
  1 

To appear in Proceedings of the International Conference on Software Engineering Theory and Practice (SETP-08), July 2009 

An Effort Based Model of Software Usability 
 

Oleg V. Komogortsev 

Texas State University 

San Marcos, TX 78666 

ok11@txstate.edu 

Carl J. Mueller 

Texas State University 

San Marcos, TX 78666 

carl.mueller@txstate.edu 

Dan Tamir 
Texas State University 

San Marcos, TX 78666 

dt19@txstate.edu 

Liam Feldman 

Texas State University 

San Marcos, TX 78666 

lf1081@txstate.edu 

 

 

Abstract 

 

This paper presents a new effort based model for 

software usability and reports the results of a set of 

experiments performed to assess the validity of the model. 

The model is based on the notion that usability is an 

inverse function of effort. Physical and mental effort are 

obtained and inferred from logging physical activity and 

eye tracking. Using the new model, an objective metric of 

software usability that facilitates setting measurable 

requirements and enables the comparison of two or more 

implementations of the same application is developed.  

The experiments results show high correlation to learning 

theory models, strongly support the relationship of effort 

to usability and demonstrate that operability, learnability, 

and understandability of software systems can be 

measured using the effort based metric . 

1 Introduction 

Poor software quality can lead to execution errors, 

deviation from requirements and specs, substantial 

development cost overruns, and user dissatisfaction [9, 

14, 22]. In a few extreme situations poor software quality 

can lead to death [14].  Usability, one of the components 

of software quality, is related to the operability, 

learnability, understandability, and level of satisfaction 

associated with a software system.  

Software developers have a wide variety of tools for 

prototyping, inspecting, and testing software usability 

[21]. Considering the large number of user complaints 

about software usability, these techniques may not 

address the problem efficiently.  Furthermore, the 

challenges presented by usability issues may not lie solely 

in the tools and techniques used in the development 

process.  Physiological and psychological characteristics 

as well as sociological conditioning heavily influence 

software usability making it possibly one of the most 

subjective attributes of software quality.  Usability 

evaluation requires observing a number of human subjects 

while engaged in using the system.  Interpreting these 

observations necessitates adding a person skilled in 

psychological / cognitive evaluation to the testing team.   

Many software engineers are not familiar with the 

factors influencing usability and are frequently 

uncomfortable with the entire topic.  Furthermore, 

occasionally developers do not view usability testing as 

productive evaluation because these evaluations usually 

indicate an area where the subjects had problems and does 

not necessarily pinpoint a specific issue with the software.  

Being close to the project deadline can amplify this 

frustration of software engineers and engineering 

management with current usability evaluation procedures, 

especially when there is no way to determine how much 

time and effort are required to identify and modify the 

usability issues with the software.  Because of the 

uncertainty and expense of usability evaluations, some 

managers are reluctant to include formal usability testing 

in their development plan.  Instead of using testing, these 

managers prefer to rely on best practices, templates, and 

inspections to establish software usability.  

One approach that may make software engineers 

more comfortable with the topic of usability is to recast it 

into terms and concepts that are familiar to the software 

engineering community.  Investigating objective and 

engineering-based methodologies of evaluating software 

usability is the focus of this research. 

The actual challenge of developing usable software 

may lie in the lack of a clear and concise understanding of 

what too many software engineers view as a fuzzy 

concept.  Not all authorities on software quality provide a 

definition of usability.  Some authorities recommend 

usability testing but only provide a checklist of things to 

investigate [4, 12, 17]; and these authorities are, for the 

most part, balancing between systems with “card input” 

and interactive systems.  Most quality models [1, 10, 15, 

18] provide a relatively consistent and concise definition 

of usability, but the attributes used to characterize the 

many facets of usability are not consistent.  This research 

uses the characterization of usability provided in the 

ISO/IEC 9126 because it is one of the more recent quality 

models, it is an industry standard, and it provides a 

measurement system for each of their quality attributes 

and characteristics.  This standard defines usability as 

“the capability of the software product to be understood, 

learned, used, and attractive to the user when used under 

specified conditions” [1], with the following 

characteristics:  Understandability, Learnability, 

Operability, Attractiveness, and Compliance.   

Understandability is the ability of a user to 

understand the capabilities of the software and its 
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suitability to accomplish specific goals.  Traditionally, it 

is measured by providing the user with a tutorial or 

software documentation and then evaluating the users’ 

ability to determine the users’ level of understanding of 

the software’s functionality, operation, and input/output 

data [2].  The ISO/IEC 9126 standard also recommends 

using cognitive monitoring techniques to evaluate the 

subject’s response.  Cognitive monitoring techniques are 

using one-way mirrors or concealed cameras to record the 

subject’s behavior along with evaluation of the findings 

by a psychology professional. 

Learnability describes how easy it is for a subject to 

learn to use the software.  For this characteristic, the 

standard measures how long it takes to learn and perform 

a task, the number of functions used correctly, and the 

utility of the help facility [2].  In addition to the 

measurements, the standard proposes cognitive 

monitoring techniques.  Learnability has deep roots 

outside of software quality.  Ebbinghaus, a German 

psychologist, is probably the first researcher that 

introduced (in the 19th century) a learnability model 

describing the time required to memorize new knowledge 

[8].  Figure 1 illustrates the learning model.  In the 

1930’s, research at Wright-Patterson quantified the 

notion; and in the 1960’s it evolved into an experience 

curve [3].  The experience curve research applied the 

learning model to an industrial setting by comparing cost 

per unit verses units developed. 

 
Operability is the capability of a user to use the 

software to accomplish a specific goal.  Assessing 

operability requires measuring several characteristics 

including Operational consistency; Error correction; Error 

correction in use; Default value availability in use; 

Message understandability;  Self-explanatory error 

messages; Operational error recoverability in use; Time 

between human error operation in use; Undoability; 

Customizability; Operation procedure reduction; and, 

Physical accessibility [2].  Some of these metrics are 

objective measurements, but many require cognitive 

monitoring techniques to evaluate. 

As the name implies, attractiveness is the appeal of 

the software to a user.  Attractiveness is a subjective 

usability characteristic that involves sociological and 

psychological issues as well as gender and personal taste 

concerns. The ISO/IEC 9126 standard characterizes 

attractiveness by providing subjects with a questionnaire 

to evaluate the interface and by observing subjects 

customizing the appearance to their satisfaction [2].   

Compliance is the most straightforward characteristic 

to evaluate. It measures how well the software adheres to 

external and internal rules and regulations related to 

usability.  Developers compile a list of the required 

standards, conventions, style guides, and regulations.  

Then using functional testing techniques, verify that the 

software complies with them [2]. 

This relatively short description of the metrics 

necessary to evaluate usability demonstrates that 

designing a usability test is an extremely time consuming 

and expensive task.  This is a test with potentially high 

cost, which may not be able to pinpoint specific design or 

implementation defects or issues.  Another problem with 

the number of measurements is how to create objective 

specifications for so many diverse characteristics.  Setting 

objective measurements for all of these characteristics can 

increase the time necessary to specify requirements.  

Nevertheless, reducing the high cost of usability testing is 

difficult because each of the measures proposed by the 

ISO/IEC standard are good and identify specific 

problems, and it is not possible to eliminate the use of 

human test subjects.  It may be possible, however, to take 

a slightly different approach to usability testing using 

techniques that developers and testers are more 

comfortable with and could administer without requiring 

cognitive evaluation techniques.  In fact this research 

does not propose to eliminate current cognitive based 

evaluation. It is proposed to add a set of “tools” 

(objective metrics) that can be used in the process of 

software design, implementation, testing, validation, and 

verification, by software engineers to improve the 

usability of their products thereby reducing the need for 

the cognitive evaluation.   

In addition to the usability metrics, software 

engineers would need appropriate usability test design 

methodologies.  One possible approach is to design a set 

of goals or tasks and measure the effort and time 

necessary for a group of subjects to accomplish each goal 

[24]. These metrics would supply an absolute (i.e., not a 

relative) usability measurement technique.  A relative 

measure technique can be obtained by the developers via 

the notion of the “designer effort curve” or the “ideal 

effort curve.” The developers would estimate the effort 
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Figure 1  Hypothetical Learning Curve 
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and time necessary to complete each goal and compare 

the observed effort with the estimated effort.  If the 

observed effort is greater than the estimated effort, then 

there is a problem requiring further investigation.  After 

identifying the existence of a problem, developers could 

trace the observation logs to find where the subjects 

experienced a problem causing the expenditure of 

additional effort.   

This paper introduces the new effort based usability 

assessment model concentrating on understandability, 

operability, and learnability and presents the related test 

design methodology. In addition, the paper reports on the 

results of a major experiment that used the test design 

method along with effort logging for validating the 

model. The rest of the paper is organized in the following 

way: Section 2 presents the effort based productivity 

hypothesis. Section 3 and 4 present the experiment’s 

design, execution, and results followed by conclusions in 

a section and proposals for further research (section 6). 

2 A Hypothesis for Effort-based 

Productivity 

Many software publishers are claiming that their 

product requires less effort than the competition.  Some 

publishers mention less keystrokes for task completion as 

a product advantage. Even though these advertisers 

provide no objective substantiation for these claims, the 

fact that this may entice a buyer to purchase the product 

gives credibility to the notion that there is a relationship 

between usability and effort 

For this hypothesis, 𝐸 denotes all the effort, mental 

and physical, required to complete a task with computer 

software, as defined by the following equations: 

𝐸 =  
𝐸𝑚𝑒𝑛𝑡𝑎𝑙   

𝐸𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙
  

𝐸𝑚𝑒𝑛𝑡𝑎𝑙 =  
𝐸𝑒𝑦𝑒𝑚𝑒𝑛𝑡𝑎𝑙        

𝐸𝑜𝑡𝑕𝑒𝑟_𝑚𝑒𝑛𝑡𝑎𝑙
  

𝐸𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙 =  

𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙

𝐸𝑒𝑦𝑒 _𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙         

𝐸𝑜𝑡𝑕𝑒𝑟_𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙      
  

 

Most of the terms used in the equations are self 

explanatory and denote types of efforts required for task 

completion. On the other hand, 𝐸𝑜𝑡𝑕𝑒𝑟_𝑚𝑒𝑛𝑡𝑎 𝑙  and 

𝐸𝑜𝑡𝑕𝑒𝑟_𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙  respectively denote the amount of mental 

and physical effort that cannot be represented through 

logging of manual effort and eye tracking. They can be 

considered as an error term that accumulates the errors 

inherent in the logging and tracking along with the fact 

that there are other forms of mental and physical effort 

that are not included in the hypothesis. 

Precise methods for measuring mental effort 

(𝐸𝑚𝑒𝑛𝑡𝑎𝑙 ) are still in a theoretical stage.  Researchers have 

made progress measuring mental or cognitive activities 

using Magnetic Resonance Imaging.  Another approach, 

still in the theoretical stage, is to measure cognitive 

activities using eye tracking.  One problem with using eye 

tracking to measure cognitive activity is that it is not 

possible to determine whether the subject is thinking 

about the task or something else. 

Methods for measuring physical effort (𝐸𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙 ) are 

more precise.  It is possible to log a subject’s activities 

and convert key / button presses, mouse movement into 

units of effort thereby describing the manual effort 

(𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙 ).  Tracking eye movements with an eye 

tracking device provides a method for making a precise 

measurement of eye effort (𝐸𝑒𝑦𝑒 _𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙 ).  The current 

research hypothesis is involved with measuring effort and 

showing the correlation between effort and usability. This 

hypothesis is validated through a comprehensive set of 

experiments.  Future research to develop actual usability 

metrics is currently in advanced stages. 

2.1 Measuring Effort 

Several informal studies indicate that many system 

users associate the “physical” effort required for 

accomplishing tasks with the usability of the software.  In 

the case of interactive computer tasks, it may be possible 

to calculate effort from a weighted sum of mouse clicks, 

keyboard clicks, Mickeys, etc.,  where the term Mickey 

denotes the number of pixels (at the mouse resolution) 

traversed by the user while moving the mouse from a 

point 𝑥0, 𝑦0  to a point  𝑥1, 𝑦1  . 
The definition of effort uses continuous functions.  In 

practice, given the discrete nature of computer interaction, 

these measures are quantized by converting integrals to 

sums.  Assume that an interactive task 𝑅 starts at time 𝑡0.  

The effort at time 𝑡 is defined to be: 

𝐸𝑚𝑎𝑛𝑢𝑎𝑙 _𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙  𝑡 

=
1

𝑡 − 𝑡0
  𝑤1 ×𝑚𝑖𝑐 𝑡 + 𝑤2

𝑡

𝑡0

×𝑚𝑐 𝑡 + 𝑤3 ×𝑚𝑘 𝑡 + 𝑤4

× 𝑝(𝑡) 𝑑𝑡 
Where: 𝑚𝑖𝑐(𝑡), 𝑚𝑐(𝑡), 𝑚𝑘(𝑡) are (respectively) the 

number of Mickeys, the number of mouse clicks, and the 

number of keystrokes by a subject during the time 

interval 𝑡 − 𝑡0.  Furthermore, 𝑝(𝑡) is a penalty factor that 

measures the number of times the user switches from 

mouse to keyboard or vice versa during the interval. 

These switches account for physical as well as mental 

user effort.  Note that 𝐸(𝑡)
 
is a monotonically increasing 

function.  

Mental effort is essentially the amount of brain 

activity required to complete a task.  To some extent, 

brain activity related to a task can be approximated by 

processing eye movement data recorded by an eye tracker 

[6].  Modern eye trackers are non-intrusive cameras that 
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do not include any parts affixed to the subject’s body.  

Eye trackers acquire eye position data and enable 

classifying the data into several eye movement types 

useful for eye related effort assessment. The main types of 

eye movements are: 1) fixation – eye movement that 

keeps an eye gaze stable with regard to a stationary target 

providing visual pictures with high acuity, 2) saccade – 

very rapid eye movement from one fixation point to 

another, and 3) pursuit – stabilizes the retina with regard 

to a moving object of interest [6]. The Human Visual 

System without dynamically moving targets does usually 

not exhibit pursuits.  Therefore, parameters related to 

smooth pursuit are not discussed in this paper.  In addition 

to basic eye movement types, eye tracking systems can 

provide biometric data such as pupil diameter. 

Many researchers consider the following metrics as a 

measure of the cognitive load [11].  Hence, these metrics 

facilitate the estimation of mental effort. 

Average fixation duration:  Average fixation 

duration, measured in milliseconds, indicates cognitive 

load that can be interpreted as a difficulty in extracting 

information or as an indication that an interface object is 

engaging [20]. 

Average pupil diameter:  Eye tracking systems 

enable measuring biometric data such as pupil diameter. 

Pupil size, measured in millimeters, can be indicative of 

the high cognitive effort [20]. 

Average saccade amplitude:  Saccade amplitude, 

measured in degrees, indicates meaningful cognitive load 

cues.  To a certain extent, large-average saccade 

amplitude represent lower mental effort. In addition, this 

metric can be used for accurate estimation of task 

completion time and physical eye effort [20].   

As with the definition of manual effort, the definition 

of mental effort uses continuous functions that are 

quantized by converting integrals to sums.  Assume that 

an interactive task 𝑅 starts at time 𝑡0.  The mental effort at 

time 𝑡 is defined as: 

𝐸𝑒𝑦𝑒 _𝑚𝑒𝑛𝑡𝑎𝑙  𝑡 =
1

𝑡 − 𝑡0
  𝑤5 × 𝑓𝑖𝑥_𝑑𝑢𝑟 𝑡 + 𝑤6

𝑡

𝑡0

× pup_d 𝑡 + 𝑤7

1

sac_amp(t)
 𝑑𝑡 

Where:  𝑓𝑖𝑥_𝑑𝑢𝑟  represents fixation duration, pup_d 

is the pupil diameter and sac_amp represents saccade 

amplitude. Occasionally, eye tracking devices produce 

data that is below a reliability threshold.  Periods of time 

that include non-reliable data are excluded from 

integration. 

Ideally, effort expended by the Human Visual System 

(HVS) to complete a task is represented by the amount of 

energy spent by HVS muscles during the task. The energy 

expanded depends on the amount of eye movements, the 

total eye path traversed and the amount of force exerted 

by each individual extra-ocular muscle during each eye 

rotation. These terms are defined below: 

Number of saccades:  High number of saccades 

indicates extensive searching, therefore less efficient time 

allocation to task completion [20].  Increased effort is 

associated with high saccade levels. 

Number of fixations:  Due to non-optimal 

representation, overall fixations relate to less efficient 

searching [20].  Increased effort is associated with high 

amounts of fixations. 

Total eye path traversed:  This metric, measured in 

degrees, presents the total distance traversed by the eyes 

between consecutive fixation points during a task.  The 

length of the path traversed by the eye is proportional to 

the effort expended by the HVS to achieve the goal. 

Extra-ocular muscle force:  The amount of energy, 

measured by grams per degrees per second, required for 

the operation of extra-ocular muscles relates to the 

amount of force that each muscle applies to the eye globe 

during fixations and saccades. Based on the Oculomotor 

Plant Mechanical Model [13], it is possible to extract 

individual extra-ocular muscle force values from recorded 

eye position points.  The amount of force expanded by 

each muscle can be summed to calculate the total force. 

The total eye physical effort can be approximated by: 

𝐸𝑒𝑦𝑒 _𝑝𝑕𝑦𝑠𝑖𝑐𝑎𝑙  𝑡 =
1

𝑡 − 𝑡0
  𝑤8 × 𝑓𝑖𝑥_𝑐𝑜𝑢𝑛𝑡 𝑡 + 𝑤9

𝑡

𝑡0

× 𝑠𝑎𝑐_𝑐𝑜𝑢𝑛𝑡 𝑡 + 𝑤10

× 𝑒𝑦𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡) + 𝑤11

× 𝑒𝑥𝑡𝑟𝑎𝑜𝑐𝑢𝑙𝑎𝑟_𝑓𝑜𝑟𝑐𝑒(𝑡 )𝑑𝑡 
Where:  f𝑖𝑥_𝑐𝑜𝑢𝑛𝑡, 𝑠𝑎𝑐_𝑐𝑜𝑢𝑛𝑡, 𝑒𝑦𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,

and 𝑒𝑥𝑡𝑟𝑎𝑜𝑐𝑢𝑙𝑎𝑟_𝑓𝑜𝑟𝑐𝑒 represent the total amount of 

fixations, the total amount of saccades, the total amount 

of eye distance traversed, and the total amount of force 

exerted by the extra-ocular muscles respectively. The 

integration excludes periods of time that include non-

reliable data. 

2.2 Effort-Based Usability Model 

Consider the following example.  Assume a set of 𝑛 

subjects selected at random complete a set of  𝑘 tasks or 

goals.  Further, assume that the subjects are computer 

literate but unfamiliar with the application under 

evaluation.  For example, the objective of each goal might 

be to make travel reservations, and each goal requires 

about the same effort.  After the subjects complete all of 

the goals, an average of the effort (𝐸𝑎𝑣𝑔 ) and the time 

(𝑇𝑎𝑣𝑔 ) for each goal is calculated.  A plot of the average 

effort (𝐸𝑎𝑣𝑔 ) for each task could produce a graph similar 

to the one illustrated in Figure 2.  Like learning and 

experience curves, an effort curve is a plot of the 

expenditure of effort required in order to accomplish a 

task. The plot is of average effort per task or per time.  It 

is the hypotheses of this research that usability, 

specifically; operability, learnability, and 

understandability are inverse functions of effort. 
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Figure 2  Hypothetical Effort Model 

It is possible to view usability from a static and 

dynamic perspective.  Static usability is established when 

the human interface is designed and does not change with 

user customization or activity.  Under this assumption, it 

is possible to ignore the “shape” of the curve of 𝐸(𝑡), and 

only use the “final” effort, that is, the accumulated effort 

at time of completion of tasks.   The total effort, 𝐸𝑅, is the 

sum of the mental effort (𝐸𝑀) and the physical effort (𝐸𝑃). 

𝐸𝑅 = 𝐸𝑀 + 𝐸𝑃 = 𝐸𝑀 +𝑚𝑐 +𝑚𝑘 +𝑚𝑖𝑐 + 𝑝 + 𝑒 
Where 𝑚𝑐,𝑚𝑘,𝑚𝑖𝑐, and 𝑝 denote the total number of 

mouse / keyboard clicks, Mickeys, and switches from (to) 

mouse to (from) keyboard throughout the process of 

completing the task 𝑅.  The total physical eye effort is 

represented by the term e. 

One feature added to the effort model not found in 

the learning model (see Figure 1) is the notion of expected 

effort (𝐸𝑒𝑥𝑝 ) or designer effort.  At the time of an 

application’s deployment, the people who know the 

software best are the developers.  Therefore, they should 

expend less effort in completing specific tasks, and 

provide a point of reference.  Thus, the designer expected 

effort is a single number that represents the “ideal” (with 

respect to minimum effort) way to interact with the 

system in order to accomplish a task. 

The concept of measuring usability is best illustrated 

by an example.  Let 𝑅 𝑎, 𝑏  denote the task of making a 

reservation for a round trip flight from city a to city b. 

Consider two possible designs (𝐷(1) and 𝐷(2)) of an 

interactive system for flight reservations enabling the 

task 𝑅(𝑎, 𝑏).  Let 𝐸𝑒𝑥𝑝
(1)

 and 𝐸𝑒𝑥𝑝
(2)

 denote the designer 

expected effort for the designs 𝐷(1)  and 𝐷(2) respectively 

and assume that 𝐸𝑒𝑥𝑝
(1)

< 𝐸𝑒𝑥𝑝
(2)

.  Then, per the definition of 

operability, the operability of design 𝐷(1) is better than 

the operability of design 𝐷(2).  Alternatively, let 𝐸𝑎𝑣𝑔
(1)

 and 

𝐸𝑎𝑣𝑔
(2)

 denote the average effort expended by users for 

completing the task 𝑅(𝑎, 𝑏)  for the designs 𝐷(1)  and 𝐷(2) 

respectively.  Then, again, the system that requires less 

average user effort is considered to be more operable. 

Note, that the average can be obtained over different users 

and / or under different variants of the task 

Lack of understandability may result in non-efficient 

usage of the system or using the system for a task that is 

different from any task defined at design time.  In this 

case, the user effort may converge to a value that is higher 

than the designer expected effort ( 𝐸𝑒𝑥𝑝 ).  The difference 

between the user actual effort (𝐸𝑎𝑐𝑡 ) and the designer 

expected effort ( 𝐸𝑒𝑥𝑝 ), depicted in Figure 2, may be a 

useful measure for understandability. 

It is possible to measure learnability as the rate of 

convergence of the average user effort (𝐸𝑎𝑣𝑔 ) to the ideal 

effort 𝐸𝑒𝑥𝑝 .  Alternatively, we can define learnability in 

terms of the root mean square error.  Here the error is the 

difference between the average user effort (𝐸𝑎𝑣𝑔 ) and the 

designer expected effort ( 𝐸𝑒𝑥𝑝 ) at a given task. This 

metric is actually the area of the difference between the 

learning curve and the curve formed by the fixed line 

at 𝑦 = 𝐸𝑒𝑥𝑝 .  Figure 2 depicts the learnability (and 

understandability) curve.  Due to understandability 

deficiencies, it is possible that the user learning curve 

does not converge to the designer expected effort (𝐸𝑒𝑥𝑝 ).  

Nevertheless, the subject is said to have “learned” the 

system where the curve flattens. 

3 Experiments 

To determine if the notion of effort-based usability 

evaluation has merit, the usability of two web-based 

travel reservation systems, called System A and System B, 

were used as the target applications in this paper.  Twenty 

subjects volunteered to participate in the experiment, ten 

subjects for each system.  In addition to the 20 subjects, 

the two facilitators, one of whom was the goal developer, 

contributed data as well.  All of the subjects were 

undergraduate students at Texas State University, with 

limited or no background in software development, 

ranging from 18 to 35 years of age (most of the users 

were in the lower bound of the range).  Based on the 

student’s background and the researchers’ understanding 

of the target market for web-based travel systems, these 

subjects are almost ideal.  For more detailed information 

about the theory of effort-based usability and this 

experiment, see the technical report for this research [16]. 

3.1 Experimental Planning  

For this experiment, we employed a planning 

technique that is a combination between experiment 

planning and test design.  We developed the plan using 
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Dr./Ms./Mr. ____________ is presenting a paper at the 

______________ conference being held in _______________ 

at the _________________.  He/she is presenting his/her 

paper at 10A.M., but he/she must be there for the opening 

session at 8:30 A.M.  The conference will end at 6P.M. on 

____________ and Dr./Ms./Mr. _____________ must be 

there for the closing session. 

 

Dr./Ms./Mr. ________________ is traveling from 

______________, and would like a non-stop flight to 

___________________. 

 

The conference is at the __________________ hotel on 

___________ to ____________, but Dr./Ms./Mr. __________ 

feels that this hotel is outside of the range of his/her budget of 

________ for the travel.  Because of the high cost of the hotel 

he/she wants to stay at a hotel within ____________ miles of 

the conference center with the following amenities: 

 

 1.  ___________________________ 

 2.  ___________________________ 

 3.  ___________________________ 

 4.  ___________________________ 

 

He/she will need a car to get around at conference city.  

Again, because of budget constraints, he/she does not want to 

spend more than ________/day for the car. 

Figure 3 Goal Template 

basic planning principles with a focus on the resources 

and tasks necessary to conduct the evaluation. 

Determining the number of subjects necessary to 

conduct the evaluation assumes the first priority because 

many of the other issues in the plan are based on the size 

of the subject pool.  There is some controversy on the 

number of subjects necessary for a usability test [5].   

Nielsen’s recommendations for the number of subjects for 

logging actual use protocol calls for 20 subjects [18]. A 

web source, also by Nielsen, suggests six subjects [19].  

Some investigators view five subjects as too few and 20 

as too many.  We have made a compromise and a decision 

to use 10 subjects with 10 goals to have a statistically 

relevant number of data points while staying within the 

constraints of available resources, such as the subject pool 

or session length. 

Two critical equipment and physical resources are 

required for this experiment: a facility to conduct the test 

and an eye-tracking device.  Both of these are available in 

our research labs. Using the eye-tracker requires the 

subject to keep their chin in a fixed position, preventing 

them from looking around.  It appears that this posture 

also reduces some of the effects of distractions.   

3.2 Experimental Design and Execution 

A popular method for constructing goals is to 

“discover” some real world situations and use them as the 

basis for one or more goals [7, 18, 23].  One of the novel 

aspects of this research was constructing the goals using a 

multi-step process to ensure that all differed but based on 

the same basic scenario. 

Designing scenario-based test cases begins with 

selecting a use case and then injecting an event, 

constraint, or condition into a use-case.  The next step is 

to develop a test procedure that invokes the situation 

(event, constraint, or condition) and then the tester records 

how the software behaves in the situation.  If the software 

meets the expectations set for the situation, the test 

passes; otherwise, it fails. 

For a travel reservation system, there are five (5) 

possible use cases with the most complex being to book a 

plane, hotel and car.  A scenario based on the use case 

alone is too simple, adding two conditions related to hotel 

amenities made the scenario more complex.  After 

refining and testing the model scenario, the specific data 

(i.e. Name of Traveler, destination, etc.) in the scenario 

were translated into a blank form, as illustrated in Figure 

3.  From this blank form, one of the facilitators created 

and tested the 10 goals used in this research.  The tests 

followed a protocol adapted from formal testing practices 

[12].   

3.3 Evaluation of the Testing Methodology 

To paraphrase Glenford Myers [17], a good 

evaluation is one that finds issues.  Using this as a 

measure of quality of the evaluation, one could say that 

evaluation of testing methodology was very successful.  

In a number of instances, subjects ignored certain task 

constraints.  For example, one of the sub-goals of the 

tasks was to book a hotel room within a certain 

geographical distance from another hotel.  Subjects 

ignored this constraint because neither System A nor 

System B contained a feature which could directly 

provide this information.  It was necessary for subjects to 

infer the distance between hotels based on each hotel’s 

distance from the destination city.  In addition, several 

subjects complained about distraction from “banner ads” 

and other content extraneous to the functionality of the 

travel system.  Even though the browser used in the study 

had “pop-up” windows disabled, there were still a 

significant number of advertisements presented to the 

subject.  This may be a situation where the additional 

revenue generated by these distractions may outweigh the 

impact on usability. 

4 Experiments Results and Evaluation 

The experiment, a usability evaluation of two web-

based travel reservation systems, called System A and 

System B, provided a great deal of insight into the 

investigation of the framework.  The data acquired for 

logging actual interaction and eye tracking produced a 

number of very important results.  It was observed that 
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trend analysis of physical effort expended by the users 

corresponds to the expected learning curve.  It is also 

observed that the data supports our hypothesis.  This is 

also verified via ANOVA analysis.  This paper contains 

the most significant data.  The reader is referred to a 

technical report for detailed information concerning the 

research and its findings [16].   

Accurate measurement of task completion time is 

enabled through the eye tracking device, which facilitates 

measuring the actual time spent on each task.  Figure 4 

illustrates the average task-completion-time per task per 

system.  The trend for System B follows the trends 

developed by the 1930’s research on learning.  System A 

has a jittered trend, yet it follows a similar slope.  In 

addition, the task completion time for System A is more 

than twice than the completion times for System B.  The 

standard deviation values computed for System A, are 

higher than the standard deviation values of System B.  

System A and System B implement the same application 

yet from the data presented in Figure 4, it appears that 

subjects learn using System B faster than System A users. 

Furthermore, the figure demonstrates that System A users 

are less productive than System B users. Hence, it is safe 

to conclude that System B is less operable than System A.   

In this experiment, we use the notion that a learning 

curve is exhibited by a log-decay curve and a good fit to a 

log-decay curve indicates that learning occurred.  

Goodness of fit is determined by the coefficient of 

determination (R2), which is the square of the correlation 

coefficient.  An R2 ≥ 0.7 indicates a good fit. 

4.1 Data Reduction and Analysis 

An event driven logging program is devised to obtain 

details of mouse and keystroke activities from the 

operating system event queue. The program saves each 

event along with a time stamp into a file.  The logged 

events are:  Mickeys, keystrokes, mouse button clicks, 

mouse wheel rolling, and mouse wheel clicks.  In the 

reported experiments, the program has generated about 

60,000 time stamped events per task (about 10 minutes).  

The eye tracking system produces a log of time stamped 

events that includes parameters such as fixation duration, 

pupil diameter, and saccade amplitude.  

A data reduction program applied to the events log, 

counts the total number of events (e.g., Mickeys) per task.  

A similar program is used for eye activity events. Both 

programs execute the entire data set (log of manual 

activity and eye activity) which consists of several 

millions of points in less than an hour.  With 20 subjects, 

each completing 10 tasks, the data reduction program 

generated 200 data points.  The data obtained from the 

data reduction stage is averaged per task per travel 

reservation system.  Hence, a set of 20 points is generated 

where each point denotes the average count of events per 

task per reservation system. 

Figures 5 and 6 generated from these points are used 

to evaluate the data, compare the usability of the two 

systems, and assess the correlation between the obtained 

data and the research hypothesis.  In addition, additional 

data logged, including the average number of keystrokes, 

left mouse clicks, and transitions for each task in both 

reservation systems presents similar shapes and trends.   

Figure 5 depicts the average Mickeys per task per 

system.  It is apparent that System B requires less mouse 

activity than System A.  This is indicating a high 

correlation in results depicted in Figures 5 and 6 and that 

System A requires more manual effort.  It is evident that 

System B is more operable than System A and that the 

results are in agreement with the hypothesis that usability 

is related to effort.  

Figure 6 depicts approximate eye physical effort by 

using the product of average saccade amplitude and the 

number of detected saccades. System A required much 

more physical effort to operate than System B. There was 

a logarithmic learning trend for System B (R2=0.82) with 

saturation point reached after the 5th trial.  System A had a 

less pronounced logarithmic learning trend (R2=0.62) 

with a minimum effort point reached during the 9th trial.  

Like Figure 5, the data illustrated in Figure 6 shows an 

agreement with the hypothesis that usability relates to 

effort.  Moreover, a spike in activity with respect to task 5 

in System B can be used as an example of the capability 

of the metrics to pinpoint potential interface shortfalls. 

To further validate the hypothesis we performed an 

ANOVA and regression analysis in which task 

completion time was the dependent variable.  The goal 

was to check whether the independent variables such as 

Mickeys, key strokes etc., correlate to the dependent 

variable.  Task-completion-time is already an acceptable 

measure of usability whereas the independent variables 

are assumed to be indicative of effort only in our 

hypothesis.  The ANOVA and regression results indicate 

that 83.0% of the variability in the task-duration-time is 

explained by the independent variables: Mickeys, Clicks, 

and the number of Repetitions of the same experiment. 

 

Figure 4.  Average Task Completion Time 
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Note that the repetition of the same experiment is strongly 

correlated to learning.  Consequently, about 11% of the 

variability in the observed durations of the tasks is due to 

the “subject”.  These are very significant results showing 

that the hypothesis of this research cannot be nullified. 

Like all good experiments, this study answered a 

number of questions about the relationship between user 

productivity and effort, but it left some questions only 

partially answered and opened a number of new 

questions.  One of the questions partially answered is how 

to convert usage counts to effort metrics.   

5 Conclusions 

The research results support the following important 

observations: 

1. The research illustrates that logging of interaction 

events such as Mickeys, mouse button clicks, and 

keystrokes, along with eye tracking, provides a great 

deal of useful information.  There is a clear 

correlation between the effort approximation model 

presented and usability.  This correlation can be 

exploited and used to evaluate the usability of 

existing user interfaces as well as user interfaces that 

are at a relatively advanced stage of design.  

Nevertheless, further experimentation is required in 

order to refine the hypothesis, the model, and the 

effort approximation procedures that are guiding the 

research. 

2. The research shows that logging and processing 

interaction events is feasible and useful.  Previously it 

was stipulated that the volume of data obtained 

through logging of interaction events is un-reducible 

and therefore useless.  This research indicates, 

however, that this may no longer be a problem. 

3. An important contribution of this research is that it 

can enable pinpointing GUI design defects and 

implementation shortfalls.  For example, consider a 

goal, which yields an excessive amount of effort in a 

given test (or set of tests).  Indeed the spike in tests 5 

depicted in figure 6 could prompt an investigation of 

the application execution log in order to identify the 

root cause of the increase in effort.  

4. Careful design of the tests performed enables 

obtaining high quality results despite working with 

very limited resources and no funding. 

5. One of the important aspects of the usability testing 

strategy is the utilization of a use-case scenario based 

test design technique.  This technique is instrumental 

in facilitating the usage of appropriate goals and test 

procedures. Moreover, it is an important component 

of the ability of the proposed effort based metrics to 

pinpoint design and implementation shortfalls. 

6. While the manual based interaction activities (mouse, 

keyboard, gloves, etc.) are strictly related to physical 

effort, the eye movement data is related to both 

physical and mental effort.  On one hand, it can be 

utilized for enhancing the physical effort model.  On 

the other hand, it is currently the only type of data 

correlating with mental effort.  Hence, the research 

opens the door for a layered approach to GUI 

usability testing.  At the lower layer, only manual 

data is recorded and used for fast and relatively 

inexpensive usability evaluation.  At the next layer, 

eye tracking devices provides a means for mental 

effort evaluation and refinement of the physical effort 

approximation techniques.  A potential future 

research relates to the utilization of brain wave 

measurements to further enhance the mental effort 

evaluation procedures. 

6 Future Research 

Usability is a huge and important area of research and 

development and one paper or research effort cannot 

cover the multitude of relevant issues.  Several of these 

 

Figure 5 Average Mickeys 

 

Figure 6.  Approximate Eye physical effort. 
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issues, which will be addressed in future research, 

include: 

Further investigation into scenario-based test design 

techniques appears warranted, based on the results from 

the current experiment.  With additional test cases and an 

improved test case design technique, it may be possible to 

shed more light on the usability model and its utility as 

well as to reduce unknowns such as the influence of 

fatigue.  In fact, additional research which is in progress 

includes a set of experiments to assess the usability of 

individual GUI widgets and their combinations. 

This paper treats every metric individually and 

demonstrates that the hypothesis of the research is 

established.  A more elaborate hypothesis of the research, 

however, includes an assumption that it is possible to 

derive a procedure to combine the individual metrics into 

a single approximation of the effort 𝐸 𝑡  and correlate 

this approximation with traditional measures of 

operability, learnability and understandability.  Further 

research is required to determine whether it is possible to 

reduce the individual metrics into one measure that 

approximate usability.   
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