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This paper designs a real-time perceptual compression system (RTPCS) based on eye-

gaze-position analysis. Our results indicate that the eye-gaze-position containment metric 

provides more efficient and effective evaluation of an RTPCS than the eye fixation 

containment. The presented RTPCS is designed for a network communication scenario 

with a feedback loop delay. The proposed RTPCS uses human visual system properties to 

compensate for the delay and to provide high ratios of multimedia compression. 

 

Categories and Subject Descriptors: I.6.4 [Simulation and Modeling]: Model Validation 

and Analysis; J.7 [Computers in Other Systems]: Process control, Real time. 

General Terms: Algorithms, Performance, Design, Reliability, Experimentation, Human 

Factors, Verification. 

Additional Key Words and Phrases: real-time multimedia compression, human visual 

system. 
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1 INTRODUCTION  

In this paper we present a design of a Real-Time Perceptual Compression System 

(RTPCS) based on eye-gaze-position analysis. The average eye-gaze-position 

containment is proposed as a new evaluation metric for an RTPCS performance. 

Additionally the proposed RTPCS is evaluated with respect to various parameterizations 

of the eye fixation detection.  

An eye fixation is a type of eye movement that brings high acuity vision to the brain. 

Perceptual compression increases image quality around an eye fixation while reducing 

the image quality in the vision periphery in accordance with an eye sensitivity function.  



Perceptual compression allows decreasing the bit-rate of the multimedia while preserving 

the same perceptual quality [3, 4, 5, 6].   

Eye fixation analysis is the most common evaluation metric used today for eye 

tracking systems, but research literature still struggles with the exact method used for 

detecting eye fixations. Different eye fixation detection methods can lead to different 

RTPCS evaluation results. As a solution to this problem, we propose an eye-gaze-

position containment metric. Our results show that such metric is more conservative and 

robust than an eye fixation metric. 

Additionally, the design of the RTPCS described in this paper addresses the 

challenges of a networking scenario. Feedback loop delay associated with multimedia 

transmission presents the uncertainty about the location of future eye-gazes. We have 

designed a model which predicts future eye-gaze-position trace through previous eye 

movement analysis thus compensating for the delay. 

The paper is organized in the following way. Section 2 presents a brief overview of 

related work, human visual system description and perceptual compression challenges. 

Section 3 outlines the design of our PRTCS. Section 4 describes experimental setup. 

Section 5 reports results including additional compression levels achieved by the 

proposed PRTCS. Section 6 presents a discussion on the system’s limitations. Section 7 

has the conclusion. 

 

2 BACKGROUND AND OBJECTIVES 

 

2.1 Previous work 

There have been quite a few studies that investigated various aspects of perceptual 

compression. An excellent eye-tracking methodology book was written by Duchowski 

[25].  Research in perceptual compression field has mainly focused on the study of 

contrast sensitivity or spatial degradation models around an eye fixation and its impact on 

the perceived loss of quality by viewers [8, 10, 11, 12]. Geisler and Perry [13] presented 

pyramid coding and used a pointing device to identify the point of focus by a subject. 

Daly et. al. [14] presented an H.263/MPEG adaptive video compression scheme using 

face detection and visual eccentricity models. Bandwidth reduction of up to 50% was 

reported. For example, Daly [15] utilized a live eye-tracker to determine the maximum 

frequency and spatial sensitivity for HDTV displays with a fixed observer distance. Lee 

and Pattichis [6] discussed how to optimally control the bit-rate for an MPEG-4/H.263 

stream for foveated encoding. Stelmach and Tam [17] have proposed to perceptually pre-



encode a video based on the viewing patterns formed by a group of people. Babcock et. 

al. [18] investigated various eye movement patterns and foveation placements during 

different tasks, making the conclusion that those placements gravitate toward faces and 

semantic features of an image.  

A few researchers have worked on saliency maps and saccade target estimation in 

videos and 3D environments based on pre-computed image analysis [21, 22].  

In our previous work, we have created an eye-speed-based scheme which looked at 

the perceptual compression for a single viewer [3] and multiple viewers [23] in a 

situation where the proposed perceptual compression model did not have access to the 

presented visual content. Later we developed several perceptual compression models 

which improve perceptual compression based on real-time scene analysis and content 

evaluation [24].  

The work presented in this paper uniquely stands out from the previous research in 

terms of a design of a practical RTPCS that addresses some of the networking challenges, 

i.e., feedback loop delay and uneven eye-gaze-position sample arrival at an RTPCS. In 

this paper, we propose an eye-gaze-containment evaluation metric for the design of an 

RTPCS. Our results show that such a metric is more conservative than an eye fixation 

based metric. Our work builds on a single viewer approach presented in [3]. In this paper, 

we add to the past work by bringing the comparison between an eye-gaze-position and an 

eye fixation RTPCS evaluation, including more subjects, a wider test range of input 

parameters and a discussion that takes on the limitations of the proposed system. 

 

2.2 Human visual system 

There are three types of eye movements which are present when we look at 

multimedia: fixation, saccade, and smooth pursuit.   

(i) Fixations: - “eye movement which stabilizes the retina over a stationary object of 

interest” [25]. Eye fixations are accompanied by drift, small involuntary saccades and 

tremor. A human’s eye perceives the highest quality picture during an eye fixation. Eye 

fixations represent the areas of perceptual attention focus. Eye fixation duration usually 

ranges from 100 ms. to 600 ms. with eye velocity not exceeding 100 deg/s during a 

fixation. Usually ninety percent of the total viewing time in humans is spent in eye 

fixations [29]. 

(ii) Saccades: - “rapid eye movements used in repositioning the fovea to a new 

location in the visual environment” [25]. Saccade duration ranges from 10 ms. to 100 ms. 



which renders the visual system blind during a saccade [20]. Saccade duration ranges 

from 30 ms. to 120 ms. with eye velocities going above 300 deg/s. 

(iii) Smooth pursuits:  - eye movements which develop when the eyes are tracking a 

moving visual target. It consists of these two components: a slowly varying motion 

component plus a saccadic component. This saccadic component occurs occasionally as a 

correction mechanism for the eye-gaze-position when the current eye-gaze-position is not 

accurate with respect to the moving object [19]. The slowly varying motion component 

keeps the retina stable over the moving object, and high quality visual data is perceived 

during this period. 

The ability to perform perceptual 

compression comes from the anatomical 

properties of the human eye. The diameter of 

the eye’s highest acuity, the fovea, extends 

only to 2 degrees. The parafovea, the next 

highest acuity zone, extends to about 4 to 5 

degrees, and acuity drops off sharply beyond 

[2] that point.  

Anatomical properties of the eye can be 

represented by a visual sensitivity function 

which allows us to perform perceptual compression of any multimedia in a form of image 

degradation from an eye fixation point to the pheriphery. In this paper we use a visual 

sensitivity function proposed by Daly and Ribas-Corbera [14]: 
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Here, S is the eye visual sensitivity as a function of the image position (x,y), ECC is a 

constant (in this model ECC=0.24), and ӨE(x,y) is the eccentricity in the visual angle. 

Figure 1 presents an example of S(x,y). 

Within a specific RTPCS implementation, an 

eye sensitivity function has to be mapped to the 

spatial and temporal parameters of the selected 

codec. 

 

2.3 Feedback loop delay 

Figure 1. Visual sensitivity function. 
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Previous research did not consider the impact of the feedback loop delay on 

perceptual compression. Feedback loop delay is the period of time between the instance 

the eye-gaze-position is detected by an eye-tracker and the moment when a perceptually 

compressed image is displayed. Figure 2 presents the feedback loop delay concept. 

 In the design of an RTPCS the delay compensation is important because future eye 

fixations should fall within the highest quality 

region of the image, preventing the viewer 

from noticing the compression artifacts. 

 It is noteworthy that the properties of the multimedia transmission might change over 

time, thus increasing or decreasing the delay length. A typical network delay range is 

from 20 ms. to a few seconds. Saccades can move the eye position more than 10 degrees 

during that time while potentially placing a new eye fixation to the low visual quality 

region. 

 

2.4 Objectives 

Our first objective was to design an RTPCS that perceptually compresses a 

multimedia source using eye-gaze-position analysis in a network scenario with a delay. 

Our second objective was to make sure that the proposed eye-gaze-position metric is 

more conservative than an eye fixation-based metric.  

 

3 REAL-TIME PERCEPTUAL COMPRESSION SYSTEM DESIGN 

 

3.1 Perceptual Attention Focus Window 

To compensate for the feedback loop delay we have created a concept of Perceptual 

Attention Window (WPAW). The purpose of the WPAW is to contain future eye fixations. 

Two parameters define the WPAW - Future Predicted Eye-Speed (FPES) and feedback 

loop delay (Td).  

Our eyes move between the eye fixations using saccades. The acceleration, rotation, 

and deceleration involved in ballistic saccades are 

guided by the muscle dynamics and demonstrate 

stable behavior. The latency, direction of the gaze, 

and the eye fixation duration have been found to be 

highly dependent on the content of the media 

presented; and they are often hard to predict. 

Figure 2. Feedback loop delay during 

perceptual compression. 

Figure 3. Perceptual Attention 

Window - WPAW. 



Therefore WPAW is modeled as an ellipse, allowing the WPAW boundaries to take any 

direction within the eye movement acceleration constraints. The size of the ellipse is 

proportional to the length of the feedback delay multiplied by the FPES. The FPES is 

broken into horizontal and vertical components which are represented by Vx(t) and Vy(t) 

values correspondingly. “t” is time when the FPES is calculated. Figure 3 presents a 

diagram of the WPAW. Conceptually the WPAW can be applied to any type of multimedia 

The Histogram Eye-Speed Analysis (HESA) model is used for Vx(t) and Vy(t) 

calculation. The HESA description is presented in the Section 3.2. 

The WPAW transforms visual sensitivity function presented by (1) into a form: 
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(2) 

 

where x_pix, y_pix are coordinates of every pixel of the image presented. x_cenPAW(t) 

and y_cenPAW(t) are the WPAW center coordinates at the time instance “t”. Td is feedback 

delay length. VD is the distance between the viewer and the screen on which the 

multimedia content is presented. Note: all 

distances need to be converted to the pixel 

distances for this equation to be true.  

Figure 4 presents a diagram of eye 

sensitivity function specified by (2). The 

peak point presented by the eye sensitivity 

function in Figure 1 becomes the ellipse of 

the WPAW. That means that any point inside 

of the WPAW has a sensitivity level equal to 1, and it will be encoded with the highest 

quality. The slope in Figure 4 is created by the eye visual sensitivity function represented 

by (1).  

 

3.2 Histogram Eye-Speed Analysis 

The intuitive goal of our algorithm was to assign an eye-speed value (Running Frame 

Eye-Speed - RFS) to the every video frame. Such an assignment should take care of cases 

when there are many eye-gaze-position samples detected for a frame and the cases when 

no eye-gaze-position samples are detected. RFS assignment should be conservative, i.e., 

Figure 4. Eye Visual Sensitivity function 

combined with Perceptual Attention Window. 



in case of the high variance in terms of the eye-gaze-position coordinates and in case 

when the eye-tracker’s sampling rate is much higher that the frame-rate of the RTPCS, 

the resulting RFS values would be higher, not lower. The resulting set of the RFS is 

evaluated through a histogram-based method to calculate Future Predicted Eye Speed.  

Suppose there are n eye-gaze-positions sampled between frames F(t-1) and F(t) 

detected by the RTPCS. Each eye-gaze-position sample has (xi,yi) pixel coordinates on 

frame F(t). RFS for horizontal and vertical eye movement component is calculated as: 
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“n” is the number of eye-gaze-position samples detected for the frame “t”. “n” can vary 

per frame due to the unpredictable system and network delays. TF is the value of the 

feedback delay in the system measured in frames. TF=Td/FrRt. Td is the value of the 

feedback delay in the system measured in seconds. FrRt is the RTPCS’s current frame 

rate per second. Notation xi(t-TF) and yi(t-TF) shows that the eye-gaze-position samples 

that the RTPCS received for the frame F(t) are Td  seconds late. Thus delayed eye-gaze-

positions are represented by coordinates xi(t-TF) and yi(t-TF), where ni 1 , and n is the 

number of eye-gaze-position coordinates received by the RTPCS while the frame F(t) is 

being compressed. Such computation of the RFS will satisfy the requirements described 

at the beginning of this section. The HESA model uses xn(t-TF) and yn(t-TF) as 

coordinates of the WPAW center for the frame F(t). 

      After each frame was assigned an RFS number, it would be necessary to select a 

boundary for the Future Predicted Eye Speed based on the history presented by the RFS 

set. The RFS set represents the “memory” of the previous eye movement behavior.  The 

RFS “memory” is represented by a histogram which allows it to “cut off” the unnecessary 

high RFS values present mostly due to the saccades. As a result of the “cut off,” future 

eye-gaze-positions representing a saccade will not be covered by the WPAW, but such 

RTPCS performance is satisfactory due the fact that our eyes are blind during the 

saccades. Eye-gaze-position samples representing the eye fixations and the pursuits will 

be covered by the WPAW. 

 The “cut off” parameter is represented by the Target Eye-Gaze Containment (TGC). 

The choice of this parameter depends on the amount of the saccades and noisy eye-gaze-

position samples presented in the eye trace. The “memory” of the histogram created by 

the RFS values will be represented by the RFSs (Running Frame Eye-Speed samples) 
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parameter. Parameter RFSs represents the size of the set containing a specific number of 

the most recent RFS samples.  

Mathematically the HESA model works as follows:  

Two RFS sample sets are created:  𝑉𝑥
𝑅 𝑡 − 𝑅𝐹𝑆𝑠 , . . , 𝑉𝑥

𝑅 𝑡   and  𝑉𝑦
𝑅 𝑡 −

𝑅𝐹𝑆𝑠 , . . , 𝑉𝑦
𝑅 𝑡  . The TGC parameter creates a percentile “cut off” boundary q in each 

RFS set: 𝑞 =  
𝑇𝐺𝐶

100
 𝑅𝐹𝑆𝑠. After this step, a Randomized-Select algorithm described in 

Cormen et. al. [1] is used to calculate the FPES values.  

𝑉𝑥 𝑡 = 𝑅𝑛𝑑𝑆𝑒𝑙(𝑉𝑥
𝑅𝐹𝑆 , 𝑡 − 𝑅𝐹𝑆𝑠, 𝑡, 𝑞) (5) 

𝑉𝑦 𝑡 = 𝑅𝑛𝑑𝑆𝑒𝑙(𝑉𝑦
𝑅𝐹𝑆 , 𝑡 − 𝑅𝐹𝑆𝑠, 𝑡, 𝑞) (6) 

The Randomized-Select algorithm returns the value of qth smallest element of the 

input array and it runs in O(RFSs) time. The value of the qth smallest element represents 

the Future Predicted Eye Speed necessary to satisfy the goals of the HESA model. The 

percentage of the RFS samples between the smallest element and the qth element is less or 

equal to the TGC value. An example of the FPES calculation by the HESA model is 

presented in Figure 5. 

 

4 EXPERIMENT 

 

4.1 Equipment 

The proposed RTPCS was evaluated using an MPEG-2 transcoder [28] integrated 

with Applied Science Laboratories eye-tracker model 504. ASL 504 has the following 

characteristics: accuracy - spatial error between true eye position and computed 

measurement is less than 1 degree; precision - better than 0.5 degree; eye-gaze-position 

scanning rate – 60Hz. That model of the eye-tracker compensates for small head 

movements within a few inches so the subject’s enforced head stabilization was not 

Figure 5. Example of a horizontal FPES calculation. 



required. Nevertheless, during the experiments, every subject was asked to hold his/her 

head still. Before running each experiment, the eye-tracking equipment was calibrated for 

the subject and checked for the calibration accuracy; and if one of the calibration points 

was “off”, then the calibration procedure was repeated for that point.  

 

4.2 Eye Fixation Detection Algorithm 

Surprisingly, there is no firm definition for an eye fixation. It should be noted that 

from a practical point of view, an eye fixation is less a physiological quantity than a 

method for categorizing sections of a data stream. Sensible selection of criteria depends 

on the experimental goal and the characteristics of the measurement as well as the 

underlying physiology. There are quite a few different algorithms in the literature for 

detecting eye fixations [25], all of which represent logical strategies. Processing the same 

data with
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Figure 6. Example of the perceptual (left side ) and uniformly  (right side) compressed frames for 

the “Car”, “Shamu”, “Airplanes”  videos. Target bit-rate is 1Mb/s. 



 different algorithms or different parameters for a given algorithm easily results in a 

different number of eye fixations and different sets of eye fixation start and stop times 

and positions.  

The algorithm that we used for eye fixation detection falls in the category that 

Duchowski [25] labels “dwell-time eye fixation detection”.  The full description of the 

eye fixation detection algorithm is presented in the ASL eye-tracker manual [26]. To 

detect an eye fixation, this algorithm looks for a specified time period β (minimum 

fixation duration) when eye-gaze-position samples within this time period have a 

standard deviation of no more than γ degrees of the visual angle. γ parameter was set to 

0.5 degrees (0.5 is the maximum amplitude of the involuntary saccades within an eye 

fixation [7]). β parameter was varied between 100 ms. and 150 ms. A 100 ms. duration is 

recommended by eye-tracker manufacturers [16, 26], and 150 ms. is the time duration 

that is suggested by eye-tracking research literature [25]. In our experiments, both values 

of β are used to evaluate HESA based RTPCS. 

  

4.3 Test Multimedia Content 

Human eye movements are highly dependent on the visual content. Some types of 

scenes inherently offer more opportunity for compression and some offer less. Any 

multimedia compression algorithm should continuously analyze the complexity of a 

scene and provide the best performance possible. Unfortunately, there is no easy or 

agreed means of measuring the complexity of the content. To select our test bed clips, we 

have looked at several examples, each offering different combinations of subjective 

complexities. In this paper, we consider three representative cases. Each selected video 

clip presents different content challenges to our RTPCS. Below are rough subjective 

complexity descriptions for each video clip: 

Car: This video shows a moving car. It was taken from a security camera viewpoint 

in a university parking lot. The visible size of the car was approximately one fifth of the 

screen. The car was moving slowly, allowing the subject to develop smooth pursuit eye-

movement (our assumption). Sometimes there are smaller objects such as pedestrians and 

other cars which appear briefly in the background, but mainly this video’s background is 

stationary.  

Shamu: This video captures an evening performance of Shamu at a Sea World during 

the nighttime under a tracking spotlight. This video consists of several moving objects: 

Shamu, the trainer, and the crowd. Each object is moving at different speeds during 

various periods of time. The interesting aspect of this video is that a subject can 



concentrate on different objects, and it would result in a variety of eye movements: 

fixations, saccades, and smooth pursuit. The background of the video was constantly 

moving due to the fact that the camera was trying to follow a moving Shamu. Such an 

environment suits the goal of challenging our algorithm to deal with different types of 

eye movements. The fact that the clip was taken during the night provides an interesting 

aspect of the video perception behavior by a subject. The snapshot is presented in Figure 

6a. 

Airplanes: This video depicts formation flying of supersonic planes, rapidly 

changing their flying speeds.  It was from a performance of the Blue Angels over Lake 

Erie. The number of planes varies from one to five during the clip. The scene recording 

camera movements were rapid zoom and panning. This video provided a challenge to the 

human visual system – the capturing camera moves unexpectedly, making the HVS 

“overshoot” the airplane location. This behavior challenges the HESA model to build a 

compact WPAW to contain the unexpected eye shifts. The background of this video was in 

constant motion and presented a blue sky.  

Figure 6 shows an example of the perceptually and the uniformly compressed frames 

using the same bit-rate. It is possible to see that the areas where a viewer is looking are 

blurry in uniformly compressed frames but have a much better quality at perceptually 

compressed frames. 

All three videos had a resolution of 720x480 pixels, presented with the frame-rate of 

30fps, and were between 1 and 2 minutes long. The original and perceptually compressed 

video clips are available at our website [27].  

 

4.4 Participants 

Three subjects have participated in the evaluation experiments. Each of them had 

normal or corrected to normal vision. The subjects were not aware of the video content 

before the experiments and were asked to look at the presented content in any way they 

wanted. This type of setup is called free-viewing in eye-tracking literature. Test videos 

were presented on the screen of an 18 inch LCD monitor. The distance between the 

subjects’ eyes and the monitor surface was 43 inches. The size of the screen measured 

261x241 in eye-tracker units and had a pixel resolution of 1280x1024. 

 

4.5 Raw eye-gaze-position data filtering 

An eye position sample was classified as noisy when the eye tracker failed to measure 

the eye position coordinates for that sample. The failure to identify eye position 



coordinates usually happens due to the subject’s blinking, jerky head movements, 

changes in the content’s lighting, excessive wetting of the eye, and squinting. The 

coordinates of each noisy eye position sample were replaced with the coordinates of the 

previous successfully measured eye position sample. 

 

4.6 Evaluation parameters 

The HESA based RTPCS is validated through the Average Eye Fixation Containment, 

the Average Eye-Gaze-Position Containment, and the Average Perceptual Resolution 

Gain. 

 

4.7 Eye-gaze and eye fixation containment 

The Average Eye-Gaze-Position Containment (AEGC) is the main design parameter 

for our system. The AEGC reports how many raw eye-gaze-position samples are 

contained inside of the WPAW. The AEGC is evaluated over the available eye-gaze-

position sample space. 
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Variable )(kGAZE
PAFWW  equals to one in the case if the kth eye-gaze-position sample is 

contained by the WPAW and it equals zero otherwise. M is the number of all eye-gaze-

position samples collected over the whole test video. 

Eye fixations are the key validation parameter in the majority of today’s eye-tracker-

based systems. The HESA based RTPCS is evaluated through an eye fixation analysis 

with two different minimum duration periods: 100 ms. and 150 ms. 

 The Average Eye Fixation Containment (AEFC) is calculated as a percentage of the 

eye fixation samples contained within WPAW. 
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k is the instance of time when WPAW(k) window was constructed. Variable )(kFIX
PAFWW  

equals 1 or 0. It equals one in the case if the kth eye fixation sample is inside of WPAW and 

it equals zero otherwise. N is the number of corresponding eye fixation samples that the 

AEFC is measured over. Due to the fact that not all eye-gaze-position samples are the 

part of the eye fixations, N presents only samples belonging to the eye fixations. 

Examples where eye fixations are contained and missed by the WPAW are presented in 

Figure 6. 

 



  

4.8 Perceptual Resolution Gain 

The actual amount of bandwidth reduction and computational burden reduction when 

using the WPAW depends on the two parameters: the size of the area which requires high 

quality coding (size of WPAW for each frame) and visual degradation of the periphery. 

The Average Perceptual Resolution Gain (APRG) mathematically calculates the amount 

of additional compression achieved by a variable bit-rate RTPCS with the feedback loop 

delay.  
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( , )tS x y – is the eye sensitivity function represented by (2). An eye can see approximately 

one degree of the visual angle in highest-quality from the center of an eye fixation.  

Addressing the situation when the center of an eye fixation falls on the boundary of 

WPAW one degree of visual angle is added to each dimension of the WPAW.  W and H are 

the width and the height of the visual image. 

 

5 RESULTS 

The experiment results evaluating the performance of the HESA based RTPCS are 

presented in Figure 7, Figure 8, and Figure 9.  

 

5.1 Eye fixation containment 

The AEFC performance of the HESA based RTPCS was evaluated for the case when 

Figure 7. This figure presents the average eye-gaze containment versus average eye fixation 

containment considering eye fixation duration of 100 ms. and 150 ms. The X axis presents the 

feedback loop delay duration and RFSs value. The Y axis presents the containment values. The 

data points represent the average containment for the eye-gazes and two parameterizations of an 

eye fixation. AEGC and AEFC values are averaged between the subjects and test video clips. 
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the AEGC was approximately 90%.  

The Figure 7 shows a side by side comparison of the AEGC and the AEFC 

calculation for two eye fixation parameterizations. On average the AEFC was always 

higher than the corresponding AEGC for all delay and the RFSs values. Standard 

deviation for the AEGC-AEFC values considering all subjects and video clips did not 

exceed 3. These results show that a RTPCS design based on the AEGC yields more 

conservative containment results than a system designed around pure eye fixation 

analysis. While the parameterization of the eye fixation detection mechanism changes the 

AEFC results, the AEGC generally provides a lower boundary for various 

parameterization choices.  

An eye fixation detection requires a 100 – 150 ms. eye-gaze-position sample buffer, 

while pure eye-gaze-position analysis is virtually buffer free. This fact and the 

conservative nature of the eye-gaze containment make it a better choice for an RTPCS 

design. 

 

 

5.2 Average Perceptual Resolution Gain 

 Figure 8 reports the APRG values for the test video set and the RFSs=2000 with the 

AEGC of 90%. The APRG values do not depend on the eye fixation parameterization. 

The APRG varied from 1.95 for a delay of 3 ms. to 1.13 for a delay of 2 s. The delay 

of 500 ms. was the mark when the APRG decreased rapidly to 1.2. 

 Standard deviation of the APRG for different video clips fluctuated between 0.03 and 

Figure 8. Average perceptual resolution gain achieved by the WPAW constructed by the HESA 

model. The X axis presents the feedback loop delay duration in the system. The Y axis shows the 

APRG achieved by our RTPCS. The data points represent different video clips compressed by the 

system. The HESA model uses RFSs of 2000. The APRG values are averaged between the 

subjects. 
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0.11. Standard deviation of the APRG between subjects fluctuated from 0.02 to 0.45. 

This fact proves the perceptual compression is person and content dependant.  

The “Airplanes” video yielded the best compression results for the high delays. The 

“Car” video had the best compression results for middle range delays of 166 - 500 ms. 

The “Shamu” video had the lowest compression results of the three videos. This is due to 

a “busy” scene with multiple perceptual activities involved. This type of content will 

provide less opportunity for perceptual compression, due to the more rapid eye 

movements. 

The results show that the HESA based RTPCS provides a significant compression, 

but up to a certain delay value. We should also mention that the actual compression 

values or the reduction of computational burden will depend on the particular encoding 

scheme. A lot of modern codecs can encode the motionless part of the background with a 

very few bits reducing overall bit-rate that way; but in the case of a video where 

everything is moving (as in the “Shamu” video), modern codec will fail to reduce the 

bandwidth without visual quality loss. In a scenario such as this, WPAW provides a 

specific region for high quality coding. This reasoning is supported by Figure 9, where 

APRG values for the videos with a moving background (“Shamu”, “Airplanes”) are 

almost the same as in the “Car“ video with a still background. 

 

6 DISCUSSION AND FUTURE WORK 

6.1 HESA input parameters 

 The HESA model has two main input parameters: the Target Eye-Gaze Containment 

(TGC) and the Running Frame Eye-Speed samples (RFSs).  

Ideally the TGC ensures the amount of eye-gaze-positions to be contained inside of 

the WPAW.  The TGC goal is to “cut off” the Running Frame Eye-Speed values formed by 

the saccades. Usually the amount of saccades does not exceed 10% of the eye trace, thus 

90% is a good starting value for the TGC. The results of our experiments show that TGC 

is a conservative parameter with the resulting AEGC values always higher than the TGC. 

      In practice it is beneficial to gradually reduce the TGC until the desirable value of the 

AEGC is achieved. In the design of our RTPCS, we used an algorithm where the TGC 

value was reduced one percent at a time until the desired AEGC value was reached. The 

success of such an approach can be judged from Figure 9. Depending on the delay value 

the TGC value had to be reduced to 80-47% before the AEGC of 90% was reached. The 

speed of the AEGC adjustment depended on the value of the RFSs, with lower RFSs 

values requiring fewer steps to bring the AEGC to the desired level. The difference range 



was 12-25% for the RFSs of 20 and 18 - 44% for the RFSs of 2000. The lower RFSs 

values will adjust better to the rapid change of the content as it is indicated by the lower 

differences between the TGC and the AEGC numbers, but in case of a severe network 

jitter a WPAW will be created with artificially small or large size, possibly making the 

compression artifacts more visible. 

      For the reference, Figure 9 shows the statistics of correlation between the TGC and 

the AEGC values recorded in our experiments. When the TGC equaled 90%, the AEGC 

tended to be very close to 100% with standard deviation of 1.2-10.1 between subjects and 

videos. When the TGC equaled 70%, the AEGC fluctuated between 71%-91% with stdev 

of 13-22. When the TGC equaled 60%, the AEGC fluctuated between 72%-86% with 

stdev of 17-24. From these results, it is possible to see that the correlation between the 

TGC and the actual AEGC is subject-, video- and visual-task dependant. 

      In our experiments, we found that the AEGC of 90% provides an acceptable 

compromise between high eye fixation containment and the additional compression 

received through the use of the WPAW. Some other type of the multimedia might require a 

different selection of the AEGC number. 

 

6.2 W
PAW

 accuracy 

It is a valid question to ask how “bad” is it for the system which uses perceptual 

compression if an eye fixation is missed. The results might vary depending on how far 

the missed eye fixation is from the WPAW boundary and what mapping of the eye 

sensitivity function presented by  (1) is used for a particular choice of media source. If a 

viewer notices the “blurred” effect and is unable to see a specific detail on the picture, he 

Figure 9. Correlation between the average eye-gaze-position containment and the target eye-gaze-

position containment. The X axis shows the feedback loop delay and the RFSs value for each 

scenario. The Y shows the AEGC value. The TGC and the AEGC values are averaged out between 

subjects and videos. 
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or she can fixate their eyes on the point in question and the system will stabilize itself, 

placing the WPAW on the spot under attention. The amount of time used during the 

stabilization will depend on the RFSs parameter and the feedback delay value.  

 

6.3 Network challenges 

It should be pointed out that there is an additional challenge for the detection of any 

eye movement type inside of an RTPCS. For example, there is an uneven delay variation 

in the multimedia compression mechanism because different types of video frames take 

various amounts of time to encode and process. When a network jitter exists, the raw eye-

gaze position samples start arriving at different components of an RTPCS unevenly, thus 

making the interpretation of the eye movement types even more difficult. Additionally 

the transmission delay/lag (feedback loop delay) can be an order of magnitude larger than 

the duration of a basic eye movement (a saccade or an eye fixation). Thus by the time a 

current viewer’s eye movement type is identified by RTPCS, that type of eye movement 

might be effectively over and useless for the prediction mechanism. Under the 

circumstances such as these, relying on the average eye-gaze containment instead of eye 

fixation containment is especially beneficial. 

 

7 CONCLUSION 

Perceptual compression will be critical in order to achieve the compression ratios 

needed in the emerging applications that require compression levels far beyond those 

available through the use of the classic compression methods. Perceptual multimedia 

compression might be especially viable in these scenarios: remote vehicle control and 

operation, remote surgery assistance, virtual reality teleporting or in applications where 

eye-gaze is used as an input or content evaluation tool. 

 In this paper, we have proposed an eye-gaze-position-based design and evaluation 

model of a Real Time Perceptual Compression System (RTPCS). Our results indicate that 

the eye-gaze-position containment (AEGC) is a more conservative evaluation metric than 

the eye fixation containment metric. Additionally, the AEGC does not require the eye-

gaze-position buffering as it is required in the eye fixation case. 

One of the most critical challenges in the design of an RTPCS design is the issue of 

the feedback loop delay. This issue has not been considered by the previous research. In 

this paper, we have addressed this issue through the concept of Perceptual Attention 

Window. 



The important aspect of our  research is that it is media independent. We have 

proposed a perceptual attention window as a virtual area superimposed on the rendering 

plane of any visual media. Once the window parameters are obtained, then the actual 

fovea-matched encoding can be performed in numerous media specific ways with various 

computational-effort/quality/rate trade-off efficiencies. Mathematical evaluation shows 

that the HESA based RTPCS is capable of compressing a multimedia source by up to 

1.95 times. 
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