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Abstract 
 

This paper presents an objective evaluation of the effects 

of stimulus type and eye tracking specifications on the 

accuracy of biometric verification based on complex eye 

movement patterns (CEM). Five stimulus types (simple, 

complex, cognitive, random, textual), six spatial accuracy 

tiers (0.5°, 1.0°, 1.5°, 2.0°, 2.5°, 3.0°), and six temporal 

resolution tiers (1000 Hz, 500 Hz, 250 Hz, 120 Hz, 75 Hz, 

30 Hz) are evaluated to identify their effects. The results 

suggest the use of eye tracking equipment capable of 0.5° 

spatial accuracy and 250 Hz temporal resolution for 

biometric purposes, though biometric accuracy remains 

achievable for systems capable of at least 1.0° spatial 

accuracy and 30 Hz temporal resolution. While not 

conclusive, the complex and textual pattern stimuli 

provided the greatest accuracy, with little difference 

between the remaining stimuli. 

 

1. Introduction 

Biometrics is a far-ranging and complex discipline, 

spanning countless paradigms, techniques, and applications 

[1]. It is, however, a field of active development, in which 

continual improvements are necessary to maintain and 

improve upon the efficacy of existing techniques. The ideal 

biometric–from which an individual may be uniquely 

identified from his or her peers quickly, cheaply, and 

without error–has yet to be discovered. 

Complex eye movement patterns (CEM) offer a novel 

method of biometric identification that may prove a 

panacea to these woes. The properties of human eye 

movements are determined by a neuronal control signal 

generated by the brain and the physical characteristics of 

the six extraocular muscles, eye globe, and surrounding 

tissue [2]. The dual aspect of physical and neurological 

components makes accurate replication of eye movements 

outside the original subject practically infeasible [3]. As 

well, the ability to perform eye tracking on an unmodified 

camera [4, 5] and process recorded eye movement data in 

real-time make it an attractive complement to conventional 

biometric techniques [6]. 

1.1. Background 

The human eye exhibits several basic types of eye 

movement in response to various stimuli (both internal and 

external). In the field of human-computer interaction, 

fixations and saccades are of primary interest. Fixations 

occur when the eye globe is held in a relatively stable 

position such that the fovea remains centered on an object 

of interest, providing heightened visual acuity. Saccades 

occur when the eye globe rotates quickly between points of 

fixation, with very little visual acuity maintained during 

rotation. The term scanpath refers to the spatial path formed 

by a sequence of fixations and saccades. 

1.2. Previous Research 

Eye movements as a behavioral biometric are as of yet a 

largely underdeveloped branch of the biometric field, the 

basis for which was formed in 1971 when Noton and Stark 

[7] found that the general scanpath exhibited by a subject 

during the first viewing of a pattern was repeated in the 

initial eye movements of roughly 65% of subsequent 

viewings. There has been little research in this area [6, 

8-11], enough to demonstrate the viability of eye 

movements as a biometric indicator, but too little to provide 

a realistic alternative to existing standards. 

To our knowledge, Kasprowski and Ober [8] were the 

first to investigate the use of eye movements as a biometric 

indicator. The first 15 cepstral coefficients of the positional 

signal were used as the primary features of comparison, and 

information fusion was performed using naïve Bayes 

classifiers, C4.5 decision trees, SVM polynomials, KNN (k 

= 3 and k = 7). Average FAR and FRR were provided, but 

EER and detection error tradeoff were not reported. 

Silver and Biggs [11] followed, investigating a larger 

range of possible features, including: the 8 most significant 

fixations in each recording, fixation count, mean fixation 

duration, mean saccade velocity, mean saccade duration, 

and mean vertical position. Information fusion made use of 

a neural network, but again EER and detection error 

tradeoff were not reported, in favor of average TPP, TNP, 

and ACC. 
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Holland and Komogortsev [6] investigated a wide range 

of 15 complex eye movement patterns for their viability as 

biometric indicators, including: fixation count, mean 

fixation duration, mean vectorial saccade amplitude, mean 

horizontal saccade amplitude, mean vertical saccade 

amplitude, mean vectorial saccade velocity, mean vectorial 

saccade peak velocity, velocity waveform indicator (Q), 

scanpath length, scanpath area, regions of interest, 

inflection count, amplitude-duration coefficient, and main 

sequence coefficient. The viability of each feature was 

evaluated, along with a pairwise distance comparison of 

fixation centroids, and a simple information fusion 

algorithm based on the weighted arithmetic mean of 

individual features. EER and detection error tradeoff were 

provided for each feature, with information fusion 

achieving a 27% equal error rate. 

Komogortsev et al. [9] considered the fusion of complex 

eye movement patterns (CEM) and oculomotor plant 

characteristics (OPC) to enhance biometric accuracy. The 

OPC technique makes use of the saccadic eye movement 

signal to estimate the physical properties of the eye 

according to a mathematical model of human eye 

movements [10]. The combination of CEM and OPC 

biometrics provided a roughly 30% increase in 

authentication accuracy compared to the accuracy of 

individual techniques, achieving an equal error rate of 19%. 

While it is obvious that eye movements are not yet in a 

position to replace existing biometric standards, such as 

fingerprint [12] and iris recognition [13], it is equally 

evident that eye movements are viable sources of biometric 

information, which even in their current state may be used 

in multibiometric systems to enhance the accuracy and 

specificity of existing techniques. In the current paper, it is 

our goal to expand this branch of the biometric field by 

investigating the previously unexplored effects of stimulus 

type and eye tracking specifications on the accuracy of 

biometric verification, to determine acceptable conditions 

under which to collect eye movement data. 

2. Eye Movement-Based Biometrics 

The biometric techniques considered in this paper follow 

those described by Holland and Komogortsev [3]. The eye 

movement signal provided by the eye tracking system is 

processed to identify, filter, and merge individual gaze 

points into meaningful units (fixations and saccades). 

Statistical features are extracted from the fixations and 

saccades of each recording and similarity scores are 

generated for pairs of recordings based on a comparison of 

their individual features. Information fusion is performed 

on the similarity scores for individual features in order to 

combine the biometric information inherent in each feature, 

providing a single score for biometric verification. 

2.1. Processing 

The eye movement signal provided by the eye tracking 

system is processed to identify the fixations and saccades 

that form the scanpath as the eye scans the screen [14]. At 

present, we employ a velocity threshold classification 

algorithm, followed by a micro-saccade filter, and a 

micro-fixation filter. Fixation and saccade groups are then 

merged. Fixation properties include: timestamp, duration, 

and centroid; saccade properties include: timestamp, 

duration, amplitude, velocity, and peak velocity. 

Algorithm thresholds were determined empirically from 

previous eye movement research. Thresholds are provided 

in Section 3, and alternative processing techniques are 

considered in Section 5. 

2.2. Feature Extraction 

Fixations and saccades describe the scanpath of a 

recording. A variety of statistical features are calculated for 

each recording based on the properties of its unique 

scanpath. An explanation and rationale for each feature is 

provided in [3], considered features include: 

1. Scanpath length. 

2. Scanpath convex hull area. 

3. Fixation count. 

4. Average fixation duration. 

5. Regions of interest. 

6. Inflection count. 

7. Average vectorial saccade amplitude. 

8. Average horizontal saccade amplitude. 

9. Average vertical saccade amplitude. 

10. Average vectorial saccade velocity. 

11. Average vectorial saccade peak velocity. 

12. Slope of the amplitude-duration relationship. 

13. Slope of the main sequence relationship. 

14. Velocity waveform indicator (Q). 

15. Pairwise distance comparison. 

2.3. Feature Comparison 

To determine the relative similarity between the features 

of separate recordings, a Gaussian cumulative distribution 

function (CDF) was applied, where x and µ are the features 

being compared and σ is the feature-specific standard 

deviation, according to Equation 1: 
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The standard deviation used in the CDF function was 

calculated as the average within-subject standard deviation 

of the specific feature, according to Figure 1: 
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Figure 1: Feature-specific within-subject standard deviation. 

The Gaussian CDF produces a probability value between 

0 and 1, where a value of 0.5 indicates an exact match and a 

value of 0 or 1 indicates no match. This probability is 

converted into a more intuitive similarity score, where a 

value of 0 indicates no match and a value of 1 indicates an 

exact match, according to Equation 2: 

           (2) 

2.4. Information Fusion 

Information fusion combines the information obtained 

from different biometric traits to improve the overall 

accuracy of a biometric system [1]. At present, we employ a 

weighted mean for the information fusion stage, to improve 

the overall accuracy of identification while making 

allowance for the accuracy of individual features. 

Metric-specific weighting values were determined using 

an iterative optimization algorithm to minimize the equal 

error rate. Algorithm details are given in Section 3, 

weighting values are provided Section 4, and alternative 

fusion techniques are considered in Section 5. 

3. Methodology 

Three experiment paradigms were employed to 

investigate the effects of environment and stimulus on the 

accuracy of biometric verification. The first experiment 

paradigm examined the effects of varied stimulus type, the 

second experiment paradigm examined the effects of varied 

spatial accuracy and temporal resolution, and the third 

experiment paradigm provided data recorded on low-cost 

eye tracking equipment for cross-validation purposes. 

3.1. Participants 

For the first experiment paradigm, eye movement data 

was collected for a total of 22 subjects (17 males, 5 

females), ages 18 – 46 with an average age of 28 (SD = 

8.7). 17 of the subjects performed 16 recordings each, 3 of 

the subjects performed 15 recordings each, and 2 of the 

subjects performed 8 recordings each, generating a total of 

333 unique eye movement records. 

For the second experiment paradigm, eye movement data 

was collected for a total of 32 subjects (26 males, 6 

females), ages 18 – 40 with an average age of 23 (SD = 

5.4). 29 of the subjects performed 4 recordings each, and 3 

of the subjects performed 2 recordings each, generating a 

total of 122 unique eye movement records. 

For the third experiment paradigm, eye movement data 

was collected for a total of 28 subjects (18 males, 10 

females), ages 18 – 36 with an average age of 23 (SD = 

4.6). 27 of the subjects performed 8 recordings each, and 1 

of the subjects performed 7 recordings, generating a total of 

223 unique eye movement records. 

3.2. Apparatus & Software 

For the first experiment paradigm, eye movements were 

recorded using a Tobii TX300 [15] eye tracking system 

running at 300 Hz with a vendor-reported spatial accuracy 

of 0.5° and average data validity of 65% (SD = 36%). 

Stimuli were presented on a flat screen monitor positioned 

at a distance of 565 millimeters from the subject, with 

screen dimensions of 550 × 240 millimeters, and resolution 

of 1920 × 1080 pixels. 

For the second experiment paradigm, eye movements 

were recorded using an EyeLink 1000 [16] eye tracking 

system running at 1000 Hz with a vendor-reported spatial 

accuracy of 0.5°, average calibration accuracy of 0.7° (SD 

= 0.5), and average data validity of 66% (SD = 36%). 

Stimuli were presented on a flat screen monitor positioned 

at a distance of 685 millimeters from the subject, with 

screen dimensions of 640 × 400 millimeters, and resolution 

of 2560 ×1600 pixels. 

For the third experiment paradigm, eye movements were 

recorded using a modified PlayStation Eye camera running 

at 75 Hz with an average calibration accuracy of 1.0° (SD = 

0.5) and average data validity of 99% (SD = 4%)
1
. Stimuli 

were presented on a flat screen monitor positioned at a 

distance of 540 millimeters from the subject, with screen 

dimensions of 375 × 302 millimeters, and resolution of 

1280 × 1024 pixels. 

3.3. Procedure 

For the first and third experiment paradigms, eye 

movement recordings were generated for four stimulus 

types, chosen to meet the following criteria: simple pattern, 

complex pattern, cognitive pattern, and textual pattern. For 

the second experiment paradigm only the textual pattern 

was considered, and for the third experiment paradigm the 

cognitive pattern was replaced with a random pattern. 

The simple pattern stimulus (HSS) employed a technique 

commonly used in eye movement research to evoke a 

fixed-amplitude horizontal saccade at regular intervals [2]. 

A small white dot appears on a plain black background, the 

dot jumps back and forth across the screen eliciting a 

saccade for each jump. The distance between jumps was set 

to correspond to 20° of the visual angle, due in part to 

screen constraints, complications separating low-amplitude 

 
1Average data validity may be skewed in this case, as it is not possible 

to detect when the eye tracker began tracking an area of the image other 

than the subject pupil (i.e. rim of glasses, eyelashes, hair, etc.).  

1. For each subject: 

a. For each feature: 

i. Σ = Standard deviation across recordings. 

2. For each feature: 
a. σ = Average Σ across subjects. 
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saccades (less than 1°), and variation in the dynamics of 

high-amplitude (greater than 50°) saccades. Participants 

were instructed to follow the white dot with their eyes, with 

100 horizontal saccades elicited per session. In the first 

experiment paradigm recordings were performed over eight 

sessions, while in the third experiment paradigm recordings 

were performed over two sessions. 

The random pattern stimulus (RSS) was similar in 

presentation to the simple pattern stimulus. A small white 

dot appears on a black background, and jumps across the 

screen in a uniformly distributed random pattern to elicit 

saccades. Participants were instructed to follow the white 

dot with their eyes, with 100 randomly directed oblique 

saccades elicited per session. In the third experiment 

paradigm recordings were performed over two sessions. 

The complex pattern stimulus (RIS) employed the 

Rorschach inkblots commonly used in psychological 

examination, in order to provide relatively clean patterns 

which were likely to evoke varied thoughts and emotions in 

participants. Inkblot images were selected from the original 

Rorschach psychodiagnostic plates and sized/cropped to 

fill the screen. Participants were instructed to examine the 

images carefully, with 3 rotations of 5 inkblots per session. 

In the first and third experiment paradigms recordings were 

performed over two sessions. 

The cognitive pattern stimulus (CDS) was based loosely 

on the idea of visual passwords [17], with the intention that 

the user actively selects a pattern which represents their 

unique password. Each stimulus image contained 5 or 6 

multi-colored dots on a black background, and all dots were 

visible throughout the stimulus presentation. Participants 

were instructed to form a pattern by looking at the dots in a 

specific order, and to remember the order, with 3 rotations 

of 5 patterns per session. In the first experiment paradigm 

recordings were performed over two sessions. 

The textual pattern stimulus (RES) made use of various 

excerpts from Lewis Carroll’s “The Hunting of the Snark.” 

The poem was chosen for its difficult and nonsensical 

content, forcing readers to progress slowly and carefully 

through the text. Text excerpts were selected to ensure that 

reading required roughly 1 minute, line lengths and the 

difficulty of the material was consistent, and learning 

effects did not impact subsequent readings. In the first and 

second paradigms, participants were given a different 

excerpt for each of four recording sessions, and in the third 

experiment paradigm participants were given a different 

excerpt for each of two recording sessions. 

For the second experiment paradigm, dithering and 

downsampling were applied (exclusively) to the eye 

movement recordings to artificially reduce spatial accuracy 

and temporal resolution. Dithering reduces spatial accuracy 

by adding uniformly distributed error to the recorded eye 

movement position; considered spatial accuracy tiers from 

a hardware base of 0.5° included: 0.5°, 1.0°, 1.5°, 2.0°, 

2.5°, and 3.0°. Downsampling reduces the temporal 

resolution by removing data points to lower the average 

time between points; considered temporal resolution tiers 

from a hardware base of 1000 Hz included: 1000 Hz, 500 

Hz, 250 Hz, 120 Hz, 75 Hz, and 30Hz. 

Eye movement recordings were processed and classified 

to identify fixations and saccades. A velocity threshold 

algorithm classified individual points with a velocity 

greater than 50°/sec as saccades, where all remaining points 

were assumed to be fixations, a micro-saccade filter 

re-classified saccades with amplitude less than 0.5° as 

fixations, and a micro-fixation filter re-classified fixations 

with a duration less than 100 milliseconds as saccades. 

Feature extraction was performed across all eye 

movement recordings, and feature comparison was 

performed across all possible combinations of eye 

movement recordings for a given stimulus and paradigm, 

leading to the following comparisons for each feature 

considered shown in Table 1: 

Table 1. Feature comparisons. 

Paradigm Stimulus Comparisons Acceptance Rejection 

1 HSS 13,530 551 12,979 

1 RIS 861 20 841 

1 CDS 861 20 841 

1 RES 3,486 122 3,364 

2 RES 7,381 182 7,199 

3 HSS 1,485 27 1,458 

3 RIS 1,540 28 1,512 

3 RSS 1,540 28 1,512 

3 RES 1,540 28 1,512 

Iterative optimization was then performed to identify 

suitable per-feature weighting for information fusion. The 

optimization goal was to minimize the equal error rate of 

biometric verification for each paradigm/stimulus 

according to the algorithm presented in Figure 2: 

 

Figure 2: Iterative weighting optimization. 

For our purposes, the lower boundary was set to 0, and 

the upper boundary was set to 100. Using the optimized 

weighting values, information fusion was performed on the 

recordings of each paradigm/stimulus to obtain final 

similarity scores for comparisons between recordings. 

False acceptance rate, false rejection rate, and equal error 

rate were then calculated at various acceptance thresholds 

to evaluate the accuracy of each. 

1. For each feature: 

a. α = Lower boundary. 

b. β = Upper boundary. 

c. χ = 0 and Σ = Inf. 

d. For φ = range(α, β): 

i. Feature weight = φ. 

ii. λ = Equal error rate. 
iii. If λ < Σ: χ = φ and Σ = λ. 
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4. Results 

False acceptance rate (FAR) is defined as the rate at 

which unauthorized individuals are accepted by the system 

as valid users, while false rejection rate (FRR) is defined as 

the rate at which authorized individuals are rejected by the 

system as invalid users. 

4.1. Feature-Specific Weighting 

Information fusion used a simple weighted mean to 

combine similarity scores from the various features. 

Feature-specific weighting values, shown in Table 2, were 

determined by an iterative algorithm, described in the 

previous section. The optimized weighting values provide 

insight into the eye movement features, described in 

Section 2, which obtained the highest biometric accuracy 

for each paradigm / stimulus combination. 

Table 2. Feature-specific weighting values. 

Feature 

Paradigm / Stimulus Combination 

1 2 3 

HSS RIS CDS RES RES HSS RIS RSS RES 

1 95 65 0 0 0 0 0 1 0 

2 0 0 0 0 0 0 0 0 0 

3 100 100 1 100 94 9 4 0 58 

4 5 9 0 6 100 100 0 21 0 

5 0 0 0 0 0 0 2 0 0 

6 1 6 98 1 0 0 0 10 1 

7 0 0 0 5 0 0 0 0 0 

8 2 0 0 0 3 0 57 10 0 

9 0 0 0 9 0 0 0 0 78 

10 10 0 1 72 0 100 100 40 100 

11 8 8 23 0 5 0 8 100 21 

12 0 0 0 0 6 0 57 8 0 

13 9 0 0 0 0 0 0 6 0 

14 10 0 0 55 0 0 57 0 0 

15 2 0 100 0 0 0 57 0 0 

A one-way ANOVA indicated no significant main effect 

for the weighting values of different paradigm / stimulus 

combinations, F(8, 126) = 0.14, p = 0.997. 

4.2. Detection Error Tradeoff 

The detection error tradeoff (DET) curves plot FAR 

against FRR at varied acceptance thresholds. Figure 3 

provides detection error tradeoff for the varied stimuli of 

the first experiment paradigm, Figure 4 provides detection 

error tradeoff for the varied stimuli of the third experiment 

paradigm, Figure 5 provides detection error tradeoff for the 

varied spatial accuracy of the second experiment paradigm, 

and Figure 6 provides detection error tradeoff for the varied 

temporal resolution of the second experiment paradigm. 
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Figure 3: DET Curves: Varied stimulus type 

(Paradigm #1). 
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Figure 4: DET Curves: Varied stimulus type 

(Paradigm #3). 
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4.3. Equal Error Rates 

The equal error rate (EER) is the error rate at which FAR 

and FRR are equal. Table 3 provides EER obtained for each 

stimulus type, Table 4 provides EER obtained for varied 

spatial accuracy, and Table 5 provides EER obtained for 

varied temporal resolution. 

Table 3. Equal error rates: Varied stimulus type. 

Feature 

Paradigm / Stimulus Combination 

1 2 3 

HSS RIS CDS RES RES HSS RIS RSS RES 

1 32% 33% 42% 44% 43% 40% 43% 45% 43% 

2 46% 44% 44% 47% 48% 48% 46% 49% 46% 

3 32% 33% 38% 36% 34% 34% 39% 43% 40% 

4 43% 34% 39% 40% 31% 33% 46% 39% 44% 

5 43% 49% 45% 48% 49% 43% 53% 43% 58% 

6 36% 39% 36% 39% 38% 51% 46% 44% 40% 

7 41% 50% 43% 40% 42% 46% 46% 49% 43% 

8 41% 50% 42% 40% 36% 46% 39% 46% 42% 

9 48% 50% 50% 48% 46% 43% 43% 39% 38% 

10 37% 35% 40% 36% 38% 33% 37% 38% 35% 

11 38% 34% 37% 39% 44% 44% 42% 32% 39% 

12 45% 54% 43% 45% 44% 40% 42% 40% 50% 

13 36% 39% 39% 42% 49% 36% 45% 41% 46% 

14 36% 50% 50% 38% 42% 50% 41% 46% 43% 

15 41% 48% 35% 42% 44% 36% 42% 42% 50% 

Fusion 29% 23% 29% 29% 27% 29% 31% 27% 24% 

A one-way ANOVA indicated no significant main effect 

for varied stimulus type, F(8, 135) = 0.46, p = 0.879. 

Table 4. Equal error rates: Varied spatial accuracy. 

Feature 

Spatial Accuracy 

0.5° 1.0° 1.5° 2.0° 2.5° 3.0° 

1 43% 42% 48% N/A N/A N/A 

2 48% 47% 49% N/A N/A 50% 

3 34% 37% 49% 49% N/A N/A 

4 31% 45% 50% 50% 50% 50% 

5 49% 50% 49% 49% N/A N/A 

6 38% 41% 50% N/A N/A N/A 

7 42% 47% 50% 43% 43% 48% 

8 36% 49% 50% 45% 50% 50% 

9 46% 46% 47% 46% 46% 48% 

10 38% 47% 50% 49% 47% 46% 

11 44% 47% 47% 48% 47% 47% 

12 44% 49% 50% 50% 51% N/A 

13 49% 50% 49% 47% 50% N/A 

14 42% 49% 48% 48% 51% 46% 

15 44% 45% 48% N/A N/A N/A 

Fusion 27% 39% 48% 49% 51% 47% 

A one-way ANOVA indicated a significant main effect 

for varied spatial accuracy, F(5, 76) = 5.55, p < 0.001. 
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Figure 5: DET Curves: Varied spatial accuracy 

(Paradigm #2). 
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Table 5. Equal error rates: Varied temporal resolution. 

Feature 

Temporal Resolution 

1000 Hz 500 Hz 250 Hz 120 Hz 75 Hz 30 Hz 

1 43% 45% 46% 44% 43% 48% 

2 48% 48% 50% 50% 47% 48% 

3 34% 33% 36% 36% 39% 44% 

4 31% 29% 30% 37% 41% 44% 

5 49% 50% 48% 51% 50% 46% 

6 38% 36% 40% 42% 40% N/A 

7 42% 39% 41% 45% 42% 50% 

8 36% 36% 37% 43% 37% 50% 

9 46% 43% 44% 45% 45% 50% 

10 38% 38% 38% 43% 38% 50% 

11 44% 41% 39% 39% 39% 50% 

12 44% 49% 48% 47% 45% 50% 

13 49% 46% 44% 42% 44% 45% 

14 42% 40% 40% 41% 38% 50% 

15 44% 44% 44% 47% 43% 45% 

Fusion 27% 26% 29% 34% 39% 45% 

A one-way ANOVA indicated a significant main effect 

for varied temporal resolution, F(5, 89) = 4.09, p < 0.003. 

5. Discussion 

Though differences in weighting between trials are not 

statistically significant, several features stand out for 

various reasons. Fixation count, average fixation duration, 

and average vectorial saccade velocity provided a high 

degree of accuracy across multiple trials, while scanpath 

length, inflection count, average vertical saccade 

amplitude, average vectorial saccade peak velocity, 

velocity waveform indicator (Q), and the pairwise distance 

comparison provided accurate indicators for different 

stimuli. Scanpath convex hull area, regions of interest, 

average vectorial saccade amplitude, and the slope 

coefficient of the main sequence relationship provided no 

discernible benefit as biometric indicators, and the 

remaining features provided only minor accuracy gains. 

Differences in equal error rates among stimulus types are 

not significant; however, several conclusions can be drawn 

from the distribution of equal error rates and DET curves 

produced for each stimulus. There is little difference in the 

accuracy provided by the simple, cognitive, and random 

pattern stimuli, while the complex and textual pattern 

stimuli provide slightly better accuracy under certain 

conditions. An obvious anomaly is the differences in 

weighting and accuracy of the RES trials, which may have 

resulted from the differences in subject pool, screen 

dimensions, or eye tracking specification. 

It is apparent that differences in spatial accuracy have a 

substantial effect on biometric accuracy, with a 44% 

increase in equal error rate from 0.5° to 1.0° spatial 

accuracy, and spatial accuracy above 1.5° providing no 

relevant biometric information. Varied temporal resolution 

has a much less pronounced effect, with little difference in 

biometric accuracy from 1000 Hz to 250 Hz. As temporal 

resolution reduces below 250 Hz, accuracy reduces 

gradually until it becomes unusable around 30 Hz. 

The results of the three experiment paradigms largely 

serve to reinforce these findings. The equal error rate of 

29% obtained with the RES stimulus of the first experiment 

paradigm collected at 300 Hz correlates with the equal error 

rate obtained with the RES stimulus of the second 

experiment paradigm downsampled to 250 Hz. Of 

particular note is the biometric accuracy obtained on the 

relatively low-quality, low-cost eye tracking system of the 

third experiment paradigm. With eye tracking 

specifications equivalent to 1.0° spatial accuracy and 75 Hz 

temporal resolution, the results of the second experiment 

paradigm would suggest that biometric accuracy will 

degrade below 39% equal error rate; however, in practice 

we were able to obtain equal error rates not exceeding 31%. 

This suggests that the error introduced by dithering and 

downsampling may be exaggerated over natural effects. 

5.1. Limitations 

The considered techniques are obviously limited in their 

practical application due to the relatively high error rates in 

comparison to accepted biometric standards. The focus of 

this paper has been on determining acceptable conditions 

under which to collect viable eye movement data, and as 

such we have done little to improve the biometric accuracy 

over previous research. Due to the underdeveloped nature 

of eye movement-based biometrics, future research will 

likely investigate not only improvements in biometric 

accuracy, but the techniques and practices used for 

collection, processing, and analysis of human eye 

movements. 

It is also worth noting that the relatively smaller number 

of acceptance comparisons to rejection comparisons results 

in false rejection rates that are statistically less sound than 

false acceptance rates. This is a common issue in 

biometrics, however, which results from the constraints on 

same-subject experimentation. To achieve equivalent 

amounts of acceptance and rejection comparisons, it is 

necessary for each participant to perform a number of trials 

greater than the total number of participants, which 

becomes increasingly prohibitive as the number of 

participants increases. 

As well, the dithering approach applied to reduce spatial 

accuracy may not accurately model the spatial accuracy of 

specific individuals and systems. There exists no current 

literature which mathematically describes the distribution 

of eye tracking error across the screen. As such, we have 

employed a uniform distribution of random noise as an 

approximation. 
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5.2. Future Research 

Processing is a crucial step in eye movement-based 

biometrics, and is essential to the transformation of the 

continuous eye movement signal into discrete units of 

attention. There are a wide range of classification 

algorithms and post-classification filters that may be 

applied to identify fixations and saccades within the 

recording, each with unique benefits. As well, the 

thresholds ascribed to these algorithms may have a 

substantial effect on the accuracy of classification. In the 

current paper, we have applied a simple velocity threshold 

algorithm, followed by micro-saccade and micro-fixation 

filters to improve classification accuracy. This combination 

was chosen for its speed and simplicity, though more 

accurate classification may, in turn, improve biometric 

accuracy. It is likely that future research will investigate 

alternative classification algorithms/thresholds to identify 

more effective solutions. 

Information fusion is another crucial step in eye 

movement-based biometrics, and is necessary to combine 

biometric information provided by individual features. 

While it has provided sufficient accuracy for the focus of 

this paper, the use of a simple weighted mean as the 

primary source of information fusion is a striking weakness 

of the current implementation. More advanced fusion 

techniques will be necessary to achieve a level of accuracy 

that meets current biometric standards. Future research will 

investigate alternative information fusion techniques. 

6. Conclusion 

This paper has presented an objective evaluation of the 

effects of stimulus type and eye tracking specifications on 

the accuracy of eye movement-based biometric 

verification. Five stimulus types (simple, complex, 

cognitive, random, textual), six spatial accuracy tiers (0.5°, 

1.0°, 1.5°, 2.0°, 2.5°, 3.0°), and six temporal resolution tiers 

(1000 Hz, 500 Hz, 250 Hz, 120 Hz, 75 Hz, 30 Hz) were 

evaluated to determine acceptable conditions under which 

to collect viable eye movement data for biometric accuracy. 

Based on the results, we can conclude that complex and 

textual pattern stimuli are preferable to the simple, 

cognitive, and random pattern stimuli examined in this 

work. As well, eye tracking systems with spatial accuracy 

of less than 0.5° and greater than 250 Hz are recommended 

for biometric purposes, due to degradation in accuracy as 

specifications are reduced beyond this point. Eye tracking 

systems with greater than 1.0° spatial accuracy or less than 

30 Hz temporal resolution are not likely to produce viable 

biometric information. 
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