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Abstract: Our work addresses one of the core issues related to Human Computer Interaction (HCI) 

systems that use eye gaze as an input. This issue is the sensor, transmission and other delays that exist in any eye 

tracker-based system, reducing its performance. A delay effect can be compensated by an accurate prediction of 

the eye movement trajectories. This paper introduces a mathematical model of the human eye that uses 

anatomical properties of the Human Visual System to predict eye movement trajectories. The eye mathematical 

model is transformed into a Kalman filter form to provide continuous eye position signal prediction during all 

eye movement types. The model presented in this paper uses brainstem control properties employed during 

transitions between fast (saccade) and slow (fixations, pursuit) eye movements.  Results presented in this 

paper indicate that the proposed eye model in a Kalman filter form improves the accuracy of eye movement 

prediction and is capable of a real-time performance. In addition to the HCI systems with the direct eye gaze 

input, the proposed eye model can be immediately applied for a bit-rate/computational reduction in real-time 

gaze-contingent systems. 
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1 Introduction 

There has been a substantial amount of research 

in the HCI community that investigated the use of 

the eye gaze information as a primary or auxiliary 

input to computer systems [1] [2]. This research 

indicates that such input is especially beneficial for 

target selection due to the following reasons: a) 

people look at a target prior to selecting it with an 

input device. Therefore when an eye gaze is used 

for selection, the selection delay introduced by an 

auxiliary input device such as a mouse is 

eliminated [1]. b) Due to the fact that the eye globe 

rotates in a fluid inside of an eye socket, the eye has 

the capability of moving much faster than the limbs 

that are burdened by bone weight. Additionally the 

fibers inside of the extraocular muscles are fatigue 

resistant within certain limits of the eye movement 

amplitude [3]. It is noteworthy that limb muscles 

do not possess such properties, hence repetitive 

limb movements cause fatigue and excess of such 

movements might cause repetitive stress injury. c) 

The eye can provide an additional channel of input 

in situations where the use of limbs is restricted or 

unavailable, such as surgeries where both hands are 

occupied (laparoscopy), user interfaces for the 

handicapped, etc. 

Despite all the benefits there are few challenges 

that limit eye gaze input technology, i.e., cost, 
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accuracy, sensor and transmission delays [2]. 

Our work specifically concentrates on 

compensation of sensor and transmission delays. 

Our hypothesis is that delay compensation will 

allow creating more responsive HCI systems and 

provide higher level of compression in 

gaze-contingent systems. The delay compensation 

approach we selected is based on prediction of 

future eye movements. If the future eye gaze 

location is predicted accurately, target selection can 

be pre-made, therefore increasing the 

responsiveness of the HCI system with direct eye 

gaze input. In a gaze-contingent compression 

system the accurate eye movement prediction will 

allow to minimize the size of the high quality 

coded Region of Interest (ROI), therefore reducing 

overall bandwidth or computational requirements, 

[4], [5]. 

The challenge of the accurate eye movement 

prediction lies in the fact that the Human Visual 

System (HVS) exhibits a variety of eye movement 

fixation, saccades, smooth pursuit, optokinetic 

reflex, vestibulo-ocular reflex, and vergence [6]. In 

this paper, we concentrate on the first three due to 

the observation that these eye movements are 

exhibited when a person works with a computer. 

With great simplification, their roles are described 

as follows: 1) fixation – eye movement that keeps 

an eye gaze stable in regard to a stationary target 

providing visual pictures with highest acuity, 2) 

saccade – very rapid eye rotation moving the eye 

from one fixation point to another, and 3) pursuit 

stabilizes the retina in regard to a moving object of 

interest.  

In our previous work [7] we created the Two State 

Kalman Filter (TSKF) eye movement prediction 

model. The TSKF model assumes that an eye has 

two states, position and velocity. Our tests indicate 

that the TSKF allows accurate eye movement 

prediction during fixations and pursuits but has 

poor performance during saccades. To improve the 

accuracy of the eye movement prediction during 

saccades, we have developed an Oculomotor Plant 

Mechanical Model (OPMM) [8], [9]. This model 

mimics eye anatomy by considering physical 

properties of the extraocular muscles and the eye 

globe. The OPMM has six states that represent eye 

position, velocity, muscle location and muscle 

forces. Our model is based on Bahil’s model [10] 

with two major additions: the ability to start a 

saccade from any point in a horizontal plane and 

the ability to direct a saccade in any direction in the 

horizontal plane. To ensure continuous eye 

movement prediction the mathematical equations 

guiding the OPMM were transformed into a linear 

stochastic difference equation required for a 

Kalman filter. We call this model the Oculomotor 

Plant Kalman Filter (OPKF). The Kalman filter 

framework is selected as a classical real-time 

predictor of the system’s future state in a noisy 

environment with the minimization of the error 

between the estimated and the actual system’s state 

[11].  

This paper is a continuation of our previous work 

[8]. In the current paper we present: 1) new 

equations for muscular forces during fixations; 2) 

new equations for brainstem control parameters 

during saccades; 3) employment of the brainstem 

control properties in cases when the eye goes 

through transitions between fast (saccades) and 

slow (fixation, pursuits) eye movements; 4) 

accurate initialization of the Kalman filter state 

vector at the beginning of each saccade; and 5) 

tertiary (fixation, pursuit, saccade) velocity-based 

eye movement classification with detection 

thresholds provided by neurological literature [6]. 

Our experimental results indicate that above 

mentioned additions improve the accuracy of 

prediction achieved by the OPKF model by 2-3%. 

This improvement in accuracy is supported by 

simulation results involving 21 subjects and three 

multimedia tests. It should be pointed out that the 

prediction model remains linear and can be used in 

an online system with real-time performance 

constraints.  

2 Human Visual System 

2.1 Control 

The eye globe rotates in its socket through the use 
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of six muscles. These six muscles are: medial and 

lateral recti, superior and inferior recti; superior 

and inferior oblique – the muscles responsible for 

eye rotations around its primary axis of sight; and 

vertical eye movements. 

The brain sends a brainstem control signal to each 

muscle to direct the muscle to perform its work. A 

brainstem control signal is anatomically 

implemented as a neuronal discharge that is sent 

through a nerve to a muscle [12]. The frequency of 

this discharge determines the level of muscle 

innervation and results in a specific amount of 

work that a muscle performs.  

Each eye movement trajectory can be separated 

into horizontal and vertical components. The 

control signal for the horizontal component is 

generated by the premotor neurons in the pons and 

medulla [12] and primarily executed by the medial 

and the lateral recti muscles [6]. The rostral 

midbrain generates a brainstem control signal for 

the vertical eye movement component [12]. The 

vertical eye movement component is executed 

primarily by the superior, the inferior recti and the 

superior, the inferior oblique [6]. Muscle roles are 

more complex when secondary and tertiary muscle 

roles are considered, i.e., superior and inferior recti, 

superior and inferior obliques can participate in 

intrusion, extortion, depression, elevation, 

adduction, and abduction of an eye [6]. 

 During saccades, the brainstem control signal 

for each muscle resembles a 

pulse-step function. [12]. The eye 

position during the onset of a 

saccade and the saccade’s 

amplitude and direction define 

pulse and step parameters of the 

control signal. Once the 

parameters of the brainstem 

control signal are calculated by 

the brain, the control signal is 

sent as a neuronal discharge at 

the calculated frequency.  

During eye fixations, neuronal 

discharge is performed at a 

constant rate that is linearly 

related to the eye position [12]. 

2.2 Oculomotor Plant 

Mechanical Model 

Horizontal Oculomotor Plant Mechanical Model 

(OPMM) is represented by the eye globe and two 

extraocular muscles – lateral (LR) and medial (MR) 

recti. Each muscle can play the role of the agonist 

(AG) or the antagonist (ANT). The agonist muscle 

pulls the eye globe in the required direction, and 

the antagonist muscle resists the pull. Figure 1 

presents the OPMM diagram during rightward eye 

movements. Each individual extraocular muscle is 

represented by a set of separate components 

generating a specific force. These components 

include: 1) active state tension ,  modeled as 

an ideal force generator; 2) series elasticity 

, , and length-tension components 

,  modeled as ideal linear strings with 

coefficients  and 

; and 3) force velocity relationship 

components ,  characterized by damping 

coefficients , 

and the velocity of muscular 

contraction , . The actual force 

applied by lateral  and medial  recti to the 
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Figure 1. Oculomotor Plant Mechanical Model. 
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eye globe is a summation of all these forces. 

Passive elasticity components related to the eye 

globe tissues combined with passive elasticity of 

extraocular muscles generate force  and 

viscous elements of the orbital tissues generate 

force  Eye globe inertia is 

 More detailed 

description of the components presented above can 

be found in [8], [9]. 

Eye globe rotation occurs as a result of brainstem 

control signal generating active state tension inside 

of each muscle therefore allowing the contracting 

muscle to rotate the eye globe. The next subsection 

presents brainstem control signal equations for 

fixations and saccades. The neuronal control signal 

for pursuits is not presented in this paper. 

2.3 Brainstem Control Signal 

2.3.1 Fixations 

Scalar values for muscle forces ,  

presented in Figure 1 were measured during a 

strabismus surgery – a type of surgery in which 

muscles are detached and then reattached to the 

eyeball to correct muscle dislocation. Using the 

values of those forces, Bahill [10] has proposed a 

linear relationship between the force that each 

muscle applies to the eye and the eye rotational 

position  in its socket:  

,  where  is the 

eye rotation measured in degrees.  is the 

absolute value of . We  propose changing the 

relationship between the antagonist force and the 

eye rotation to . This 

modification allows following the trend of the eye 

position-force relationship identified by Bahill, but 

allows avoiding negative brainstem control signal 

values for eye positions  up to . 

 (1) 

 (2) 

During a fixation state, the scalar values of active 

state tensions ,  are assumed to be same as 

the brainstem control signal  

 sent to the muscle. Knowing the scalar 

values for the force components inside of each 

muscle [8], [9] we have:  

 
(3) 

 
(4) 

where  and  are 

force coefficients of the series elasticity and length 

tension components. 

Solving the system of linear equations 

represented by (1), (2), (3), (4) we come up with 

the value of brainstem control signal during 

fixations: 

  

  

2.3.2 Saccades 

Each saccade is generated by a brainstem control 

signal that looks like a pulse step function [13]. 

This signal can be presented by the following 

equations: 

 

 

 

 

tname constants present time parameters for each 

type of muscle and action phase. t is the time 

elapsed from the beginning of the saccade. The 

OPMM developed in this paper uses the following 

time constants:  

 (5) 

is the amplitude of the saccade measured in 

degrees,  is the duration of the 

saccade, calculated by the formula proposed by 

Fioravanti and colleagues [14]. The relationship 

between saccade duration and the amplitude 

together with the main sequence relationship 

(relationship between saccade amplitude and the 

peak velocity) are representative characteristics of 

saccade eye movements [6]. 

The agonist and antagonist muscle related time 

constants can be found in [8], [9]. 

The parameters such as amplitude, saccade onset 
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position, and the direction of the movement should 

be supplied to the OPMM in terms of brainstem 

control signal. Therefore, we have created the 

functions that transform saccade parameters into 

brainstem control signal: 

. 

 

 

 

 

 

 

 

 

 

 

 

The function  is constructed 

with an assumption that muscle innervations level 

represented by the brainstem control value can be 

separated into two components: the first 

component depends on saccade onset value, and 

the second component depends on saccade 

amplitude. Therefore, if saccade amplitude  

is zero,  would be equivalent to 

Constants inside of the 

 function were selected 

empirically to minimize the error between the 

model output and the physiological data for large 

amplitude saccades. 

Once the brainstem control parameters are 

defined, the OPMM model can be transformed into 

Kalman Filter form. 

This section presented the dynamics of the 

neuronal control signal for the OPMM. The 

complete description of the OPMM requires six 

differential equations for leftward and rightward 

eye rotation. Both sets of those equations are 

described in [8], [9]. 

3 Oculomotor Plant Kalman Filter 

3.1 Basics of Kalman Filtering 

The Kalman filter is a recursive estimator that 

computes a future estimate of the dynamic system 

state from a series of incomplete and noisy 

measurements. A Kalman Filter minimizes the 

error between the estimation of the system’s state 

and the actual system’s state. Only the estimated 

state from the previous time step and the new 

measurements are needed to compute the new state 

estimate. Many real dynamic systems do not 

exactly fit this model; however, because the 

Kalman filter is designed to operate in the presence 

of noise, an approximate fit is often adequate for 

the filter to be very useful [11]. 

The Kalman Filter addresses the problem of 

trying to estimate the state  of a 

discrete-time controlled process that is governed 

by the linear stochastic difference equation [11]: 

 (6) 

with the measurement 

 (7) 

The n-by-n state transition matrix Ak+1 relates the 

state at the previous time step k to the state at the 

current step k+1 in the absence of either a driving 

function or process noise. Bk+1 is an n-by-m control 

input matrix that relates m-by-l control vector uk+1 

to the state xk. wk is an n-by-1 system’s noise vector 

with an n-by-n covariance matrix Qk. 

 Not all variables in the state are 

visible to the measuring instruments. The 

measurement vector zk contains state variables that 

are measured by the instruments.  Hk is a j-by-n 

observation model matrix which maps the state xk 

into the measurement vector zk. vk is a 

measurement noise j-by-1 vector with covariance 

Rk.  

The Discrete Kalman filter has two distinct 

phases that compute the estimate of the next 

system’s state [11].  

Predict: 

Predict the state vector ahead: 

 (8) 

The  is used as the future eye position 
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coordinate for predicting eye movement 

trajectories. 

Predict the error covariance matrix ahead: 

 (9) 

The predict phase uses the previous state estimate 

to predict the estimate of the next system’s state. 

Update: 

Compute the Kalman gain: 

 (10) 

Update the estimate of the state vector with a 

measurement zk+1: 

 (11) 

Update the error covariance matrix: 

 (12) 

It should be pointed out that the Kalman Filter 

maintains the first two moments of the state 

distribution, ,  

and 

=N( , ). 

The choice of the Kalman gain Kk minimizes the 

error covariance matrix Pk. The Kalman Filter 

framework assumes that xk, zk are normally 

distributed and , 

, . 

3.2 Oculomotor Plant Kalman Filter 

Construction 

The Oculomotor Plant Kalman Filter is defined 

as the Oculomotor Plant Mechanical Model, 

presented in Section 2.2, transformed into the 

Kalman filter form.  

The specific challenge of this transformation lies 

in defining the linear stochastic difference equation 

governing the transition mechanics of the system 

from one state to another and defining the noise 

parameters for both system and measurements. 

Specifically it is necessary to define a state vector 

, control vector , transition matrix Ak, control 

matrix Bk. It is also necessary to derive a 

covariance matrix Qk for the system’s noise  

and covariance matrix Rk defining the 

measurement noise . Additionally, to map the 

actual system’s state vector xk to the measurement 

vector zk, observation matrix Hk is required. The 

following subsection defines all these parameters. 

3.2.1 State Vector 

  

 – eye rotation,  – 

length adjustment of the length tension component 

of the lateral rectus as a result of  rotation, 

 – length adjustment of the length 

tension component for the medial rectus as a result 

of  rotation,  – eye velocity, 

 – the lateral rectus active state tension, 

and  – the medial rectus active state 

tension. 

3.2.2 Transition matrix, control matrix, 

control vector: Ak, Bk, uk. 

Once a saccade is detected and the amplitude and 

the direction of the saccade are determined (it is 

done by a mechanism described in [7]), differential 

equations defining the OPMM  are used to create 

the transition matrix Ak+1, control matrix Bk+1 and 

control vector uk+1. This calculation is done using 

the approximate definition of derivative as 

 where ∆ρ is the OPMM internal 

sampling clock represented by the time interval 

between  and .  

Positive amplitude saccades (rightward 

movement for the right eye): 

The transition matrix Ak is calculated as: 

 

where , , 

, , . 

with control vector: 

 

where  and  are activation and 

deactivation time constants for the agonist and the 
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antagonist muscles respectively defining the 

transition between brainstem control signal and 

active state tension. 

The control matrix Bk is a 6x6 identity matrix. For 

detailed calculations of all the components 

described above please look in [9]. 

Negative amplitude saccades (leftward movement 

for the right eye): 

The transition matrix Ak, and control vector uk are 

as follows. 

 

 

The control matrix Bk is a 6x6 identity matrix.  

3.2.3 Measurement vector, observation 

matrix: zk, Hk. 

The eye position measurement device is an eye 

tracker. An eye tracker reports horizontal and 

vertical eye position coordinates with a time stamp. 

In this paper, only the horizontal component of the 

recorded eye movements is considered, thus 

measurement vector zk is a scalar that represents 

horizontal eye coordinates recorded by the eye 

tracker at the time k. 

The angular eye position is the only variable that 

is observed, thus the observation matrix is 

 

3.2.4 Measurement noise covariance matrix, 

system’s noise covariance matrix: Rk, 

Qk. 

By definition, the covariance matrix for the 

measurement noise is 

. Because only eye position is measured, 

 is a scalar making , where 

 is the standard deviation of the measurement 

noise. In this paper, it is assumed that the standard 

deviation of the measurement noise relates to the 

accuracy of the eye tracker and is bounded by one 

degree of the visual angle. Therefore,  was 

conservatively set to . In cases when the eye 

tracker fails to detect eye position coordinates, the 

standard deviation of measurement noise is 

assigned to be 

 (13) 

The value of 120° is chosen empirically, allowing 

the Kalman Filter to rely more on the predicted eye 

position coordinate .  

By definition, the system’s noise covariance 

matrix is , where 

 is a 1x6 system’s noise vector   

. In 

this paper, it is assumed that variables  are 

uncorrelated between each other, i.e., 

. 

This assumption generates the following system’s 

noise covariance matrix: Here 

 are variances of variables . In this 

paper, it is assumed that the standard deviation of 

the eye position noise  is connected to the 

characteristics of the eye fixation movement. This 

is done with the assumption that eye fixation is the 

most common type of eye movement. Each eye 

fixation consists of three basic eye-sub-movements: 

drift, small involuntary saccades, and tremor. 

Among those three, involuntary saccades have the 

highest amplitude - about a half degree of the 

visual angle; therefore, we conservatively set  to 

. Standard deviation values for other variables 

are hard to assess, but the following values 

performed well in the simulation tests: 

 degree, /s.,  

gram. 

3.2.5 Initial values for state vector and error 

covariance matrices: x0, P0. 

The state vector is:  

.  

 – horizontal eye position at the onset of a 

saccade;  - initial 

displacement of the length of the lateral rectus 
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length tension component;  

 - initial displacement of 

the length of the medial rectus length tension 

component;  - initial value of the eye 

velocity; and initial active state tension for the 

lateral rectus  

 

and medial rectus 

 

  

4 Methodology 

4.1 Equipment & Test Media 

The experiments were conducted with a Tobii 

1750 eye tracker. This eye tracker has the following 

characteristics: sampling rate - 50Hz, accuracy 0.5°, 

spatial resolution 0.25°, drift less than 1°. During 

the experiments, every subject was asked to hold 

his/her head motionless. Before running each 

experiment, the eye tracking equipment was 

calibrated for the subject and checked for 

calibration accuracy. 

Three video clips “Car”, “Shamu”, “Airplanes” 

each with unique perceptual characteristics were 

selected to test the performance of the eye 

movement models. The detailed description and 

the download link can be found in [8]. 

4.2 Participants 

The subject pool consisted of 21 volunteers of 

both genders and mixed ethnicities, aged 20-40 

with normal, corrected and uncorrected vision. The 

subjects were instructed to watch the video clips in 

any way they wanted.  

4.3 Detection of Basic Eye Movement Types 

One of the objectives of the Oculomotor Plant 

Kalman Filter (OPKF) is to continuously predict 

future eye gaze in real-time. To attain this goal, 

every eye gaze position sample has to be classified 

immediately. By employing a Velocity-Threshold 

Identification (I-VT) model [15], we have grouped 

all position samples into three categories: fixations, 

saccades, and pursuits. This oversimplification of 

eye movement types allowed us to maintain 

real-time performance of the OPKF without 

creating any eye position samples detection buffers. 

The original I-VT model proposed by Salvucci & 

Goldberg classified eye position samples as 

fixation when eye velocity was below 100°/s, and 

saccades when eye velocity was above 300°/s. 

These values seem to be in contradiction with 

oculomotor research and neurological literature. 

Leigh and Zee [6] indicate that saccade onset is 

detected when eye velocity rises to 30°/s and 

smooth pursuit eye movements are detected with 

eye velocities of 5-30°/s. A different group of 

researchers represented by Meyer et al. [16] found 

out that Human Visual System (HVS) maintains 

pursuit motion with velocities of up to 90°/s.  

These facts show that it is hard to define an 

automated instant eye movement detection 

criterion, especially if eye position sample data is 

the only source of information. Nevertheless, to 

test eye movement prediction accuracy of our 

models, we have adopted velocity values suggested 

by Leigh and Zee: fixations (0-5°/s), saccades 

(more than 30°/s), and pursuits (5-30°/s). We are 

aware of the fact that some of the pursuit eye 

movements could have been classified as a saccade, 

but the chance of misclassification was quite low 

because around 90% of the content speed for “Car”, 

“Shamu”, and “Airplanes” videos was below 30 º/s 

threshold. 

4.4 Eye Movement Prediction Models 

1) Two State Kalman Filter (TSKF) models an 

eye as a system with position, velocity, and white 

noise acceleration   [7]. The TSKF is capable of 

predicting eye movement trajectories continuously, 

but it has low accuracy of prediction during 

saccades. The TSKF is capable of detecting the 

beginning of a saccade and estimating its duration 

and amplitude [7]. 

2) The Oculomotor Plant Kalman Filter (OPKF) 

defined in Section 3.1 predicts eye movement 

trajectory for the duration of the saccade after it is 

detected by the TSKF. The duration of the saccade 
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is calculated by the equation (3). At the end of the 

saccade eye movement, prediction is switched back 

to the TSKF. Although part of the trajectory is 

predicted by the TSKF, this eye movement 

prediction model is called Oculomotor Plant 

Kalman Filter (OPKF). Figure 2 presents the 

diagram. 

 
Figure 2. Eye movement prediction by the OPKF. 

3) Oculomotor Plant Kalman Filter Extended 

(OPKFE). The OPKFE and the OPKF are almost 

identical except that the OPKFE continues using 

Oculomotor Plant Mechanical Model for 200 ms. 

after the end of each saccade. Figure 3 presents the 

diagram. Figure 4 presents the actual horizontal 

eye movement trajectory prediction for one of the 

subjects during viewing of  the “Car” video. 

There are two reasons for the 200 ms. extension: 

a) The brain needs at least 200 ms. to calculate the 

parameters of the next saccade after the end of the 

previous saccade [12]. During these 200 ms., an 

eye remains in the state of fixation or pursuit. b) If 

we take the Oculomotor Plant Mechanical Model 

and try to generate a saccade, the eye movement 

trajectory after the offset of the saccade will closely 

resemble a fixation. Thus, if the actual eye 

movement after saccade is a fixation or pursuit, the 

prediction error between the measured eye position 

and the eye position predicted by the OPMM will 

be very small – much smaller if the trajectory was 

predicted by the TSKF. The experimental results 

presented in the next section support this logic. 

 

Figure 3. Eye movement prediction by the OPKFE. 

4.5 Evaluation & Prediction Accuracy Metric 

All models were implemented in MATLAB. 

From 63 recordings done for 21 subjects, 6 

recordings were removed due to excessive noise. 

The eye movement prediction was done only for 

the horizontal movement component of the right 

eye. Prediction interval was 20 ms., meaning that 

the future eye gaze coordinate was attained 20 ms. 

faster in our eye tracker system than in a system 

without the eye movement prediction. 

The Root Mean Squared Error (RMSE) between 

the predicted , Equation (8), and measured zk, 

Equation (7), eye position coordinate represents the 

accuracy of an eye movement prediction during 

eye movement type p.  

The ideal eye movement prediction model will 

have the RMSE of 0º. 

The percentage improvement in prediction 

accuracy (reduction of the RMSE) between two 

models is calculated as: .  

 

Figure 4. Actual eye movement prediction by the 

OPKFE. 
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5 Results 

5.1 Eye Movement Data 

Figure 5 presents results. The “Not Reported” 

category consists of eye position samples for which 

the eye tracker failed to report the eye position 

coordinates. 

Fixations: two subjects’ recordings did not have 

any fixations detected by the IV-T model. Average 

fixation duration in all the video clips was 

approximately 120 ms., deviating ~10 ms. from the 

mean. Saccades: Average saccade amplitude was 

the 2.6° for the “Car” and “Shamu” videos, 1.8° for 

the “Airplanes” video.  

 

Figure 5. Percentage of eye position samples of each eye 

movement type detected during a recording of each video. 

5.2 Eye Movement Prediction Results 

It should be noted that eye movement prediction 

results reported in our previous work [8], [9] 

assume that the distance between the subject and 

Tobii eye tracker is reported in pixel units. In 

reality, this distance is reported in millimeters. Eye 

movement prediction results presented in this 

paper are calculated with the correct distance 

values. Additionally we have changed velocity 

threshold values employed for eye movement 

detection to the numbers specified in Section 4.3. 

Therefore, the RMSE values were affected by all 

these changes.  

5.2.1 Fixations & Pursuits 

Table 1. Prediction data during fixations 

 

Table 2. Prediction data during pursuits 

The TSKF and the OPKF are essentially the same 

model during fixations and pursuits, hence 

identical RMSE values. The OPKFE reduced 

prediction error by 3-29% during fixations and by 

6-9% during saccades. Essentially, this 

improvement in prediction accuracy was achieved 

by employing OPMM during fixations/pursuits for 

200 ms. if that fixation/pursuit succeeded a 

saccade.  

It should be noted that an eye fixation is often 

selected as a “click” trigger in eye-gaze-aided 

computer interfaces. Therefore, the RMSE value 

during a fixation will indicate the accuracy of such 

a “click”. 

5.2.2 Saccades 

Table 3. Prediction data during saccades 

 

The OPKF model was substantially more 

accurate than the TSKF model due to more 

accurate modeling of the human eye. There is no 

improvement between the OPKF and the OPKFE 

models because they are identical for the duration 

of a saccade.  

As we can see from the table above, the “Car” 

and the “Shamu” videos were the most challenging 

for the eye movement prediction due to the larger 

saccade amplitudes. In the case of the “Airplanes” 
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"Car" 0.34 0.34 0.34 0% 3%

"Shamu" 0.31 0.31 0.30 0% 4%

"Airplanes" 0.24 0.24 0.17 0% 29%

Saccades

TSKF - 

RMSE

OPKF - 

RMSE

OPKFE - 

RMSE

Accuracy 

improvement 

TSKF vs OPKF 
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"Car" 2.83 2.53 2.53 11% 0%

"Shamu" 2.78 2.53 2.53 9% 0%

"Airplanes" 2.07 1.91 1.91 8% 0%
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video, the improvement in the accuracy prediction 

was the smallest due to the smaller saccade 

amplitudes exhibited by subjects during this video. 

Therefore, we can conclude that the accuracy 

improvement achieved by mechanical modeling of 

the eye is most effective for saccades of larger 

amplitudes.  

5.2.3 All Eye Movements 

The RMSE for “All Eye Movements” category 

was measured by calculating the RMSE for all eye 

position samples except “Not Reported”.  

Table 4. Prediction data for all eye samples 

The “Car” video had the highest prediction error 

overall, but prediction accuracy improvement was 

the largest as well. The “Airplanes” video with 

smaller saccade amplitudes had the smallest 

accuracy improvement. 

Paired samples T test was conducted to test the 

level of statistical significance between the RMSE 

values for the TSKF and the OPKF models for each 

video test. The differences were significant with 

the level of significance of 0.05. The same was true 

for the OPKF and the TSKF models. 

5.2.4 Eye Movement Prediction during Eye 

Tracking Failures 

An eye position sample was classified as “Not 

Reported” when the eye tracker failed to report the 

proper eye position coordinates. Usually the failure 

to identify the correct eye position coordinates 

occurs due to the subject’s blinking, jerky head 

movements, changes in the content’s lighting, 

excessive wetting of the eye, and squinting. The 

amount of “Not Reported” eye position samples 

varied between 3-33% per experiment. In the cases 

in which the tracking failed for a brief period of 

time, all models – TSKF, OPKF, TSKFE were 

capable of predicting eye movement trajectories by 

using the measurement noise covariance matrix 

defined by Equation (13). 

Figure 6 presents an example of eye movement 

prediction by the OPKFE during eye tracking 

failures. 

 
Figure 6. Eye movement prediction during eye tracking 

failure. 

5.2.5 Real-time Performance  

The real-time performance comes from the fact 

that most computationally expensive calculations 

performed by the OPKF and OPKFE are matrix 

operations required by the Kalman filter 

framework. The OPKF and OPKFE are six order 

systems requiring 6x6 matrixes. Considering the 

processing capabilities of the modern computers, 

all necessary types of operations for 6x6 matrixes 

can be performed in real-time. 

6 Conclusion 

Eye movement prediction is one of the methods 

that can compensate for the sensing/transmission 

delays in the HCI systems with direct eye gaze 

input. In cases when delay is small, the 

performance of the system can be increased by 

pre-selecting visual targets based on the predicted 

fixation spots. Accurate eye movement prediction 

can be also beneficial to gaze-contingent 

compression systems by reducing the size of the 

high quality coded Region of Interest, therefore 

lowering the bandwidth or/and computational 

requirements [5] . 

 In the effort to devise an accurate eye 

movement prediction algorithm, we have designed 

a mathematical model of the human eye. This 

model tries to resemble the neuro-anatomical eye 

structure by modeling properties of the eyeball 

suspensory tissues and individual extraocular 

muscles, i.e., passive elasticity, viscosity, 
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improvement 
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"Airplanes" 1.07 1.02 0.99 4% 2%
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eye-globe rotational inertia, muscle active state 

tension, length tension characteristics, and force 

velocity relationships. The eye model was 

enhanced by the Kalman filter paradigm where the 

equations describing the eye movement are 

transformed into a linear stochastic form and 

system/measurement noise characteristics are 

incorporated into this form.   Such an approach 

allows us to achieve a real-time continuous eye 

movement prediction and to prevent eye tracking 

failures. When compared to a Two State Kalman 

Filter [7], the model developed in this paper 

improves the accuracy of prediction by 7-9% 

overall, considering 20 ms. prediction interval and  

the pool of 21 subjects. There is also a 2-3% 

improvement in accuracy of prediction when 

compared to the previous implementation of the 

Oculomotor Plant Kalman Filter [8].  

We hypothesize that the model proposed in this 

paper will provide the highest accuracy of 

prediction in a 0-250 ms. prediction interval. 
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