
To be published in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics San Antonio,
Texas, USA: IEEE, 2009

978-1-4244-2794-9/09/$25.00 .2009 IEEE

Using Designer’s Effort for User Interface Evaluation

Carl J. Mueller
Texas State University

San Marcos, TX 78666

01-512-245-8344

carl.mueller@txstate.edu

Dan E. Tamir
Texas State University

San Marcos, TX 78666

01-512-245-0349

dt19@txstate.edu

Oleg V. Komogortsev
Texas State University

San Marcos, TX 78666

01-512-245-7528

ok11@txstate.edu

Liam Feldman
Texas State University

San Marcos, TX 78666

01-512-245-8444

lf1081@txstate.edu

Abstract—Designing Human Computer Interfaces is one of

the more important and difficult design tasks. The tools for

verifying the quality of the interface are frequently expensive or

provide feedback too far after the design of the interface as to

make it meaningless. To improve the interface usability,

designers need a verification tool providing immediate feedback

at a low cost. Using an effort-based measure of usability, it is

possible for a designer to estimate the effort a subject might

expend to complete a specific task. In this paper, we develop the

notion of designer’s effort for evaluating interface usability for

new designs and Commercial-Off-The-Shelf software. Designer’s

effort provides a technique to evaluate human interface before

completing the development of the software and provides

feedback from usability tests conducted using the effort-based

evaluation technique.

Keywords—quality, metrics, verification, human factors,
interface design

I. INTRODUCTION

Human Computer Interface (HCI) designers have a
number of tools to assist in designing effective, productive,
and satisfying interfaces. However, users continue to report
that software is frequently not effective, reduces productivity,
and reduces their level of satisfaction. Solving this problem
may require a different approach to evaluating the quality of
an interface.

There are three accepted practices for providing interface
designers with feedback about their design: prototyping,
various forms of inspection, and usability testing [2, 10, 13,
15, 17]. Each of these evaluation methods has its strength and
weakness, but the common issue limiting their effectiveness is
cost and timeliness. Interface designers need evaluation
techniques providing them with low cost timely feedback
about the usability of their interface design.

Prototyping is a technique used by many development
organizations to help indecisive users determine that the
application under development meets their needs [13].
Current prototyping concepts describe two types of rapid
prototyping: throwaway and evolutionary. A throwaway
prototype is an approach to prototyping where the developers
use prototyping software or driver functions displaying the
human interfaces in the order that they are used. The
disadvantages to this approach are the cost, the delay in
designer feedback and quality of the feedback Evolutionary
prototyping is an approach where the software for the
application is developed rapidly without any form of
verification and validation. The software is then modified

based on the user comments and incorporated into the final
product. This approach has all the other problems of
throwaway prototyping with the added complications of
software produced with limited quality reviews.

Inspection and review is a software quality feedback
technique having its origin dating from the early to middle
1970’s [4]. This approach has a variety of forms. In the HCI
community, one very popular approach is the Heuristic
Evaluation [10, 11]. Probably the best of the pre-development
approaches, Heuristic Evaluation employs a usability expert
using a precise evaluation process to review and make changes
to a designers’ work. This type of evaluation has two very
important drawbacks. Because a human expert is conducting
the evaluation, there is a tendency to be subjective. Although
less expensive than prototyping, hiring a consultant can carry a
cost greater than the value of the entire project.

Usability testing is possibly the best technique for
assessing the usability of a software application [2, 10, 15, 17].
Usability testing employs subjects matching the profile of the
user that will use the software when deployed. These subjects
complete a set of tasks, and their performance is recorded to
assess the quality or usability of the software. Even though
usability testing provides the most objective information about
an application, according to a Swiss study, more than half of
all software engineers surveyed do not conduct usability
testing [18]. Researchers in the Swiss study attribute this to a
lack of understanding about the importance of software
usability. A more practical reason might lie in that usability
testing is a validation activity conducted at the end of the
development process when software engineers are frequently
under a very tight dead line. Changes to the human interface
can require extensive changes to software and equally
extensive retesting. Since usability testing occurs at the end of
the development process, the feedback comes so late in the
process that it does not provide usable guidance. In many
cases the designer may be on a different project or no longer
with the organization.

For software engineers to improve their ability to design a
more usable user interface, they need a low cost technique
providing immediate feedback and a way to compare the
usability of different design alternatives. Having a low cost
method of comparing design alternatives permits a designer to
make tradeoff decisions and present more efficient designs for
later evaluation. If it were possible to evaluate an interface
design in the design phase and in the usability test using the
same measurements, it would provide the designer with a

closed process. Evaluating an interface in terms of effort may
provide a technique that satisfies all of these needs.

II. EFFORT-BASED USABILITY

One reason for viewing the quality of the interface based
on the effort expended by subject is that it eliminates most of
the other factors that cause poor software performance. By
isolating or pinpointing the effort expended on completing a
task, designers get a better view on the quality of their design.
Monitoring effort is not the only measure of interface quality,
but it does provide an objective means to develop testable
requirements.

A. Effort Concept
The effort-based model of interface usability presented

here is in its advanced stages of development, but most of the
major sources of subject effort are well known [8, 16]. It can
be inferred from measurements of user activities, such as
mouse and keyboard activity and mouse-keyboard transfer
operations. It is a little more difficult to identify and quantify
some of the other factors, such as eye and mental effort.
Effort is a multidimensional entity and includes several
components. The following vectors describe the main
components of the total effort (𝐸) required for a human to
complete a task using computer software:

𝐸 =
𝐸𝑚𝑒𝑛𝑡𝑎𝑙

𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝐸𝑚𝑒𝑛𝑡𝑎𝑙 =
𝐸𝑒𝑦𝑒𝑚𝑒𝑛𝑡𝑎𝑙

𝐸𝑜𝑡ℎ𝑒𝑟 _𝑚𝑒𝑛𝑡𝑎𝑙

𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 =

𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝐸𝑒𝑦𝑒 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝐸𝑜𝑡ℎ𝑒𝑟 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

Where:

𝐸𝑚𝑒𝑛𝑡𝑎𝑙 amount of mental effort to complete the task.

𝐸𝑒𝑦𝑒 _𝑚𝑒𝑛𝑡𝑎𝑙 amount of mental effort necessary to move and

focus the eyes to complete the task.

𝐸𝑜𝑡ℎ𝑒𝑟 _𝑚𝑒𝑛𝑡𝑎𝑙 amount of unspecified mental effort necessary to
complete the task.

𝐸𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of physical effort to complete the task.

𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of manual effort to complete the task.

Manual effort includes, but is not limited to, the
movement of fingers, hands, arms, etc.

𝐸𝑒𝑦𝑒 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of eye physical effort to complete the

task.

𝐸𝑜𝑡ℎ𝑒𝑟 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 amount of unspecified physical effort to

complete the task.

It is relatively easy to acquire mouse and keyboard activity
and mouse-keyboard transfers to estimate the physical effort
(𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙). There are a number of methods to convert

eye activity measured by an eye-tracking device into an effort
approximation (𝐸𝑒𝑦𝑒 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙).

Measuring cognitive load or mental activity is still an
active research topic and will probably remain that way for
quite some time. One approach to measuring mental effort
currently under investigation is to measure eye movement and

pupil diameter Providing an accurate measure of mental effort
(𝐸𝑚𝑒𝑛𝑡𝑎𝑙) is still several years in the future.

B. Effort Model
Consider the following example. Assume a set of 𝑛

subjects selected at random complete a set of 𝑘 tasks.
Further, assume that the subjects are computer literate but
unfamiliar with the application under evaluation. The
objective of each task is to make travel reservations, and each
task requires about the same effort. The set of k tasks have the
same scenario with different data and different constraints.
Typically, as subjects become more familiar with an
application, the time to complete tasks with the same scenario
becomes shorter and shorter [3, 5, 19]. When plotting the
Time-On-Task (TOT) averages (𝑇𝑎𝑣𝑔) for these subjects’ a

curve with a strong fit to either a power law or exponential
decay curve is said to reflect learning or represents a learning
curve [5, 14, 17, 19].

Selection of a model depends on how subjects learn. If a
human’s performance improves based on a fixed percentage,
then the exponential decay curve is appropriate. If a human’s
performance improves on an ever decreasing rate, then the
power law is appropriate. For this research, the power law
model appears the most appropriate.

Since it is possible to plot a learning curve using average
TOT; similarly, it is possible to construct a learning curve by
plotting average effort (𝐸𝑎𝑣𝑔) expended for a task with similar

properties to those observed in a curve based on Time. Figure
1 illustrates a hypothetic learning base on average effort to
complete as set of tasks with a common scenario. It is
assumed that learning, to an acceptable level of performance,
occurs during the execution of the first few tasks. The tasks
were the subject’s effort reaches this acceptable level of
performance is the learning point 𝐿𝑃 . By summing the
average task duration to the left of the learning point 𝐿𝑃 ,
indicates how much time 𝐿𝑇 the average subject requires to
reach an acceptable level of performance. Data to the right of

E
ff
o

rt

Goals

Eexp

Eavg

LT

LP

U

1 n

Figure 1 Hypothetical Effort Model

learning point 𝐿𝑃 describes the amount of effort required to
accomplish a task using a specific software application.

Expected effort (𝐸𝑒𝑥𝑝) and Understandability (𝑈), shown

in Figure 1, are the characteristics that put the subject’s effort
into a context and provide the basis for a notion of designer’s
effort. In the following section, a detailed discussion explains
how these characteristics are derived and used to evaluate the
quality of an interface.

In addition to the ability to learn or learnability of a
specific scenario, it is possible to evaluate its ease of use or
operability. Generally, tools requiring less effort to use are
more desirable than those requiring more. Therefore,
operability and effort are inversely related: the more operable
a scenario, the less effort it requires to complete. It is also
possible to use an effort-based measurement to compare the
usability of different applications.

III. DESIGNER’S EFFORT

Assume that a group of 10 subjects recorded an average
Time-On-Task (TOT) of 420 seconds on a specific task.
Asking whether this is a good or bad TOT is meaningless.
Nevertheless, if the notion of expected effort (𝐸𝑒𝑥𝑝) is added

to the question, then there is a basis for comparison. For
example, assume that group of 10 subjects recorded an
average TOT of x seconds, and an expert user recorded a time
of y seconds on the same task. This provides information for
sound evaluation of the usability of the application. Having an
expectation of what the target software will do is also one of
the fundamental principles of software testing [9].

A. Concept
As shown in Figure 1, expected effort (𝐸𝑒𝑥𝑝) provides a

reference point placing the subject data into a context, making
a meaningful evaluation possible. However, comparing the
performance of an expert to a group of individuals just
becoming familiar with the software is not a valuable
comparison. It is only possible to compare the expert’s
performance to that of the subjects after the subjects have past
the learning point 𝐿𝑃 . After reaching the learning
point 𝐿𝑃 , the difference between the expert and the subjects’
data describes the subjects’ understanding of how to use the
software in accomplishing a specific task.

It is possible to establish a value for expected effort (𝐸𝑒𝑥𝑝)

by either having the designer estimate the effort using a tool or
rubric to estimate an ideal subject’s effort or measure the
effort expended by an “expert” subject. In a new
development, the best “experts” on using an application are
the developers or more specifically the designer of the use
case and its human interface. Since both estimates of expected
effort (𝐸𝑒𝑥𝑝) originate from a designer’s perspective, expected

effort is referred to as Designer’s Effort.

B. New Development Evaluation
Designer’s Effort is a notion providing developers with a

tool that can reduce the cost of design reviews and prototypes.
It also provides the designer with feedback on the quality of
the design from a usability test.

Providing an interface designer with a technique for
evaluating the ideal efficiency of the interface permits the
developer with a method of evaluating designs without calling
a meeting or constructing a prototype. Just evaluating manual
effort (𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙) would provide a designer with a basis

for making tradeoff decisions. For example, one thing that can
greatly increase effort is making a switch from the keyboard to
the mouse and back. Many designers include “combo box”
widget in a design. There are several different
implementations of a “combo box”. Generally, they provide a
drop down menu to aid the user’s selection. Some
implementations require the user to make their selection with a
mouse button press; other implementations permit the user to
type the first character until reaching their selection. A widget
requiring a mouse click takes more effort than one that
doesn’t. Using an effort-based interface evaluation, the
designer can see the total effect of their design and when
possible can select tools or objects to make the design more
physically efficient.

Calculating the effort on a new interface design is not
difficult, but some designers may find the process tedious.
First, the designer should count the number of keystrokes
necessary for the interface. Next, count the number of mouse
button clicks required by the interface. Then measure the
distance necessary to move the mouse and count the number
of keyboard-to-mouse interchanges. Another less tedious
approach is to develop a test harness that displays the interface
and a data logging utility. The test harness does not need to be
functional beyond the point of operating the interface. A data
logging utility is the same tool used in the evaluation to collect
subject data. Another program is needed to process the data
logged and convert the counts into effort.

Students learn to develop software by writing programs,
then testing them and evaluating the results. Interface design
is taught by giving the student a number of rules or best
practices and then having the instructor act as a reviewer. The
ability to calculate effort provides the developer with this
feedback mechanism. Extending the notion of effort-based
interface evaluation to unit testing provides students or
designers with a feedback mechanism focused on a specific
scenario.

C. Commercial-Off-The-Shelf Evaluation
It is also possible to use the notion of designer’s effort in

the evaluation of Commercial-Off-The-Shelf (COTS)
software. An evaluation team could use either results from an
expert user or an analysis of the user interface to establish the
designer’s effort. A software publisher could provide usability
data on the application, but COTS evaluators may find that
developing their own data for the application may provide a
more independent review of the software. Furthermore, a
publisher could provide an expert user, but designing the tasks
and conducting tests must be performed on the user site.
There are several methods to developing an in-house expert
user. One method is to send one to six users to the available
publisher training and then evaluate their performance.
Another method that is more subtle is to have one of the task
designers act as the expert user. The test designer should,
after developing the test, have a good understanding of the
application and a good knowledge of the task. Data could be

taken from a test run where the evaluation protocol is being
refined.

IV. AN EFFORT-BASED USABILITY TEST

To illustrate the merit of the notion of effort-based
usability evaluation, this section reports the results from the
evaluation of two web-based travel reservation systems
(System A and System B) using the effort-based usability
framework. For more detailed information about the theory of
effort-based usability and the experiments, see the technical
report for this research [7, 8, 16].

A. Experimental Design and Execution
A popular method for constructing tasks is to “discover”

real world situations and use them as the basis for one or more
tasks [2, 10, 15]. One of the novel aspects of this research was
constructing the tasks using a multi-step process to ensure that
all tasks are different, yet based on the same basic scenario.
This is essential for experiments that involve learning. On one
hand, the goal is to administer a set of similar tasks enabling
the user to learn and apply his learning. On the other hand, it
is not desirable to enable the user to rely solely on his
memory; for example, knowing (memorizing) exactly which
button should be pushed at any given step.

A scenario based on the use case of booking a plane, hotel
and car alone was too simple; hence, adding two conditions
relating to hotel location and amenities made the scenario
more realistic. After refining and testing a model scenario, it
was translated into a template. From the template, it was
possible to create and test the ten tasks for this experiment.
The tests followed a protocol adapted from formal testing
practices [6].

Twenty subjects volunteered to participate in the
experiment, ten for each system. There is a controversy on the
number of subjects necessary for a usability test [1, 10, 12].
We have made a compromise and a decision to use ten
subjects with ten tasks to have a statistically relevant number
of data points while staying within the constraints of available
resources.

An event driven logging program recorded details of
mouse and keystroke activity from the operating system’s
event queue. The events logged are: Mickeys, keystrokes,
mouse button clicks, mouse wheel rolling, and mouse wheel
clicks. A data reduction program applied to the events log
counts the total number of events (e.g., Mickeys) per task. A
similar program logs data for eye activity events. Both
programs execute the entire data set (log of manual activity
and eye activity), which consists of several millions of points
in less than an hour. With ten subjects, each completing ten
tasks, the data reduction program generated 100 data points for
each system evaluated. The data obtained from the data
reduction stage is averaged per task per travel reservation
system. Hence, a set of ten points for each system is generated
where each point denotes the average count of events per task
per reservation system.

B. Experiment Results and Evaluation
The experiment provided a great deal of insight into the

investigation of the framework. Trend analysis of physical
effort and time on task (TOT) expended by the users

corresponds to the power law as predicted in the effort
hypothesis.

In this experiment, we use the notion that a learning curve
is exhibited by a decaying exponential curve and that good fit
of the curve to the power law indicates that learning occurred
[14]. Figure 2 illustrates the average task-completion-time per
task per system, as measured by the eye tracking software. A
power law curve is used to represent the data. The coefficient
of determination (R

2
), which is the square of the correlation

coefficient, establishes the goodness of fit. An R
2
 ≥ 0.7

indicates a good fit. Both systems have a good fit, based on
the coefficient of determination. System B, however, has an

almost perfect fit to a decaying exponent curve. System A has
a jittered trend, yet it follows a similar slope.

System A and System B implement the same application,
yet, from the data presented in Figure 2, it appears that
subjects learn using System B faster than System A users.
Furthermore, the figure demonstrates that System A users are
less productive than System B users. This can be deduced
from the fact that the task completion time for System A is
more than two times longer than the completion times for
System B and he standard deviation values computed for
System A are higher than the standard deviation values of
System B. Hence, it is safe to conclude that System A is less
operable than System B. Figure 2 also suggest that the graph
for System B is beginning to indicate an asymptotic
characteristic, after task 5, indicating that learning has slowed.

Figures 3 and 4 result from the output of the data reduction
process and are used to evaluate the data, compare the
usability of the two systems, and assess the correlation
between the obtained data and the research hypothesis.
Additional data logged, including the average number of
keystrokes, left mouse clicks, and transitions for each task in
both reservation systems presents similar shapes and trends.

Figure 3 depicts the average Mickeys per task per system.
It can be observed that System B requires less mouse activity
than System A. This is indicating that System A requires more
manual effort and displays a high correlation in results
depicted in Figures 2 and 3. Furthermore, it is evident that

Figure 2. Average Task Completion Time

System B is more operable than System A and that the results
are in agreement with the hypothesis that usability is related to
effort.

Figure 4 depicts estimated average eye effort calculated by
measuring total eye movement. Using the frequency and
amplitude of the logged saccade motion, it is possible to
calculate an accurate measure of eye movement during the
duration of the task. Saccades motion is the rapid jerky eye
motion that occurs frequently when reading. It is evident that
system A required much more physical effort to operate than
System B. There is a power law trend for System B (R

2
=0.88).

System A had a less pronounced learning trend (R
2
=0.30).

Like Figure 3, the data illustrated in Figure 4 shows an
agreement with the hypothesis that usability relates to effort.

V. APPLYING DESIGNER’S EFFORT

Designer’s effort provides a number of benefits in
developing and evaluating user interfaces. One of the main
benefits is that it provides designers with a low cost method of
evaluating their design and making trade-off decisions in a
manner similar to those used to develop other pieces of
software.

In addition to more cost effective evaluation of user
interfaces, designer’s effort provides an approach to establish
subject understanding of the application. For example, if the

subjects have an understanding equal to the designer’s effort,
after learning the application, then it is possible to say the
subject’s knowledge of the application is equal to the
designer’s knowledge. Normally, subjects will expend more
effort in completing a set of tasks than an expert, but it is
possible to use the difference to express the usability of an
application. With designer’s effort, it is possible to establish
the learning point (𝐿𝑝) as the first point where the subject’s

effort is within a fixed percentage of the expert’s time (𝑇𝑒𝑥𝑝).

Expressing the formal definition of acceptable learning time
(𝑇𝐿) requires the following equation:

𝑇𝐿 =
 (𝑇𝑒𝑥𝑝)𝑖
𝑛
𝑖=1

𝑛𝑟

Where: 𝑟 is the percentage of acceptable learning; 𝑛 is the
number of tasks. When acceptable learning is at 80% of the
experts then r is .80 and using the data from Figure 2 for
System B, acceptable learning time 𝑇𝐿 is 162 indicating an
acceptable level of learning occurred at task 7. Therefore the
learning point (𝐿𝑝) is task 7.

Using the averages of the subject’s effort (𝐸𝑎𝑣𝑔) after the

learning point (𝐿𝑝) and the ratio of the average of the

designer’s effort (𝐸𝑒𝑥𝑝) provides a simple measure of how

well the subjects understand the application. Expressing this
ratio formally produces the following equation:

𝑈 =
 𝐸𝑎𝑣𝑔 𝑖
𝑛
𝑖=𝐿𝑝+1

 𝐸𝑒𝑥𝑝 𝑖
𝑛
𝑖=𝐿𝑝+1

Where: 𝑈 is understandability, and 𝑛 is number of tasks; 𝑖 is
the current instance. Consider the data from Figure 5. With
the learning point at (𝐿𝑝) for System B occurring at task 7,

then tasks 8, 9, 10 represent the subjects understanding of how
to use the software to solve the scenario. Calculating the
average of the subject’s effort (𝐸𝑎𝑣𝑔) and the average of the

Designer’s effort (𝐸𝑎𝑣𝑔) results in 1,233.47 and 554.50

respectively. These values yield an understandability index

Figure 3. Average Mouse Activity in Mickeys

Figure 4. Estimate Average Eye Effort.

Figure 5. Designer's Effort (eye) for System B

(U) of 2.22, indicating the subjects need to expend twice the
effort to accomplish the same task.

VI. CURRENT & FUTURE RESEARCH

Developing an effort-based metric of user interface quality
requires more research into the relation between time and
effort and the points the software development life cycle
effected by this novel approval. The following are just a few
of the questions under investigation.

Developing scaling factors for key-presses, mouse
movements, mouse button, mouse wheel and keyboard mouse
swaps requires constructing an experiment measuring the
biomechanical necessary for these actions. This experiment
requires extensive biomechanical knowledge, special test
equipment and a large number of experiments to establish
these scaling factors.

It has long been held as an axiom of good Graphic User
Interface (GUI) design that related items, such as instructions
and data entry fields, should be located as close as possible to
each other [10]. But what is the effect on the user/subject
when designers ignore this axiom of GUI design? If there is a
negative effect on effectiveness, productivity, and satisfaction,
then it should be measurable. Currently, this research is
investigating this concept with two experiments that should
establish how location of related fields affect user/subject
performance with the hope of developing a metric that will tell
a designer the impact of separating related fields.

Further investigation into scenario-based test design
techniques appears warranted, based on the results from the
current experiment. With additional test cases and an
improved test case design technique, it may be possible to
shed more light on the usability model and its utility as well as
to reduce unknowns such as the influence of fatigue.

Another direction of future research is to consider a
dynamic facility where the system adapts to the user and
enables user specific improvements in usability at run time.
Evaluating this type of facility requires a measurement system
that is capable of dynamically adapting to the changing
environment, like an effort-based measure of usability.

VII. CONCLUSION

The data collected in the experiment described in this
paper supports a notion that Designer’s effort provides a low
cost approach to evaluating interface designs without requiring
expensive reviews or outside consultants. It also provides
developers with a tool to put subjects’ effort into perspective
and to establish an object measure of understandability.

Effort-based measurement of interface usability is not
intended to replace cognitive evaluation methods. It is
intended to provide developers with another tool to evaluate
interface design.

VIII. REFERENCES

[1] Caulton, D. A., "Relaxing the homogeneity assumption in

usability testing," Behavior & Information Technology, vol.

20, p. 7, 2001.

[2] Dumas, J. S. and Redish, J. C., A Practical Guide to Usability

Testing. Portland, OR, USA: Intellect Books, 1999.

[3] Ebbinghaus, H., "Memory: A Contribution to Experimental

Psychology," 1885.

[4] Fagan, M. E., "Design and code inspections to reduce errors

in program development," IBM Systems Journal, vol. 15, no.

3, pp. 182-211, 1976.

[5] Hax, A. C. and Majluf, N. S., "Competitive cost dynamics:

the experience curve," Interfaces, vol. 12, pp. 50-61, October

1982 1982.

[6] Kit, E., Software Testing in the Real World. Reading, MA:

Addison-Wesley, 1995.

[7] Komogortsev, O., Mueller, C., Tamir, D., and L., F., "An

Effort Based Model of Software Usability," in 2009

International Conference on Software Engineering Theory

and Practice (SETP-09) Orlando, FL, 2009.

[8] Mueller, C. J., Tamir, D., Komogortsev, O. V., and Feldman,

L., "An Effort-Based Approach to Measuring Usability,"

Texas State University-San Marcos TXSTATE-CS-TR-2008-

9, November 2008. http://ecommons.txstate.edu/cscitrep/7

[9] Myers, G., The Art of Software Testing. New York, NY: John

Wiley & Sons, 1979.

[10] Nielsen, J., Usability Engineering. San Francisco, CA, USA:

Academic Press, 1993.

[11] Nielsen, J., "Heuristic Evaluation,"

http://www.useit.com/papers/heuristic/, date retrived: 1

March 2009.

[12] Nielsen, J., "Logging Actual Use,"

http://www.usabilityhome.com/FramedLi.htm?Logging.htm,

date retrived: December, 2008.

[13] Pressman, R., Software Engineering: A Practitioner's

Approach, 6th ed. New York, NY.: McGraw-Hill, 2005.

[14] Ritter, F. E. and Schooler, L. J., "The Learing Curve," in

Internaiton Encyclopedia of Social & Behavioral Sciences:

Elsevier Science Ltd., 2001.

[15] Rubin, J. and Chisnell, D., Handbook of Usability Testing:

How to Plan , Design, and Conduct Effective Tests.

Indianapolis, IN, USA: Wiley Publishing, Inc., 2008.

[16] Tamir, D., Komogortsev, O. V., and Mueller, C. J., "An effort

and time based measure of usability," in Proceedings of the

6th international workshop on Software quality Leipzig,

Germany: ACM, 2008.

[17] Tullis, T. and Albert, B., Measuring The User Experience:

collecting, analyzing, and presenting usability metrics.

Burlington, MA: Morgan Kaufmann, 2008.

[18] Vukelja, L., Müller, L., and Opwis, K., "Are Engineers

Condemned to Design? A Survey on Software Engineering

and UI Design in Switzerland," in NTERACT 2007 Rio de

Janeiro, Brazil: Springer 2007.

[19] Wright, T. P., "Factors Affecting the Cost of Airplanes,"

Journal of Aeronautical Sciences, vol. 3, pp. 122-128, 1936.

http://ecommons.txstate.edu/cscitrep/7
http://www.useit.com/papers/heuristic/
http://www.usabilityhome.com/FramedLi.htm?Logging.htm

