that only one of

the two methods is applied, or none, or both. For autoaugment, the two methods are applied

in a fixed order with a fixed magnitude for each function. For TrivialAugment, the order and

magnitude are chosen at random from a uniform distribution for each image sample. These

methods are usually used together with the preprocessing functions.

3.7 MODELS

For the experiments, two baseline models were defined, an efficientNet-b0 (TAN; LE, 2019)

for tumor classification and an Uformer-T(WANG et al., 2022) for MR image restoration. These

two models are described in more detail in this section.
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3.7.1 EfficientNet

The baseline model used for image classification in this work is EfficientNet (TAN; LE, 2019),

particularly the EfficientNet-b0 variant. The EfficientNet architecture was designed through

an algorithm search for neural architectures, obtaining an efficient design with state-of-the-art

accuracy with significantly fewer parameters and a reduced computational cost compared to

other CNNs. Although some transformer-based models have obtained higher accuracy than

CNNs in vision tasks with large datasets, the inductive bias of CNNs makes these models more

appropriate for classification tasks with more limited data, such as medical image classifica-

tion which often struggles with data. The EfficientNet also has publicly available pre-trained

weights, which provide a good weight initialization. Given all these consideration, the Efficient-

Net was the best choice for this work, also proven by model comparisons in the experimental

results section.

The basic block of the EfficientNet architecture is the mobile inverted bottleneck resi-

dual (SANDLER et al., 2018; HOWARD et al., 2019). This residual function consist of a

1x1-convolutional layer that expands the number of features by a factor e, usually 6, followed

by a depthwise convolution and a second 1x1-convolutional layer that reduces the number of fe-

ature to the target output width. Each of the three convolutional layers are followed by a batch

normalization layer (IOFFE; SZEGEDY, 2015), but only the first two normalization layers are

followed by an activation layer. For efficientNet, the activation layer is the SiLU/swish activa-

tion layer (RAMACHANDRAN et al., 2017)3.5.1.4. A Squeeze-and-excitation function (HU et

al., 2018)3.5.5.1 is added before the third convolutional layer of each residual, with a contracting

factor of 16x in the feed forward function.

The dimensions of the baseline EfficientNet-b0 architecture was defined by a neural network

architecture search algorithm which aims to optimize model accuracy and number of FLOPS

(floating point operations). The resulting model of the search is the EfficientNet-b0 model defi-

ned in table 3.1, in which MB refers to the mobile inverted bottleneck block, Conv+BN+swish

indicates a sequence of convolutional, batch normalization and swish activation function are

used, GAP means global average pooling layer and FC is the fully connected classification layer.

Each inverted mobile block has a specified expansion factor, e, and a given kernel size. When

the residual function has stride 2 or the output width is different from the input width, i.e. the
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Block expansion kernel size output width stride repeats
Conv+BN+swish - 3x3 32 2 1

MB 1 3x3 16 1 1
MB 6 3x3 24 2 1
MB 6 3x3 24 1 1
MB 6 5x5 40 2 1
MB 6 5x5 40 1 1
MB 6 3x3 80 2 1
MB 6 3x3 80 1 2
MB 6 5x5 112 1 3
MB 6 5x5 192 2 1
MB 6 5x5 192 1 3
MB 6 3x3 320 1 1

Conv+BN+swish - 1x1 1280 1 1
GAP+FC - - #classes 1 1

Table 3.1: Layers of the EfficientNet-b0 architecture.

output tensor has a different shape than the input tensor, the architecture simply removes the

skip connection. Table 3.1 shows the sequence of blocks used to make up the model, including

the number of times that each specific block is repeated.

To define larger versions of the EfficientNet architecture, (TAN; LE, 2019) proposed a

compound scaling method in which the depth of the model increases by 1.2, the width of the

model increases by 1.1, and the resolution of the image increases by 1.15. Applying this scale

factor to EfficientNet-b0 produces EfficientNet-b1, repeating this generates EfficientNet-b2, and

so on. More variations of the EfficientNet architecture have been proposed by other works (XIE

et al., 2020; TAN; LE, 2021).

The Pytorch framework provides weights for all EfficientNet models trained on the ImageNet

dataset (DENG et al., 2009). EfficientNet models with ImageNet transfer learning have been

used to classify brain tumors in other works (ISLAM et al., 2024; BAUCHSPIESS; FARIAS,

2024).

3.7.2 Uformer

The baseline model used for image restoration in this work is the Uformer architecture (WANG

et al., 2022), in most cases the Uformer-T variant. The Uformer architecture is shown in

Fig. 3.26.
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Figure 3.26: Uformer architecture. Image taken from (WANG et al., 2022)

The entire Uformer model may be described as a residual function

Uformer(x) = x+ U(x), (3.62)

where the input of the model, x, is added to its output U(x) to generate the final output,

in which U(x) is a U-shaped neural network, which combines the transformer architecture

with convolutional layers. In this way, the parameterized part of the model, U(x), is used to

estimate the change required by the input, rather than the final output itself. Since the model

aims to reconstruct the input while removing image distortions, it can be considered a type of

autoencoder.

The first and last layers of the neural network are the input and output projection layers,

which are 3x3 convolutional layers that increase the number of features of the input from 3

features (RGB image) to an arbitrary number of features, C, and vice versa for the output

projection. For the input projection, the convolutional layer is also followed by a leakyReLU

activation function (MAAS et al., 2013).

The U-shaped model has four encoding stages in the contracting path and four decoding

stages in the expanding path, with a bottleneck stage in between. At the end of each con-

tracting stage, there is a downsampling layer, which is a 4x4 convolutional layer with stride 2

that doubles the number of features and half the resolution at each spatial dimension. At the

start of each expanding stage there is an upsampling layer, which is a 2x2 transposed convolu-

tional layer with step 2 that halves the number of features and doubles the resolution at each

spatial dimension. The output of each upsampling layer is concatenated with the input of its

corresponding downsampling layer to make the input of each expanding stage. Due to this con-

catenation of features, the decoder or expanding path has twice the width of the corresponding
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encoder path.

The basic block used in each stage of the architecture is the LeWin transformer block defined

for this architecture. The LeWin block consists of two residual functions, named window Multi-

head Self Attention (WMSA) defined in Section 3.5.5.3 and locally-enhanced feed forward

(LeFF), which are defined as

X ′
t = Xt−1 +WMSA(LN(Xt−1))

Xt = X ′
t + LeFF (LN(X ′

t)),
(3.63)

where LN is the layer normalization function (BA et al., 2016). The WMSA uses 8x8 windows

in the window attention function.

Like the common feed-forward layer from the transformer architecture, the LeFF has two

linear layers separated by an activation function, the first linear layer increases the number of

features by a factor of 4 and the second reduces the number of features to the original amount.

The difference of the LeFF is that a depth-wise convolution with kernel 3x3 is added between

the two linear layers, along with an additional activation layer. This configuration makes the

LeFF modeule very similar to the inverted mobile bottleneck layer used by efficientNet. Since

the WMSA uses simple windows without shifting, information between different windows would

only flow between different windows after downsampling, but the convolutional kernel of the

LeFF module enables information flow between neighboring windows. The activation function

used in the LeFF module is the GELU (HENDRYCKS; GIMPEL, 2016).

As an additional modification, the Uformer architecture adds modulators parameters to the

WMSA modules of the expansion side of the Uformer. The modulators are learnable tensors

with MxMxC shape that are added to each window, where M is the window size and C is the

number of feature maps and work as a shared bias for each window.

Since the window size is defined as 8x8, the resolution at the bottleneck has to be an integer

multiple of 8x8. The bottleneck layer has a resolution 16x lower than the input image, and as

a result the input image needs a resolution of an integer multiple of 128x128 pixels.

Each Uformer variant is defined by the number of LeWin blocks in each stage of the network

and by the number of channels, C, of the input projection. The smallest variant in the original

paper is the Uformer-T, which has 2 LeWin blocks in each stage (18 blocks in total) and has an

initial width, C, of 16 features. For this model, weights pre-trained in the Smartphone Image
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Denoising Dataset (SIDD) (ABDELHAMED et al., 2018) were available.

3.8 DATASETS

We provide here an overview of the MRI brain tumor datasets that were used for experi-

mentation. We provide here the details of each dataset as well as a qualitative analysis of the

images contained in each dataset and the dataset preparation procedures. Since all datasets

are brain tumor datasets, we give distinguishing names to each dataset.

3.8.1 Dataset 1 - Figshare

This dataset, provided by (CHENG et al., 2016), consists of a set of brain T1-weighted

CE-MRI images, composed of 3,064 slices of 233 patients, including 708 meningiomas, 1426

gliomas, and 930 pituitary tumors. The images were separated into a train, a validation and a

test set (FARIAS et al., 2022). The images belonging to the same patient were grouped and

moved as a group to one of the three sets. By moving the images as a group, the model cannot

recognize a patient from the training set in the test set, leading to a misleading higher precision

(BADŽA; BARJAKTAROVIĆ, 2020). 2096 images were moved to the training set, 515 to the

test set, and the remaining 413 to a validation set (FARIAS et al., 2022). This dataset is

available for download at <dx.doi.org/10.6084/m9.figshare.1512427>, from which we take the

name of the dataset. Fig. 3.27 exemplifies the three classes in the dataset. Slices in this dataset

are from all 3 views: sagtital, coronal, and axial. In a qualitative analysis, images from this

dataset are of good quality, most images are undegraded, or with low-magnitude artifacts.

3.8.2 Dataset 2 - Siar

This dataset is provided by (SIAR; TESHNEHLAB, 2022; SIAR; TESHNEHLAB, 2019),

and contains MRI scans of 136 people without tumors and 138 patients with brain tumors. The

version available for download at <https://www.kaggle.com/datasets/masoumehsiar/siardataset>

contains 3800 images of Tumors and 3200 images of NoTumor. We applied a train-test split

of 80%-20%, resulting in a test set with 760 tumor scans and 640 No Tumor scans. Fig. 3.28

dx.doi.org/10.6084/m9.figshare.1512427
https://www.kaggle.com/datasets/masoumehsiar/siardataset
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Figure 3.27: Image samples taken from (CHENG et al., 2016). From left to right: glioma,
meningioma and pituitary tumors.

exemplifies the two classes in the dataset.

Figure 3.28: Image samples taken from (SIAR; TESHNEHLAB, 2022). From left to right:
NoTumor and tumor classes.

A visual inspection of this dataset shows that all ’Normal’ scans are from the axial view

and mostly undegraded, while the ’Tumor’ scans are a mix of axial, sagittal, and coronal views

and include several degraded images. We also observe that the dataset characteristics create

a bias toward classifying sagittal and coronal view scans as ’Tumor’ scans, since these views

almost only appear in the ’Tumor’ class in this dataset.

3.8.3 Dataset 3 - Br35H 2020

This dataset (HAMADA, 2020) consists of 1500 ’Tumor’ scans and 1500 ’NoTumor’ scans

and is available at <kaggle.com/datasets/edhamada0/brain-tumor-detection>. We split the

dataset into a train and test set, so that the train set has 1200 ’Tumor’ and 1200 ’NoTumor’

scans while the test set has 300 ’Tumor’ and 300 ’NoTumor’ scans. Fig. 3.29 exemplifies the

kaggle.com/datasets/edhamada0/brain-tumor-detection
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two classes in the dataset.

Figure 3.29: Image samples taken from (HAMADA, 2020). From left to right: NoTumor and
tumor classes.

Visual inspection of this dataset shows that all images are from the axial plane. In qualitative

analysis, most images would be classified as poor quality or degraded images, on both image

classes.

3.8.4 Dataset 4 - Kaggle

This dataset provided by (NICKPARVAR, 2021) is a combination of three datasets: the

Figshare (CHENG et al., 2016) Br35H 2020 (HAMADA, 2020) and Sartaj (BHUVAJI et al.,

2020) datasets. It contains 7023 brain MRI scans are split into 4 categories: glioma, meningi-

oma, pituitary, and NoTumor. Images for the NoTumor class come from both the Sartaj and

Br35H datasets, images from the meningioma and pituitary class come from both the Figshare

and sartaj datasets, while Glioma images come from the Figshare dataset, due to some obser-

vations that glioma images in the sartaj dataset may be wrongly labeled. The dataset provides

its own train and test set division. The training set has 13,21 glioma scans, 13,39 meningioma

scans, 14,57 pituitary scans, and 15,95 scans without tumor. The test set has 300 glioma scans,

306 meningioma scans, 300 pituitary scans, and 405 scans without tumor. Fig. 3.30 exemplifies

the four classes in the dataset.

The images taken from Figshare are mostly undegraded, while the images taken from the

other two datasets include several degraded images. As a result, there is a higher proportion

of degraded images in the NoTumor class, and most images in this category are from the axial

plane. The Glioma class is largely undegraded. The meningioma and pituitary classes show



3.8 – Datasets 63

Figure 3.30: Image samples taken from (NICKPARVAR, 2021). From left to right: glioma,
meningioma, pituitary tumors and NoTumor classes.

a mixture of degraded and undegraded images. In the meningioma sample in Fig. 3.30 we

also see some markings, including an arrow that points to the tumor. From this we point

out that, although we treat several types of artifacts in our work, there is still some image

degradation that will not be modeled, such as those arrows, but might still have some impact

on performance.

In this dataset sets of slices from the same subject are separated, with some slices in the

train set and others in the test set. Fig. 3.31 shows three examples of successive slices in which

one slice is in the training set and the other in the test set. The similarity of the successive

slices can be seen even in the angle of the head in the scan. A consequence of this is that during

testing, the type of tumor can be identified based on the subject, rather than the tumor itself,

leading to higher test accuracy.

3.8.5 Dataset 5 - Zenodo

The Zenodo brain magnetic resonance image dataset (QADRI et al., 2022) consists of 1,287

MRI scans divided into three categories of brain tumors: adenoma, glioma, and meningioma.

There are 414 adenoma scans, 414 meningioma scans, and 459 glioma scans. We generate a

random train-test split, with 80% of the images for training and 20% for testing. Fig.3.32

exemplifies the three classes of this dataset.

The images in this dataset are almost exclusively from the axial plane, with few exceptions

in the adenoma class. Several images show low-intensity image degradations, such as ghosting,

noise, and blurring. In most images, characteristics of T2 weighted MRI can be identified, with

brighter gray matter and darker white matter.
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Figure 3.31: Pairs of successive slices in which one image is in the training set and one is in the
test set from the Kaggle dataset (NICKPARVAR, 2021). Left: image from the training set.
Right: image from the test set.

Figure 3.32: Image samples taken from (QADRI et al., 2022). From left to right: adnoma,
glioma and meningioma tumors.



CHAPTER 4

ARTIFACT GENERATION AND MODEL TRAINING

Our proposed solution to perform tumor diagnosis from magnetic resonance images consists of

two neural network models. The initial model in our framework is an image classification model,

which categorizes magnetic resonance images into classifications of non-tumorous or tumorous,

further subdividing into specific tumor types based on the parameters of the designated test

set. The second model is an image restoration model that ensures the image quality of the MRI

to be analyzed by the classification model. Each model is trained independently. However, to

train the image restoration model, image pairs are required, consisting of a good quality target

image and a degraded input image. To generate these requisite image pairs, high-quality image

datasets were employed alongside an artifact generation function to produce their degraded

counterparts.

Fig. 4.1 shows the proposed framework, which, as illustrated, corresponds to a modular

solution consisting of training dataset, pre-processing, artifact generator, restoration model, and

classification model. In our experiments, we evaluated the impact of the dataset, the artifact

generator, image restoration, and image classification by testing various training dataset, neural

network models, and artifact generation methods. In this chapter, we describe the formulation

of the artifact generator function, the methodologies used in training the models, and the

procedures used to evaluate the solution.

4.1 ARTIFACT GENERATOR

Our proposed artifact generator function consists of a sequence of modules in which each

module adds a specific artifact type to an image. As such, the artifacts are added sequentially to

an image. The exact order in which the modules are placed may change the aspect of the final

degraded image output. Fig. 4.2 shows a flowchart of the artifact generator, while Algorithm 1
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Figure 4.1: Proposed framework split into five modules: Dataset, pre-processing, artifact gene-
rator, restoration model and classification model. Modified from (BAUCHSPIESS; FARIAS,
2024).

shows the pseudocode. Taking some inspiration from image augmentation methods (CUBUK

et al., 2019; LIM et al., 2019; MÜLLER; HUTTER, 2021), each module requires a specific

artifact type, a probability value, and magnitude information, all of which we defined with six

control parameters, named artifacts prob, µ, σ, max and min. The last four parameters refer

to statistics of the pixel intensities.

Algorithm 1 Artifact module
procedure AddArtifact(image, prob, artifact, µ, σ, min, max)

u ← random.uniform(0, 1)
if u < prob then

n ← random.normal(mean = µ, std = σ)
magnitude ← clip(n, min, max)
image ← apply(image, magnitude, artifactType = artifact)

end if
return image

end procedure

The artifact generator starts by drawing a random value u from a uniform distribution

U(0,1). If this value is lower than the probability parameter prob, the module will add an

artifact to the image; otherwise, the process is finished without modifying the image. This first

step ensures that the artifact will not be applied to all images and, as a consequence, each

artificially degraded image will have an arbitrary number of artifact types. In this way, we can

simulate the datasets in which each image has an arbitrary number of artifact types. Naturally,

for higher prob values, the specified artifact type will be applied more frequently.
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Figure 4.2: Module to degrade an image with a given artifact type. The image is only degra-
ded given a probability prob and the magnitude of the degradations is drawn from a normal
distribution and limited to the [min,max] range.

If a decision is made to apply the artifact, the next step is to define the magnitude of the

image distortion, which is done with the parameters µ, σ, max and min. A random magnitude

n is initially selected from a normal distribution N (µ, σ), where µ represents the average value

and σ denotes the standard deviation. The final magnitude value is obtained by limiting the

value of n to the range [min ,max]. If n > max, the magnitude value will be set at max, if

n < min the magnitude value will be set at min, and in any other case the magnitude value

will be set to n. The distorted MRI scans are not all distorted to the same degree, and the

magnitude value is used to control this variation. These four control parameters are used to

restrict the magnitude value to relevant values.

The final step consists in adding the synthetic artifacts to the image. This is done by ap-

plying one of the six image processing operations defined in Section 3.3.The artifact parameter

determines the operation to apply to the image, to simulate Rician noise, Gibbs ringing, Gaus-

sian blur, poor contrast, ghosting, or JPEG compression. In Section 3.3 each operation has

a parameter indirectly defined by the variable intensity, but in the module proposed in this

section these parameters are directly defined by the previously defined magnitude value. The

“Apply” block in the flowchart is then responsible for applying the specified artifact type with
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the specified magnitude to the image. Once the module’s procedure is completed, the image,

which may have been altered, is forwarded to the subsequent module. This module introduces

a distinct type of artifact to the image through a similar process. If no additional modules

remain in the sequence, the image produced is the ultimate degraded version.

To define which artifact modules should be included in the artifact generator, as well as the

parameters of these modules and the order in which the modules will be placed, we evaluated the

degraded images in the Kaggle dataset (NICKPARVAR, 2021). We identified six main types of

MRI artifacts: Rician noise, Gibbs ringing, Gaussian blur, poor contrast, ghosting, and JPEG

compression artifact. For every identified kind of artifact, we establish a module corresponding

to that type and calculate the mean, standard deviation, minimum, and maximum parameters

to ensure a realistic distribution of image degradations. To determine the parameters for each

artifact, we created artificially degraded images and assessed them against reference degraded

images (from the Kaggle dataset) through histogram comparison and image qualitative analysis.

In this manner we define the magnitude distribution of each artifact type. After defining the

artifact types and magnitudes, we define the order in which the artifacts have to be applied,

based on how the artifacts affect each other and logical understanding of the moment the

artifact is introduced in images. Next, we describe the artifact generation process for each of

the identified artifacts.

4.1.1 Rician Noise

To evaluate the noise present in noisy MRI scans, we compute the histogram of pixels in

the background regions of these images, as exemplified in Fig. 4.3. For noise-free images, the

background histogram should be composed almost exclusively of ‘0’ values, as exemplified in

Fig. 4.4. Different background pixel intensity distributions may be attributed to the presence

of additive noise in the image. Fig. 4.5 shows the histogram of the pixel intensities of four noisy

images from the Kaggle dataset.

In order to produce noisy images, we attempted to craft images whose histograms closely

resemble those of noisy images from the Kaggle dataset, which served as reference noisy images.

We noticed that the histograms of these noisy images typically have a mean ranging from 10
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Figure 4.3: Noisy image and histogram of a background region of that image.

Figure 4.4: Undegraded image and histogram of a background region of that image.

to 20. Furthermore, we observed that the top two histograms in Fig. 4.3 appear not to align

with the Rician distribution depicted in Fig. 3.7, in contrast to the other three. We suspect

that this discrepancy arises from extra image degradations, such as those introduced by JPEG

compression artifacts.

To reproduce the noise found in these MRI scans, we used the approach detailed in Section

3.3.1. The skimage library was employed to simulate Rician noise in images, after which we

derived the pixel intensity histogram for the resulting noisy images. We created the histograms

depicted in Fig. 4.6 using standard deviation parameters of 0.025, 0.05, 0.075, and 0.1. It

is evident that the histogram distribution of these images resembles the Rician distribution

illustrated in Fig. 3.7. The standard deviation ranges from 0.05 to 0.1, and the mean falls

within the interval [10,20], similar to what is shown in Fig. 4.5.

From these findings, we specify the noise module parameters within our artifact generation

function. The normal distribution is characterized by a mean of 0.075 and a standard deviation

of 0.02. Consequently, this produces noise with mean pixel values ranging between [10,20] in

background areas, consistent with the noisy images found in the Kaggle dataset. The standard
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Figure 4.5: Histograms of the background of scans taken from the Kaggle dataset, in which
noise was identified.

deviation’s limits are set at 0.005 and 0.125, respectively.

4.1.2 Gibbs Ringing

Upon examining the histograms in Fig. 4.6 and 4.5, derived from the Kaggle dataset

images, we observed they exhibit a narrower range of pixel values. This variation can likely be

ascribed to the influence of low-pass filters, specifically the ideal and Gaussian low-pass filters.

In Fig. 4.7, two histograms of Rician noise with a standard deviation of 0.1 are presented. An

ideal low-pass filter with a radius of 66 was applied to the histogram on the right. Evidently,

the ideal low-pass filter constricted the range of pixel values, making the resulting histogram

resemble those in Fig. 4.5 more closely.

As discussed in Section 3.3.2, the application of an ideal low-pass filter can lead to the

occurrence of the Gibbs ringing effect. This ringing artifact can also be detected in images

from the Kaggle dataset. Figure 4.8 displays two instances in which ripples align parallel to

the sharp edges of the cranium. These scans exhibit both Gibbs ringing and Rician noise.

To generate images with both noise and ringing, we add Rician noise and afterwards apply

an ideal low-pass filter. Fig. 4.9 shows two images subjected to Rician noise and Gibbs ringing.



4.1 – Artifact Generator 71

Figure 4.6: Histograms of Rician noise with standard deviation 0.025, 0.05, 0.075 and 0.1.

Figure 4.7: Histograms of the background of scan with added noise at standard deviation 0.1
without low pass filtering on the left and with a circular ideal low pass filter with radius 66 on
the right.

In the first image, Rician noise with a standard deviation of 0.25 was added, while the second

image featured noise with a standard deviation of 1.25. We employed an ideal low-pass filter

with a radius of 66 on both these noisy images to produce the final results. It is evident from

Fig. 4.8 that the ringing effect appears less pronounced compared to Fig. 3.9, where the ringing

is isolated. Furthermore, Fig. 4.9 indicates that combining noise with a low-pass filter can

mitigate the ringing effect. Additionally, as previously discussed in Section 3.3.2, blurring can

also reduce the Gibbs ringing effect. Moreover, Fig. 4.9 reveals that the ideal low-pass filter

gives the noise a visually “thicker” appearance compared to the pure noise shown in Fig. 3.8.

Qualitatively, this “thicker” noise resembles the noise found in most images from the Kaggle
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Figure 4.8: MRI scans with ringing artifacts taken from the Kaggle dataset.

Figure 4.9: MRI images with Rician noise added with standard deviation 0.25 on the left and
1.25 on the right and ideal low pass filter with radius 66 applied to both images.

dataset.

The magnitude of the artificial Gibbs-ringing artifact is determined by the radius of the

optimal low-pass filter; in which a smaller radius results in more intense ringing. Based on

the histogram shown in Fig. 4.7 and the qualitative evaluations in Figs. 3.9, 4.8, and 4.9, we

have chosen a mean radius of 80, with a standard deviation of 10, a minimum of 40, and a

maximum of 150. These parameters cause the ideal low-pass filter to produce the ringing effect,

but primarily at the lower intensity levels observed in the Kaggle dataset.

4.1.3 Gaussian Blur

In addition to employing the ideal low-pass filter, we applied a Gaussian blur filter to

further align the noise histograms with those found in Fig. 4.5. Using the OpenCV Gaussian

blur function, the kernel size can be determined by the standard deviation of the Gaussian

blur. Fig. 4.10 presents histograms of noise processed with both the ideal low-pass filter and
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Figure 4.10: Histograms of noise generated at standard deviation 0.1, followed by ideal low pass
filter with radius 66 and Gaussian blur with standard deviations of 0.015, 0.568 and 1.122.

Gaussian blur at standard deviations of 0.015, 0.568, and 1.122. As anticipated, enhancing

the Gaussian blur filter’s intensity narrows the pixel value range, thus rendering this synthetic

noise more comparable to that in Fig. 4.5.

In order to further assess the blurring artifact, we conducted a qualitative analysis contras-

ting blurry images from the Kaggle dataset with those that were artificially blurred. Fig. 4.11

depicts two blurred images from the Kaggle dataset at the top and two artificially blurred

images below, which were applied with Gaussian blur at standard deviations of 1.25 and 2.5,

respectively. The blurring effect can be identified as a reduction in edge sharpness. From our

observations, the blur applied with a standard deviation of 1.25 closely resembles the reference

images, while the more pronounced blur appears stronger than any images present in the refe-

rence datasets. As a result of these evaluations, for the Gaussian blur module, we established

the mean and standard deviation of the blur magnitude to be 1.25 and 0.75, respectively. The

range for blur intensity was set from a minimum of 0.015 to a maximum of 2.

4.1.4 JPEG Compression

JPEG compression artifacts were identified by the “blockiness” aspect of some images in

the reference dataset. These artifacts are not produced by the image acquisition process, but

by the data reduction process obtained with the JPEG compression algorithm. Figure 4.12

displays two images highlighting the artifacts introduced by JPEG compression. For a qualita-

tive analysis, we employed the OpenCV library’s compression function to compress an original,

undegraded image at quality levels of 55% and 10%. The outcomes are presented in Fig. 4.13.

At reduced quality settings, the square artifacts are predominantly represented by a single
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Figure 4.11: Top: real MRI scans with with blurring artifact. Bottom: MRI scans with
artificially added blurring artifact, generated with standard deviation values: 1.25 (left) and
2.5 (right).

Figure 4.12: MRI with JPEG compression artifact taken from the Kaggle dataset.

value (the DC component), while at enhanced quality, these artifacts incorporate frequency

components.

In addition, we assessed how JPEG compression affects noise histograms. We created a

Rician noise image with a standard deviation of 0.1, then applied an ideal low-pass filter with a

radius of 66, followed by a Gaussian blur filter with a standard deviation of 1.122. We produced

three JPEG compressed versions of this image at quality levels of 80%, 50%, and 30%. The

histograms for these three images are depicted in Fig. 4.14. These histograms show that, as

compression quality decreases, the noise histograms diverge from the Rayleigh distribution,

which was also seen in some noise histograms from real cases shown in Fig. 4.5.

Utilizing noise histograms and qualitative assessments of JPEG compression shown in
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Figure 4.13: MRI scan compressed with JPEG at 55% (left) and 10% (right) quality.

Figure 4.14: Histograms of noise images. For all images, the noise was generated with standard
deviation 0.1, followed by ideal low pass filter with radius 66 and Gaussian blur at standard
deviation 1.12. Each image was compressed with JPEG at 80%, 50% and 30% quality, respec-
tively.

Figs. 4.12 and 4.13, we establish the magnitude parameters for the JPEG compression segment

within the artifact generator. The magnitude in this module specifies the compression quality

employed by the OpenCV JPEG compression function, where a lower magnitude results in a

more degraded image. We determine the mean magnitude as 70%, with a standard deviation

of 40%, and set the parameters to range from 20% to 100%.

4.1.5 Poor Contrast

One form of degradation detected in MR images is low contrast. To assess this artifact,

the histograms of the images were obtained from the Kaggle reference data set(NICKPARVAR,

2021). Fig. 4.15 scans and their corresponding histograms are shown, with Fig. 4.15(a) exem-

plifying a good contrast image and Fig. 4.15(b - c) exemplifying poor contrast images.

In the good quality scan, Fig. 4.15(a), the histograms reveal a dense cluster of pixels at or

near the zero value, representing the background, accompanied by a spread of gray-value pixels.

In contrast, the histogram from Fig. 4.15(b) has a larger number of pixels concentrated at the
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(a) (b)

(c) (d)

Figure 4.15: Scans and their corresponging histograms. (a) good contrast image. (b-d) poor
contrast images.

zero value, as well as a significant presence of pixels at the maximum value, 256, which may

be due to saturation following contrast enhancement. The cluster of pixels at the 256 value

pertains to the cranium region, where pixel saturation probably resulted in a loss of detail.

Another effect observed in this image is the presence of noise in the brain region, or gray areas,

and lack of noise in the black and white saturated regions. In Fig. 4.15(c), it is evident that the

background has shifted from black to light gray. Consequently, the histogram now shows that

the minimum pixel value has increased from 0. This alteration might be linked to a contrast

reduction function or could be attributed to a low-contrast artifact.

Fig. 4.15(d) exhibits a mixture of features of high- and low-contrast artifacts: a gray back-

ground, a saturated maximum brightness in the cranium region, and noise present in the brain

area but absent in the background. Based on these features, it is possible that the third poor-

contrast image resulted from a sequence of high-contrast followed by low-contrast artifacts

within the same image. Considering the high contrast artifact appears to eliminate background

noise, it suggests this might have been an intentional post-processing technique responsible for

creating those artifacts.

Based on the insights from Fig. 4.15, we establish the poor contrast function as a series of two

artifact modules: one targeting low contrast and the other high contrast. This combination
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(a) (b)

(c) (d)

Figure 4.16: Scans with good quality and for possible outputs for the poor contrast module
pair.

of artifact modules enables the creation of all four contrast scenarios depicted in Fig. 4.15.

Additionally, noise was introduced to the three poor contrast images, and the characteristics of

these three types of poor contrast can be observed both in the images and their corresponding

histograms.

Taking into account the existence of two distinct contrast artifacts, equation 3.11 was adjus-

ted to accommodate this scenario. Both algorithms implement a linear transformation bounded

by the following equation:

Image′ = min (max (α · Image + β, 0) , 255) , (4.1)

where saturation levels of 0 and 255 are applied to prevent values from exceeding the permissible

range, particularly for high contrast contexts when the data type permits values outside the

conventional range, such as when pixel values are expressed as floating points. Two different

sets of equations were formulated to establish the parameters α and β for the contrast function,

both of which are influenced by a single parameter m that controls magnitude. For scenarios

with high contrast artifacts, the specifications are given by

α = 1 + 0.4 ·m

β = −30− 6 ·m,
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Figure 4.17: MRI with ghosting artifact, taken from the Kaggle dataset.

while for low contrast artifacts, we have

α = (11−m) · 0.09

β = 255 · (1− α).

These equations were empirically adjusted to ensure that the histograms depicted in Fig. 4.16

resemble more closely the ones shown in Fig. 4.15.

In the high contrast module, the magnitude parameter m is derived from a normal distri-

bution characterized by a mean of 3, standard deviation of 2, with a range confined between

0 and 8. Conversely, in the low contrast module, the magnitude parameter m is taken from

a normal distribution having a mean of 2, standard deviation of 1, and is similarly limited to

values between 0 and 4.

4.1.6 Ghosting

Among the various artifacts present in the Kaggle dataset, ghosting was relatively less

frequent. The reference dataset’s most prominent example of a ghosting artifact, depicted in

Fig.4.17, exhibits a significant occurrence of ghost images.

To generate ghosting, we used a function provided by the TorchIO library (<https://torchio.

readthedocs.io/>), which allows us to set the number of ghosts, its intensity, and in which axis

the ghosts are spread. We define the magnitude of the ghosting artifact as a combination of

https://torchio.readthedocs.io/
https://torchio.readthedocs.io/
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Figure 4.18: MRI with simulated ghosting artifact, with five ghosts on the left and 21 ghosts
on the right.

the number of ghosts and the intensity of the ghosts, based on a magnitude parameter m:

n_ghosts = 1 + 2 ·m

intensity = 0.3 + 0.16 ·m,

where m is always rounded down to an integer, since the number of ghosts has to be an integer.

Fig. 4.18 shows examples of images with artificially added ghosting artifacts at magnitude, m,

set to 2 and 10.

In the ghosting module, the magnitude m is sampled from a normal distribution charac-

terized by a mean of 7 and a standard deviation of 6, constrained to the interval [3, 21], and

consistently rounded down to the nearest integer.

4.1.7 Complete Artifact Generator

The complete artifact generation function is composed of a series of seven modules: Rician

noise, Gaussian blur, Gibbs ringing, ghosting, high-contrast, low-contrast, and JPEG com-

pression, which are applied sequentially in that order. This specific order was determined by

empirical findings from experiments, theoretical insights into artifact generation, and logical

assessments of how the degraded images were produced, as discussed in this section. Details of

these empirical findings will be presented in the Experimental Section.
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Given that the noise is affected by the other artifacts, Rician noise is the first artifact in

the sequence. Gaussian blur and Gibbs ringing are generated by multiplicative low pass filter

in the frequency domain and are, therefore applied next in the sequence. The ghosting artifact

is associated with the conversion from the frequency to the spatial domain and is thus applied

after ringing. The contrast artifact are associated with the spatial domain, so we apply the

high contrast artifact after ghosting followed by the low contrast artifact as described in Section

4.1.5. Since the JPEG compression artifact is associated with image storage purposes, it is the

last artifact added to the images.

The final parameter that must be set for each artifact module is the probability that the

module will actually apply its designated artifact on the input image. We have noticed that

not every image contains every type of artifact, and the probability parameter controls the

frequency that the specified artifact will be applied. With 7 artifact modules in total and each

module having the option to apply or not apply an artifact, there are 27 potential combinations

of artifacts that could be applied to each image, ranging from none to all 7. Furthermore, since

the intensity of each artifact is selected randomly, even if the same artifact combination is used

more than once, the specific intensities are likely to vary, leading to a wide range of differing

images from the same input, thus preventing overfitting.

To determine the probability for each artifact, we considered how often the artifact was

observed in the datasets and how much the artifact affected diagnosis accuracy. In order to

ensure the model learns to correct a variety of artifacts, we established a minimum probability

of 10% while setting a maximum of 50% to prevent excessive degradation and to ensure that no

single artifact type dominates the training process. Empirical results that will be shown in the

experiment section show that contrast and specially ghosting have lower impact on diagnostic

accuracy. Given that the ghosting artifact was also the least frequent in the Kaggle dataset,

we allocated it the minimum probability of 10%, whereas the contrast artifact was assigned a

probability of 20%. The most common artifact type in the dataset was a "thick"noise, which we

have shown to be associated with noise followed by low pass filtering. Given that observation

we set the probabilities for Rician noise, Gaussian blur, and Gibbs ringing at 50%. Probability

for JPEG compression, being less prevalent, was set at 40%.

Algorithm 2 presents the entire artifact generation function, detailing the stated parameter
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values and the sequence of modules. Figure 4.19 displays 16 instances of degraded images

produced using this function from a single input image.

Figure 4.19: Samples of one MRI scan with artificially added artifacts by the artifact generator
function

4.2 MODELS TRAINING

Two training procedures were proposed, one for the image restoration models and one for

the image classification model.
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Algorithm 2 Artifact generation function
procedure AddArtifacts(image)

if random.uniform(0, 1) < 0.5 then
intensity ← random.normal(mean = 0.0075, std = 0.02)
intensity ← clip(intensity,min = 0.005, max = 0.125)
image ← ricianNoise(image, magnitude = intensity)

end if
if random.uniform(0, 1) < 0.5 then

intensity ← random.normal(mean = 1.25, std = 0.75)
intensity ← clip(intensity,min = 0.015, max = 2)
image ← gaussianBlur(image, magnitude = intensity)

end if
if random.uniform(0, 1) < 0.5 then

intensity ← random.normal(mean = 80, std = 10)
intensity ← clip(intensity,min = 40, max = 150)
image ← gibbsRinging(image, magnitude = intensity)

end if
if random.uniform(0, 1) < 0.1 then

intensity ← random.normal(mean = 7, std = 6)
intensity ← clip(intensity,min = 3, max = 21)
image ← ghosting(image, magnitude = intensity)

end if
if random.uniform(0, 1) < 0.2 then

intensity ← random.normal(mean = 3, std = 2)
intensity ← clip(intensity,min = 0, max = 8)
image ← highContrast(image, magnitude = intensity)

end if
if random.uniform(0, 1) < 0.2 then

intensity ← random.normal(mean = 2, std = 1)
intensity ← clip(intensity,min = 0, max = 4)
image ← lowContrast(image, magnitude = intensity)

end if
if random.uniform(0, 1) < 0.4 then

intensity ← random.normal(mean = 70, std = 40)
intensity ← clip(intensity,min = 20, max = 100)
image ← JPEGCompression(image, magnitude = intensity)

end if
return image

end procedure
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4.2.1 Restoration Model Training

We adapted the training strategy outlined in (WANG et al., 2022) to train the image

restoration models. The models were optimized using the AdamW optimizer, with momentum

parameters set to (0.9, 0.999), and incorporated a weight decay of 0.02 along with gradient

scaling. Given memory constraints, we configured the batch size to 4, meaning each training

cycle utilized 4 images. In an effort to refine the training, a learning rate warm-up phase was

included. This phase involved a linear increase of the learning rate from 0 to 4e-5 over the

initial 10 epochs. Following the warm-up, we employed cosine annealing for learning rate decay

down to a minimum of 1e-6 across 90 epochs, within a total of 100 training epochs. The models

were trained using Charbonier loss, calculated between the restored and the original unmodified

images.

In the pre-processing phase, images are resized to 256x256 pixels, which aligns with the

Uformer models’ requirement for sizes that are multiples of 128x128. Following the standard

CIFAR data augmentation strategy (HE et al., 2016), each image is then padded with 16 pixels

on all sides, from which a random 256x256 crop is extracted. The image may also undergo a

horizontal flip with a 50% chance. The resulting processed image serves as the target output

for the restoration model. To create the corresponding degraded image for training input, an

artifact generator function is employed online during training, meaning the degraded image

is created by modifying the target image without being stored. A unique degraded image is

generated per undegraded image at each epoch. Furthermore, due to the random cropping and

potential horizontal flipping, target images can vary with each training epoch.

For the Uformer-T model, unless specified differently in the experiments, weights initialized

using the pre-trained weights from the SIDD denoising task were employed.

4.2.2 Classification Model Training

For the training of image classification models, we employed the methodology outlined in

(HE et al., 2019). The optimization was performed using the SGD optimizer from the PyTorch

library, incorporating Nesterov momentum set at 0.9 and a weight decay value of 1e-4. A
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learning rate warmup strategy was adopted, beginning with a linear increase from 0 to 0.0125

over the initial 10 epochs, followed by a cosine annealing schedule reducing the learning rate

to 0 across the subsequent 90 epochs, amounting to a total of 100 epochs. We utilized a batch

size of 16 images, training the models with cross-entropy loss.

The classification models were trained using the same pre-processing techniques as the

restoration models, as explained in section 4.2.1. However, unless specified differently in the

experiments section, the input images were the original, non-degraded versions. The model

weights were initialized using weights pre-trained on the ImageNet dataset, available through

the Pytorch framework, with the exception of the classification layer, which was substituted

with one tailored to the specific number of target classes.



CHAPTER 5

EXPERIMENTAL TESTS AND RESULTS

This chapter provides an overview of the experimental evaluations carried out to assess the

performance of the proposed brain tumor diagnosis framework. This framework is specifically

engineered to withstand the typical degradations encountered in MRI scans. More specifically,

the experimental tests evaluate the diagnostic accuracy of the proposed approach focusing on

the classification accuracy of the tumors. Each experiment examines the impact of incorporating

the image restoration step versus omitting it.

5.1 DATASETS FOR TESTING THE PERFORMANCE OF THE FRAMEWORK

Our experimental tests are designed to assess the effectiveness of the proposed degradation-

resistant framework for diagnosing brain tumors. These experiments evaluate the diagnostic

accuracy of our approach by focusing on the classification accuracy of the tumors. Each experi-

ment examines the impact of incorporating the image restoration step versus omitting it. With

this goal, as detailed in the previous chapters, we generated datasets with different combina-

tions of artifacts of different strength. We tested the proposed framework on these artificially

generated datasets and on publicly available datasets.

5.1.1 Testing the Robustness to Artificial Artifacts

By intentionally introducing artifacts into the images, we can conduct controlled trials to

evaluate how specific conditions, such as a particular artifact or level of degradation, influence

the accuracy of the framework. Initially, to test the effectiveness of the framework in managing

specific artifacts, we employ the Algorithm 3. This algorithm entails specifying an artifact or

a set of artifacts, which are then applied to each image in the test set at an intensity level of 1,

as detailed in Section 3.3, and then repeats the test for intensity values of 2 through 10. The
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Mean Structural Similarity Index (MSSIM) is calculated between each degraded image and its

original counterpart without artifacts, followed by computing the average MSSIM for the test

set. The restoration model is applied to generate a recovered version of each degraded image,

and the MSSIM between these recovered images and the original pristine images is assessed,

and the average restored MSSIM is calculated in the same manner throughout the test set.

The classification model is applied to both degraded and non-degraded images, and the

quantity of correctly classified images is recorded separately for both degraded and enhanced

images. These figures are used to calculate the accuracy with and without the use of the

restoration model. This procedure is repeated for artifact intensities ranging from 1 to 10.

The function returns a list comprising MSSIM and accuracy metrics for both degraded and

enhanced images, which can be visualized using graphs or averaged to determine individual

metrics. This function dynamically generates degraded images during testing and, due to the

randomness of the noise function, the results may exhibit slight variations with each run.

Algorithm 3 Testing accuracy and MSSIM for a given artifact type.
1: Test(artifact):
2: mssimList, mssimRestoredList, accuracyList, accuracyRestoredList
3: for magnitude = 1:10 do
4: MSSIM = 0
5: restoredMSSIM = 0
6: correct = 0
7: correctRestored = 0
8: for all testImage, target do
9: degradedImage = apply(testImage, artifact, magnitude)

10: restoredImage = restoration(degradedImage)
11: MSSIM = MSSIM + mssim(testImage, degradedImage)
12: restoredMSSIM = MSSIM + mssim(testImage, degradedImage)
13: correct = correct + classification(degradedImage, target)
14: correctRestored = correctRestored + classification(restoredImage, target)
15: end for
16: MSSIM = MSSIM/testsetSize
17: restoredMSSIM = restoredMSSIM/testsetSize
18: accuracy = correct/testsetSize
19: accuracyRestored = correctRestored/testsetSize
20: mssimList.insert(MSSIM)
21: mssimRestoredList.insert(restoredMSSIM)
22: accuracyList.insert(accuracy)
23: accuracyRestoredList.insert(accuracyRestored)
24: end for
25: return mssimList, mssimRestoredList, accuracyList, accuracyRestoredList
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Figure 5.1: Samples of the artificially degraded test set.

Alongside Algorithm 3, we created an artificially degraded test set using the artifact gene-

rator function of Algorithm 2 on the test set sourced from the FigShare dataset (CHENG et al.,

2016). In addition to employing the image degradation function, we also used the pre-processing

procedure described in Section 4.2.1 to produce random alterations of the test images. For each

image in the pristine test set, 10 randomly degraded counterparts were generated, paired with

the original images. This test set was designed for offline evaluation without introducing ar-

tifacts during testing. It comprises 5,650 image pairs, distributed as 890 pairs of meningioma

tumors, 29,100 pairs of glioma tumors, and 1,850 pairs of pituitary tumors. Pairing of original

and degraded images facilitates measuring the MSSIM metric, and separation by tumor type

allows calculating the accuracy metric. This test set was labeled as “Degraded” test set in the

experiments. Figure 5.1 presents 16 images sampled from this test set.
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5.1.2 Testing the Robustness to Public Datasets

In addition to assessing our framework with artificially introduced artifacts, we also evalu-

ated its performance using the test sets of the datasets described in Section 3.8. Since these

datasets lack a reference image, we only measured accuracy, not MSSIM. Various degraded

images were detected across many datasets, with no explicit information regarding the nature

of these degradations. We assume these were not intentionally introduced, except for the JPEG

compression artifacts. We conducted two types of tests on these datasets: in-dataset and cross-

dataset. In-dataset testing involved training a classification model with a dataset’s training

set and evaluating it on its test set. Cross-dataset testing involved training a model on one

dataset’s training set and testing it across multiple dataset test sets, necessitating adaptations

to align their classes. We performed two types of cross-dataset tests, based on the classes

involved:

• Tumor type: The classes are meningioma, glioma, and pituitary. The datasets involved

are Figshare, “Degraded”, Kaggle, and Zenodo. The class “No tumor” was excluded from

the Kaggle dataset, and the class “adenoma” was excluded from the Zenodo dataset.

• Tumor/No tumor: The classes consist of “tumor” and “No Tumor”. The datasets used in-

clude Siar, Br35H, and Kaggle, where the “meningioma”, “glioma”, and “pituitary” classes

from Kaggle were consolidated into a single “tumor” class.

5.2 PERFORMANCE TESTS

The evaluation of the proposed framework’s performance involved two key metrics: Mean

Structural Similarity Index (MSSIM) for image quality assessment and the Accuracy metric

for tumor classification. We examined different parts of the framework on images both with

and without MRI artifacts, with each test highlighting the significance of each stage. The

experiments are structured as follows:

1. Correlation between MSSIM and Accuracy: Assesses how well the MSSIM metric reflects

diagnosis quality based on the nature of image degradation.
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2. Classification training: Examines the effect of training classification algorithms both with

and without image degradations, as well as the influence of the severity of these image

artifacts.

3. Artifact Generator: Assesses the impact of various elements of the artifact generator on

the restoration model’s performance. The elements examined include the selection of

artifacts, strategies for training a model with multiple artifacts, the sequence of artifact

application, and the likelihood of each artifact being employed.

4. Restoration Model: Assesses the impact of employing various restoration models.

5. Restoration dataset: Assesses the effect of utilizing diverse datasets for training the res-

toration model

6. Classification dataset: Evaluates the influence of using different datasets to train the

classification model

7. Classification model: Evaluates the impact of using different classification neural network

models to classify brain tumor in magnetic resonance images.

5.2.1 Accuracy x MSSIM Correlation

Rodrigues et al. emphasizes that the assessment of medical image quality ought to prioritize

its diagnostic utility (RODRIGUES et al., 2022). The most reliable metric for diagnostic utility

is the precision of tumor classification using our classification models, whereas we assess image

quality using the MSSIM metric. In this study, we investigated the relationship between the

MSSIM image quality metric and the accuracy of tumor classification models, considering the

impact of different types of image artifacts that degrade image quality.

In our experiment, we used the Fighshare dataset (CHENG et al., 2016) along with the

Algorithm 3. For image classification, we implemented EfficientNet-b0, and for image restora-

tion, we employed Uformer-T. The testing algorithm produced two groups of 10 data points

for Accuracy versus MSSIM: one corresponding to the degraded images and the other to their

restored versions. We calculated both the Spearman (SPEARMAN, 1904; ZAR, 2005) and
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Table 5.1: Correlation between MSSIM and model accuracy. Classification model trained on
clean, non-degraded images. Restoration model trained on images with random artifacts.

Artifact
MSSIM x Accuracy Correlation

Degraded Restored Both
Spearman Pearson Spearman Pearson Spearman Pearson

Ghosting 0.972 0.768 0.907 0.942 0.288 0.207
Contrast 0.990 0.663 0.715 0.752 0.704 0.615

Noise 0.836 0.837 0.936 0.958 0.965 0.935
Ringing 0.990 0.963 0.990 0.982 0.974 0.943

Blur 0.997 0.994 1.0 0.980 0.988 0.989
All 0.921 0.982 1.0 0.992 0.985 0.989

Pearson (FREEDMAN et al., 2007) correlation coefficients of these data samples, initially fo-

cusing on the degraded ones, then the restored ones, and ultimately considering the complete

set of 20 data points, yielding a total of six correlation values. This analysis was repeated

for every artifact type listed in Algorithm 3. The experiment included five types of artifacts:

ghosting, low contrast, noise, ringing, and blur. Furthermore, we conducted a test that applied

the five artifact types to each image. The results of the experiment are detailed in Table 5.1.

The analysis of the data suggests that there is a significant relationship between the MSSIM

metric and the precision of CNN-based diagnoses, with most of the entries in Table 5.1 showing

correlation values greater than 0.5. However, this relationship varies depending on the type of

image degradation, with ghosting and contrast artifacts resulting in a lower correlation than

other types. For columns focusing on degraded or restored images, this correlation can be

interpreted as one between the degradation intensity and accuracy, which are the variables

altered to derive these values. In columns examining both degraded and restored images, the

correlation also reflects the impact of image restoration on diagnosis accuracy. Here, ghosting

and contrast artifacts exhibit the weakest correlation, with ghosting displaying values below

0.5. Such reduced correlation levels contribute to the low probability of these artifacts in the

artifact generator function outlined in Section 4.1.7. We will enter into more detail as to why

these two artifacts have less impact on the diagnostic performance in Section 5.2.3.4.

5.2.2 Classification Training

In this experiment, we evaluate the performance of two methods to train classification

models to be tested on images with degradations: with and without image degradations. Two
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EfficientNet-b0 models were trained, the first on the clean Figshare dataset, without image

degradation. For the second model, the same dataset was used; however, the artifact generator

function was used to degrade the images online, similar to the procedure to train the image

restoration models described in Section 4.2.1. We refer to the first model as the “clean train”

and the second model as the “degraded train.” With the exception of added image degradations,

both models followed the same training procedure described in Section 4.2.2.

In this experiment, we evaluated the accuracy of tumor classification, depending on which

artifact affects the image and what the magnitude of that artifact is using Algorithm 3.

The quality of the images affected by different artifact types and intensities was measured

on the basis of the MSSIM metric, and the accuracy of classification models tested on those

images was also tested. Similarly to the previous experiment, the artifacts were ghosting,

low contrast, noise, ringing, blur, and all five artifacts. For each artifact, four sets of results

are obtained: “clean train” with and without image restoration; and “degraded train” with and

without restoration. We refer to “degraded eval” when accuracy is measured on degraded images

without restoration and to “restored eval” when the models are tested on restored images. We

report the accuracy results as a function of the MSSIM image quality of the degraded test set,

so the four sets of results are aligned. The results are shown graphically in Fig. 5.2.

In reviewing all six graphs, it is clear that the model trained on pristine images shows a

notable decline in accuracy when tested on degraded images, indicating a direct correlation

between image quality and accuracy. Noise was the artifact that most significantly impacted

accuracy and image quality, followed by contrast. Ghosting had the least influence on accuracy,

maintaining a level above 80%, whereas blurring had a less pronounced effect on image quality.

An intriguing phenomenon is noticed on the graph in the presence of five concurrent artifacts.

When the artifact intensity surpasses 7, accuracy continues to decline, while MSSIM exhibits a

slight rise. At such high magnitudes of degradation, images tend to focus on their low-frequency

components, causing a loss of structural patterns. This results in missing information necessary

for accurate image classification, although it reduces structural differences at smaller values.

The six graphs illustrate the beneficial effect of image restoration before tumor classification.

The model initially trained on undegraded images exhibits the greatest increase in accuracy

when images are restored, as shown in 100% of the artifact conditions. Although the model
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Figure 5.2: Accuracy x degraded image MSSIM, depending on the image degradation type.
Two classification models are tested with and without the image restoration, one classification
model trained on undegraded images and the other trained on degraded images.

trained in degraded images operates under conditions similar to the test environment, it also

gains from restoration, with the “degraded train, restored eval” data points achieving higher

accuracy compared to “degraded train, degraded eval” in 90% of the scenarios.

The restored accuracy exhibits two distinct trends based on the type of artifact. For noise,
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contrast, and ghosting, the accuracy remains stable during image restoration as quality declines,

until a certain point is reached, beyond which the accuracy sharply falls with more severe image

degradation. In the case of ringing and blurring, although restoration enhances accuracy,

a decline in image quality still results in a proportional decrease in accuracy. This can be

attributed to the fact that both artifacts are produced by a low-pass filter, indicating that

recovering the high-frequency information is a challenge for the model. Additionally, another

factor contributing to this outcome is that Algorithm 2 employs lower intensity ringing and

blur for training, which may not be as effective when dealing with stronger artifacts of these

types.

In evaluating the performance of the two classification models, it is evident that the model

trained with degraded images demonstrates superior robustness to image quality reductions,

maintaining higher accuracy when the quality declines, even when both models are assessed

on enhanced images. In contrast, the model trained with clean images achieves the highest

accuracy across all graphs when the degradation is minimal. This suggests a compromise in

training with image artifacts, trading some maximum accuracy for greater resilience against

these artifacts. Based on the graphs we infer that the best-performing model varies based

on the specific artifact and its intensity affecting the images, though using image restoration

techniques is generally advisable.

5.2.3 Artifact Generator

An essential component in training a restoration model is the artifact generation function.

Utilizing distinct functions to create the degradations results in varied model training outcomes.

This section investigates the effects of altering various facets of the artifact generator function

to empirically assess what contributes to an enhanced performance in image restoration models.

Algorithm 3 is once again used to evaluate the models. For each artifact, we report the

average accuracy and MSSIM of the 10 intensities. The test artifacts are ghosting, low contrast,

noise, ringing, blur, ringing followed by noise, and all five artifacts in the order blur, ringing,

ghosting, noise and low contrast. The results are shown in the form of two tables, one for

MSSIM and one for accuracy. In addition to restoration results, we also add the degraded
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MSSIM and accuracy as reference.

In this section, rather than sampling artifact magnitudes from a normal distribution during

training, we randomly select the intensity within the range [1,10], utilizing the algorithm descri-

bed in Section 3.3 to create the artifacts. This section is divided into subsections, with each one

examining a specific aspect of the artifact generator function: which artifacts are incorporated,

how to conduct training with multiple artifacts, the sequence of artifact application, and the

likelihood of each artifact being applied.

An EfficientNet-b0 model was utilized to train on original images in order to determine

the accuracy outcome. For each variant of the artifact generator, three Uformer-T models

were trained. The average and standard deviation among these models are presented for both

accuracy and MSSIM.

5.2.3.1 Artifact Choice

In this section, we evaluate the impact of choosing which artifacts will be included in the

training process. In this experiment, five artifact types were considered: ghosting, low contrast,

ringing, blur, and noise. We established five distinct artifact generators, each corresponding

to a single artifact type, as well as a sixth generator that randomly selects and applies one of

these five artifacts to an image, with each type having an equal chance of selection. In this

experiment, only one artifact type may be applied to each training image. Table 5.2 presents

the experimental outcomes for MSSIM, while Table 5.3 displays the accuracy results.

From Tables 5.2 and 5.3, it is evident that models specialized in a single artifact exhi-

bit superior performance when assessed solely on that particular artifact compared to models

trained for various artifacts. Yet, the multi-artifact model excels when images contain multiple

artifact types and ranks second for each individual artifact. This finding suggests that training

a unified model for handling multiple artifacts is optimal, especially when the specific artifact

affecting an image is undetermined or when multiple artifacts are present simultaneously.

An additional insight from the findings is that models trained to correct a particular artifact

also enhance image quality and classification accuracy on images compromised by different

artifacts, although blurring is an exception. Blurring serves to eliminate both noise and ringing
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Table 5.2: Average MSSIM obtained by each restoration model for each artificial artifact. R+N
indicates ringing followed by noise. Mean and standard deviation of 3 runs. Best result of each
column is in bold.

Train Test Artifact MSSIM
Artifact None Ghosting Contrast Noise Ringing Blur All R+N

No 1 0.685 0.540 0.350 0.830 0.840 0.296 0.323
Restoration ±0.0 ±0.0 ±0.0 ±0.008 ±0.0 ±0.0 ±0.003 ±0.012

Ghosting 0.998 0.965 0.716 0.386 0.834 0.806 0.304 0.355
±0.0 ±0.001 ±0.001 ±0.004 ±0.001 ±0.001 ±0.008 ±0.004

Contrast 0.998 0.704 0.991 0.371 0.834 0.805 0.300 0.341
±0.0 ±0.001 ±0.0 ±0.001 ±0.0 ±0.0 ±0.001 ±0.002

Noise 0.997 0.684 0.718 0.889 0.834 0.803 0.467 0.823
±0.0 ±0.0 ±0.001 ±0.0 ±0.001 ±0.001 ±0.001 ±0.001

Ringing 0.997 0.690 0.683 0.512 0.895 0.808 0.291 0.502
±0.0 ±0.001 ±0.006 ±0.022 ±0.0 ±0.001 ±0.003 ±0.025

Blur 0.998 0.685 0.677 0.350 0.801 0.931 0.245 0.325
±0.0 ±0.001 ±0.021 ±0.001 ±0.002 ±0.001 ±0.002 ±0.002

Choice 0.992 0.952 0.987 0.881 0.885 0.911 0.553 0.825
±0.001 ±0.001 ±0.0 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

effects, suggesting that these models somewhat “learn” to blur images for quality enhancement.

In contrast, the deblurring model might focus on sharpening images, thereby intensifying other

artifacts. With regard to other artifacts, it appears that the models learn not only to eliminate

specific issues but also to recognize the appearance of pristine images, thus tending to address

additional out-of-distribution image degradations.

In training models for individual artifacts, the noise-trained model emerged as the top per-

former under the “All” training scenario. This can be attributed to the fact that noise critically

affects image quality and classification accuracy both pre- and post-restoration; consequently,

eliminating noise from images is of paramount importance. This outcome supports the rationale

behind assigning noise the highest probability in Algorithm 2.

5.2.3.2 Artifact Combination

The prior experiment demonstrated that a single model can be effectively trained to manage

various image artifact types, achieving the highest median performance across these types

compared to models specialized for individual artifact types. In this section, we evaluate the

most effective strategies for incorporating various artifact types into the training set. The
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Table 5.3: Average accuracy obtained by the EfficientNet model when presented with images
degraded with different artifacts and restored by different models. R+N indicates ringing
followed by noise. Mean and standard deviation of 3 runs. Best result in each column is in
bold.

Train Test Artifact Accuracy (%)
Artifact None Ghosting Contrast Noise Ringing Blur All R+N

No 95.9 93.6 89.2 49.8 86.0 85.2 42.9 54.5
Restoration ±0.0 ±0.0 ±0.0 ±0.3 ±0.0 ±0.0 ±0.1 ±0.9

Ghosting 96.0 95.4 86.1 44.3 86.3 85.4 44.4 50.2
±0.1 ±0.1 ±0.7 ±0.3 ±0.1 ±0.1 ±0.4 ±0.5

Contrast 96.0 94.3 95.6 49.4 86.4 85.6 45.7 56.6
±0.1 ±0.0 ±0.1 ±0.2 ±0.0 ±0.0 ±0.1 ±0.2

Noise 95.7 94.3 91.6 88.3 86.3 85.4 69.0 83.3
±0.2 ±0.1 ±0.1 ±0.1 ±0.0 ±0.1 ±0.5 ±0.1

Ringing 95.9 94.3 91.2 50.0 88.5 85.6 44.6 53.2
±0.0 ±0.1 ±0.3 ±1.2 ±0.1 ±0.1 ±0.1 ±1.9

Blur 96.0 94.3 91.1 46.8 83.4 90.8 41.6 55.3
±0.1 ±0.1 ±0.1 ±0.7 ±0.2 ±0.1 ±0.2 ±0.2

Choice 95.6 95.1 95.4 86.6 86.9 89.7 72.9 83.3
±0.1 ±0.1 ±0.1 ±0.5 ±0.1 ±0.1 ±0.1 ±0.1

methods evaluated are the following.

• Choice: From a selection of potential artifact types, an artifact is randomly selected for

each image and applied to it.

• Parallel: Five instances of the image are created in parallel, each subjected to one of

five artifact types: ghosting, blurring, ringing noise, and low contrast. Finally, these five

altered images are averaged to produce a single image that integrates all five artifacts.

• Sequential: The five artifacts are applied to the image in sequential order. In this parti-

cular case, the order is blurring, ringing, ghosting, noise, and contrast. Each artifact has

50% probability of being applied. Similar to algorithm 2.

Tables 5.4 and 5.5 show the MSSIM and accuracy, respectively, for this experiment.

The parallel method showed considerably worse performance than the other two methods

and, for this reason, was only trained once, instead of 3 times, like the other two. By averaging

five images, in which only one of the five has a specific artifact, the impact of each artifact

is reduced in the images. It has five artifacts affecting the image, but each artifact is at 1/5
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Table 5.4: Average MSSIM obtained by each restoration model for each artificial artifact. R+N
indicates ringing followed by noise. Mean and standard deviation of 3 runs. Best result of each
column is in bold.

Method Test Artifact MSSIM
None Ghosting Contrast Noise Ringing Blur All R+N

No 1 0.685 0.540 0.350 0.830 0.840 0.296 0.323
Restoration ±0.0 ±0.0 ±0.0 ±0.008 ±0.0 ±0.0 ±0.003 ±0.012

Choice 0.992 0.952 0.987 0.881 0.885 0.911 0.553 0.825
±0.001 ±0.001 ±0.0 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Parallel 0.894 0.827 0.788 0.785 0.782 0.762 0.473 0.720

Sequential 0.996 0.945 0.978 0.874 0.881 0.868 0.788 0.834
±0.0 ±0.001 ±0.001 ±0.0 ±0.0 ±0.001 ±0.0 ±0.001

Table 5.5: Average accuracy obtained by the EfficientNet model when presented with images
degraded with different artifacts and restored by different models. R+N indicates ringing
followed by noise. Mean and standard deviation of 3 runs.

Method Test Artifact Accuracy (%)
None Ghosting Contrast Noise Ringing Blur All R+N

No 95.9 93.6 89.2 49.8 86.0 85.2 42.9 54.5
Restoration ±0.0 ±0.0 ±0.0 ±0.3 ±0.0 ±0.0 ±0.1 ±0.9

Choice 95.6 95.1 95.4 86.6 86.9 89.7 72.9 83.3
±0.1 ±0.1 ±0.1 ±0.5 ±0.1 ±0.1 ±0.1 ±0.1

Parallel 95.7 93.3 91.3 70.4 85.8 86.3 54.7 71.5

Sequential 95.3 93.9 94.1 85.1 86.9 87.0 78.1 83.4
±0.0 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.1

of image intensity; consequently, the model has less capability at restoring images when the

artifact impacts an image at full intensity.

The “choice” model has the best MSSIM and accuracy values for tests with single artifact

types, as they are more similar to the training conditions in which these restoration models

were trained. However, only a second artifact that affects the image is enough for the “choice”

model to have lower accuracy than the “sequential” model, as shown by the result of the ringing

+ noise (R + N). The difference becomes more significant when all 5 artifacts are applied.

The results of this experiment are similar to those in Section 5.2.3.1. Models perform best

when tested under the same conditions in which they were trained. In contrast, for a given

test condition, the best model would be the one trained in that same condition. Additionally,

increasing the number of conditions for which a model is trained leads to a lower restoration

quality in each of these conditions, as the model becomes less specialized in specific degradation

conditions but generalizes better for more degradation conditions. The “choice” model is trained
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for 5 degradation conditions (each individual artifact), while the “sequential” model is trained

for 32 degradation conditions (25 combinations of 5 artifacts in the specified order), so the

“choice” model has the best performance on those 5 conditions, while the “sequential” model is

better in the other 27 conditions.

Defining the best training generator is dependent on the expected degradations for testing

and practical purposes. If only noise was expected, the “noise” model of Table 5.3 would be

the best model. If more than one type could affect an image, but only one artifact type affects

an image, the “choice” model would be the best. However, if an image can be affected by more

than one artifact type, the “sequential” model would be the best. Evaluations of the Kaggle

dataset in Section 4.1 have shown that the most common degradation was noise followed by

ringing and/or blur, often also followed by poor contrast artifacts. For our testing conditions,

in which we want to cover several artifact combinations, the best model is the sequential model.

5.2.3.3 Artifact Order

In the previous section, the “sequential” model is trained applying artifacts in a specific

order. In this experiment, we want to evaluate the effect of changing this order. Each artifact

has a 50% of being applied to each image and are applied considering a specific order. The

evaluated training artifact orders are:

• BRGNC: Artifacts are applied in the order blurring, ringing, ghosting, noise, and low

contrast.

• NCRGB: Artifacts are applied in the order noise, low contrast, ringing, ghosting, and

blurring.

• GBRNC: Artifacts are applied in the order ghosting, blurring, ringing, noise, and low

contrast.

• Random: for each image, the order of the artifacts is chosen at random.

Tables 5.6 and 5.7 show the MSSIM and accuracy result, respectivelly, for this experiment.

Tables 5.6 and 5.7 show that the ability to remove ghosting is largely unaffected by the position
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Table 5.6: Average MSSIM obtained by each restoration model for each artificial artifact. R+N
indicates ringing followed by noise. Mean and standard deviation of 3 runs. Best result of each
column is in bold.

Order Test Artifact MSSIM
None Ghosting Contrast Noise Ringing Blur All R+N

No 1 0.685 0.540 0.350 0.830 0.840 0.296 0.323
Rest. ±0.0 ±0.0 ±0.0 ±0.008 ±0.0 ±0.0 ±0.003 ±0.012

BRGNC 0.996 0.945 0.978 0.874 0.881 0.868 0.788 0.834
±0.0 ±0.001 ±0.001 ±0.0 ±0.0 ±0.001 ±0.0 ±0.001

NCRGB 0.995 0.944 0.842 0.872 0.884 0.909 0.649 0.818
±0.0 ±0.0 ±0.001 ±0.0 ±0.0 ±0.0 ±0.001 ±0.0

GBRNC 0.995 0.945 0.978 0.875 0.876 0.862 0.779 0.832
±0.0 ±0.0 ±0.0 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Random 0.995 0.940 0.960 0.871 0.883 0.890 0.772 0.831
±0.0 ±0.0 ±0.001 ±0.001 ±0.0 ±0.001 ±0.001 ±0.001

Table 5.7: Average accuracy obtained by the EfficientNet model when presented with images
degraded with different artifacts and restored by different models. R+N indicates ringing
followed by noise. Mean and standard deviation of 3 runs.

Order Test Artifact Accuracy (%)
None Ghosting Contrast Noise Ringing Blur All R+N

No 95.9 93.6 89.2 49.8 86.0 85.2 42.9 54.5
Restoration ±0.0 ±0.0 ±0.0 ±0.3 ±0.0 ±0.0 ±0.1 ±0.9

BRGNC 95.3 93.9 94.1 85.1 86.9 87.0 78.1 83.4
±0.0 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.1

NCRGB 95.0 94.1 83.0 83.7 87.3 89.3 65.3 80.2
±0.1 ±0.1 ±0.5 ±0.1 ±0.1 ±0.1 ±0.4 ±0.4

GBRNC 95.5 94.1 94.2 85.7 86.6 87.0 78.3 84.1
±0.2 ±0.1 ±0.1 ±0.2 ±0.1 ±0.1 ±0.3 ±0.4

Random 95.0 93.9 93.0 83.7 86.6 88.8 76.0 81.5
±0.1 ±0.1 ±0.1 ±0.2 ±0.1 ±0.2 ±0.3 ±0.2

at which this artifact is introduced, as the three tested positions produced roughly similar

results.

In contrast, contrast restoration appears to be sensitive to order; if it is not the last artifact

applied, the quality and accuracy of the restored image suffer notably. The best results for

ringing and blurring restoration are achieved when these artifacts follow the noise application.

Among the models tested, the GBRNC demonstrated superior performance, particularly in

terms of classification accuracy. It should be mentioned that this model was trained using an

order distinct from the “All” testing order, but achieved the highest accuracy for that testing

scenario.
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Table 5.8: Average MSSIM obtained by each restoration model for each artificial artifact. R+N
indicates ringing followed by noise. Mean and standard deviation of 3 runs. Best result of each
column is in bold.

GC Test Artifact MSSIM
prob. None Ghosting Contrast Noise Ringing Blur All R+N
No 1 0.685 0.540 0.350 0.830 0.840 0.296 0.323

Restoration ±0.0 ±0.0 ±0.0 ±0.008 ±0.0 ±0.0 ±0.003 ±0.012

50% 0.995 0.945 0.978 0.875 0.876 0.862 0.779 0.832
±0.0 ±0.0 ±0.0 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

25% 0.996 0.938 0.977 0.877 0.878 0.869 0.770 0.833
±0.0 ±0.001 ±0.001 ±0.001 ±0.0 ±0.001 ±0.002 ±0.001

The “Random” model is designed to accommodate any sequence of artifact applications,

leading to lower performance in particular situations but offering better adaptability to nume-

rous artifact conditions applied in various sequences. Nonetheless, the assessments in Section

4.1 indicate an optimal sequence exists for artifact application on images. Hence, within this

context, we regard the GBRNC model as the preferred choice.

5.2.3.4 Artifact Probability

In earlier experiments, sequential models had an equal probability of 50% for the application

of each artifact. This experiment investigates how altering the likelihood of certain artifacts

being applied affects the results. In Table 5.1, ghosting and contrast exhibited the weakest

correlations between MSSIM and accuracy. Furthermore, in preceding experiments, ghosting

and contrast emerged as the testing artifacts with the highest accuracy and MSSIM following

image restoration. Considering these insights, we suggest that ghosting and contrast need not

be incorporated as frequently as other artifact types during training. For this experiment,

we developed two restoration models: one where all artifacts have a 50% likelihood of being

incorporated, and another where ghosting and contrast have only a 25% chance, while the other

artifact types retain a 50% chance. Tables 5.8 and 5.9 present the MSSIM and accuracy results

for this experiment, correspondingly.

Tables 5.8 and 5.9 indicate that reducing the likelihood of contrast and ghosting artifacts

indeed compromises the model’s performance against these specific types. However, there is a

notable increase in accuracy in all testing scenarios that involve the noise artifact. Hence, re-
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Table 5.9: Average accuracy obtained by the EfficientNet model when presented with images
degraded with different artifacts and restored by different models. R+N indicates ringing
followed by noise. Mean and standard deviation of 3 runs. Best result in each column is in
bold.

GC Test Artifact Accuracy (%)
prob. None Ghosting Contrast Noise Ringing Blur All R+N
No 95.9 93.6 89.2 49.8 86.0 85.2 42.9 54.5

Restoration ±0.0 ±0.0 ±0.0 ±0.3 ±0.0 ±0.0 ±0.1 ±0.9

50% 95.5 94.1 94.2 85.7 86.6 87.0 78.3 84.1
±0.2 ±0.1 ±0.1 ±0.2 ±0.1 ±0.1 ±0.3 ±0.4

25% 95.6 93.9 94.1 86.5 86.7 86.8 79.6 85.0
±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1

ducing the occurrence of contrast and ghosting artifacts presents an advantageous compromise.

The results of this experiment partly justify the probability settings in Algorithm 2.

We qualitatively evaluate the reason why contrast and ghosting have a lower correlation with

diagnostic accuracy in Fig. 5.3. We can see that the contrast, ghosting, and noise artifacts have

global effects on images, even affecting the background. As a consequence, images with these

three artifacts have the lowest image quality measured by MSSIM. However, in Figs. 5.3 (a)

and (b) we observe that the ghosting and contrast artifacts still preserve details in the images

and consequently do not have as much impact in diagnostic accuracy, since details used to

classify the images are still preserved. For subsequent experiments, this artifact generator, as

described in the Algorithm 2, will be employed.

5.2.4 Restoration model

Among the components of the framework described in Fig. 4.1 is the restoration model. In

earlier tests, the Uformer-T model served as the restoration model. This experiment examines

the effectiveness of different restoration models. The Figshare dataset was used to train the

models, with the artifact generator 2. To test the models, we first evaluate the MSSIM quality

metric in the artificially degraded test set. In addition, we evaluated how much the restoration

improved diagnostic accuracy. For this, we trained an EfficientNet-b0 on the Figshare dataset

for tumor classes “meningioma”, “glioma”, and “pituitary.” This classification model is then

tested on the “Degraded” test set, on the Figshare test set, on the Kaggle test set, and on

the Zenodo test set. All test sets were adapted to only included the three defined tumor
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(a) (b)

(c) (d)

Figure 5.3: Comparison of samples with different artifacts types. (a) Sample with contrast
artifact. (b) Sample with ghosting. (c) Sample with noise. (d) Sample with blurring.

classes. Since both classification and restoration models were trained on the FigShare, but

testing includes 4 test sets, this experiment also evaluates the generalization capability from

one dataset to another.

The restoration models evaluated were an Autoencoder(EL-SHAFAI et al., 2022b), a resi-

dual CNN(ZHONG et al., 2020a), a residual UNet (MUCKLEY et al., 2021) and the Uformer-

T(WANG et al., 2022). All models were trained from scratch. Additionally, we also trained an

Uformer-T model using the pre-trained weights on the SIDD dataset as weight initialization.

The results are shown in Table 5.10.

For models trained from scratch, the Residual UNet model demonstrated superior perfor-
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Table 5.10: Comparison of different restoration models, measured on MSSIM on the
degraded undegraded pair and accuracy of an EfficientNet-b0 model on 4 test sets.
Results are mean and standard deviation of 3 runs. Best result for each column is in
bold and second best is underlined.

Restoration Model Params MSSIM Figshare Degraded Kaggle Zenodo
No Restoration 0 0.596 95.38 78.39 85.21 42.73

Autencoder 0.20M 0.692 91.06 83.04 62.69 31.65
(EL-SHAFAI et al., 2022b) ±0.001 ±0.22 ±0.18 ±0.54 ±0.51

Residual CNN 0.56M 0.697 95.97 84.85 79.40 38.60
(ZHONG et al., 2020a) ±0.009 ±0.14 ±0.58 ±1.86 ±1.97

Uformer-T 5.23M 0.844 96.14 91.05 83.11 42.92
(WANG et al., 2022) ±0.001 ±0.07 ±0.16 ±0.16 ±0.90

Residual UNet 7.76M 0.613 95.34 79.83 85.17 43.11
(MUCKLEY et al., 2021) ±0.001 ±0.03 ±0.09 ±0.14 ±0.14
pre-trained Uformer-T 5.23M 0.889 95.36 92.78 87.71 45.74
(WANG et al., 2022) ±0.004 ±0.04 ±0.12 ±0.14 ±0.23

mance on the Kaggle and Zenodo datasets. In contrast, the Uformer-T model excelled with

the Figshare and “Degraded” datasets and achieved the highest MSSIM metric, whereas the

Residual UNet showed the lowest MSSIM value. Although the Residual UNet has the most

parameters, making it the largest model, the Uformer is slower due to the computational inten-

sity of its attention layers, despite having fewer parameters compared to simpler convolutional

blocks.

An interesting result is in the Figshare test. This dataset is formed by undegraded images,

yet the Residual CNN and Uformer-T models showed improvements in accuracy in that data

set. Potentially, these models made the images more similar to the Figshare training set. The

Residual UNet and pre-trained Uformer-T obtained accuracies on the Figshare similar to not

using image restoration, which might be considered positive, as the restoration models probably

learned to not change much of the test images, which are mostly undegraded. However, when

comparing the “Residual UNet” line with the “No Restoration” ’ we observe however that the

model barely changed the values in every column. So, contrary to the pre-trained Uformer-T,

the residual CNN model did not learn to not restore good quality images; instead it learned to

not restore or barely restore every image.

For the Kaggle column we observe that the pre-trained Uformer-T model was the only

model that improved classification accuracy. Every other model led to an accuracy decrease

and the Residual UNet only had the second-best result because it affected the images the least.
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It is noticeable that the results of the Zenodo show considerably lower classification accuracy

than the other columns, which we will discuss later in Section 5.2.6. Taking into account the

fact that the Residual UNet had a low impact on the images, we can consider the Uformer-

T the best-evaluated model trained from scratch. The Uformer model uses a combination of

attention layers and convolutional layers, obtaining the advantages of both methods, to which

we attribute the better performance of the model.

The results also show that pretraining the model with natural images for denoising led to

a better model, as the pretrained Uformer-T was the best overall model. We also qualitatively

evaluate the impact of using pretrained weights for model initialization. Fig. 5.4 shows an

image from the Zenodo dataset that has noise, which appears to be affected by some form of

low-pass filter. Three restoration versions are presented: using a randomly initialized model

without training, using a model with transfer learning weight initialization but without task-

training, and finally a fully trained model. The only model that effectively removed the noise

from the images was the fully trained model. Although the pretrained model was trained to

remove noise from natural images, it does not appear to transfer as well for the thicker noise

that may affect MRI images. However, the model with randomly initialized weights appears to

create even more artifacts in the image. The pretraining is thus shown to stabilize the start of

the training, but the model still has to learn to remove the particular noises and other artifacts

that affect MRI images.

5.2.5 Restoration Training Dataset

In this experiment, we evaluated the impact of the image restoration dataset. The test is

similar to the previous experiment, MSSIM is measured in the “Degraded” test set and accuracy

is measured in the Figshare, “Degraded”, Kaggle and Zenodo test sets, using an EfficientNet-b0

model trained in the Figshare training set for classes “Meningioma”, “Glioma” and “Pituitary”.

The training sets for the restoration model were the Figshare dataset and the Siar dataset,

but for the Siar dataset we only use images from the “No Tumor” class, as they have the

best image quality. These two training sets were selected because they were the two with the

best image quality, which provides the undegraded target image for model training. In this
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Figure 5.4: Qualitative influence of the pre-training. Top left: image from the Zenodo data-
set(QADRI et al., 2022). Top right: image restored by model without training. Bottom left:
image restored by model with SIDD(ABDELHAMED et al., 2018) pre-training only. Bottom
right: image restored by fully trained model.

Table 5.11: Restoration performance depending on training dataset and number of training
epochs. Uformer-T restoration model used.

Training Restoration MSSIM Test set accuracy (%)
set train epochs Figshare Degraded Kaggle Zenodo

No Restoration - 0.596 95.38 78.39 85.21 42.73
Figshare 100 epochs 0.895 95.42 92.94 87.86 45.48

(CHENG et al., 2016) 500 epochs 0.908 95.47 93.63 88.30 45.93
Siar 100 epochs 0.860 95.13 92.28 86.31 47.19(SIAR; TESHNEHLAB, 2022)

experiment, we also evaluated increasing the number of training epochs from 100 to 500 for a

model trained on the Figshare training set. The results are shown in Table 5.11.

The models trained on the Figshare training set had the best results for MSSIM and accuracy

on the Figshare, “Degraded” and Kaggle test sets. Note that all of these test sets were produced

at least in part using images from the Figshare dataset. However, we note that no image from

the Figshare and “Degraded” test set is part of the Figshare training set, and not even different

images from the same patients are split between the training and test set from the Figshare

dataset. However, those test sets should have images with conditions similar to those in the

training set.

The model trained on the Siar training set had the best results when tested on the Zenodo
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dataset, even better than the model trained for a larger number of epochs. In this case, both

the Zenodo test set and the Siar training have images almost exclusively from the axial view,

while the other training set and test sets have a mix of all three views. Given that observation,

we can argue that a restoration model can specialize in restoring a single type of MRI view

and perform better for that specific view. The two Uformer-T models trained in the FigShare

dataset have shown the best overall results in Table 5.11 and are probably better suited to

generalizing to other datasets without specified MRI views. These two models will be used in

the following experiments.

5.2.6 Classification Training Dataset

Similarly to the previous experiment, in this experiment we evaluate different training sets,

except this time it is for training the classification model. The Uformer-T model is used for

restoration in all experiments. We divided this experiment into three parts. In the first part,

the classification models are trained in training sets with its specific classes and then are tested

in the test set from the same dataset. For the other two experiments, the datasets are adapted

to have specific classes, and models are trained on specific adapted training sets and tested on

all test sets that have those classes. For the second part of this experiment, the classes are

“Meningioma”, “Glioma” and “Pituitary”. For the third part of the experiment, the classes are

“Tumor” and “NoTumor”.

5.2.6.1 Corresponding Test Set

In this experiment, models were trained and tested in the datasets Figshare, “Degraded”,

Zenodo, Kaggle, Siar, and Br25H 2020. The models were trained in each training set and tested

in the corresponding test set of each dataset. For the “Degraded” test set, models were trained

in the Figshare training set with artificially added image degradations. The classification model

was EfficientNet-b0 and the restoration model was Uformer-T. Table 5.12 shows the result of

this experiment.

We observe that, with the exception of the Kaggle and Siar datasets, models see an impro-

vement in accuracy when image restoration is applied before image classification. Considering
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Table 5.12: Classification accuracy when the model is trained and tested on the train and test
set of the same dataset.

Model Restoration Dataset accuracy (%)
Figshare Zenodo Degraded Kaggle Siar Br35H

EfficientNet-b0 No Restoration 95.38 94.26 93.03 99.78 99.71 99.17
+ Uformer-T Restored 95.42 94.86 93.58 99.68 98.93 99.33

that the “Degraded”, Zenodo, and Br35H datasets include degraded images, this result reinfor-

ces the observation made in Section 5.2.2 that even if a model was trained on degraded images

it can still be improved by image restoration. In Section 5.2.6.3 we will discuss the causes of

the drop in accuracy for the Kaggle and Siar datasets after image restoration.

Table 5.12 shows that the accuracy results above 90% were obtained for all datasets. Of

particular note are the results obtained for the Zenodo dataset, which shows considerable

improvement over the results from the previous section. In previous sections, the model used

to classify images from all datasets was trained on Figshare, which shows that the data from

the Figshare dataset do not generalize well to images from the Zenodo dataset. However, the

data from the Zenodo dataset seem to be a good representation to achieve high accuracy in

tumor classification. In the following section, we will deepen the analysis of the generalization

capabilities of the training sets.

When comparing the accuracy obtained for different datasets, we first observe that for

the Figshare, Zenodo, and “Degraded” datasets, each with 3 possible classes, the accuracy

is proportional to how much the images are degraded. This can indicate both that image

distortions may make tumor type recognition more difficult and that “noise learning” might

have occurred during training, leading to overfitting. For the Siar and Br35H datasets the

higher accuracy is expected, given that a binary classification between the presence or not of

tumor should be easier than discerning different types of tumor. The high accuracy in the

Kaggle dataset is another case. Repetition of the subject in the training and test set of the

Kaggle dataset is the first aspect that leads to misleadingly higher accuracy. The other reason

is intense noise learning that even correlates expected outputs in the test set, as we will discuss

in the next experiments.
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Table 5.13: Classification accuracy for meningioma, glioma and pituitary tumor types datasets,
depending on training dataset and whether or not restoration was used for testing.

Training Restoration Test set accuracy (%)
set Figshare Degraded Kaggle Zenodo

Figshare No Restoration 95.38 78.39 85.21 42.73
Restored 95.42 92.94 87.86 45.48

degraded No Restoration 94.02 93.03 76.93 32.53
Figshare Restored 94.00 93.58 77.04 33.10

Kaggle No Restoration 91.41 40.48 99.78 45.36
Restored 90.19 55.86 99.68 45.25

5.2.6.2 Meningioma, Glioma and Pituitrary Tumor Classes

In this experiment, the MRI classes were “Meningioma”, “Glioma” and “Pituitary”. The

training sets were the Figshare, the Figshare with artificially degraded images, and the Kaggle

training set without the “NoTumor” class. The test sets were Figshare, “Degraded”, Kaggle test

set without the “NoTumor” class and Zenodo test set without the “Adenoma” class. Table 5.13

shows the result of this experiment.

Table 5.13 shows that the best accuracy is obtained when a classification model is trained

in the corresponding training set for a given test set. The results still show that the models are

capable of generalizing to other test sets with equivalent classes, with the notable exception of

the Zenodo dataset. The Kaggle dataset training also did not generalize well to the “Degraded”

dataset. We also note that the Kaggle dataset training had the worse reaction in image res-

toration, losing accuracy in all test sets except the “Degraded” test set. As a counterpart, the

model trained on the Figshare training set was improved by image restoration in all test sets,

while it also seems to be the model that best generalizes to the other test sets, especially after

image restoration. To evaluate why each classification model had such results and why image

restoration had the observed effect, we obtained the confusion matrix for each test, with and

without image restoration. Fig. 5.5 shows the confusion matrices of the model trained on the

Figshare training set and tested on the “Degraded” and Zenodo datasets. Fig. 5.6 shows the

confusion matrices of the model trained on the Kaggle training set and tested on the “Degraded”

and Zenodo test sets.

Based on the confusion matrices, we can say that for the model trained on the Figshare train

set the error is more evenly distributed among the target classes. For the Kaggle-trained model,
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Figure 5.5: Confusion matrix when training the model on the Figshare train set and tested on
the “Degraded” and Zenodo test sets. Lines are true labels and columns are predicted labels.

Figure 5.6: Confusion matrix when training the model on the Kaggle dataset and tested on the
“Degraded” and Zenodo test sets. Lines are true labels and columns are predicted labels.

there is a noticeable lower tendency to classify images as glioma tumors and a higher tendency

to classify images as meningioma. In the Kaggle dataset most glioma images come from the

Figshare dataset, being good quality images, while the meningioma and pituitary classes are a

mix of undegraded and degraded images. Considering the fact that the “Degraded” and Zenodo

test sets include large amounts of poor-quality images, we may infer that the model trained in

the Kaggle dataset learned to associate good-quality images with the glioma class and degraded

images with the pituitary class and even more to the meningioma class.

Section 5.2.2 showed that training a classification model on degraded images can make

the model more robust against these degradations. But that is only true if the degradations

are evenly distributed between the classes and if the training degradations match the testing

degradations. The Kaggle training set has more images than the Figshare, consequently being

trained for more iterations, and consists of a mix of good quality and poor quality, yet it had
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considerably lower accuracy in the Figshare and “Degraded” test sets than the models trained

on the Figshare training set. This poorer performance of the Kaggle model is a consequence of

the Kaggle training set having degraded images unevenly distributed among the target classes,

leading the model to associate image degradations to specific classes, resulting in errors when

that association is not the case.

When comparing Figshare training with and without degradations, the model trained with

degradations and tested with restored images is slightly better on “Degraded”, but performs

considerably worse on the Figshare, Kaggle and Zenodo datasets. As observed in Section 5.2.2,

training with image degradation leads to a lower maximum accuracy on lower intensity image

degradations, and these three test sets have several undegraded images and images with lower

intensity degradations, leading to poorer performance.

Although the model trained on the Figshare dataset has less of a degradation bias toward

any particular class, it is noticeable that the trained models have particularly low accuracy

on the Zenodo dataset. This can be attributed to the fact that the Figshare dataset and to

a large extent the Kaggle dataset are made of T1-CE-weighted MR images, while the Zenodo

dataset contains mostly T2-weighted images. In Fig. 5.7 we compare images samples from the

Kaggle dataset on top and the Zenodo dataset on bottom, of the glioma class on the left and

the meningioma class on the right.

In Fig. 5.7 we notice that in the examples from the Zenodo dataset the external regions of the

brain are much brighter than the rest of the scan, including the cranium region, matching the

description of T2-weighted magnetic resonance imaging. In the images from the Kaggle dataset

the external regions are darker than the internal white matter, matching the T1-weighted MRI

description. In the meningioma sample from the Zenodo dataset, the tumor makes the outer

region of the brain darker, though still slightly lighter than the white matter region. In the

Kaggle meningioma sample, the reverse is true, the tumor is lighter than the brain regions,

particularly the external regions. For the glioma tumor, the pattern is inverted; in the Zenodo

image the tumor is lighter than the brain tissue, while on the Kaggle image the tumor is darker

than the brain tissue. This pattern is not true for all images in both datasets, however it is

representative of a large portion of the images, and is one explanation why models trained only

on a dataset of T1-MRI images aren’t as effective on datasets with T2-MRI images.
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Figure 5.7: Glioma and meningioma examples from the Kaggle and Zenodo datasets. Top:
Kaggle dataset. Bottom: Zenodo dataset. Left: glioma tumor. Right: meningioma tumor.

The results of this experiment have shown that training a model on a dataset with image

degradations can lead a model to learn the “wrong” features. The very high accuracy of models

trained and tested on the Kaggle dataset is, at least in part, a result of the models learning

a correlation between image quality and specific classes, making those models unreliable for

real-world applications. Training a classification model on undegraded images and using image

restoration to handle degraded images is a more robust and reliable approach. The results

also show that there is poor generalization between T1-weighted images and T2-weighted ima-

ges, and brain tumor classification models should only be used to classify images of the same

modalities for which they were trained.

5.2.6.3 Tumor x No Tumor

Similar to the previous experiment, we defined the classes “Tumor” and “NoTumor”, and

trained models to identify these two classes. The “NoTumor” class means that there are no

tumors on the MRI scan, or that the brain is healthy. “Tumor” indicates that there is a

tumor in the image, without distinction of the type of tumor. Three datasets were used for
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Table 5.14: Classification accuracy for “Tumor” and “NoTumor” classes depending on training
set and whether restoration was applied. Models were tested in three different test sets with
equivalent classes.

Training Restoration Test set accuracy (%)
set Siar Kaggle Br35H

Siar No Restoration 99.71 60.34 59.67
Restored 98.93 71.31 77.00

Kaggle No Restoration 49.36 100 74.67
Restored 49.93 99.77 73.83

Br35H No Restoration 75.64 92.91 99.17
Restored 77.14 92.91 99.33

this experiment: Siar, Kaggle, and Br35H. The Siar and Br35H are already split in those two

classes, but the Kaggle dataset had to be adapted. The Kaggle dataset includes the “NoTumor”

class, but has 3 different types of tumor classes, and we merged all three classes into a single

“Tumor” class, without distinction of the type of tumor. Table 5.14 shows the result of this

experiment.

As can be seen in Table 5.14, the models perform better when tested on the corresponding

test set as the training set. The Siar and Kaggle models observe an accuracy reduction on their

corresponding test sets when images are restored, and the worse restored performances are for

the Siar and Kaggle datasets when switching the test sets of those two datasets. The model

trained on the Br35H is the more robust and generalizes better to other datasets, having the

highest average, median, and minimum accuracy on the three test sets. In the majority of the

cases and on average, image restoration improves the models accuracy. To evaluate why each

training set leads to such results, we obtained the 9 confusion matrices for the tests without

image restoration. Fig. 5.8 shows the 9 confusion matrices obtained.

In Fig. 5.8, the confusion matrices in the principal diagonal of the image are models trained

and tested on the same dataset (trained on the training set and tested on the test set); in

those three confusion matrices results show that most images were correctly classified. For all

other confusion matrices, the number of errors is greater, which shows a limited generalization

capability of these datasets.

From the confusion matrices we can see that the model trained on the Siar train set when

tested on the other datasets tends to classify images as Tumor images, with a large number

of both “Tumor” and “NoTumor” being predicted as “Tumor”. When tested in the Kaggle test



5.2 – Performance Tests 113

Figure 5.8: Confusion matrices for table 5.14. Rows are the true labels and columns are the
predicted labels. From left to right, the columns represent the tests sets Siar, Kaggle, and
Br35H. From top to bottom, the rows represent the training sets Siar, Kaggle, and Br35H.

set, the Siar model also has a large number of “Tumor” images classified as “NoTumor”, even

greater than “NoTumor” are classified as “NoTumor”. For the model trained in the Kaggle train

set, the exact opposite problem is observed: on different test sets, the model tends to classify

images as being in the “NoTumor” class, but on the Siar test set it also makes the mistake of

predicting the “NoTumor” classes as being in the “Tumor” class. As for the model trained on

the Br35H train set, while there is an increase in errors, there is no significant tendency to one

specific class and the images are still mostly predicted in the correct class in all cases, directly

related to the better performance of this model in Table 5.14.

To identify the cause of this observed effect, we investigated the image quality distribution

of the images in those three datasets. In the Siar dataset images of the “NoTumor” class are of

mostly good quality, while the images of “Tumor” are mostly degraded. In the Kaggle dataset

the reverse is true, “NoTumor” images are mostly degraded and most good quality images are
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in the “Tumor” class. Finally, the Br35H dataset has mostly degraded images on both classes.

Based on this information and the confusion matrices obtained, we argue that the models

learned to correlate image quality with specific classes. The Kaggle model tends to classify

poor quality images as “NoTumor” images, and the Siar model tends to classify poor quality

images as “Tumor”. The Br35H model has image degradation evenly distributed into the two

classes and does not make such correlation, consequently being the most reliable model.

In Table 5.13 the best model was the one trained only on undegraded images, while in

Table 5.14 the best model was the one trained on degraded images, since there were no fully

undegraded datasets in this case. The results show that to train a reliable tumor classification

model, the image degradations in the dataset, if any, should be evenly distributed in the dataset

classes. Based on the results, we recognized some aspects that influence the training in 2D MRI

classification, in addition to tumor class. These aspects are the type of magnetic resonance scan

(weighted T1, T2-weighted, etc.), the slice plane (axial, sagittal, and coronal) and the types of

image degradation.

5.2.7 Classification Model

The experiment in Section 5.2.4 evaluated the influence of using different restoration models

in the proposed framework. In this section, we evaluate the influence of changing the classifi-

cation model. All models were trained in the Figshare training set with the classes “Glioma”,

“Meningioma” and “Pituitary” and the accuracy of these classes was tested in the Figshare,

“Degraded”, Kaggle and Zenodo datasets, adapted to only include the three aforementioned

classes.

The evaluated model architectures were ShuffleNetv2(MA et al., 2018), ViT (DOSOVITS-

KIY et al., 2020), RegNet (RADOSAVOVIC et al., 2020), DenseNet (HUANG et al., 2017),

ResNet(HE et al., 2016), ConvNeXt (LIU et al., 2022) and EfficientNet (TAN; LE, 2019). For

the ResNet, ConvNeXt, and EfficientNet architectures, more than one model size was tested.

For the ViT model, the resolution was changed from 256x256 pixels to 224x224 pixels, since

that is the resolution expected by that model, while other models allow for different resoluti-

ons. All models were initialized with the pre-trained weights made available by the Pytorch
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Table 5.15: Classification accuracy of different models trained on dataset 1 and tested on
various test sets. Uformer-T model used for image restoration. Results are mean and standard
deviation of 3 runs. Best result in each column is highlighted in bold.

Model Restoration Test set accuracy (%)
Figshare Degraded Kaggle Zenodo

ShuffleNetv2-x1.5 No Restoration 92.87 ± 0.50 59.47 ± 0.45 65.19 ± 1.87 40.78 ± 2.85
(MA et al., 2018) Restored 92.94 ± 0.56 89.54 ± 0.97 63.87 ± 1.88 43.26 ± 2.01

ViT-b-32 No Restoration 89.14 ± 0.26 67.90 ± 1.43 76.11 ± 1.63 41.69 ± 0.57
(DOSOVITSKIY et al., 2020) Restored 89.26 ± 0.24 88.57 ± 0.18 72.74 ± 0.50 42.39 ± 1.14

RegNet-Y-3.2GF No Restoration 92.81 ± 1.11 66.16 ± 5.54 77.89 ± 3.77 25.79 ± 5.51
(RADOSAVOVIC et al., 2020) Restored 92.60 ± 1.18 84.36 ± 5.14 77.37 ± 3.75 29.72 ± 2.44

DenseNet-201 No Restoration 93.03 ± 0.45 72.30 ± 3.79 84.62 ± 2.08 41.20 ± 2.65
(HUANG et al., 2017) Restored 93.04 ± 0.50 91.13 ± 0.92 84.58 ± 1.49 44.79 ± 1.59

ResNet-18 No Restoration 91.69 ± 0.80 72.62 ± 2.20 79.17 ± 2.01 37.92 ± 5.39
(HE et al., 2016) Restored 91.57 ± 0.78 90.28 ± 0.68 77.08 ± 3.82 40.85 ± 5.11

ResNet-50 No Restoration 93.41 ± 0.13 67.94 ± 1.76 79.73 ±2.46 38.79 ± 6.50
(HE et al., 2016) Restored 93.35 ± 0.21 90.15 ± 1.59 80.13 ± 2.60 39.52 ± 7.02

ResNet-101 No Restoration 92.67 ± 1.36 71.80 ± 5.66 82.71 ± 2.24 42.69 ± 1.40
(HE et al., 2016) Restored 92.65 ± 1.36 90.75 ± 0.61 83.33 ± 2.07 43.98 ± 1.31

ConvNeXt-T No Restoration 94.42 ± 1.44 80.04 ± 4.43 78.85 ± 11.58 39.71 ± 3.43
(LIU et al., 2022) Restored 94.45 ± 1.48 92.55 ± 0.91 78.11 ± 12.70 43.87 ± 2.92

ConvNeXt-S No Restoration 94.66 ± 0.61 82.26 ± 1.17 84.21 ± 1.80 37.38 ± 6.43
(LIU et al., 2022) Restored 94.71 ± 0.68 92.77 ± 0.60 84.40 ± 1.69 40.74 ± 5.10
EfficientNet-b0 No Restoration 92.52 ± 0.24 61.83 ± 0.99 86.98 ± 2.98 42.46 ± 3.76

(TAN; LE, 2019) Restored 92.30 ± 0.09 87.52 ± 0.02 88.23 ± 2.52 43.80 ± 1.74
EfficientNet-b2 No Restoration 93.79 ± 0.39 69.49 ± 0.38 88.78 ± 1.83 45.17 ± 2.04

(TAN; LE, 2019) Restored 93.54 ± 0.43 87.81± 1.16 90.36 ± 0.99 46.24 ± 1.49
EfficientNet-b4 No Restoration 92.82 ± 0.31 67.42 ± 3.29 85.43 ± 2.01 44.90 ± 1.28

(TAN; LE, 2019) Restored 92.43 ± 0.37 83.25 ± 0.88 86.72 ± 1.65 45.17 ± 1.27

framework. The results are shown in Table 5.15.

The results in Table 5.15 show that there is not a single best model for all cases. Instead,

the best model for the Figshare and “Degraded” datasets was the ConvNeXt-S model and

the best model for the Kaggle and Zenodo datasets was the EffiientNet-b2 model. However,

in all cases, the best result was obtained when image restoration was used. We may infer

that the ConvNeXt architecture is better at learning the target dataset, while the EfficientNet

architecture generalizes better.

Comparing different models of the same architecture, we observe that the best model

isn’t simply the largest model. The EfficientNet-b2 model performed better than the larger

EfficientNet-b4 model on all test sets, although the EfficientNet-B4 model still performed bet-

ter than the smallest EfficientNet-b0 model. Also, the smaller ConvNeXt-T was better than

the larger ConvNeXt-S on the Zenodo dataset and the intermediate ResNet-50 was the best

ResNet model on the Figshare dataset.

To evaluate the impact of image restoration, we first observed that for the “Degraded” and
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Zenodo datasets, all models saw accuracy improvements when images were restored. For the

Figshare test set, only 5 of the 12 models saw improvements in image restoration. Since the

Figshare dataset is compromised of undegraded images, an improvement is expected in about

50% of the cases. We also observe that the largest average accuracy change when adding image

restoration to the Figshare dataset is only 0.39%, so this dataset is not significantly affected by

image restoration, as desired.

The Kaggle dataset, with the exception of “NoTumor” class, also has mostly undegraded

images and saw an increase in accuracy by restoration for only 6 out of the 12 models. However,

more important is to observe which models were improved by image restoration. The six models

that had a decrease in accuracy by image restoration were the five models with the lowest

accuracy and the DenseNet-201 models. However, the DenseNet model only saw a 0.04%

decrease in average accuracy, much lower than its accuracy standard deviation. The models

that observed an improvement in accuracy by image restoration were the 7 most accurate

models, except DenseNet, and the model that had the highest nominal improvement from

image restoration was also the most accurate model, EfficientNet-b2, which had an increase

in accuracy of 1.58% by image restoration. The results indicate that more accurate models

become more sensitive to image quality, therefore ensuring good image quality leads to more

accurate results.

We note here that all models were trained for only 100 epochs on a dataset of little more

than 2000 training images, while the methods reported in the original papers include much

longer training. This indicates that there is potential for improvements in the training of those

classification models, though current results focus in evaluate the performance of the solution

with image restoration.

5.3 QUALITATIVE ANALYSIS

To evaluate the performance of restoration qualitatively, we generated degraded images by

applying the artifact generator function to images from the Figshare dataset, which we then

restore using the trained Uformer-T model. We analyze the image degradation and perform a

qualitative comparison with the restored images.
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(a)

(b)

(c)

Figure 5.9: Examples of image restoration. Left: Artificially degraded image. Right: corres-
ponding restored image.

In addition, we selected some images from the datasets that have shown some form of image

degradation or lower image quality. These images have artifacts that were not generated by

us, with unknown degradation values unseen during the training of the restoration model. The

restoration results on these images show the generalizability of the restoration model. Similarly

to what is done with artificially degraded images, we perform a qualitative comparison of the

degraded and restored images. We split these results based on the dataset of origin of the

images, so that we can evaluate the particularities of each dataset.
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(a)

(b)

Figure 5.10: Examples of image restoration. Left: Artificially degraded image. Right: corres-
ponding restored image.

5.3.1 Artificially Degraded Images

Using the artifact generator function and the restoration model, we generated pairs of

degraded and restored images. Figs. 5.10 and 5.9 show some examples generated for qualitative

analysis. In all pairs from Fig. 5.9 some degree of ghosting can be observed. In Fig.5.9(a), even

after restoration, the ghosting artifact still remains, though at lower intensity and with parts

entirely removed from the background. In Fig. 5.9(b), the ghosting artifact was completely

removed from the background region, but the ghosting lines that go over the brain region still

remain at lower intensity. In Fig. 5.9(c), the ghosting artifact is more perceptible in the brain

region, similar to the middle restored image, but after restoration extra attention is required

to perceive the remaining traces.

In all five restored images, some degree of image sharpening is perceived, which is best

perceived in the brighter and darker regions, particularly in the darker region separating the

brain from the cranium, but also in the dark tumor regions of Fig. 5.10(b), which shows the

deblurring property of the model.

Noise can be seen in Figs. 5.10 (a) and (b) and in Figs. 5.9 (a). In the corresponding
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restored images, the previously noisy images become smoother, without losing image sharpness,

as previously mentioned. Additionally, this noise removal and image sharpening makes the

structural details of the brain and cranium much clearer to the human eye and may also be

associated with the increase in accuracy for the classification model seen in all experiments.

In Fig. 5.9(b) some ripple effect can be seen next to the cranium on the right and upper

part of the image. This effect may be associated with the Gibbs ringing artifact. On the

corresponding restored image this effect seems to have been smoothed over and is harder to

perceive.

In Figs. 5.9(a) and 5.10(a), the low contrast may be identified mainly by the lighter

background. In the corresponding restored images the background is completely black, and

the cranium images may be perceived as brighter. The combination of contrast adjustment,

sharpening, and noise removal leads to a better contrast between regions, so that segments are

easier to identify.

5.3.2 Kaggle dataset

In Fig. 5.11 we show three pairs of input and restored images using images from the Kaggle

dataset (NICKPARVAR, 2021) as input. All three images show some degree of poor contrast

and brightness. For Figs. 5.11 (a) and (b), the restoration darkens the background, but also

results in lower brightness of the signal itself. In Fig. 5.11 (c), the restoration leads to an

increase in signal intensity, which makes the structural details of the image clearer.

In particular for Fig. 5.11 (a), noise removal is noticeable, with regions of the brain becoming

smoother and some spots removed in the darker regions of the image, such as the gap separating

the brain from the cranium in the upper part of the image. The restored image shows more

distinguishable regions, which are highlighted in the tumor in the upper right part of the

brain. The edges between the tumor and the brain are more clear, but there are also more

distinguishable regions within the tumor, characterized by different signal intensities.
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(a)

(b)

(c)

Figure 5.11: Examples of image restoration for images from the Kaggle dataset (NICKPARVAR,
2021). Left: Original image. Right: corresponding restored image.

5.3.3 Zenodo dataset

In Fig. 5.12 we show three pairs of input and restored images using images from the Zenodo

dataset (QADRI et al., 2022) as input. The brighter gray matter (external region of the brain) of

the T2-weighted images can be clearly identified in the top image pair. Since this characteristic

is quite different from what is seen in T1-weighted images, this high contrast between gray

matter and white matter can lead to the lower accuracy of the classification models trained on

the Figshare and Kaggle datasets when tested on the Zenodo dataset.

All three images show noise, which is more noticeable in the white matter (darker internal

region of the brain) and tumor regions. In the restored images those regions show smoother,
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(a)

(b)

(c)

Figure 5.12: Examples of image restoration for images from the Zenodo dataset (QADRI et al.,
2022). Left: Original image. Right: corresponding restored image.

more constant, intensity values. Despite the smoother, less noisy regions, the restored images

have sharper edges and more clearly defined regions, particularly for the middle image pair. A

noticeable effect is the thicker black line in the tumor of the middle image pair.

In Fig. 5.12(a), Gibbs ringing is perceived close to the central column of the image. That

is, close to the division between the left and right hemispheres of the brain. In this division,

there is a dark gap with bright gray matter on each side, creating the sharp edge that generates

the Gibbs ringing artifact. The smoothing effect that reduced the noise in the restored image

also affected the ringing artifact. In the original image, several ripples can be identified to each

side, while on the restored image only one oscillation is very clear.
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(a)

(b)

(c)

Figure 5.13: Examples of image restoration for images from the Br35H 2020 dataset (HAMADA,
2020). Left: Original image. Right: corresponding restored image.

5.3.4 Br35H 2020 dataset

In Fig. 5.13 we show three pairs of input and restored images using images from the Br35H

2020 dataset (HAMADA, 2020) as input. Similarly to the examples of the other dataset, in

Fig. 5.13 (a) and (b) noise is shown to have been smoothed out. In both these image pairs,

the tumor shows with saturated intensity, and in the first image pair the tumor brightness

intensity matches that of the also saturated gray matter, which makes it more difficult to

identify the tumor at the top left portion of the head, except for structural differences, such

as the more rounded aspect of the tumor. All three restored images show lower brightness,

showing average brightness more similar to what is seen in images from the Figshare dataset,
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which was used to train the restoration model, which could considered a negative aspect for

brain tumor recognition. In Fig. 5.13(b) an interesting effect can be observed; there is a thicker

dark edge between the tumor and the brain, which highlights the tumor.

Fig. 5.13(c) is a healthy brain image, but it is also the image with the lowest quality of

the three. In that image strong JPEG compression artifacts can be seen in the form of square

regions with sharp edges (although on the PDF these might be less clear). In the corresponding

restored image, while it is still a very poor quality image, the square regions of the JPEG

compression are less distinguishable and appear to have been smoothed out. An interesting

aspect of the model is highlighted with this and previous results, while the model smooths out

noise, ringing, and JPEG compression artifacts it still keeps and even highlights the edges of

tumor regions.

5.3.5 Siar dataset

In Fig. 5.14 we show three pairs of input and restored images using images from the Siar

dataset (SIAR; TESHNEHLAB, 2022) as input. The images show similar results to those from

the other datasets. In Fig. 5.14(a), Gibbs ringing artifact is seen on both sides of the brain,

with fewer ripples being noticeable on the restored image. Figs. 5.14(b) and (c) both show noise

removal results, although Fig. 5.14(c) appears to have lost some high-frequency details which

are hard to distinguish from noise. In the brain of the bottom degraded image, some lines may

be perceived and can be associated with ghosting and/or Gibbs ringing and have mostly been

removed in the restored image.

Overall, results for all datasets show that the model trained on T1-CE-weighted brain

MRI images with artificially added image artifacts generalizes well to unseen data with image

artifacts. The restoration result also works well for T2-weighted images, although this change in

MRI modality negatively affects image classification if the classification model was not trained

for that particular MRI modality, as seen in the quantitative results. Although the model cannot

fully recover the quality of excessively degraded images, such as the examples in Fig. 5.13, it

can still soften the artifacts of the image with considerably more intense degradations than the

ones used for training.
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(a)

(b)

(c)

Figure 5.14: Examples of image restoration for images from the Siar dataset (SIAR; TESH-
NEHLAB, 2022). Left: Original image. Right: corresponding restored image.



CHAPTER 6

CONCLUSIONS

We proposed a two-stage solution to aid in the diagnosis MRI scans with potential image

degradations, including Rician noise, Gaussian blur, Gibbs ringing, poor contrast, Nyquist

ghosting and JPEG compression. The solution uses a Uformer-T model to first restore images,

ensuring a minimal image quality for the second stage, in which an EfficientNet model predicts

the diagnosis for the restored image. We performed extensive testing with artificially degraded

images and with 5 different datasets containing real cases of image degradations. The results

show that the proposed approach improved the accuracy of diagnosis prediction, improved

the robustness to image degradations, and made computer-aided diagnosis more reliable. Of

particular note is the effectiveness of the approach for images with an arbitrary combination of

artifact types.

We evaluated real cases of degraded images, highlighting that images are often affected

by multiple types of artifacts. For those cases, we observed that different types of image

distortion affect each other, particularly noise artifact. Isolated noise in MRI follows the Rician

distribution, but when the image is also affected by blurring of the Gibbs artifact, the noise

appears thicker and the histogram of the noise has a smaller range of values. When images

are affected by contrast artifacts, the noise is constrained to regions with intermediate pixel

intensities, such as the brain region, and does not appear on the darker background or lighter

regions of the cranium. When images are also affected by the JPEG compression artifact, the

noise may diverge from the Rician distribution, and this difference should be considered in the

denoising process. To make computer-aided diagnosis reliable for real-world applications, the

methods have to account not only for all different artifact types but also the combination of

those artifacts, which our solution does. We found in our dataset evaluations that the most

common type of artifact in the datasets was “thick” noise that can be simulated with Rician

noise plus some form of low-pass filtering.



126

We have shown empirically that to make the restoration model more effective, the training

images have to have image degradations similar to the testing conditions, as expected; but this

also depends on the type of artifact. Ghosting and contrast artifacts have a lower correlation

between image quality and computer-aided diagnosis accuracy, and do not have to be included

too much during training in a multiple-artifact scenario, even if they are frequent during testing.

As an alternative to image restoration, training classification models on degraded images,

artificial or not, can also improve model robustness to image degradations. Both methods

can also be combined, as even models trained on degraded images see accuracy improvements

when the images are restored before classification. Training on degraded images does, however,

lower the maximum accuracy of the model as well as its generalization capabilities. The image

restoration approach not only improves accuracy on the target dataset, but also significantly

improves generalization for other datasets.

We compared different models for image restoration, comparing the Uformer model with

CNN-based models, which showed that the Uformer model obtains better image quality and

improvements in computer-aided diagnostic accuracy. This shows that models based on the

combination of transformer and convolutional layers have great potential in medical image

restoration. We also compared several image classification models, which corroborated that

the EfficientNet architecture is the most indicated for medical image classification, but the

ConvNext architecture also showed competitive results.

We observed that the image restoration method works well on MRI of both T1 and T2

modalities, as well as all three planes, axial, coronal, and sagittal, even when some of those

particular cases are not included during training, though with some loss of effectiveness. This,

however, is not the case for the classification model, which requires training on each particular

variation on brain MRI to be effective, specially between the T1 and T2 MRI types there is a

lack of generalization capability.

In all our experiments, we show that during testing, ensuring better image quality leads to

more accurate computer-aided diagnosis. However, during the training of automatic image di-

agnosis methods, image quality presents the greatest risks. When training image classification

models on degraded images, the model might learn to correlate image quality with particular

diagnostic classes, leading the models to have very high accuracy on test sets with similar condi-
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tions, giving a false sense of security for those models. When these models are tested on unseen

data with different quality conditions, those models fail, with significant drops in accuracy,

making those models unreliable for real-world applications. While datasets with image degra-

dations are good for testing the robustness of the methods, computer-aided diagnostic models

should ideally be trained on good quality images to be more reliable, with image restoration as

an auxiliary tool to keep robustness on poor quality images.

The method was tested and compared with other models for image restoration and image

classification. The results validate the choice of using Uformer-T models for image restoration.

When evaluating different image classification models, we observed that the more accurate the

model is, the more relevant it is to include an image restoration step, as these more accurate

models tend to be more sensitive to small details to classify more difficult cases and image

restoration reduces these small variations.

All experiments were performed using image classification models. Future research efforts

may involve implementing this approach for tasks such as tumor detection and segmentation.

In these scenarios, it is feasible to utilize the existing image restoration model by substituting

the image classification module. The method could also be applied to other types of brain

pathologies, such as recognizing Alzheimer’s disease, using the same restoration model and

changing only the classification model. Similarly, the approach could be used for MRI of other

body parts besides the brain to recognize other types of pathologies. Another case in which

the method could be useful is in compressed sensing. One major problem in MRI is the long

acquisition time; compressed sensing enables faster image acquisition, but has risks in image

quality reduction. In the last case, the artifact generator function would be replaced by a

function to simulate the MRI with fewer frequency components.
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