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Introduction 

Human Visual System (HVS) exhibits a variety of eye 

movements: fixations, saccades, smooth pursuit, optoki-

netic reflex, vestibulo-ocular reflex, and vergence [1]. 

When a person is sitting in front of the computer screen, 

usually only fixations, pursuits, and saccades are present. 

Among those three eye movements, saccades are the fast-

est movements transitioning the eye between relatively 

stable fixation spots [2]. The fixations provide the highest 

quality picture to the brain, while HVS is blind during 

saccades [2]. Pursuits are rarely exhibited when a person 

is working in front of a computer screen, i.e. pursuits 

appear when a person looks at objects with translational 

motion. Quality of vision during pursuit varies. Two 

areas inside of the Human Computer Interaction (HCI) 

domain - gaze contingent compression (GCC) systems 

[3-6] and systems with direct eye gaze control [7-10] - 

employ the characteristics of eye movements to make 

HCI systems more efficient and responsive. 

 Real-time GCC systems exploit the properties of the 

HVS where the area of the highest visual acuity is ap-

proximately 2° of the visual angle, while the quality of 

vision in the periphery is severely degraded [11]. Real-

time GCC system tries to accurately estimate the location 

of the fixation spot estimated by an area called a Region 

of Interest (ROI). A challenge in front of any GCC is to 

minimize the ROI size, without letting a user to see arti-

facts introduced by the GCC compression. Network 

transmission of the multimedia content while GCC is 

performed induces various transmission delays into the 
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system. As a result of the delay, saccades can place a 

gaze on the low quality coded part of the image [6].  

Therefore, a real-time GCC system must have a saccade 

amplitude prediction algorithm that allows placing a high 

quality coded ROI on top of the future fixation/pursuit 

movement to compensate for the delay effects [6]. A 

quick amplitude prediction model can reduce the delay, 

therefore improving the performance of a real-time GCC 

system. Discussion section of the this paper provides a 

theoretical validation of this claim. 

Today in the human computer interaction world, the 

mouse and the keyboard are the primary input devices. 

Recently eye-gaze aware interfaces, based on the eye 

tracker as an input device, have been gaining popularity 

in the HCI community [10, 12-15]. The majority of the 

HCI systems use fixation duration (dwell time) as a trig-

ger for interface actions [8, 15, 16]. In such interfaces, the 

duration of the detected fixation triggers a ―click‖.  Fixa-

tion-based selection necessitates data buffering, and 

therefore, introduces a delay in the system. Pursuit-based 

selection is an unexplored topic in the HCI community. 

Nevertheless, the definition of the pursuit implies that its 

detection will require a certain amount of data buffering. 

Due to their speed saccade selection would seem to be the 

most appropriate in the applications where the quickness 

of the target selection is of the utmost importance. Sac-

cade’s characteristics would be employed to ―click‖ a 

target even before the eye moves to the target’s location. 

Such a scheme would require that saccade’s amplitude 

and direction would be predicted based on the first few or 

even one eye position samples belonging to the saccade 

trajectory.  

We are aware of only two previously published works 

that discussed a prediction of the saccade amplitude. The 

first work was authored by Anliker [17], where the author 

employed the fact that saccades in nature are ballistic [1], 

i.e., once the peak velocity is detected, the remaining 

saccade trajectory resembles the trajectory before the 

peak. The second work authored by Komogortsev and 

Khan (2007) employed a two state Kalman Filter (TSKF) 

for saccade amplitude prediction. This paper builds upon 

the work by Komogortsev and Khan (2007) and creates 

two new amplitude prediction models. The performance 

of the developed models is tested by 35 subjects with a 

stimuli designed to envoke saccades of various ampli-

tudes.  

Human Visual System Modeling by a Kalman 

filter 

Kalman Filter has played an important role in the eye 

movement related research. Sauter et al. (1991) has pro-

posed a mechanism for the detection of the saccade on-

set/offset based on the innovations generated by a Kal-

man Filter. Rewari and Chi-Sang (1993) have applied a 

general likelihood approach to improve detection for the 

saccades of small amplitudes Abd-almageed et al. (2002) 

has proposed parameters that allowed to more accurately 

reconstruct a pursuit signal in cases when the signal was 

corrupted by noise. Komogortsev and Khan  (2007) have 

applied a Kalman filter both in a gaze contingent com-

pression systems and systems with direct eye gaze input. 

In these systems Kalman Filter was employed as a pre-

dictor of visual attention and filter for eye position sam-

ples not detected by an eye tracker. Kalman Filter togeth-

er with incorporated Oculomotor Plant Mechanical Mod-

el was employed as a predictor of the eye movement tra-

jectories in cases when saccade amplitude was known 

[18, 19]. The specific focus of the current work is quick-

ness of prediction and evaluation of the accuracy of such 

prediction. 

Kalman Filter 

The Kalman filter is a recursive estimator that com-

putes a future estimate of the dynamic system state from 

a series of incomplete and noisy measurements. The 

Kalman Filter minimizes the error between the estimation 

of the system’s state and the actual system’s state. Only 

the estimated state from the previous time step and the 

new measurements are needed to compute the new state 

estimate. Many real dynamic systems do not exactly fit 

this model; however, because the Kalman filter is de-

signed to operate in the presence of noise, an approximate 

fit is often adequate for the filter to be quite useful [20]. 

The Kalman Filter addresses the problem of trying to 

estimate the state x ∈ ℜn  of a discrete-time controlled 

process that is governed by the linear stochastic differ-

ence equation [20]: 

𝑥𝑘+1 = 𝐴𝑘+1𝑥𝑘+𝐵𝑘+1𝑢𝑘+1 + 𝑤𝑘+1 
(1) 

with the measurement 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  
(2) 
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The n-by-n state transition matrix Ak+1 relates the state at 

the previous time step k to the state at the current step 

k+1 in the absence of either a driving function or process 

noise. Bk+1 is an n-by-m control input matrix that relates 

m-by-l control vector uk+1 to the state xk. wk is an n-by-1 

system’s noise vector with an n-by-n covariance matrix 

Qk. 𝑝 𝑤𝑘 ~𝑁 0, 𝑄𝑘 . The measurement vector zk con-

tains state variables that are measured by the instruments.  

Hk is a j-by-n observation model matrix which maps the 

state xk into the measurement vector zk. vk is a measure-

ment noise j-by-1 vector with covariance 

Rk. 𝑝 𝑣𝑘 ~𝑁 0, 𝑅𝑘 . 

While Equations (1)-(7) provide the mathematical 

description of the process that is being modeled the actual 

state values 𝑥𝑘+1 are unknown and have to be estimated. 

The estimation of  𝑥𝑘+1  requires two distinct phases Pre-

dict and Update [20].  

Predict: 

Predict the state vector ahead: 

𝑥 𝑘+1
− = 𝐴𝑘+1𝑥𝑘+𝐵𝑘+1𝑢𝑘+1 

(3) 

The 𝑥 𝑘+1
−  is a future estimation of the modeled state 

without a measurement from the measurement instru-

ment. In case of the eye movement prediction the value 

of 𝑥 𝑘+1
−  can be employed as a predictor of the future gaze 

position. 

One of the Kalman filter goals is to minimize the er-

ror between the actual state value 𝑥𝑘+1 and the estimation 

of this value 𝑥 𝑘+1 (Equation (6)). For these purposes, the 

first estimate of the error covariance metrics is computed 

following mathematical representation of the modeled 

process: 

𝑃𝑘+1
− = 𝐴𝑘+1𝑃𝑘𝐴𝑘+1

𝑇 + 𝑄𝑘+1 
(4) 

Update: 

The update phase improves the estimate of the mod-

eled process by considering the measurement from the 

measurement device. The update state can be broken 

down into three distinct steps. 

Compute the Kalman gain: 

𝐾𝑘+1 = 𝑃𝑘+1
− 𝐻𝐾+1

𝑇 (𝐻𝑘+1𝑃𝑘+1
− 𝐻𝑘+1

𝑇

+ 𝑅𝑘+1)−1 
(5) 

Update the estimate of the state vector with a mea-

surement zk+1: 

𝑥 𝑘+1 = 𝑥 𝑘+1
− + 𝐾𝑘+1(𝑧𝑘+1 − 𝐻𝑘+1𝑥 𝑘+1

− ) 
(6) 

Update the error covariance matrix: 

𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1
−  

(7) 

The choice of Kalman filter gain 𝐾𝑘  allows to minim-

ize the estimate error covariance 𝑃𝑘 = 𝐸[(𝑥𝑘 − 𝑥 𝑘)(𝑥𝑘 −

𝑥 𝑘)]. A more detailed description of Kalman filter me-

chanics are beyond the scope of this paper and can be 

found in [20, 21]. 

Human Visual System 

The approach that we use in this paper is to model an 

eye as a system with two states: position and velocity, 

with acceleration modeled as white noise with known 

maximum acceleration. Next we apply Kalman filter 

framework to this eye representation creating a Kalman 

filter with two states and calling it Two State Kalman 

Filter (TSKF). To complete the description of this filter 

we describe our choice for the state vector 𝑥𝑘 , control 

vector 𝑢𝑘 , transition matrix Ak, control matrix Bk. It is 

also necessary to derive a covariance matrix Qk for the 

system’s noise 𝑤𝑘  and covariance matrix Rk defining the 

measurement noise 𝑣𝑘 . Additionally, to map actual sys-

tem’s state vector xk to the measurement vector zk, obser-

vation matrix Hk is required. Following subsection pro-

vides detailed description below. 

Note that 2D eye movement parameters (position, ve-

locity, acceleration) can be broken into the vertical and 

horizontal components, because essentially they are com-

posed of superposition of their respective orthogonal 

components [22].  Therefore, we create two instances of 

the TSKF filter: first is responsible for the horizontal 

component of movement and the second one is responsi-

ble for the vertical. As a result, an eye is represented as a 

system which has two state vectors xk and yk. 

𝑥𝑘 =  
𝑥1(𝑘)
𝑥2(𝑘)

  (8) 

where 𝑥1(𝑘) is horizontal coordinate of the gaze position 

and 𝑥2(𝑘) is horizontal eye-velocity at time k. 

𝑦𝑘 =  
𝑦1(𝑘)
𝑦2(𝑘)

  (9) 
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where 𝑦1(𝑘) is vertical gaze position and 𝑦2(𝑘) is vertic-

al eye-velocity at time k. 

The state transition matrix for both horizontal and 

vertical states is: 

𝐴 =  
1 ∆𝑡
0 1

  (10) 

where t is the eye-tracker’s eye-position sampling 

interval. 

The observation model matrix for both state vectors 

is: 

𝐻 =  1 0  (11) 

By definition, the covariance matrix for the measure-

ment noise is𝑅𝑘 = 𝐸[ 𝑣𝑘 − 𝐸(𝑣𝑘)  𝑣𝑘 − 𝐸(𝑣𝑘) 𝑇]. Be-

cause only the eye position is measured, 𝑣𝑘  is a scalar 

making𝑅𝑘 = 𝑉𝐴𝑅[𝑣𝑘 ] = 𝛿𝑣
2, where 𝛿𝑣 is the standard 

deviation of the measurement noise. In this paper, it is 

assumed that the standard deviation of the measurement 

noise relates to the accuracy of the eye tracker and is 

bounded by one degree of the visual angle. Therefore 𝛿𝑣 

was conservatively set to1°. In cases when the eye tracker 

fails to detect eye position coordinates, the standard devi-

ation of measurement noise is assigned to be 𝛿𝑣 =

120°.The value of 120° is chosen empirically, allowing 

the Kalman Filter to rely more on the predicted eye posi-

tion coordinate𝑥 𝑘
−.  

The TSKF is initialized with zero valued initial vec-

tors𝑥 0, 𝑦 0 and an identity error covariance matrix P0. 

By definition, the process noise covariance matrix is 

𝑄𝑘 = 𝐸[ 𝑤𝑘 − 𝐸(𝑤𝑘)  𝑤𝑘 − 𝐸(𝑤𝑘) 𝑇], where 𝑤𝑘a 1x2 

system’s noise vector is  𝑤𝑘 =  𝑤1(𝑘) 𝑤2(𝑘) 𝑇 . The 

TSKF Simple model assumes that variables 𝑤𝑖(𝑘) are 

uncorrelated between each other (velocity is independent 

of eye position), i.e.,  𝐸  𝑤𝑚 (𝑘 𝑤𝑛 𝑘  =

𝐸  𝑤𝑚 (𝑘 ]𝐸[𝑤𝑛 𝑘    for all 𝑛 ≠ 𝑚 

and 𝑝 𝑤1(𝑘) ~𝑁 0, 𝛿1
2 , 𝑝 𝑤2(𝑘) ~𝑁 0, 𝛿2

2 . These 

assumptions generate the following system’s noise cova-

riance matrix: 𝑄𝑘 =  
𝛿1

2 0

0 𝛿2
2 .  This simple model as-

sumes that the standard deviation of the eye position 

noise 𝑤1(𝑘) is connected to the characteristics of the eye-

fixation movement. Each eye fixation consists of three 

basic eye-sub-movements: drifts, small involuntary sac-

cades and tremors [23]. Among those three movements, 

involuntary saccades have the highest amplitude—about 

a half degree of the visual angle; therefore, 𝛿1 is set con-

servatively to 1°. The standard deviation value for eye 

velocity was selected to be 𝛿2 = 1°/s. 

Chi-square Test & Saccade Amplitude 

The Chi-square test was originally employed by Sau-

ter [24] to detect the onset and the offset of a saccade. 

The Chi-square test monitors the difference between pre-

dicted and observed eye velocity:  

𝜒𝑖
2 =  

 𝑥 2
− 𝑖 − 𝜃 𝑖 

2

𝛿2

𝑝

𝑖=1

 
(12) 

 

where 𝑥 2
− 𝑖  is the predicted eye velocity computed by 

Equation (3) and 𝜃 𝑖  is the observed eye velocity. It is 

important to note that Equation (3) can be computed as a 

result of the Kalman filter framework presented by Equa-

tions (1)-(7) and specifically defined by equations (8)-

(11). 𝛿 is the standard deviation of the measured eye 

velocity during the sampling interval under consideration. 

Once a certain threshold of the 𝜒𝑖
2 is achieved (value of 

25 is used in our system), a saccade is detected. It was 

reported that the filter stability improves if 𝛿 is selected 

to be a constant [25]. Empirical evaluation has indicated 

that values of 𝛿2 = 1000 and p=5 provide acceptable 

performance. 

Komogortsev and Khan (2007) have suggested a 

function that connected the value of 𝜒𝑖
2 to the amplitude 

of the corresponding saccade (2007). They suggested that 

the development of such a function is possible due to the 

fact that HVS uses phasic (fast) eye-muscle fibers with 

high motoneuronal firing rate for large saccades and tonic 

(slow) eye-muscle fibers with a lower motoneuronal fir-

ing rate for the saccades of lesser amplitude [26]. Such 

mechanism ensures different rate of rise of eye-muscle 

force for the saccades of various amplitudes providing 

higher acceleration to the eye globe during saccades of 

higher amplitude. Larger amplitudes produce larger eye 

velocity values therefore increasing the value for 𝜒𝑖
2. 

This paper presents more robust models that derive a 

saccade’s amplitude from a 𝜒𝑖
2 value than the model orig-

inally proposed by [25]. The detailed description of those 

prediction models is provided in the section below. 
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Saccade amplitude Prediction 

Velocity Model 

As a base comparison model, we would like to em-

ploy a saccade prediction model proposed by Anliker 

[17]. Anliker’s model uses the fact that saccadic move-

ment is ballistic—i.e., a saccade trajectory is predeter-

mined and cannot be altered once the movement starts, 

and the saccade trajectory resembles a bell curve. Once 

the peak velocity is reached, the rest of the saccade 

movement mirrors the movement prior to the peak. In our 

implementation of the Anliker’s model, the velocity peak 

is detected when a consecutive eye position point has a 

lesser absolute velocity value than the previous absolute 

velocity value. The saccade amplitude is made equal to 

double the distance the path traveled, prior to the velocity 

peak. 

First Sample Model 

The Chi-square test was performed by Equation (12). 

When a 𝜒𝑖
2 went above a threshold an onset of a saccade 

was recorded and the resulting saccade amplitude was 

stored for the analysis. Subsequently, the saccade ampli-

tude prediction function was derived by a non-linear re-

gression model with Gauss-Newton method implemented 

in a SAS system. Nonlinear regression is a powerful tool 

for analyzing scientific data, especially in physiology 

[27]. Also, nonlinear regression is more effective for 

curve-fitting than linear regression. This method provided 

the equation that connected the Chi-square test value to 

the predicted saccade’s amplitude, 𝐴𝑠𝑎𝑐 _𝑝𝑟𝑒 : 

𝐴𝑠𝑎𝑐 _𝑝𝑟𝑒 = −119 ∙ 10−14 ∙  𝜒2 5 + 2.166

∙ 10−9 ∙  𝜒2 4 − 1.3

∙ 10−6 ∙  𝜒2 3

+ 0.000282 ∙  𝜒2 2

− 0.0117 ∙  𝜒2 

+ 10.5328 

(13) 

The terms with power of more than 5 were dropped, 

due to non-significant impact contributing to the final 

value. 

Two Samples Model 

Two Samples model employed first two Chi-square 

test values for estimation. The first one (𝜒1) was recorded 

immediately at the saccade onset point, the second one 

(𝜒2) was recorded for the next consecutive eye position 

sample. The non-linear regression model with the Gauss-

Newton method was used to derive the following estima-

tion of the saccade amplitude, 𝐴𝑠𝑎𝑐 _𝑝𝑟𝑒 . 

 

𝑆𝑎𝑐𝑎𝑚𝑝 = −107 ∙ 10−13 ∙ (𝜒1
2)5 + 1.848

∙ 10−8 ∙ (𝜒1
2)4

− 0.00001 ∙ (𝜒1
2)3

+ 0.000266 ∙ (𝜒1
2)2

− 0.3008 ∙ (𝜒1
2) − 179

∙ 10−15 ∙ (𝜒2
2)5 + 5.36

∙ 10−10 ∙ (𝜒2
2)4 − 4.8

∙ 10−7 ∙ (𝜒2
2)3

+ 0.000084 ∙ (𝜒2
2)2

+ 0.0586 ∙ (𝜒2
2)

+ 9.1502 

(14) 

Saccade Direction Detection 

This paper tested only saccades with horizontal ampli-

tude. Quick direction detection of this movement was not 

as easy as it might appear due to equipment noise. Quick 

direction detection schemes are prone to generate errors. 

In the next two paragraphs, we present two methods for 

the horizontal saccade’s direction detection 

First Sample Model 

The direction of movement was connected to the sign 

of the velocity of the recorded signal. Positive sign of the 

velocity signal at the first eye position sample indicated a 

rightward direction of a saccade, and the negative veloci-

ty indicated a leftward direction of the saccade. 

Two Samples Model 

Two first velocity samples of the saccade trajectory 

were evaluated. The rightward saccade was predicted if 

both velocity samples had positive values. The leftward 

saccade was predicted if both velocity samples had nega-

tive values. In case when velocity samples had different 

signs, the saccade direction was selected to be the same 

as the sign of the velocity point with the highest absolute 

value. 
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Methodology 

Equipment 

The experiments were conducted with the Tobii x120 

eye tracker, which is represented by a standalone unit 

connected to a 19 inch flat panel with a resolution of 

1280x1024. This eye tracker performs binocular tracking 

with the following characteristics: accuracy 0.5°, spatial 

resolution 0.2°, and drift 0.3°.  Tobii x120 model allows 

300x220x300 mm freedom of the head movement.  Nev-

ertheless a chin rest was employed for higher accuracy.  

Stimulus Presentation 

A saccade inhibition stimulus was presented as a 

ramp stimulus [1] where a dot appeared at the random 

horizontal location on the screen (vertical coordinate was 

fixed to the center of the screen). First, the dot flashed for 

1000 ms.; then it disappeared; then, immediately a new 

dot appeared at the new, random location. The minimum 

distance between two consecutive dots was 2°. Each sub-

ject was presented with a sequence of 30 dots. 

Participants 

Thirty five college students were recruited in under-

graduate courses at Texas State University.  Participants 

were compensated for their participation with extra credit 

in courses within the Departments of Psychology and 

Computer Science. All materials and procedures were 

approved by the Institutional Review Board at Texas 

State University, and informed consent was obtained 

from all participants prior to the testing session. On aver-

age, participants were 20.62 years of age [SD = 2 years; 

range = 18-25].  Of the 38 participants tested, 85% were 

male, 69% were of European-American descent. 

Quality of the Recorded Data 

Prior to the experiment, participants were screened for 

the actual accuracy and noise levels of the eye-tracker 

hardware using software developed in the Human Com-

puter Interaction Laboratory at Texas State University 

[28]. Participants with reported accuracy of less than 1° 

and a noise level of more than 16% were excluded from 

the analysis of eye movement data. The noise level is 

defined as the percentage of eye position samples for 

which the eye tracker failed to report the eye position 

coordinates. Some recording failures of the eye tracker 

occurred, due to conditions such as squinting and exces-

sive moisture of the eye.  In eye-tracking experiments, 

noise level parameters are rarely reported, but it serves as 

a major validation metric that should be specifically 

stated to verify the validity of the results. 

Evaluation Metrics 

The Root Mean Squared Error (RMSE) between the 

predicted 𝐴𝑠𝑎𝑐 _𝑝𝑟𝑒  and the actual saccade amplitude 𝐴𝑠𝑎𝑐  

determines the accuracy of the saccade prediction algo-

rithm. 𝑅𝑀𝑆𝐸𝑀 =   
 𝐴𝑠𝑎𝑐 −𝐴𝑠𝑎𝑐 _𝑝𝑟𝑒   

2

𝑁

𝑁
𝑘=1  . M is the mod-

el’s name. The ideal saccade prediction model will have 

the RMSE of 0º. 

Direction Prediction Error (DPE) represents the 

amount of erroneously detected saccade prediction—i.e., 

the rightward saccade was predicted as leftward saccade 

and otherwise. The perfect scheme would have an error 

rate of 0. 

Both metrics were computed in the following way. 

Out of 35 recordings, 25 were randomly selected to create 

functions connecting the Chi-square test value to the sac-

cade amplitude according to heuristic of each prediction 

model. The remaining 10 recordings were employed to 

compute the RMSE and DPE metrics. 

Results 

Amplitude Prediction Error  

Velocity Model yielded average RMSE of 3.46°. We 

hypothesize that these errors were due to high noise in the 

eye tracker. For example, spatial resolution of 0.2° results 

in the velocity noise of 24°/s without an eye effectively 

moving anywhere. Average RMSE for the First Sample 

Model was 5.41°. The second Chi-square test sample did 

not improve the accuracy of amplitude prediction signifi-

cantly from the First Sample Model– average RMSE for 

the Two Samples Model was 5.45°. However, RMSE for 

Velocity Model was significantly lower than those for the 

other two models, F(2,18)=15.20, p<0.01. 
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Figure 1. Saccade amplitude prediction errors for various 

prediction models by average RMSE 

Direction Prediction Error  

Average error rate for the First Sample Model for all 

35 recordings was 5.26%. Two Samples Model per-

formed significantly better by reducing average error rate 

to 1.54%, F(1,34)=25.87, p<0.01. 

 

Figure 2. Direction prediction error rates for First Sample and 

Two Samples models. 

Discussion 

Prediction Accuracy Challenges 

Average error of the best performing model with the 

amplitude of 5.41° seems to be large for the average sac-

cade amplitude of 10°. The explanation of this fact may 

be presented by the graph depicted in Figure 3.  

 

Figure 3. Recorded saccades’ amplitudes for computed Chi-
squared values for 25 randomly selected records 

The graph indicates that the First Sample model’s eq-

uation splits the recorded data in approximately two 

halves. Thus, an additional research is required to find 

data noise reduction algorithms that will allow reducing 

the noise in the recorded data and increasing the accuracy 

of prediction. 

In previous research, Komogortsev and Khan pro-

posed following equation for saccade amplitude predic-

tion 

𝐴𝑠𝑎𝑐 _𝑝𝑟𝑒 = −24 ∙ 10−6 ∙  𝜒2 3 + 536 ∙ 10−4

∙  𝜒2 2 + 1.5 

(15) 

when this equation was applied to the data collected in 

the experiments described in this paper, the recorded av-

erage RMSE was more than 35° (larger than the monitor 

size). One possible reason for such low accuracy of pre-

diction was due to the different frequency of eye position 

sampling recording in our experiments and in experi-

ments presented  in Komogortsev and Khan (2007). The 

frequency employed in their experiment was 50Hz and 

frequency employed in our experiments was 120Hz. The 

other possible issue is that the function presented in the 

Equation (15) was derived empirically only from one 

recording of one subject.  

Applications 

Quick models for saccade amplitude prediction have po-

tential to benefit the area of gaze-contingent-

compression, by reducing the amount of lag created by 

sensing, processing, and transmission delays. As it was 

pointed out in our previous work [29, 30] delay reduction 

allows to achieve higher levels of compression. Specifi-

cally an amplitude prediction model would provide the 

coordinates for the high quality ROI region placed on the 

fixation spot at the end of the saccade. The quickness of 
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the saccade’s amplitude prediction would result in delay 

reduction. Below we provide a mathematical evaluation 

of the lag reduction provided by every model. 

Saccade duration can be estimated by the formula 

𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟 = (2.2𝐷𝑠𝑎𝑐𝑎𝑚𝑝
+ 21)/1000 (16) 

were 𝐷𝑠𝑎𝑐 _𝑎𝑚𝑝  is an amplitude of a saccade measured in 

the degrees of the visual angle and 𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟  is a saccade 

duration measured in seconds. It is possible to estimate 

the amount of lag reduction each amplitude prediction 

model provides. Velocity Model: requires peak velocity 

identification that occurs at the point representing the 

middle of the saccade plus and additional point required 

to verify the peak, therefore prediction time is: 

𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟 /2 + 1/𝑓 where 𝑓 is the frequency of the eye 

tracker equipment measured in Hz. Total lag reduction is 

computed as:  

𝑇𝑑𝑒𝑙𝑎𝑦 _𝑟𝑒𝑑𝑢𝑐 = 𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟 − (𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟 /2 + 1/𝑓) 

One Sample Model: requires only one position at the 

beginning of the saccade, taking 1/𝑓 amount of time for 

prediction. Therefore, lag reduction can be computed as  

𝑇𝑑𝑒𝑙𝑎𝑦 _𝑟𝑒𝑑𝑢𝑐 = 𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟 − 1/𝑓 

Two Sample Model: requires two eye position samples, 

taking 2/𝑓 amount of time for prediction. Therefore, lag 

reduction can be computed as  

𝑇𝑑𝑒𝑙𝑎𝑦 _𝑟𝑒𝑑𝑢𝑐 = 𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟 − 2/𝑓 

Figure 4 provides the delay reduction performance de-

pending of the saccades amplitude. 

 

Figure 4. Delay reduction based on saccade’s amplitude. 

 

Once delay reduction is estimated, it is possible to assess 

amount of compression savings the models would pro-

vide for a GCC system. To provide such an estimate we 

have taken GCC performance results reported by Komo-

gortsev [30]. Table 1 provides result summary 

Delay 0 ms 20 ms 500 
ms 

1000 
ms 

2000 ms 

APRG 2.6 2.2 1.6 1.5 1.4 

Table 1. Average Perceptual Resolution Gain achieved with 
corresponding delay. 

Average Perceptual Resolution Gain (APRG) is a quanti-

ty that indicates the amount of compression gaze-

contingent approach provides given the value of the delay 

[29]. It is possible to provide a logarithmic approximation 

of APRG given the delay values  

𝐴𝑃𝑅𝐺𝑜𝑟𝑖𝑔 = −0.176 ln 𝑇𝑑𝑒𝑙𝑎𝑦  + 1.5 
(17) 

𝑇𝑑𝑒𝑙𝑎𝑦  represents the amount of delay in GCC system 

measured in seconds. While Equation (17) provides the 

APRG estimation for the ―Original‖ (no delay compensa-

tion) type of the GCC system, the GCC system’s perfor-

mance aided by amplitude prediction model can be pre-

sented as:  

𝐴𝑃𝑅𝐺𝑚𝑜𝑑 = −0.176 ln 𝑇𝑑𝑒𝑙𝑎𝑦 − 𝑇𝑑𝑒𝑙𝑎𝑦 _𝑟𝑒𝑑𝑢𝑐  

+ 1.5 
(18) 

Resulting compression increase (CI) can be estimated as  

𝐶𝐼 = 100(1 −
𝐴𝑃𝑅𝐺𝑜𝑟𝑖𝑔

𝐴𝑃𝑅𝐺𝑚𝑜𝑑

) (19) 

Figure 5 presents comparison results created by two sce-

narios defined by the average amplitude of the exhibited 

saccades. 1
st
 is a 5° case and the 2

nd
 scenario is a 10° 

case. 

 
Figure 5. Compression increase as result of delay compensa-
tion. 
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Average saccade amplitude of 5°: the results indi-

cate that Velocity model would provide a 14% compres-

sion improvement for the delay of 9 ms. There is a steep 

reduction in performance after this value, e.g., delay of 

50 ms. achieves an improvement of performance of just 

1%. First sample model increases the effective range of 

delay compensation, providing the highest increase of 

performance for the delays of up to 26 ms., there is a 

steep reduction in performance after that e.g., delay of 50 

ms. reduces CI value down to 5% and delay of 100 ms. 

reduces the performance increase down to 2%. When 

performance of the First Sample model is compared to 

the performance of the Velocity model, the performance 

of both models is the same up to 8 ms. mark (the timing 

of the first interval) after this point we can see a constant 

rise of the performance until the point of 23-25ms reach-

ing the value of 18%, there is a slow reduction of perfor-

mance after this point. 

Considering average saccade amplitude of 10° the 

performance of the Velocity and One Sample models are 

the same up to 14 ms. after this Velocity model perfor-

mance degrades going down to 3% at the level of 50 ms., 

the performance reaches the mark of 1% or less at the 

point of 85ms. The peak of performance improvement 

occurs at 33-36 ms interval for the First Sample model, 

going down to the mark of 9% at the 50 ms. delay inter-

val and 4% at 100 ms delay interval. When First Sample 

model is compared with Velocity model, the peak of per-

formance improvement occurs at the interval of 34-36 ms 

providing an improvement of compression by 20%, the 

performance improvement decreases after this value. 

 Delay value  indicate that Velocity model would pro-

vide a 14% compression improvement for the delay of 9 

ms. There is a steep reduction in performance after this 

value, e.g., delay of 50 ms. achieves an improvement of 

performance by 1%. First sample model increases the 

effective range of delay compensation, providing the 

highest increase of performance of delay of 26 ms., there 

is a steep reduction of performance after this value e.g., 

delay of 50 ms. achieves an improvement of performance 

by 5%, delay of 100 ms. reduces the performance in-

crease down to 2%. When performance of the First Sam-

ple model is compared to the performance of the Velocity 

model, the performance of both models is the same up to 

8ms mark (the timing of the first interval) after this point 

we can see a constant rise of the performance until the 

point of 23-25ms reaching the value of 18%, there is a 

slow reduction of performance after this point. 

We have provided a theoretical evaluation of the impact 

that quick saccade amplitude prediction models would 

have on the gaze-contingent compression domain. The 

actual implementation of such models in a real-time GCC 

system might change the estimated compression results. 

For example such factors as delay jitter, targeted amount 

of eye-gaze samples required to be contained by a GCC 

system [30] and prediction error compensation mechan-

isms were not considered in our evaluation. The detailed 

empirical evaluation of these factors is beyond the scope 

of this paper. 

Conclusion 

This paper has introduced two new saccade amplitude 

prediction models and compared them to the published 

work of Anliker [17]. New models were based on the 

Chi-square test values determined by a two state Kalman 

filter implementation of the Human Visual System. The 

results presented in this paper indicate that the Anliker’s 

model was the most accurate producing a 3.46 degree 

error on average, but the model required that the middle 

of a saccade would be reached, therefore reducing the 

potential benefit of saving time. The Kalman filter-based 

models have produced a higher saccade amplitude predic-

tion error. The model that required just one eye position 

sample at the beginning of a saccade for prediction pro-

duced an average error of 5.41° with saccade direction 

erroneously predicted 5% of the time. This was the fastest 

model in terms of amount of samples required for predic-

tion. The second model employed two position samples, 

yielding the average amplitude prediction error of 5.45°, 

with just 1% error in saccade direction prediction. The 

exact application of the proposed saccade amplitude pre-

diction models is beyond the scope of this paper. In each 

specific case, a designer of a gaze contingent compres-

sion system or a system with direct eye gaze control 

should decide which saccade prediction model is more 

appropriate. 
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