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Abstract 

This paper presents a set of qualitative and quantitative scores 

designed to assess performance of any eye movement 

classification algorithm. The scores are designed to provide a 

foundation for the eye tracking researchers to communicate about 

the performance validity of various eye movement classification 

algorithms. The paper concentrates on the five algorithms in 

particular: Velocity Threshold Identification (I-VT), Dispersion 

Threshold Identification (I-DT), Minimum Spanning Tree 

Identification (MST), Hidden Markov Model Identification (I-

HMM) and Kalman Filter Identification (I-KF). The paper 

presents an evaluation of the classification performance of each 

algorithm in the case when values of the input parameters are 

varied. Advantages provided by the new scores are discussed.  

Discussion on what is the "best" classification algorithm is 

provided for several applications. General recommendations for 

the selection of the input parameters for each algorithm are 

provided. 

CR Categories: I.6.4 [Simulation and Modeling]: Model 

Validation and Analysis; J.7 [Computers in Other Systems]: 

Process control, Real time. 

Keywords: Eye movements, classification, algorithm, 

analysis, scoring, metrics. 

1 Introduction 

Accurate eye movement classification is a fundamental necessity 

in the field of eye tracking. Almost every experiment that involves 

an eye tracker as a measurement or interaction tool requires an 

eye movement classification algorithm for data reduction and/or 

analysis. The main role of any eye movement classification 

algorithm is to break eye position temporal stream into basic eye 

movement types, as well as provide a set of characteristics about 

each eye movement type detected. In general, there are six major 

eye movement types: fixations, saccades, smooth pursuits, 

optokinetic reflex, vestibulo-ocular reflex, and vergence [Leigh 

and Zee 2006]. Fixations and saccades are the types of most 

researched eye movements that are employed in human computer 

interaction, psychological studies and reading, medical studies, 

and usability studies [Ceballos et al. 2009; Duchowski et al. 2009; 

Garbutt et al. 2003] 

The development of the eye movement classification algorithms 

has a long history [McConkie 1980; Munn et al. 2008; Salvucci 

and Goldberg 2000]. Almost every eye movement classification 

algorithm has a set of input parameters that can significantly 

impact the result of classification. A large number of the eye 

tracking studies selects the input parameters for the classification 

algorithms empirically without a discussion of how the selection 

of  those parameters  affects  the outcome of the classification. 

The first goal of this paper is to provide a set of quantitative and 

qualitative metrics that allow assessment of the performance of 

any eye movement classification algorithm. The second goal of 

this paper is to provide an evaluation of the performance of the 

major classification algorithms employed in the eye tracking field 

today. This paper also aims to provide a discussion on how the 

selection of input parameters affects the performance of the 

algorithm in terms of the proposed metrics. The third goal of this 

paper is to select the "best" classification algorithm for a specific 

application. 

2 Qualitative and Quantitative Scoring 

The description and pseudocodes for the Velocity Threshold 

Identification (I-VT), Dispersion Threshold Identification (I-DT), 

Minimum Spanning Tree Identification (MST), Hidden Markov 

Model Identification (I-HMM), and Kalman Filter employed in 

this paper can be found in [Komogortsev et al. 2009]. 

To establish a common ground between eye movement 

classification algorithms, it is important to define a set of the 

qualitative and quantitative scores for the assessment of the 

performance of the classification algorithms. Assuming that a 

classification algorithm classifies eye position trace into fixation 

and saccades, the following performance metrics can be 

considered Average Number of Saccades (ANS), Average 

Number of Fixations (ANF), Average Fixation Duration (AFD) 

and Average Saccade Amplitude (ASA). The performance of the 

classification algorithms can be assessed by these metrics with or 

without the knowledge of the stimuli. The values of these metrics 

have been previously employed in usability [Duchowski 2007], 

psychology [Ceballos et al. 2009], and physical therapy [Garbutt 

et al. 2003]. We propose three new metrics: the Fixation 

Quantitative Score, the Fixation Qualitative Score, the Saccade 

Quantitative Score to evaluate saccade and fixation behavior and 

complement the metrics mentioned above.  

2.1 Fixation Quantitative Score 

The intuitive idea behind Fixation Quantitative Score (FQnS) is to 

compare the amount of the detected fixation behavior to the 

amount of presented  fixation stimuli. The FQnS compliments the 

AFD and the ANF metrics, because it validates detected fixations 

in regard to the spacial and temporal properties of the stimuli 

signal.  To calculate the FQnS, the fixation stimuli position signal 

is sampled with the same frequency as the recorded eye position 

signal. Every resulting coordinate tuple (xs,ys) inside of the 

fixation stimuli is compared to the corresponding coordinate tuple 

(xe,ye) in the recorded eye position signal. If the corresponding 

eye position sample is marked as a fixation with coordinates close 

to stimuli fixation, then fixation detection counter is increased.  

The FQnS is calculated by normalizing detection success counter 

by total amount of the stimuli fixation points.  
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FQnS = 100 ∙
𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑠𝑡𝑖𝑚𝑢𝑙𝑖_𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠
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where 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 represents the  amount  of  

eye position points identified as fixations when corresponding 

fixation stimuli was  present. 𝑠𝑡𝑖𝑚𝑢𝑙𝑖_𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠 
represents the total amount of stimuli points presented as fixation 

and sampled at the eye tracker's sampling frequency. It is 

important to mention that practically, the FQnS will not reach the 

100% mark if the stimuli consists of both fixations and saccades. 

When a future fixation target appears in the periphery, the brain 

approximately requires 200ms to calculate and send the neuronal 

signal to the extraocular muscles to execute a saccade [Leigh and 

Zee 2006]. Additionally, saccade duration approximates to 

𝐷𝑠𝑎𝑐 _𝑑𝑢𝑟 =  2.2𝐴𝑠𝑎𝑐 _𝑎𝑚𝑝 + 21 , where 𝐴𝑠𝑎𝑐 _𝑎𝑚𝑝  is saccade's 

amplitude measured in degrees [Leigh and Zee 2006].  Due to this 

phenomena, the onset of the fixation will be always delayed by at 

least 200ms plus the duration of the saccade.  

2.2 Fixation Qualitative Score 

The intuitive idea behind the Fixation Quantitative Score (FQlS) 

is to compare the proximity of the detected fixation to the 

presented stimuli, therefore providing the information about 

positional accuracy of the detected fixation. The FQlS calculation 

is similar to the FQnS, i.e., for every fixation related point (xs,ys)  

of the  presented stimuli, the check is made for the point in the eye 

position trace (xe,ye); if such point is classified as a fixation, the 

Euclidean distance between presented fixation coordinates and the 

centroid of the detected fixation coordinates (xc,yc) is computed. 

The sum of such distances is normalized by the amount of points 

compared. 

FQlS =
1

𝑁
∙ 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖

𝑁

𝑖=1

 2 

N is the amount of stimuli position points where stimuli fixation 

state is matched with corresponding eye position sample detected 

as a fixation. 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 =  (𝑥𝑠𝑖 − 𝑥𝑐𝑖)2 + (𝑦𝑠𝑖 − 𝑦𝑐𝑖)2 and 

represents the distance between stimuli position and the center of 

the detected fixation. 

Ideally, the FQlS should equal 0º, which can only happen in the 

case of absolute accuracy of the eye tracking equipment and 

assuming that subjects make very accurate saccades to the fixation 

stimuli. In practice, the accuracy of modern eye trackers remains 

in the <0.5º range. In addition, subjects very frequently 

experience undershoots or overshoots when making saccades 

[Leigh and Zee 2006], therefore placing detected fixations slightly 

off-target. As a result, we hypothesize that practical values for the 

FQlS will be around 0.5º or larger. 

2.3 Saccade Quantitative Score 

The intuitive idea behind the Saccade Quantitative Score (SQnS) 

is to compare the amount of the detected saccades given the 

properties of   the saccadic behavior of the presented stimuli. The 

SQnS adds to the ASA and the ANS metrics because it quantifies 

the correct saccade behavior even in cases when subjects 

experience large numbers of express saccades, overshoots or 

undershoots [Leigh and Zee 2006]. 

To calculate SQnS, two separate quantities are computed, one 

measures the amount of the saccade invoking behavior present in 

the stimuli, and the second one computes the total amplitude of 

the detected saccades. To calculate stimuli related metric, each 

jump in the location of the fixation target is considered to be a 

stimuli saccade, and the absolute distances difference between 

targets are added to the total_stimuli_saccade_amplitude. 

Similarly, the quantity called total_detected_saccade_amplitude 

represents the sum of the absolute values of the saccade 

amplitudes detected by a given classification algorithm.  

SQnS = 100 ·
𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑠𝑎𝑐𝑐𝑎𝑑𝑒_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑖𝑚𝑢𝑙𝑖_𝑠𝑎𝑐𝑐𝑎𝑑𝑒_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 3 

The SQnS of 100% indicates that the amount of the detected 

saccades equals the amount of the saccades invoked by the 

presented stimuli. The SQnS can be larger than 100%, which 

essentially means two things: abnormal saccadic behavior of the 

subject or classification algorithm that amplifies saccadic 

behavior, i.e., some of the fixations are classified as saccades.  An 

example of the abnormal saccadic behavior can be a subject with 

a large number of hypermetric saccades (target overshoots) 

followed by glissades (post saccadic drifts) and possibly saccadic 

intrusions or oscillations (inappropriate movements that take the 

eye away from the target during attempted fixation [Leigh and 

Zee 2006]). The amplification of the saccadic behavior by a 

classification algorithm can be caused by the erroneous selection 

of the threshold classification parameter. The SQnS can be 

smaller than 100% in cases of hypometric saccadic behavior 

(target undershoots) or damping behavior of the  classification 

algorithm. 

3 METHODOLOGY 

Apparatus: The experiments were conducted with a Tobii x120 

eye tracker (sampling rate 120Hz), which is represented by a 

standalone unit connected to a 24-inch flat panel screen with 

resolution of 1980x1200. Chin rest was employed to provide 

additional head stability. Fixation & Saccade Invocation Task: 

The stimulus was presented as a ‘jumping point’ with a vertical 

coordinate fixed to the middle of the screen. The first point was 

presented in the middle of the screen, the subsequent points 

moved to the left and to the right of the center of the screen with a 

spacial amplitude of 20º, therefore providing average stimuli 

amplitude of approximately 19.3º.The jumping sequence 

consisted of 15 points, including the original point in the center, 

therefore providing 14 stimuli saccades. After each subsequent 

jump, the point remained stationary for 1.5s before the next jump. 

The size of the point was approximately 1º of the visual angle 

with the center marked as a black dot. The point was presented 

with white color with peripheral background colored in black. 

Participants & Data Quality: The test data consisted of a 

heterogeneous subject pool, age 18-25, with normal or corrected-

to-normal vision. Advanced accuracy test procedures were used to 

control the data collection by employing two parameters, first 

with the average calibration error eye and second with the invalid 

data percentage [Koh et al. 2009]. The data analyzer was 

instructed to discard recordings from subjects with a calibration 

error of >1.70º and invalid data percentage of >20%. Only 22 out 

of 77 subjects’ records passed these criteria. The remaining 

records had a mean accuracy of 1º and a mean invalid data 

percentage of 3.23%. 

4  Results & Discussion 

Figure 1 presents the results, where each models’ behavior is 

given for a range of the threshold values. The I-VT and the I-

HMM models were tested for the velocity threshold range of 5º/s 

to 300º/s the I-MST and the I-DT were tested for the 

distance/dispersion threshold range of 0.033º to 2º, and the I-KF 

was tested for the Chi-square test threshold range of 1 to 60. The 
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range values came as suggestions from the research literature 

[Duchowski 2007; Koh et al. 2009; Leigh and Zee 2006; Salvucci 

and Goldberg 2000].The x-axis of the graphs presented by Figure 

2 depicts the range coefficient value that allows mapping of the 

specific threshold range of each model into a unifying range 

coefficient space. Threshold values for each algorithm can be 

represented by the input threshold function Th=RC*Inc+C. Where 

Th is the resulting value of the threshold, RC is a range coefficient 

changing from 0 to 59, C is the initial threshold value for every 

model,  and Inc is the threshold increment value for each model. 

For the I-VT and the I-HMM, the C value is 5º/s; for the I-MST 

and the I-DT, this value is 0.033º; and for the I-KF, this value is 1. 

For the I-VT and the I-HMM Inc, the value is 5º/s; for I-MST and 

I-DT, this value is 0.033º; and for the I-KF, this value is 1. The 

input threshold function allows for comparison of performance of 

the classification models in the same range coefficient 

dimensions. 

Performance Metrics: ANS, ANF, AFD, and ASA behavior 

varied greatly depending on the values of the threshold values. 

Such difference in classification performance between algorithms 

frequently reached 100% mark or higher. Based on the results it is 

possible to distinguish trends in classification performance 

depending on the threshold values, but such trendlines continue to 

be extremely jittery. 

Fixation Qualitative Score (FQlS): The performance of the four 

(I-VT, I-KF, I-DT, I-MST) algorithms was very similar in terms 

of the positional accuracy of the detected fixation, with the I-KF 

providing a slightly lower score, therefore indicating higher 

accuracy in terms of the coordinates of the detected fixation. Our 

previous study provided similar results in an online comparison of 

a real-time eye-gaze-guided system, showing 10% improvement 

in accuracy when the I-KF was compared to the I-VT [Koh et al. 

2009]. The I-HMM was an outlier and provided the FQlS score 

that was essentially 33% higher than other algorithms, indicating 

a much lower accuracy in fixation coordinate detection.  

Fixation Quantitative Score (FQnS): The FQnS was 

monotonically growing for all classification algorithms. For all 

algorithms except the I-DT, there was an immediate jump in the 

score; and after a certain threshold value, there was a point of 

saturation where the increased threshold value did not produce an 

increased amount of the eye position points classified as fixations. 

All algorithms merged into the FQnS score of 74-77% which is 

agreeable with physiological latencies discussed in Section 2.1. 

The outlier from the rest of the group was the I-MST algorithm 

providing the saturated FQnS of 57% which was approximately 

23% lower than the FQnS provided by other algorithms.  

Saccade Quantitative Score (SQnS): Each algorithm had a point 

of the maximum SQlS performance after which the score values 

monotonically decreased. This peak value was highest for the I-

HMM algorithm with a value of approximately 110% and lowest 

for the I-KF with the value of 90%. The SQlS performance of the 

I-MST and the I-DT was slightly higher than the performance of 

the I-KF. For the high threshold values, the SQlS performance of 

the I-VT, I-DT and the I-HMM was quite similar. The I-KF 

provided the most damping behavior in terms of  the amount of 

the detected saccades. The difference in performance between 

each individual algorithm did not exceed 22% after the Range 

Coefficient (RC) of 30 was reached. Prior to that RC value, the I-

DT algorithm presented itself as an outlier with very low SQnS 

score. 

Advantages of Quantitative/Qualitative Scores: The Fixation 

Qualitative Score (FQlS) proved to be extremely useful in being 

able to distinguish the accuracy of the eye movement detection 

method given the threshold value or any other input parameters.  

The Fixation Quantitative Score (FQnS) was able to provide an 

overall picture for the fixation detection behavior that was much 

less "noisier"  than the data provided by the Average Fixation 

Duration (AFD) and the Average Number of Fixations (ANF) 

metrics. This can be observed for the I-VT, I-DT, I-HMM and the 

I-KF models that provide varying behavior in terms of the AFD 

and the ANF but essentially converge in terms of the FQnS. The 

important feature of the FQnS is that it ensures the temporal 

validity of the presented fixations by matching them with the 

spacial and temporal characteristics of the stimuli signal. The 

FQnS is able to pick out classification disadvantages of an 

algorithm, such as I-the MST algorithm where spurious fixations 

can be detected due to the overlapping data. 

The Saccade Quantitative Score (SQnS) is able to identify specific 

values for the input parameters (thresholds) that allow detection of 

the same amount of saccadic behavior as presented by the stimuli. 

This was not entirely possible with the Average Number of 
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Saccades (ANS) and the Average Saccade Amplitude (ASA) 

metrics, due to some subjects making multiple saccades to reach a 

target. This produced large ANS with small ASA and lead to an 

erroneous conclusion that the algorithm provides incorrect 

classification. 

Limitations: 1) Practical use of the FQlS, FQnS, and SQnS 

metrics will require a presentation of a controlled stimulus prior to 

the experiment for the selection of the thresholds values. While 

we agree that this can be considered as an extra step in the 

calibration process, the outcome of such calibration will allow to 

have a much better, performance-based values for the input 

thresholds for the actual experiment. 2) This paper varies just 

single input parameter for each classification algorithm. The 

change in other input parameters or/and eye-tracker’s sampling 

rate, noise in the eye tracking signal or/and random amplitude of 

the ramp stimulus would definitely affect the performance of the 

scores. Therefore, the amount of variability in our evaluation 

setup was minimized to show that classification performance is 

greatly affected just by a single parameter. 

Best eye movement classification algorithm: It is difficult to 

select "best" eye movement classification algorithm or to set  a 

"golden standard" in terms of the eye movement classification 

scores/metrics. The most accurate classification algorithm would 

be the algorithm that achieves the minimum value (0º) for the 

Fixation Qualitative Score, maximum value for the Fixation 

Quantitative Score (100%)  and the Saccade Quantitative Score 

value of approximately 100% with values from the remaining eye 

movement metrics in sync with the stimuli behavior.  The 

selection of the "best" eye movement detection algorithm will also 

depend on the actual application. For a real-time eye-gaze-based 

interaction where dwell-time is the primary mode of selection the 

I-KF can be considered as the best performer for the following 

reasons: high accuracy (lowest FQlS), FQnS was at an acceptable 

level of 70%, saccadic performance was dampened (signal jumps 

are smoothed) SQnS=68.5%,  number of fixations and saccades 

was very close to the number present in the stimuli signal, 

detected fixation duration was closest to the value presented in the 

stimuli among all classification methods, and the detected saccade 

amplitude was second closest to the stimuli.  

For the studies related to sciences that investigate saccadic 

behavior, e.g, Physical Therapy, Psychiatry, the accurate detection 

of saccadic behavior is of paramount importance. Traditionally, 

the I-VT is a model of choice in this domain. From the results 

presented in this paper, we can validate this choice by looking at 

the FQnS behavior which indicates the same amount of saccades 

in the classified signal as in the stimuli signal for the velocity 

threshold range of 30-70°/s. There is large number of saccades 

(ANS) detected by the I-VT in this threshold range, and those 

saccades have smaller amplitudes (ASA). This behavior provides 

an opportunity to properly detect eye movement artifacts such as 

overshoots,  undershoots, express saccades, corrective saccades 

and dynamic overshoots. Additionally, the velocity threshold 

window (30-70°/s) in the threshold range provides an opportunity 

to fine-tune the performance of the I-VT model. This can be done 

in terms of the fine tuning the fixation related metrics by selecting 

a higher velocity threshold. 

5 Conclusion 

In this paper, we have discussed a set of scores that allows one to 

assess an implementation of any eye movement classification 

algorithm by providing the qualitative and the quantitative 

information about the classification performance. Such 

information allows to provide a point of reference offering a 

capability to validate the results of an experiment involving an 

eye tracker. The performance of the five most usable 

classification algorithms was discussed in terms of the proposed 

scores. The results indicate that the classification performance 

differs significantly based on the algorithm and the selected 

threshold values. This result suggests that the description of the 

eye movement detection algorithms, and their parameters, in the 

research papers is of paramount importance. Specifically, we 

suggest that the performance of each classification algorithm 

should be reported in terms of qualitative and quantitative metrics 

discussed in this paper due to the fact that these metrics provide a 

more complete and accurate information about classification 

behavior.  

The choice of the "best" algorithm in terms of eye movement 

classification proves to be challenging. We provide the argument 

that among the five classification algorithms we considered in this 

paper, Kalman filter shows the most benefits for implementation 

for the real-time eye-gaze-guided systems. The Velocity 

Threshold algorithm proves to be the better choice for the systems 

measuring saccadic performance. 
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