
This is a pre-print. Accepted to BRM. Ternary Eye Movement Classification     1 

Running head: Ternary Eye Movement Classification 

 

 

 

Automated Classification and Scoring of Smooth Pursuit Eye Movements in Presence of 

Fixations and Saccades 

 

 

Oleg V. Komogortsev Ph.D . and Alex Karpov Ph.D. 

 

Department of Computer Science, Texas State University, San Marcos  

601 University Drive, San Marcos, TX USA 78666 

 

                                                

 Corresponding author: ok11@txstate.edu (Oleg V. Komogortsev) 

 



This is a pre-print. Accepted to BRM. Ternary Eye Movement Classification     2 

Abstract 

Ternary eye movement classification, which separates fixations, saccades, and smooth 

pursuit from the raw eye positional data, is extremely challenging. This paper develops new and 

modifies existing eye tracking algorithms for the purpose of conducting meaningful ternary clas-

sification. To aid this purpose a set of qualitative and quantitative behavior scores is introduced 

to facilitate the assessment of classification performance and to provide means for the automated 

threshold selection. Experimental evaluation of the proposed methods is conducted using eye 

movement records obtained from 11 subjects at 1000Hz in response to a step-ramp stimulus elic-

iting fixations, saccades, and smooth pursuits. Results indicate that a simple hybrid method that 

incorporates velocity and dispersion thresholding allows producing robust classification perfor-

mance. It is concluded that behavior scores are able to aid automated threshold selection for the 

algorithms capable of successful classification. 

 

Keywords: Eye movements, classification, algorithm, analysis, scoring, metrics, smooth-

pursuit. 
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INTRODUCTION 

The identification of the basic eye movement types from a noisy and frequently inaccu-

rate raw eye positional signal is of utmost importance to the researchers and practitioners that 

employ eye trackers in their studies. Human oculomotor system (HOS) primarily exhibits six eye 

movement types: fixations, saccades, smooth pursuits, optokinetic reflex, vestibulo-ocular reflex, 

and vergence (Leigh & Zee, 2006). Among those eye movement types fixations, saccades, and 

smooth pursuit are most frequently studied. The following brief definitions can be provided for 

these eye movement types: eye fixation is an eye movement that keeps an eye gaze stable on se-

lected stationary target, saccade is a very rapid eye rotation moving the eye from one fixation 

point to the next, smooth pursuit (SP) is eye movement that follows a moving object with a pur-

pose of keeping the object on a high acuity vision zone called the fovea (Duchowski, 2007; 

Poole & Ball, 2004). Eye fixations are frequently employed for human computer interaction as 

an input modality (Istance et al., 2010), saccades and smooth pursuits are frequently employed to 

diagnose pathologies of the HOS or assessing HOS performance in clinical populations (Elina et 

al., 2009). Therefore, accurate automated classification of eye movements is an important topic 

of research. 

Accurate automated eye movement classification is exceedingly difficult due to the noise 

and inaccuracies inherited from the eye tracking equipment, dynamics of the HOS behavior, and 

variability between- and within- eye movement classification algorithms. Variation of single 

threshold value, in cases when only fixations and saccades are classified, is reported to substan-

tially affect metrics such as number of detected saccades and fixations, average fixation duration 

and saccade amplitude (Ceballos et al., 2009; Garbutt et al., 2003; Komogortsev et al., 2010; 

Poole & Ball, 2004). Frequently researchers perform manual classification to avoid miss-
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identification issues associated with automated algorithms. However in such cases classification 

becomes a very long and tedious process. Selection of the thresholds that provide meaningful 

classification is frequently done empirically with default values suggested by either eye tracking 

vendors or related literature. Given rapid developments of the eye tracking technologies that vary 

in hardware, sampling frequencies, and calibration algorithms (Hansen & Qiang, 2010) it is easy 

to “copy and paste” suggested thresholds; however it is hard to validate classification accuracy. 

During empirical threshold selection by “eye balling” small part of the classified data it is easy to 

misclassify some of recordings or misidentify corrective behavior such as corrected undershoots, 

overshoots, dynamic saccades etc. (Leigh & Zee, 2006).  

It is hard to define meaningfulness of the automated classification given a threshold val-

ue. For example it is possible to assume that quality of saccade detection can be ultimately 

judged by such properties as amplitude-duration relationship, main-sequence relationship, and 

saccades’ waveform1 (Leigh & Zee, 2006). However, there is a substantial amount of variability 

for some of those metrics between people (E. Bollen et al., 1993) and even directional differ-

ences for the same person (Smit et al., 1990). In this type of circumstances it is very difficult to 

judge when selected threshold produces accurate performance measured by the above-mentioned 

metrics, because this performance might depend on multiple factors.  Recently, Komogortsev 

and colleagues have proposed a set of behavior scores with a purpose of selecting a meaningful 

classification threshold using fixed stimulus (Komogortsev et al., 2010). Behavior scores assume 

that amount of saccadic and fixational behavior encoded in a simple step-stimulus is matched by 

the HOS of a normal person therefore providing an opportunity to find a threshold value that en-

                                                

1 An example were saccades are detected based on “the peak-velocity-magnitude-duration parameters” 

“manually” can be found in (Bahill et al., 1980). However, this manual procedure is obviously very time consuming.  
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sures such performance. Researchers reported that thresholds selected according to these criteria 

provided meaningful classification results (Komogortsev et al., 2010).  

It should be noted, that the purpose of the scores is not to substitute already established 

metrics such as amplitude-duration relationship, etc., but to provide an opportunity for the auto-

mated selection of the classification parameters immediately after the calibration procedure. In 

case if experimental stimulus contains step or step-ramp stimulus classification performance for 

the whole experiment can benchmarked with behavior scores in addition to any other metric em-

ployed by the experimenters. The goal of automated threshold selection for a step-ramp stimulus 

with subsequent employment of the same threshold for dynamic stimuli is particularly attractive 

because step-ramp stimulus is already presented as a part of the calibration procedure. Recording 

equipment’s performance for a given setup and subject is unlikely to change from calibration to 

the actual recording. Therefore, it is possible to assume that selected thresholds would continue 

to provide meaningful classification performance even during presentation of the stimuli that is 

different from the calibration. 

Automated classification of SP in the presence of fixations and saccades is even more dif-

ficult task and continues to be a topic of an active research (Agustin, 2009; Larsson, 2010). Most 

difficult part of ternary eye movement classification is separation between fixations and SP. Two 

main factors contribute to the challenge: a) a fixation consists of the three sub-movement types 

such as tremor, drift, and microsaccades. As a result a velocity range during a fixation (velocities 

up to 30º/s are possible as computed by the main sequence relationship (Leigh & Zee, 2006)) and 

SP (velocity up to 100º/s is reported in (Carpenter, 1977)) overlap. b) eye tracking noise further 

blurs quantitative boundaries between fixation and pursuit.  
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Given the importance of ternary eye movement classification and its challenges it is nec-

essary to find out what degree of meaningful classification can be obtained and if the accuracy of 

classification performance can be verified by a set of simple behavior scores.   

To start answering these questions this work: 1) introduces behavior scores related to SP, 

2) proposes an algorithm for ternary eye movement classification 3) evaluates automated and 

manual ternary classification based on the proposed scores, and 4) establishes automated selec-

tion of the classification thresholds based on the ideal values of behavior scores. 

OVERVIEW 

Classification of Fixations and Saccades 

In general eye movement classification algorithms consider different properties of the 

signal that is captured by an eye tracker. In case when fixations have to be separated from sac-

cades classification algorithms can be broken into the following groups: 1) position-based – Dis-

persion Threshold Identification (I-DT), Minimum Spanning Tree Identification (I-MST), 2) ve-

locity-based - Velocity Threshold Identification (I-VT), Hidden Markov Model Identification (I-

HMM), Kalman Filter Identification (I-KF), 3) acceleration-based – Finite Input Response Filter 

Identification (I-FIR) (Komogortsev et al., 2010; Salvucci & Goldberg, 2000; Tole & Young, 

1981).   To the best of our knowledge these algorithms have not been “successfully” applied to 

the problem of ternary classification. 

Human Visual System Performance during Pursuit Stimuli 

The SP movement consists of the three phases: initiation, steady-state, and termination 

(Leigh & Zee, 2006; Mohrmann & Thier, 1995; Robinson, 1965; Terry Bahill & McDonald, 

1983). The initiation phase can be broken into three steps: 1) the SP latency when the brain pro-

grams the movement, 2) the initial SP represented by an exponential rise in the eye movement 
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velocity, 3) corrective saccade that brings the target closer to the fovea. The steady-state consists 

of continuous SP movement that might be interspersed by the corrective saccades. The termina-

tion phase consists of three steps 1) the response latency, 2) an exponential decay in velocity, 3) 

an optional corrective saccade(s) that bring the eye to a new target. 

It is possible to assume that separation of the steady-state SP from the fixation signal is 

simple via a velocity threshold, however following factors challenge accurate classification.  

The first factor is jitter during fixations. Jitter is frequently caused by the inaccuracies in 

the eye tracker’s gaze position estimation. Good eye-tracker’s positional accuracy performance is 

varied in the range of 0.25-1º.  

The second factor is presence of miniature eye movements such as drift, micro-saccades, 

and tremor (Leigh & Zee, 2006) which result in high spread of the amplitudes for the positional 

(e.g., up to 1.5º) and velocity (e.g., up to 40º/s) signal. This spread does not greatly impact classi-

fication accuracy if only fixations and saccades are present, however in cases of low velocity SP 

(e.g. 20-40º/s) the results of classification might be poor.  

The third factor is variability of the eye movement behavior among people and its de-

pendence on the task. For example, response times can be different for “Express Saccade” mak-

ers and naïve subjects in a gap-step-ramp experiments (Kimmig et al., 2002). Also humans are 

capable of matching velocities of up to 90º/s during SP exhibited to ramp stimulus with constant 

velocity (Meyer et al., 1985). For unpredictable motion it has been suggested that humans cannot 

pursue small targets at speeds faster than 40º/s (Young & Stark, 1963). 

Existing Algorithms for Automated Classification of Smooth Pursuit 

In the previous research the separation of SP was done in cases when only SP and sac-

cades were present. For example a single threshold-based algorithm was employed by (Bahill et 



This is a pre-print. Accepted to BRM. Ternary Eye Movement Classification     8 

al., 1980). The researchers used a velocity threshold of 50º/s to separate saccades from SP. All 

sequences of samples with velocity greater than threshold were checked upon matching main-

sequence relationships. If a sequence of points met these criteria than all its samples were 

marked as a saccade. Otherwise the samples were discarded. Bahill was able to use main se-

quence relationship as a criterion for meaningful classification because only horizontal saccades 

were considered.  

For ternary classification an interesting approach was proposed by San Agustin (2009) 

and further enhanced by Larsson (2010). The approach monitors the direction of movement and 

the rate of movement to separate fixations from SP. This approach together with a new proposed 

approach is discussed in the section describing the classification algorithms. 

BEHAVIOR SCORES FOR SMOOTH PURSUIT CLASSIFICATION 

Considering the multitude of factors affecting SP performance and especially between-

subject variability, it is important to develop simple metrics that can assess automated eye 

movement classification performance against ramp stimulus with constant velocity, signaling the 

cases of classification success or failures with an ultimate goal of suggesting parame-

ters/thresholds for meaningful classification even in cases of unpredictable SP-exhibiting con-

tent. 

Previously Komogortsev et al. (2010) created a set of behavior scores that allowed as-

sessment of classification quality or even determining the optimal threshold values when only 

fixations and saccades are present. This work continues in the same direction fine-tuning already 

existing scores and creating additional scores to assess meaningfulness of ternary classification. 

For the purposes of the initial assessment, behavior scores assume that the amount of fixational, 



This is a pre-print. Accepted to BRM. Ternary Eye Movement Classification     9 

saccadic, and SP behavior encoded in step and ramp stimuli is matched by the HOS in a normal 

subject. 

Scores when only fixations and saccades are present 

Komogortsev et al. (2010) originally proposed three behavior scores namely Fixation 

Quantitative Score (FQnS), Fixation Qualitative Score (FQlS), and Saccade Quantitative Score 

(SQnS). The scores were originally designed to measure classification quality if only fixations 

and saccades are present in the raw eye positional trace. We perform following additions and 

modifications that allow extending the utility of behavior scores for ternary classification.  

Modified Saccade Quantitative Score 

The SQnS measures the amount of saccadic behavior in response to a stimulus. The 

SQnS is defined as the ratio of all detected saccade amplitudes to all saccade amplitudes encoded 

in the stimulus (Komogortsev et al., 2010). To avoid counting corrective saccades during SP   the 

SQnS is modified to consider saccades that directly correspond only to the stimulus-saccades 

represented by the instantaneous jump of the target’s location. To attain this goal a temporal 

window is introduced which considers saccades in response to the step part of the stimulus only. 

This is achieved by a use of a temporal window that monitors the eye positional signal in a fixed 

time interval prior and after stimulus change. This logic allows correctly considering anticipatory 

saccades and corrective saccades for the SQnS computation. 

The ideal SQnS score, which is only achieved if the HOS perfectly executes a saccade 

within the temporal window and classifier accurately detects it, is 100%. In practice the SQnS 

value might be lower because of some amount of the anticipatory and the corrective saccadic be-

havior that might fall outside of the temporal window. 
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Modified Ideal Fixation Quantitative Score 

The FQnS measures the amount of fixational behavior in response to a stimulus. The 

FQnS is defined as the amount eye position points, that are part of the fixation related to stimu-

lus-fixation2, divided by total number of stimulus-fixation points (Komogortsev et al., 2010). The 

ideal FQnS score presented in (Komogortsev et al., 2010) did not consider the effect of SP on 

score computation, therefore, in this work we provide a modified formula that accounts for SP 

effects. 

Ideal_FQnS = 100 1−
𝑚𝑆! + 𝑘𝑃! + 𝐷!"#_!"#!

!
!!!

𝐷!"#$_!"#_!"#!
!
!!!

 1 

where 𝑛 is the number of stimulus fixations, 𝐷!"#$_!"#_!"#! is duration of the ith stimulus fixation, 

𝑆! is saccadic latency, 𝑚 is the number of stimulus transitions between fixations and saccades, 

𝐷!"#_!"#! is the expected duration of a saccade in response to the stimulus saccade j, 𝑘 is the 

number of stimulus transitions from SP to fixations, and 𝑃! is the duration of the SP termination 

phase during fixation-stimulus. 

Smooth Pursuit Qualitative Scores 

The intuitive idea behind the Smooth Pursuit Qualitative Scores (PQlS) is to compare the 

proximity of the detected SP signal to the signal presented in the stimuli. Two scores are indica-

tive of the positional (PQlS_P) and the velocity (PQlS_V) accuracy. 

                                                

2 For the simplicity of writing we use following definitions that describe stimulus signal behavior: stimulus-

saccade – step part of the stimulus signal that elicits eye saccades, stimulus-SP – ramp part of the signal that elicits 

eye SP, stimulus-fixation – flat part of the stimulus signal that elicits eye fixations. Eye fixation, saccade, and SP are 

called simply fixation, saccade, and SP, without any prefix. 
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The PQlS_P and PQlS_V calculations are similar to the FQnS (Komogortsev et al., 

2010), i.e. for every SP point (xs,ys) of the presented stimuli, the check is made for the point in 

the eye position trace (xe,ye). If such point is classified as part of SP, the Euclidean distance be-

tween these two points and the difference between their speeds are computed. Then the sum of 

such distances and speed differences are normalized by the amount of points compared. 

PQlS_P =
1
𝑁 ∙ 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒!

!

!!!

 2 

PQlS_V =
1
𝑁 ∙ 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑠𝑝𝑒𝑒𝑑_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒!

!

!!!

 3 

N is the amount of stimuli position points where stimulus-SP is matched with corresponding eye 

position sample detected as SP. 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒! = 𝑥!! − 𝑥!! ! + 𝑦!! − 𝑦!! ! and represents the dis-

tance between stimuli-SP position and the corresponding SP point. 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑠𝑝𝑒𝑒𝑑_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒! =

𝜐!! − 𝜐!!  and represent the difference between speeds in i-th stimuli point and corresponding point 

in the raw eye positional sequence. 

Ideal PQlS scores, which can only be achieved if HOS perfectly matches position-

al/velocity characteristics of the moving target and no calibration errors are present, are 

PQlS_P=0º and PQlS_V=0º/s. In practice ideal scores might not be achieved due to calibration 

errors, corrective behavior, and classification inaccuracies. 

It should be noted that qualitative scores are indicative of two things: 1) how well the 

HOS follows the target, 2) how accurately the tracking equipment works for a given participant. 

Considering this we did not use the existing SP gain metric, defined as peak eye velocity/peak 

target velocity (Leigh & Zee, 2006), due to the fact that SP gain is designed to measure the HOS 

performance only. 
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Smooth Pursuit Quantitative Score 

Smooth Pursuit Quantitative Score (PQnS) measures the amount of detected SP behavior 

given the SP behavior encoded in the stimuli. To calculate PQnS two separate quantities are 

computed. One measures the total length of the SP trajectories presented by the stimuli. The se-

cond one measures the overall length of the properly detected SP by the classifier. The ratio of 

these two values defines the score. 

PQnS = 100 ∙
𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑆𝑃_𝑙𝑒𝑛𝑔𝑡ℎ
𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑚𝑢𝑙𝑖_𝑆𝑃_𝑙𝑒𝑛𝑔𝑡ℎ  4 

The computation of the ideal PQnS can be performed as: 

Ideal_PQnS = 100 · 1−
𝑛 ∙ 𝑃! + 𝐷!"#_!"#_!"#!

!
!!!

𝐷!"#$_!"#_!"#!
!
!!!

 5 

where n is the number of stimulus-pursuits, 𝐷!"#$_!"#_!"#!  is duration of the ith stimulus-pursuit, 𝑃!  

is pursuit’s latency prior to the onset of the corrective saccade that brings the fovea to the target, 

and  𝐷!"#_!"!_!"#!  is the expected duration of the corrective saccade.  The Ideal_PQnS assumes that 

the HOS exhibits the SP for the duration of the target’s movement immediately after the initial 

corrective saccade. Subsequently, accurate SP classification has to be performed for the duration 

of the movement. In practice ideal score might not be achieved due to the classification errors or 

additional corrective saccades occurring during the SP-stimulus. 

Misclassified Fixation Score (MisFix) 

Misclassification error of the SP can be determined during a fixation stimulus, when cor-

rect classification is most challenging. SP_fixation_points is the number of points in eye position 

trace that were classified as SP but the corresponding stimuli point for them is a fixation. to-

tal_stimuli_fixation_points is the total number of fixation points in stimuli. To calculate MisFix, 

two separate quantities are calculated. SP_fixation_points is the number of points in the eye posi-
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tion trace that were classified as SP but the corresponding stimuli point for them is fixation. to-

tal_stimuli_fixation_points is the total number of fixation points in stimuli 

MisFix = 100 ∙
𝑆𝑃_𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑖𝑚𝑢𝑙𝑖_𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠 6 

Computation of the ideal MisFix should take into the consideration the fact that termina-

tion phase of SP continues during fixational stimulus after the SP stimulus is over. Therefore, 

following formulation is employed for the computation of the ideal MisFix score. 

Ideal_MisFix = 100 ·
𝑛 ∙ 𝑃!" + 𝐷!"#_!"#_!"#!

!
!!!

𝐷!"#$_!"#_!"#!
!
!!!

 7 

where n is the number of SP present in the stimuli, average duration of the latency of the termi-

nation phase 𝑃!" prior to the last corrective saccade leading to fixational stimulus position. 

𝐷!"#_!"#_!"#! is duration of the corrective saccade, if present. In calculation of the Ideal_MisFix 

we assumed that each stimulus SP is followed by stimulus fixation. 

ALGORITHMS FOR SMOOTH PURSUITS DETECTION 

Velocity and Velocity Threshold Identification (I-VVT)  

We modify the I-VT algorithm to perform ternary classification. For the purposes of sep-

arating SP from fixations a second velocity threshold is introduced. To highlight such modifica-

tion the algorithm’s name is changed to the (Velocity and Velocity Threshold Identification) I-

VVT. Figure 1 presents the pseudocode. The pseudocode contains Filter Function that accepts a 

list of the pre-classified saccades for the purpose of filtering noisy saccade-like events according 

to minimum amplitude and duration. In case of this work such events with amplitudes of less 

than 3.5° and  4 ms. in duration were discarded. “Filter Function” sub-section in the “Discus-

sion” provides additional description on the topic of filtering.  
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The I-VVT algorithm is capable of re-

al-time performance, however it is not able to 

provide accurate classification as discussed in 

the results section.  

Note that our implementation of each 

algorithm presented here and behavior scores 

together with eye movement recordings can 

be downloaded here (Komogortsev, 2011).  

Velocity and Movement Pattern Identifica-
tion (I-VMP) 

We call the approach proposed by 

Agustin (2009) and enhanced by Larsson 

(2010) Velocity and Movement Pattern Identi-

fication (I-VMP), because it employs velocity threshold to first identify saccades similarly to I-

VVT. Subsequently, it analyses the movement patterns to separate SP from fixations. The 

movement pattern is analyzed in a temporal window with a size of Tw. In that window the mag-

nitude of movement is computed by analyzing angles created by every pair of the adjacent posi-

tional points and the horizontal coordinate axis. Once the value representing the magnitude of 

movement is computed it is compared against a threshold Tm. Values above the threshold are 

marked as SP and below the threshold are marked as fixations.   Figure 2 presents the pseudo-

code. More detailed description of the algorithm is provided elsewhere (Larsson, 2010).   

Figure 1. Pseudocode for Velocity and Velocity 
Threshold Identification algorithm. 

Algorithm:  Smooth Pursuit Classification ( I-VVT) 
Input: array of eye position points, saccade velocity 
threshold - TVs, smooth pursuit velocity threshold - TVp 
Output: list of fixations, saccades, and smooth pursuits 
 

Calculate point-to-point velocities for each point  

Mark all points above TVs as saccades 

Mark all unclassified points below TVp as fixations 
Mark all unclassified points as smooth pursuit 
Filter Function ( array of pre classified saccades ) 

Merge Function(array of pre classified smooth 
pursuits, fixations, and saccades) 
 
 
 
 
 
 
 
 
 
Return saccades, fixations, and smooth pursuits 

Merge every group of consecutive saccade 
points into a saccade with identified onset, 
offset, and amplitude. 

Merge every group of fixation points into a 
fixation with identified centroid coordinates, 
onset, and duration. 

Merge every group of smooth pursuit points into 
a smooth pursuit with identified onset, offset, 
and trajectory.!
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Velocity and Dispersion Threshold 
Identification (I-VDT)  

In this work we propose a ternary 

classification algorithm called Velocity 

and Dispersion Threshold Identification (I-

VDT). It performs the initial separation of 

saccades similarly to the I-VVT and the I-

VMP. Subsequently, it separates SP from 

fixations by employing a modified disper-

sion threshold identification method, 

which within a temporal window of the 

size Tw monitors dispersion of the points 

(corresponding threshold is Td). Figure 3 

presents the pseudocode. Dispersion of the 

points is computed in the same way as 

presented in (Salvucci & Goldberg, 2000).  

EXPERIMENTAL SETUP  

Apparatus  

The data was recorded using the EyeLink 1000 eye tracker (EyeLink, 2010) at 1000Hz 

on a 21 inch CRT monitor with a screen resolution of 1024x768pix and refresh rate of 80Hz. 

Vendor reported spatial resolution for EyeLink 1000 is 0.01° (EyeLink, 2010).  To ensure high 

accuracy of the eye movement recording a chin rest was employed. The chin rest was positioned 

at 70cm in front of the monitor. The recordings were performed in the monocular mode for the 

eye that provided the best calibration accuracy. The height of the chin rest was adjusted to ensure 

Algorithm:  Smooth Pursuit Classification ( I-VMP) 
Input: array of eye position points, saccade velocity 
threshold - TV, temporal window size – TW, movement 
threshold - TM 
Output: array of fixations, saccades, and smooth pursuits 
 

Calculate point-to-point velocities for each point  

Mark all points above TV as saccades 

Filter Function ( array of pre classified saccades ) 

While temporal window TW does not reach the end of 
array 

Mark all unclassified points inside TW as fixations 

For all pairs of adjacent points inside of TW calculate an 
angle created by the pair and  horizontal axis 

Represent computed angles as points on circumference 
of a unit circle 

Calculate mean (MX, MY) of x and y coordinates of those 
points) 

  If (distance  between (MX, MY) and (0,0) > TM) 

Mark fixation points inside the TW as smooth   pursuit 

End if 

End while 

Merge Function(array of pre classified smooth pursuits, 
fixations, and saccades) 
Return saccades, fixations, and smooth pursuits 
 

 
Figure 2. Pseudocode for Velocity and Movement 
Pattern Identification algorithm. 
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that primary position of the recorded eye 

corresponded to the center of the screen. 

The stimulus screen was rectangular to the 

line of view. Recorded raw eye positional 

signal was first processed by heuristic one-

sample filter described in (Stampe, 1993) 

and as implemented by EyeLink 1000 ven-

dor. The raw eye positional signal was sub-

sequently translated to the coordinates pre-

sented in the degrees of visual angle with 

the center of coordinate system correspond-

ing to the center of the screen. The proce-

dure of converting the signal from the eye 

tracking units to the degrees of the visual 

angle is described elsewhere (Duchowski, 

2007). 

Stimulus signal   

2D step-ramp stimulus was presented by moving target. Presented range of stimulus-

saccades’ amplitudes was 14.2-28.5° (M=20.2, SD=6.7). Presented range of stimulus-SPs’ veloc-

ities was 20.1-53.7°/s (M=38.0, SD=11.3). Stimulus-SP velocity was constant at each interval. 

Only single target was continuously presented throughout the experiment. Total stimulus dura-

tion was approximately 35 sec. Detailed target’s behavior is described in Table 1 and is supplied 

as an additional video file attached to this submission. The target was presented as a white dot 

Algorithm:  Smooth Pursuit Classification ( I-VDT) 
Input: array of eye position points, velocity threshold - 
TV, dispersion threshold - TD, temporal window size - TW 
Output: array of fixations, saccades, and smooth pursuits 
 

Calculate point-to-point velocities for each point  

Mark all points above TV as saccades 

Filter Function ( array of pre classified saccades ) 

Initialize temporal window over first points in the 
remaining eye movement trace 
While temporal window does not reach the end of array 
  Calculate dispersion of points in window 
  If (dispersion < TD ) 
     While dispersion < TD 

          Add one more unclassified point to window  
          Calculate dispersion of points in window 
     End while 
     Mark the points inside of the window as fixations  
     Clear window 
  Else 
     Remove first point from window 
     Mark first point as a smooth pursuit 
  End if 
End while 
Merge Function(array of pre classified smooth pursuits, 
fixations, and saccades) 
Return saccades, fixations, and smooth pursuits 
 Figure 3. Pseudocode for Velocity and Dispersion 

Threshold Identification algorithm. 
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with a size of approximately 1º in diame-

ter and the center marked with a small 

black dot to facilitate higher targeting 

accuracy for HOS. Remaining screen’s 

background was black.   

The data recorded for the above-

described task was a part of a larger 

study that had its purpose in establishing 

a normal baseline among healthy sub-

jects for subsequent comparison of data 

with people who had mTBI injuries. 

Specifically, task described here was 

presented as the last stimulus in a battery 

of other eight step and ramp stimuli 

tasks. Each task in this sequence was 

preceded by calibration and calibration 

verification procedure. The battery of 

tasks was designed under a guidance of 

Physical Therapist with one of the goals 

to prevent excessive fatigue as part of the task completion. Specifically, in that sequence one-

minute break (or longer by request) was given to subjects between each individual tasks. The du-

ration of the whole experiment for each participant on average was approximately 25 minutes.  

 

Onset 
time, ms 

Length, 
ms 

Stimulus 
onset 

coordinates, 
deg 

Stimulus Signal 

X Y A V 
1000 709 0 0.00 14.2° 20.1º/s 
2709 606 -10 10.15 14.2° 23.5º/s 
4314 - 0 0.00 14.2° - 
5314 - -10 10.15 14.2° - 
6315 531 0 0.00 14.2° 26.8º/s 
7846 471 -10 -10.16 14.2° 30.2º/s 
9316 - 0 0.00 14.2° - 

10316 - -10 -10.16 14.2° - 
11317 425 0 0.00 14.2° 33.5º/s 
12742 386 10 -10.16 14.2° 36.9º/s 
14127 - 0 0.00 14.2° - 
15127 - 10 -10.16 14.2° - 
16128 353 0 0.00 14.2° 40.3º/s 
17481 653 10 10.15 28.5° 43.6º/s 
19134 607 -10 -10.16 28.5° 46.9º/s 
20740 - 10 10.15 28.5° - 
21740 - -10 -10.16 28.5° - 
22741 400 10 10.15 20.0° 50.0º/s 
24141 566 -10 10.15 28.5° 50.3º/s 
25707 531 10 -10.16 28.5° 53.6º/s 
27237 - -10 10.15 28.5° - 
28237 - 10 -10.16 28.5° - 
29237 - -10 10.15 28.5° - 
31237 - 10 -10.16 20.3° - 
32237 - 10 10.15 20.0° - 
33237 - -10 10.15 14.2° - 

Table 1. Presented step-ramp st imulus 
characteristics. Ramp characteristics are 
highlighted with grey. Step characteristics are 
described by the remaining rows.  Value A 
presents the amplitude of the target’s jump (step 
stimulus) for saccades or distance traveled for the 
SP eliciting target (ramp stimulus). Value V 
represents the velocity of target’s movement 
during ramp stimulus. Within each single time 
interval velocity value was a constant. Target was 
stationary between step and ramp signal, therefore 
invoking eye fixations.  



This is a pre-print. Accepted to BRM. Ternary Eye Movement Classification     18 

Participants & Recordings 

The test data consisted of a heterogeneous subject pool, age 18-25, with normal or cor-

rected-to-normal vision. A total of 11 participants volunteered for the evaluation test. None of 

the participants had prior experience with eye tracking. The mean percentage of invalid data was 

1.24% with maximum 7.61%. All recordings were employed during automated classification as-

sessment. Only three recordings selected by criteria described next were employed during manu-

al assessment. 

Manual Classification  

Manual classification was performed by a post-doctoral researcher to establish perfor-

mance baseline and was done by a visual inspection of the recorded data where raw positional 

coordinates were converted to the coordinates in degrees of the visual angle as described in the 

“Apparatus” subsection. The process of visual inspection consisted of examining the horizontal, 

vertical components of movement and in most difficult cases 3D view of the signal 

(Komogortsev, 2011).   Saccades were separated when the signal’s positional change was large. 

Fixations were separated when the signal stayed within a certain positional proximity with jitter, 

tremor and micro saccades present in the signal. Smooth pursuit was characterized as a signal 

with very low jitter and continuous directional change of the eye-gaze position. Initial corrective 

saccades in response to the onset of stimulus-SP were classified as saccades. 

Due to considerable time necessary to classify signal manually (approximately 2.5 hours 

per recording) only three records were classified manually and were labeled as “good”, “medi-

um”, and “bad”. Please note that “good”, “medium”, “bad” categorization contains the descrip-

tion of quality of signal as recorded by the eye tracking equipment and the quality of the HOS for 

matching stimulus behavior. Next we have provided qualitative description of the recorded sig-
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nal for each category, however, the process of manual classification and categorization can be 

considered as subjective.  “Good” (Subject 7) was selected due to low jitter (approximate aver-

age amplitude of 0.2° during fixations), lack of large saccade overshoots/undershoots due to ini-

tial accurate saccade in response to the step signal change (the amplitude of the correctional be-

havior did not exceed 1.5°), and close match of SP to the stimulus-SP position (corrective sac-

cade during SP are infrequent and small in amplitude, i.e., 1-3°).  “Medium” (Subject 1) record-

ing had higher jitter (amplitude range 0.3-1.5°), corrective saccades to compensate for the initial 

overshoots/undershoots in response to the step signal change are large (amplitude range 3-4°), 

ramp signal was not well matched by the HOS (more frequent corrective saccades with larger 

amplitudes, e.g., 1.5-4°). “Bad” (Subject 10) was selected due to high jitter (amplitude range 1.5-

2°), prolonged corrective behavior during the fixational stimulus that consisted of sequence of 

corrective saccades and drifts, pure matching of ramp signal by the HOS (all corrective saccades 

had amplitudes higher then 2°).  

Ideal Scores: To compute the Ideal_FQnS by the eq. (1) for the stimulus described by 

Table 1 following assumptions are made: average saccade latency is 200 ms., saccade duration is 

computed by the eq. (3) in (Komogortsev et al., 2010), average duration of the SP termination 

phase is 130 ms. As a result computed Ideal_FQnS is 83.9%. To compute the Ideal_PQnS by the 

eq. (5) following assumption is made after manual inspection of the recorded data: SP latency for 

stimulus-pursuits with velocity <20°/s is 0 ms, <30 °/s is 230ms, <40 °/s is 210ms, <50 °/s is 

180, and >50 °/s is 210ms. Latency numbers estimated here already contain the duration of the 

initial corrective saccade. As a result computed Ideal_PQnS is 52%. Average latency duration in 

termination phase is 153 ms. for our data. Therefore, Ideal_MisFix is computed to be approxi-



This is a pre-print. Accepted to BRM. Ternary Eye Movement Classification     20 

mately 7.1%. Latency number 

estimated here already con-

tains the duration of the final 

corrective saccade.   

RESULTS 

Manual Classification 

Table 2 presents the behavior scores computed for manually classified data and Figure 6 

presents an example of manually classified data.  The FQnS had the closest value to the ideal 

score of 71%. The SQnS was lower than the ideal score of 100%, however the difference was not 

substantial, i.e., average SQnS computed as a result of manual classification was 90%. The PQnS 

value was lower then the ideal value of 52%, however the difference was not large, i.e., average 

PQnS computed as a result of manual classification was 42%.  This result can be attributed to the 

fact that frequently HOS exhibits corrective saccade interspersed by fixations to follow ramp 

stimuli. Such corrective saccades lower the PQnS value. The average MisFix was higher than the 

ideal number of 7.1%, due to the variations in the SP termination phase and misclassification er-

rors, however for the record marked as “good” the MisFix was almost the same as the ideal 

number.   All behavior qualitative scores present reasonable values indicating relatively small 

positional and velocity errors between presented stimulus and recorded eye movements. 

Automated Classification  

Velocity threshold that separates saccades from fixations and SP was set to 70º/s for all 

classification algorithms considered in this work. Such threshold was selected following the rec-

ommendations presented in (Komogortsev et al., 2010) allowing fixing the saccade classification 

performance and investigating the performance of the most challenging part of the classification, 

Table. 2 Manual classification results and ideal behavior scores.   

Evaluated Quality Good Medium Bad

Score/Subject S7 S1 S10 Average Ideal 
Scores

SQnS 96% 84% 89% 90% 100%

FQnS 71% 63% 42% 56% 84%

PQnS 39% 47% 40% 42% 52%

MisFix 6% 13% 33% 17% 7.1%

FQlS 0.44° 0.46° 0.58° 0.49° 0°

PQlS_P 3.15° 3.07° 2.58° 2.93° 0°

PQlS_V 23°/s 39°/s 30°/s 31°/s 0°/s
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i.e., separation of SP from 

fixations. Resulting SQnS 

was 92% for all classification 

algorithms which is quite 

close to the ideal score of 

100% discussed in 

(Komogortsev et al., 2010) 

and to the results of the man-

ual classification.  

I-VVT: Figure 4 presents behavior scores. The FQnS starts extremely low and increases 

together with the value of the SP threshold. The PQnS score starts at 41% and decreases. The 

MisFix starts high and decreases to 0% when SP threshold reaches saccade threshold. Increase of 

the FQnS and parallel decrease of the PQnS depicts classification failure of the I-VVT, which is 

represented by the impossibility of accurately classifying both fixations and SP at the same time. 

The intersection point at SP threshold of 26º/s yields FQnS=PQnS=22% is far from the values 

provided by manual classification. At the same time mismatch scores are too high. 

I-VMP: Figure 5 presents the behavior scores. The values of the FQnS and the PQnS 

immediately indicate that magnitude of movement threshold Tm with values of 0.1 and 0.4 does 

not yield acceptable classification performance, i.e., in case of Tm=0.1 the FQnS is too low and 

the PQnS is too high and in case of Tm=0.4 the FQnS is too high and the PQnS is too low. The 

threshold value of Tm=0.2 provides the most usable case, where the FQnS slightly grows, when 

temporal window size increases, and essentially reaches the value of 63%. The PQnS slightly 

decreases eventually reaching the value of 49% and stabilizing at that value starting temporal 
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window threshold of Tw=120ms. Obtained quantitative scores are not far from the average values 

depicted by the Table 2. Mismatch score (MisFix) starts with relatively high value but decreases 

with the increase of the temporal window. Score value stabilizes and becomes close to the aver-

age depicted by Table 2 after the temporal window reaches 120ms. The FQlS does not exceed 

1.1°. The PQlS_V remains relatively stable at 58%. The PQlS_P fluctuates at approximately 

3.4°. 

I-VDT: Figure 5 presents classification performance of the I-VDT algorithm. Impact of 

two factors on the I-VDT performance is investigated: dispersion threshold and the size of the 

temporal window. The increase in dispersion threshold increases the FQnS, however slightly 

yielding maximum at 82%. The increase in dispersion threshold Td significantly decreases the 

PQnS. At Td=1.5º the PQnS almost reaches 53%, while at Td=2.5º the PQnS only reaches  37%. 

The size of the temporal window does not impact the FQnS, however the growth in the temporal 

window size produces substantial growth in the PQnS. The PQnS starts saturating at window 

sizes exceeding 110ms. Eventually, obtained quantitative scores are not far from the average 

values depicted by the Table 2. MisFix is higher for smaller dispersions. The growth of the tem-

poral window makes MisFix grow slowly, essentially, reaching the value obtained by the manual 

classification (Table 2). Qualitative scores with the exception of the PQnS_V are not affected 

either by the dispersion threshold or the temporal window size. The velocity error represented by 

the PQnS_V goes down when temporal window size is increased. PQnS_V value is saturated 

after the temporal window size reaches 110ms. Smaller dispersion value yields smaller PQnS_V 

value. The FQlS stays below 0.75° for all threshold and temporal window sizes. 
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I-VDT vs. I-VMP: From our experimentation we conclude that the performance of the I-

VDT is less impacted by the thresholds than the performance of the I-VMP. If the optimum 

thresholds are selected for the I-VMP classification performance becomes very similar to the I-

VDT, however qualitative scores (FQlS, PQnS_V, PQnS_P) and MisFix are slightly better for 

the I-VDT when most usable thresholds are considered. 
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DISCUSSION  

Manual Selection of Meaningful Thresholds 

Based on the results of classifications presented by Figures 4-5 we can manually select 

classification thresholds that provide best classification performance for each algorithm. Please 

note that saccade related threshold is fixed to 70º/s for all algorithms during manual classifica-

tion. 

For the I-VVT the optimal values of fixation threshold is 26º/s for which more or less 

balanced performance is achieved. However, this optimal point produces low qualitative scores 

and high mismatch scores when compared to the average values presented by Table 2.  

For the I-VMP the optimal value of the magnitude of movement threshold is TM=0.2, 

with a temporal window range between the 120-140 ms. Such thresholds produce the scores that 

are close to the average values depicted by the Table 2.  

For the I-VDT the optimal dispersion threshold is TD=2º, with the temporal window of 

110-150 ms. These thresholds allow to obtain scores that are close to the average scores present-

ed by the Table 2. An example of the raw eye positional signal classified by above-mentioned 

thresholds is depicted by Figure 7. 

Automated Selection of Meaningful Thresholds based on the Ideal Behavior Scores 

In this section we investigate the feasibility of automated selection of classification 

thresholds based on the values of the ideal behavior scores. The idea is to select classification 

threshold values that allow minimizing the difference between actual and the ideal values of the 

behavior scores. For this purpose following objective function is selected for the minimization 

process:  
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F(T!,T!, . . ,T!)

= Ideal_SQnS− SQnS ! + Ideal_FQnS− FQnS ! + Ideal_PQnS− PQnS ! 
7 

where T1, T2, …,Ti thresholds employed for the identification and SQnS, FQnS, PQnS actual be-

havior scores that are achieved for given thresholds. 

We have employed The Nelder-Mead (NM) simplex algorithm (Lagarias et al., 1998) 

(fminsearch implementation in MATLAB) with an objective function presented by the eq. 7 to 

select optimal threshold values. 

For the I-VVT the optimal velocity threshold for saccades is TVs=90°/s, the optimal ve-

locity threshold for SP is TVp=50°/s. These thresholds allow to obtain following behavior scores: 

SQnS=93.1%, FQnS=40.3%, PQnS=11.4%, MisFix=22.4%. 

For the I-VMP the optimal velocity threshold is TV=90°/s, dispersion threshold is 

TD=2.5º, with the temporal window of TW=80 ms. These thresholds allow to obtain following 

behavior scores: SQnS=90.4%, FQnS=68.9%, PQnS=44.3%, MisFix=15.9%.  

For the I-VDT the optimal velocity threshold is TV=75°/s, dispersion threshold is 

TD=1.9º, with the temporal window of TW=150 ms. These thresholds allow to obtain following 

behavior scores: SQnS=91.6%, FQnS=74.95%, PQnS=46.07%, MisFix=9.4%.   An example of 

the raw eye positional signal classified by above-mentioned thresholds is depicted by Figure 8. 

Manual vs. Automated Selection of Classification Thresholds   

There is little difference (e.g., Figure 7 vs. Figure 8) when classification thresholds are 

selected manually based on the overall picture of the classified data (e.g., Figure 5) and fully au-

tomated approach based on the proposed objective function (eq. (7)). Practically, automated 

threshold selection might be preferable, due to the reduced burden on the facilitator and reasona-

ble outcome of the classification performance.   
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Variability of HOS Performance 

During manual inspection of the 

recorded data we have noticed substan-

tial variability of the HOS performance 

between and within subjects. SP laten-

cy, the size of the corrective saccades 

and the quality of target’s tracking vary 

substantially. Often during ramp stimu-

lus the HOS exhibits a sequence of cor-

rective saccades interspersed by fixa-

tions, rather than tracking the target 

smoothly. Corrective saccades were 

more frequent for faster moving targets. 

We hypothesize that this behavior is 

exhibited due to dot jumps (step part of 

the stimulus) that occur in between 

smooth dot movements (ramp part of 

the stimulus). Participating subjects do 

not know when the step or ramp part is 

going to occur and therefore there is 

tendency to compensate more with sac-

cadic movement even in case of the 

ramp stimulus. This hypothesis is sup-
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Figure 7. Results of classification performed by I-VDT 
for Subject 7 (S7). Classification thresholds are selected 
manually based on classification performance depicted by 
Figure 5.!

Figure 6. Results of classification performed manually 
Subject 7 (S7). Only horizontal component of 
movement is displayed.!

Figure 8. Results of classification performed by I-VDT 
for Subject 7 (S7). Classification thresholds are selected 
automatically by proposed objective function (eq. 7)).!
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ported in part by evidence that properties of previous stimulus effect the HOS performance dur-

ing current task (Collins & Barnes, 2009). Another explanation is possible fatigue due to the fact 

that stimulus explored here was presented as the last task in a sequence of other tasks, even 

though the whole sequence of tasks was designed not to cause excessive fatigue. There is evi-

dence, that fatigue might result in excessive presence of corrective saccade during SP stimuli 

(Bahill et al., 1980).  Sometimes closer to the end of the recording, when a subject has experi-

enced a variety of SP stimuli, the HOS started exhibiting during fixational stimulus occasional 

movements with characteristics resembling the SP even after the termination phase is over. A 

portion of MisFix errors documented in Table 2 highlight this peculiarity. We have not found 

any literature that documented similar HOS performance. Such HOS performance further com-

plicates ternary classification and necessitates very careful construction of the ideal behavior 

scores. 

Filter Function 

Raw eye positional signal frequently contains jitter and also spikes of noise caused by 

blinks, equipment slippage, etc. Example of noise can be seen as red spikes in Figure 6, which 

are observable during the 8-9 s. of the recording. It is important to filter out such events to ex-

clude their impact on signal classification and computation of the behavior scores. “Filter Func-

tion” presented in the pseudocodes of the algorithms described earlier performs this role. Auto-

mated detection of proper noise events is difficult. Therefore in our implementation of the “Filter 

Function” we filter out events initially classified as saccades, but which are too short to be actual 

saccades. A duration threshold of 4ms. is employed for these purposes. In addition all saccades 
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with amplitude of less than 3.5°3 are marked for the re-classification to became part of the fixa-

tion, SP, or noise. This is done to prevent actual fixation or pursuit signal to be broken into a se-

quence of disconnected pseudo-saccades, which might occur for the signal recorded at such high 

temporal sampling rate if this amplitude threshold is lowered. The stability of the fixation/SP de-

tection and noise might come at a price of filtering out actual micro saccades and corrective sac-

cades of small amplitudes. Additional research is necessary for filtering tools that would accu-

rately remove noise while keeping actual miniature eye movements intact. 

 In our setup those empirically selected thresholds for the amplitude and duration allowed 

to obtain reasonable automated classification performance, however other experimental setups 

might require adjustment of the filtering mechanisms and associate thresholds.   

It should be noted that during manual classification noise related events are easier to 

identify due to complete overview of the waveform of the signal. Further research has to be con-

ducted to investigate the impact of the filtering thresholds on classification performance and be-

havior scores for various types of the experimental setup. 

Limitations of the Study 

A very specific hardware and step-ramp stimulus was employed in this work to establish 

a baseline on a high accuracy, high sampling frequency eye tracker. A chin rest was employed 

for additional stability of the recorded data.  Additional research is necessary to provide more 

comprehensive performance picture of ternary eye movement classification algorithms that em-

ploys different hardware, allows freedom of head movement, and contains different stimuli char-

acteristics. We expect that proposed behavior scores would be helpful for assessment of auto-
                                                

3 Please note that 3.5° represents 2D amplitude of movement, which makes size of the filtered horizontal 

and vertical components of movement much smaller. 
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mated classification performance however careful consideration should be given to the calibra-

tion stimulus, types of subject groups used for the recording, and recording environment varia-

bles.  

CONCLUSIONS  

This paper considered and introduced methods for reliable automated ternary classifica-

tion that consists of three eye movement types: fixations, saccades, and smooth pursuit. This task 

is extremely challenging due to the substantial variability of Oculomotor system performance 

between and within subjects, difficulties in separation of fixations from smooth pursuit, and sub-

stantial noisiness of the eye tracking data. 

We have extended the set of behavior scores originally introduced by Komogortsev and 

colleagues (Komogortsev et al., 2010) with a purpose of assessing the meaningfulness of ternary 

classification. Ideal scores values were estimated and additional baseline in a form of manually 

classified data of various quality was established. 

Our findings indicate that a simple extension of the popular velocity threshold method (I-

VT) algorithm with an idea of separating fixations from smooth pursuit with an auxiliary veloci-

ty threshold will not provide meaningful ternary classification. Two additional algorithms were 

considered Velocity Movement Pattern Identification (I-VMP) as introduced by San Agustin 

(Agustin, 2009) and Larsson (2010) and the algorithm that we have developed in this work Ve-

locity Dispersion Threshold Identification (I-VDT). Both algorithms when driven by the optimal 

thresholds were able to provide classification results that were close to the results obtained via 

manual classification. However, within considered threshold intervals the I-VDT had smaller 

performance variability and dependence on the thresholds than the I-VMP possibly indicating 
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higher practical usefulness. Misclassification errors were also slightly smaller for the proposed I-

VDT algorithm. Classification speed is linear for both algorithms. 

It was possible to automatically select classification thresholds with an objective function 

based on the ideal behavior scores to ensure meaningful classification for all algorithms except I-

VVT for which accurate identification of fixations and SP is impossible. Such automated thresh-

old selection method should be particularly useful for eye tracking practitioners that would be 

able to use suggested thresholds for a variety of stimuli recorded immediately after the calibra-

tion procedure.  
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