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ABSTRACT   

The widespread use of computers throughout modern society introduces the necessity for usable and counterfeit-resistant 
authentication methods to ensure secure access to personal resources such as bank accounts, e-mail, and social media. 
Current authentication methods require tedious memorization of lengthy pass phrases, are often prone to shoulder-
surfing, and may be easily replicated (either by counterfeiting parts of the human body or by guessing an authentication 
token based on readily available information). This paper describes preliminary work toward a counterfeit-resistant 
usable eye movement-based (CUE) authentication method. CUE does not require any passwords (improving the 
memorability aspect of the authentication system), and aims to provide high resistance to spoofing and shoulder-surfing 
by employing the combined biometric capabilities of two behavioral biometric traits: 1) oculomotor plant characteristics 
(OPC) which represent the internal, non-visible, anatomical structure of the eye; 2) complex eye movement patterns 
(CEM) which represent the strategies employed by the brain to guide visual attention. Both OPC and CEM are extracted 
from the eye movement signal provided by an eye tracking system. Preliminary results indicate that the fusion of OPC 
and CEM traits is capable of providing a 30% reduction in authentication error when compared to the authentication 
accuracy of individual traits. 
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1. INTRODUCTION  

Communication between human and computer frequently begins with an authentication request. During this initial phase 
of interaction, the user supplies the system with verification of his/her identity, often in the form of an alphanumeric 
password, graphically encoded security phrase, or biometric token (such as an iris or fingerprint scan). In cases where the 
user is prompted to select the identification key from a sequence of numeric or graphic symbols, there is a danger of 
accidental or intentional shoulder-surfing, whether performed directly or through the use of hidden recording mediums. 
Moreover, these problems are exacerbated in multi-user environments, where shared workstation usage and 
contemporary interaction media often lead to an increased likelihood of both intentional and unintentional shoulder-
surfing [1]. Authentication methods requiring memorization of images and symbols have reduced usability, due to the 
fact that long, sophisticated passwords can be easily forgotten, and short passwords are easy to break. Biometric methods 
such as iris and fingerprint-based authentication are not completely fraud-proof, as they are based on body characteristics 
that can be replicated [2-5]. As a result, there is a rising need for usable, shoulder-surfing-resistant, and counterfeit-
resistant authentication techniques [1, 6-10]. 

The proposed CUE authentication can contribute to the resolution of these needs. First, CUE is more usable than 
password-based techniques due to its biometric nature, requiring no memorization. Second, CUE is shoulder-surfing-
resistant, as eye movements and gaze position are hardly observable from the third-person view. Third, CUE is 
significantly counterfeit-resistant, as it employs the internal, non-visible, anatomical structure of the eye along with the 
brain’s visual attention strategies. The internal, non-visible, anatomical structure of the eye is represented by Oculomotor 
Plant Characteristics (OPC) that include the neuronal control signal and the physical properties of the eye globe’s 
surrounding tissues, ligaments, and extraocular muscles. The brain’s visual attention strategies are represented by 
Complex Eye Movement patterns (CEM) that are exhibited in response to specific stimuli. OPC and CEM traits exist only 
in a living individual, and cannot be easily forged. OPC and CEM-based authentication methods have been investigated 
previously [11, 12], however, the fusion of OPC and CEM has not been previously considered. Such fusion is 
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particularly attractive because the biometric traits extracted from the OPC and CEM are physiologically different, but 
may be captured by the same camera sensor.  This manuscript provides a unique contribution to the field of biometrics 
by fusing OPC and CEM traits into a single CUE framework and assessing the resulting advantages of the authentication 
accuracy; however, this work does not explicitly assess the usability of the CUE framework or its counterfeit resistance 
potential, these topics will be explored in future work. 

2. RELATED WORK 

2.1 Passwords  

There are several issues related to the use of passwords for authentication. Selection of strong passwords is time 
consuming, users frequently select passwords that are easy to predict, and re-use passwords across multiple accounts 
[13]. Easy to remember passwords are easy to break, whereas strong passwords are often difficult to remember [14]. A 
substantial amount of research has been conducted on the use of graphical passwords in the authentication process, 
taking into account the human capacity to recall images more easily than text or numbers [8, 15-17]. While graphical 
passwords are easier to remember, such methods can reveal personal information about the user, may be time 
consuming, or may offer low accuracy. The CUE technique frees the user from difficult memorization.  

2.2 Shoulder-surfing  

The possibility of shoulder-surfing reduces the usability of an authentication system, making the user uncomfortable. 
Research has been conducted on shoulder-surfing resistance, employing an eye gaze-based entry systems [7, 17] or 
introducing auxiliary tactile input devices during authentication [6, 18]. Eye gaze guided input presents a challenge in 
multi-user environments (viz. tabletops) where people sit in front of each other, providing an opportunity to estimate user 
gaze direction [19] and thus reducing the security of such input. The use of auxiliary input devices improves resistance to 
shoulder-surfing, but can result in longer selection times (30-50% increase) due to additional overhead or confusion [6]. 
As well, such techniques do not fully protect against intruders correctly guessing the user’s password.  The CUE 
technique provides shoulder-surfing-resistant authentication, as visual feedback does not reveal any information about 
the user. 

2.3 Counterfeiting  

Advanced biometric methods such fingerprint and iris scans provide a reliable basis for authentication; however, they are 
generally vulnerable to counterfeiting, and can often be replicated with modern technological advances [2-5] or by 
removal of the body part necessary for authentication. The CUE technique is void of these challenges because it employs 
the dynamic characteristics of the oculomotor plant and brain functions which exist only within a living individual. The 
replication of traits considered in this paper is exceedingly difficult with present and foreseeable methodologies. 

2.4 Person Identification via Eye Movements 

In the field of human-computer interaction, the human visual system primarily exhibits two major types of eye 
movement: fixations, in which the eye maintains visual acuity on a stationary object of interest; and saccades, in which 
the eye rotations rapidly between points of fixation with velocities reaching 700°/s. Sequences of fixations and saccades 
form scanpaths, which may be interpreted as the brain’s visual attention strategy for a given stimulus. Scanpath theory 
originated from the idea that individuals tend to repeat certain scanpath trajectories during repeated viewings of a given 
pattern. This phenomenon was first investigated by Noton and Stark [20], who found that the general scanpath displayed 
by a subject during the first viewing of a pattern was repeated in the initial eye movements of roughly 65% of subsequent 
viewings. Additional properties of scanpaths which make them promising candidates as a behavioral biometric include: 
subconscious reproduction, variation by subject, and variation by stimulus.  

Previous research in biometric identification via eye movements employed raw eye positional data [21, 22] and a few 
characteristics related to fixation and saccades [23]. Komogortsev et al. [11] proposed a method of biometric 
identification based on the anatomical characteristics of the oculomotor plant, using a jumping dot stimulus to facilitate 
OPC extraction.  Holland and Komogortsev [12] investigated eye movement biometrics based on the scanpaths formed 
during reading. In this work, instead of scanpaths we use a more general term, Complex Eye Movement patterns (CEM), 
that incorporates the individual and aggregated characteristics belonging to a scanpath, details of which are discussed in 
Section 3.2. The combination of OPC and CEM biometric traits has not been considered or evaluated in previous 
research. The current work investigates both under the umbrella of the CUE approach. 



 

 

 
 

 

3. CUE AUTHENTICATION   

Figure 1 presents a structural overview of CUE authentication driven by the OPC and CEM biometric modalities. 

3.1 Authentication via Oculomotor Plant Characteristics  

The left portion of Figure 1 provides an overview of the OPC-based biometrics approach. This section provides a brief 
description of each module, more detailed descriptions are available in [11].  

After the authentication stimulus is presented to the user, the eye tracking system sends the recorded eye movement 
signal to an Eye Movement Classification algorithm, which extracts fixations and saccades from the signal. The extracted 
saccade trajectories are passed to the Oculomotor Plant Mathematical Model which attempts to simulate the supplied 
trajectories. The error between recorded and simulated trajectories is measured by the Error Function, and the magnitude 
of the resulting error triggers OPC Estimation that produces a new set of OPC values with the goal of minimizing error. 
The OPC values that simulate recorded trajectories with minimal error become the OPC biometric template for a given 
individual.  

The following OPC are included in the biometric template: 

• Length Tension – the relationship between the length of an extraocular muscle and the force it is capable of 
exerting. 

Figure 1. CUE overview. 



 

 

 
 

 

• Series Elasticity – resistive properties of an extraocular muscle while the muscle is innervated by the neuronal 
control signal. 

• Passive Viscosity of the eye globe. 
• Agonist Force-Velocity Relationship – the relationship between the velocity of agonist muscle 

extension/contraction and the force it is capable of exerting. 
• Antagonist Force-Velocity Relationship – the force-velocity relationship for the antagonist muscle. 
• Tension Intercept – intercept coefficient in the linear relationship between the force that a muscle applies to 

the eye and the rotational position of the eye during fixation. 
• Agonist Tension Slope – slope coefficient in the linear relationship between the force that an agonist muscle 

applies to the eye and the rotational position of the eye during fixation. 
• Antagonist Tension Slope – tension slope coefficient for the antagonist muscle. 
• Eye Globe’s Inertia. 

The template containing these OPC is passed to matching module driven by Hotteling’s T-square test, producing a 
matching score between the computed template and the template already stored in the database. Additional OPC 
discussed in [11] are not part of the considered template; however, their default values are used in saccade trajectory 
simulation by the oculomotor plant mathematical model. 

3.2 Authentication via Complex Eye Movement Patterns 

3.2.1 Structural overview 

The right portion of Figure 1 provides an overview of the CEM-based biometrics approach. This section provides a brief 
description of each module, more detailed descriptions are available in [12].  

The raw Eye Movement Data produced during a recording is supplied to the Eye Movement Classification module. The 
fixations and saccades forming complex eye movement patterns are processed by two modules: the Aggregated Scanpath 
Characteristics module and the Individual Scanpath Components module. Both modules operate with characteristics that 
are representative of the brain’s visual attention strategies. Individual characteristics processed by each module are 
discussed next. 

Individual Scanpath Components include:  

• Fixation Count – number of detected fixations. 
• Average Fixation Duration – sum of the duration of all fixations detected, divided by fixation count. 
• Average Vectorial Saccade Amplitude – sum of vectorial saccade amplitudes, divided by the total number of 

saccades, where the vectorial amplitude of a saccade is defined as the Euclidean norm of the horizontal and 
vertical amplitudes. 

• Average Horizontal Saccade Amplitude – average amplitude of the horizontal component of saccadic 
movement. 

• Average Vertical Saccade Amplitude – average amplitude of the vertical component of saccadic movement. 
• Average Vectorial Saccade Velocity – sum of vectorial saccade velocities, divided by the total number of 

saccades, where the vectorial velocity of a saccade is defined as the Euclidean norm of the horizontal and 
vertical velocities. 

• Average Vectorial Saccade Peak Velocity – sum of vectorial saccade peak velocities, divided by the total 
number of saccades. 

• Velocity Waveform Indicator (Q) – the relationship between the duration it takes to reach saccadic peak 
velocity to the total saccade duration. 

• Amplitude-Duration Relationship – the relationship between the amplitude of a saccade and its duration. 
• Main Sequence Relationship – the relationship between the amplitude of a saccade and its peak velocity. 

 

Aggregated Scanpath Characteristics include:  

• Scanpath Length – total amplitude of all detected saccades. 
• Scanpath Area – area of the convex hull formed by fixation points. 



 

 

 
 

 

• Regions of Interest – total number of spatially unique regions identified by applying a spatial mean shift 
clustering algorithm to the sequence of fixations that define a scanpath. 

• Inflection Count – number of directional shifts in the scanpath. 
• Fixation Distance – aggregated representation of the scanpath defined by fixation points and their coordinates. 

Characteristics obtained by the Aggregated Scanpath Characteristics and Individual Scanpath Components describe the 
CEM related biometric template. 

When two CEM-based biometric templates are compared, all characteristics except Fixation Distance are compared via a 
Gaussian cumulative distribution function (CDF) that generates a similarity score with value 1 indicating a match and 
value 0 indicating a non-match. Fixation Distance characteristics are compared via a pairwise distance comparison 
between the positional centroids of fixations. The total difference is normalized to produce a similarity score with the 
value indicated above.  

The Weighted Fusion module produces a combined similarity score via a weighted average of similarity scores produced 
by each individual metric. Weights for individual metrics are produced empirically. The resulting similarity score is 
employed for biometric verification, or serves as an input to the Information Fusion module combining OPC and CEM 
biometrics. 

3.3 Information Fusion 

The similarity scores provided by OPC and CEM are considered for the final match/non-match decisions based on the 
following information fusion approaches.  

3.3.1. Logical OR, AND 

The logical fusion method employs individual decisions from the OPC and CEM modalities in the form of 1 (match) or 0 
(non-match) to produce the final match/non-match decision via logical OR (or AND) operations. Using the logical OR 
method, at least one modality must indicate a match for the final match decision. Using the logical AND method, both 
modalities must indicate a match for the final match decision.  

3.3.2. MIN, MAX 

The MIN (or MAX) fusion method makes use of the smallest (or largest) similarity score generated by the OPM and 
CEM modalities, and employs a threshold to arrive at the final decision (if the resulting value is larger than the threshold, 
a match is indicated, otherwise it is considered a non-match). 

3.3.3. Weighted summation 

The weighted summation method is performed via the formula p = α • A + (1 - α) • B. Here p is the resulting score, A and 
B stands for scores derived from the OPC and CEM modalities, and 0 ≤ α ≤ 1 is the weight. The resulting score, p, is 
compared with a threshold value, and if p is greater than the threshold a match is indicated, with a non-match indicated 
otherwise. 

4. METHODOLOGY 

4.1 Apparatus  

Eye movement data was recorded using the EyeLink 1000 eye tracker, with a sampling frequency of 1000 Hz [24]. 
Stimuli were presented on a 30-inch flat screen monitor positioned at a distance of 685 millimeters from the subject, with 
screen dimensions of 640 × 400 millimeters, and screen resolution of 2560 × 1600 pixels. A chin rest was employed to 
ensure stability in the collected data. 

4.2 Participants & Data Quality 

Eye movement data is collected for a total of 32 subjects (26 males / 6 females), ages 18 – 40 with an average age of 23 
(SD = 5.4). Mean positional accuracy of the recordings averaged between all calibration points was 0.74° (SD = 0.54°). 
29 of the subjects performed 4 recordings each, and 3 of the subjects performed 2 recordings each, generating a total of 
122 unique eye movement records. 



 

 

 
 

 

4.3 Visual Stimulus & Recordings 

Visual stimuli were selected to invoke eye movements which facilitate the extraction of biometric templates and to avoid 
compromising system security if seen by a shoulder-surfer. Based on these requirements, random text excerpts were 
extracted from Lewis Carroll’s “The Hunting of the Snark” and presented to participants. This poem was chosen for its 
difficult and nonsensical content, forcing participants to progress slowly and carefully through the text. 

For each recording, text excerpts were chosen to require roughly 1 minute to complete and participants were given 1 
minute to read. Participants were given a different excerpt for each recording session, and excerpts were selected to 
ensure the difficulty of the material was consistent, line lengths were consistent, and that learning effects did not impact 
subsequent readings. 

The first two recordings for each subject were conducted during the same session, with a 20 minute break between 
recordings, and the second two recordings were performed a week later, again with a 20 minute break between 
recordings. 

The recordings are publically available as the Dataset III in the Eye Movement Biometric Database (EMBD) v1 [25]. 

4.4 Performance Evaluation 

The performance of biometric authentication methods is evaluated via the false acceptance rate (FAR) and false rejection 
rate (FRR) metrics. FAR represents the percentage of imposter records accepted as authentic users and FRR indicates the 
amount of authentic user records rejected from the system. To simplify the presentation of results, half total error rate 
(HTER) is reported, which is defined as the averaged combination of FAR and FRR. 

The performance of CUE and its components is calculated across all possible combinations of eye movement records. 
For example, considering 3 eye movement records (A, B, and C) produced by unique subjects, similarity scores are 
produced for the combinations: A + B, A + C, B + C. For 122 eye movement records, this results in 7381 combinations 
that are employed for acceptance and rejection tests for both methods. 

OPC biometrics considered only the horizontal component of recorded saccades with amplitude greater than 1° and 
duration over 4 milliseconds, discarding micro saccades and noisy saccadic events. As a result, the average horizontal 
amplitude was 3.42° (SD = 3.25) prior to filtering and 3.79° (SD=3.26) after filtering. The average magnitude of vertical 
components prior to filtering was quite small (M=1.2° SD=3.16), therefore vertical components were not considered for 
OPC derivation due to the high signal/noise ratio of the vertical component of movement. 

5. RESULTS 

Table I presents authentication accuracy and Figure 2 provides the corresponding Receiver Operating Characteristic 
(ROC) curves.  

Table I. Authentication results for each biometric modality, including similarity thresholds that produced the minimum 
HTER for each method. 

Method Name Thresholds FAR FRR HTER 
CUE = OPC pCUE = 0.1 30% 24% 27% 
CUE = CEM pCUE = 0.5 26% 28% 27% 

CUE = (OPC) OR (CEM) pOPC = 0.8 pS = 
0.6 22% 24% 23% 

CUE = (OPC) AND (CEM) pOPC = 0.1 pS = 
0.2 25% 26% 25.5% 

CUE = MIN(OPC, CEM) pCUE = 0.1 30% 24% 27% 
CUE = MAX(OPC, CEM) pCUE = 0.6 25% 20% 22.5% 
CUE = w1�OPC+ w2�CEM pCUE = 0.4 20% 18% 19% 

CUE = 0.5�(OPC) +0.5�(CEM) pCUE = 0.4 17% 22% 19.5% 
 



 

 

 
 

 

The results indicate that OPC biometrics can be performed successfully for a reading task, where the amplitude of 
saccadic eye movements is relatively small. The HTER of 27% is slightly lower than the HTER of 31% previously 
achieved by Komogortsev et al. using a jumping dot stimulus [11]. 

Both OPC and CEM performed with similar accuracy, providing an HTER of 27%. Fusion methods improved the 
achievable accuracy, providing an HTER of 19% for the best performing weighted addition (where w1 = 0.45 and w2 = 
0.55). These results indicate an approximately 30% reduction in authentication error. In a case in which the weights of 
both OPC and CEM modalities are equal, the CUE is able to achieve the HTER of 19.5%. 

6. DISCUSSION 

6.1 Recording Equipment & Stimuli 

The CUE authentication technique was conducted on very accurate eye tracking equipment with a very high sampling 
frequency, and participant head position was maintained through the use of a chin rest to avoid potential accuracy issues. 
Additional research is required to understand the tradeoffs between authentication accuracy and eye tracking 
specifications such as sampling frequency, positional accuracy, and freedom of head movements. 

As well, the current work employed a text-based stimulus for extracting OPC and CEM characteristics. Different types 
of stimuli may produce different authentication results.  

6.2 Stability of the OPC and CEM Traits 

Biometric templates were collected within a one week interval that provides extremely limited insight in terms of the 
stability of considered traits over a longer time span and the impact of such factors as stress, fatigue, aging, and illness. 
Additional research must be conducted to explore the long-term stability of CUE authentication. 

 

Figure 2. ROC curves for CUE, driven by various authentication methods. 



 

 

 
 

 

7. CONCLUSIONS 

This work illustrates the feasibility of a counterfeit-resistant usable eye movement-based (CUE) authentication method 
that combines information from two behavioral biometric traits: oculomotor plant characteristics (OPC) and complex eye 
movement patterns (CEM). The results demonstrate that the combined approach is capable of increasing authentication 
accuracy by up to 30% when performance is compared to each individual trait. Among considered fusion methods, the 
weighted summation method provided the highest authentication accuracy.  

It should be pointed out that in its current form, CUE may be employed only as a soft biometric approach due to the 
relatively high achievable half total error rate (HTER) of 19%. It is possible to hypothesize that CUE may function as 
part of a more general Ocular Biometrics approach, in which additional traits such as iris and periocular information are 
included to provide higher authentication accuracy. Such a multi-modal Ocular Biometrics approach is particular 
attractive, as it requires only one camera sensor to obtain information from all ocular traits. 

Additionally, our results indicate that OPC performance during a reading task (HTER = 27%) is comparable to its 
performance during the presentation of jumping dot stimulus (HTER = 31%), indicating that OPC biometrics may be 
effective for a variety of stimuli. 

Future research will be directed toward: the incorporation of CUE into a unified multi-modal Ocular Biometrics 
framework; evaluation of CUE’s usability and counterfeit resistance; construction of a larger eye movement database; 
and improvement of the individual performance of OPC and CEM components. 
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