
Abstract 
A novel approach that performs liveness detection for 

biometric modalities that use eye movement signal for 
person identification is proposed and evaluated. Liveness 
detection is done via estimation and analysis of the inter-
nal non-visible anatomical structure of the human eye 
termed Oculomotor Plant Characteristics (OPC). At this 
stage of its development the OPC approach targets pre-
vention of spoof attacks that are generated by the accurate 
mechanical replicas of the human eye. We generalize and 
test two classes of such eye replicas via their mathemati-
cal representations. Specifically, we investigate following 
classes of replicas: a) those that are built using default 
OPC values specified by the research literature, and b) 
those that are built from the OPC specific to an individual. 
The results that involved processing live data from 32 in-
dividuals over four recording sessions and their eye repli-
cas indicate relatively high theoretical resistance of the 
OPC liveness detection method to the mechanical attack 
that impersonates an authentic user.  

1. Introduction
Liveness detection is a very important problem, with 

“recent academic and media tests showing that with negli-
gible-to-modest effort many leading biometric technolo-
gies are susceptible to attacks in which fake fingerprints, 
static facial images, and static iris images can be used suc-
cessfully as biometric samples” [1]. More specifically 
there are examples when commercial iris-identification 
systems are spoofed by high resolution images printed on 
placards with small holes in the images to bypass liveness 
tests [2, 3], fingerprints can be spoofed with common 
household articles such as gelatin [4], and face recognition 
systems can be spoofed with printed face images [5-7]. 

Among different biometric modalities eye movement-
driven biometric has recently received a substantial 
amount of research attention [8-11]. The capture of the eye 
movement-driven biometric traits can be done on the same 
image sensor that already captures eye images for iris 
recognition [10]. Such capture of eye movement and iris 
biometric traits is done simultaneously.  

It is hypothesized that it is extremely hard to spoof eye 
movement-driven biometrics due to the necessity of accu-
rately recreating the complex physiological apparatus re-

sponsible for the generation of eye movements, i.e., the 
oculomotor plant and the brain [12]. However, to the best 
of our knowledge, there is no work that objectively inves-
tigates counterfeit resistance capabilities of the eye 
movement-driven biometric traits. This works makes an 
initial step in this direction. Specifically, we investigate 
liveness detection capabilities afforded by the Oculomotor 
Plant Characteristics (OPC), i.e., internal non-visible ana-
tomical structure of an individual human eye represented 
by the extraocular muscles, tissues surrounding the eye 
globe, and the eye globe itself.  

Our threat model considers spoofing attacks where an 
accurate mechanical replica of the human eye is presented 
to the sensor. Such replica performs the eye movements 
similar to that of a human. We investigate several classes 
of replicas by representing them via several mathematical 
models of different complexities, starting with ones that 
are the easiest to replicate mechanically and proceeding 
with more sophisticated models.  

Our results, that consider “live” signal from 32 individ-
uals recorded over four sessions, indicate that OPC bio-
metric is very resistant to spoofing attacks conducted with 
mechanical replicas of the human eye. 

This paper is organized as follows: section 2 describes 
previous liveness detection efforts, section 3 describes 
different operation modes of the eye movement-driven 
biometrics system, section 4 provides description of the 
live eye movement behavior that mechanical replicas try 
to mimic, section 5 details liveness detection mechanism 
via Oculomotor Plant Characteristics, section 6 reports 
validation methodology, section 7 discusses the results, 
section 8 reports main limitations of the proposed study, 
and section 9 provides conclusions.  

2. Related Work
This section presents methods employed for liveness 

detection in iris, fingerprints, and face domains as an 
overview of the representative work in this area. 

Iris: Several liveness detection methods have been pro-
posed and evaluated based on frequency spectrum analysis 
of the iris image, analysis of the reflected light from the 
spherical cornea (front wall of the eye) surface, detection 
of cornea moistness, pupil dilation, and quality related 
features of the captured image [13-18]. 

Fingerprints: Shuckers and colleagues proposed sever-
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al methods involving statistics of ridges and 
moisture to measure liveness of fingerprints, 
showing 90-100% correct classification rate 
depending on methods and equipment [19, 
20]. Luca et al. employed various techniques 
and features related to fingerprint images 
including local binary patterns, pores, power 
spectrum analysis, wavelet energy signa-
tures, valleys wavelets, and curvelets with 
reported liveness detection equal error rates 
of 6.8-12.9% [21]. Coli et al. provides a 
survey summarizing existing fingerprint 
liveness detection techniques and their per-
formance [22]. Recently a fingerprint 
liveness detection competition was conduct-
ed testing available algorithms and various 
hardware indicating that fingerprint-based 
biometrics still susceptible to spoofing [23]. 

Face: Face liveness detection methods 
can be roughly categorized into the follow-
ing categories: analysis of motion, texture, 
and detection of life signs. Substantial 
amount of representative algorithmic exam-
ples for each category is described as a part 
of a competition of detecting 2-D spoofing 
attacks [24]. Results of the competition on 
the PRINT-ATTACK dataset [5] indicate 
high accuracy of liveness detection for the 
existing methods checked against this da-
taset.  

3. Operation Modes of Eye 
Movement-Driven Biometric Sys-
tem  

3.1. Normal Mode 
Video-based eye trackers are the most common form of 

the eye tracking devices [25]. For each captured eye image 
a pupil boundary and a corneal reflection from an IR light 
by such an eye tracker are detected to estimate user’s gaze 
direction [26].  

We assume that during normal mode of operation of an 
eye movement-driven biometric system a user goes to an 
eye tracker, represented by an image sensor and an IR 
light, and performs a calibration procedure. A calibration 
procedure contains a presentation of a jumping point of 
light on a display preceded by the instructions to follow 
the movements of the dot. During the calibration eye 
tracking software builds a set of mathematical equations to 
translate locations of eye movement features (i.e., pupil 
and the corneal reflection) to the gaze coordinates on the 
screen [26]. 

We assume that the process of the biometric authentica-
tion occurs at the same time with calibration, i.e., captured 

positional data during calibration procedure is employed 
to verify the identity of the user. However, it is possible to 
have a separate authentication stimulus following the cali-
bration procedure if employment of such stimulus pro-
vides higher biometric accuracy. 

3.2. Under Spoof Attack 
To initiate a spoof attack an attacker presents a mechan-

ical replica to the biometric system. It is assumed that the 
eye tracking software is able to detect two necessary fea-
tures for tracking − pupil boundary and the corneal reflec-
tion. The replica follows a jumping dot of light during the 
calibration/authentication procedure. The movements of 
the replica are designed to match natural behavior of the 
human visual system with more details presented in the 
next section. Biometric template is extracted from the rec-
orded movements. Liveness detector analyzes the template 
and makes a decision if corresponding biometric sample is 

Figure 1. Live eye movement behavior and corresponding parameters. x 
axis represents the timeline. y axis represents event scale in the degrees of 
the visual angle.  Circles on the right bottom part of the figure highlight 
equipment artifacts caused by blinks. 
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a spoof or not. Detailed description of the biometric 
framework and liveness detector are presented in Section 
5. 

4. Live Eye Movement Behavior & Replica-
tion of Human Eye Movements 

When step stimulus is presented to a person two types 
of the eye movements are invoked by the Human Visual 
System (HVS) to follow the stimulus: fixations – move-
ments that keep an eye focused on a stationary object of 
interest and saccades – extremely rapid eye rotations be-
tween the points of fixation. Moreover, during a fixation 
an eye exhibits three sub-movement types: drift, tremor, 
and microsaccades. Sequences of fixations and saccades 
create Complex Oculomotor Behavior (COB) events that 
are represented by the saccades that undershoot/overshoot 
stimulus, corrected undershoots/overshoots, i.e., events 
when initial undershoot/overshoot occurs but later the eye 
transitions closer to the target via a single or multiple cor-
rective saccades. A detailed description of the COB events 
including the behaviors not mentioned here could be found 
in [27].       

For spoofing purposes we make a replica to exhibit 
most common eye movement behavior that includes COB 
events. These events and their corresponding parameters 
are illustrated by Figure 1 and described next.     

The onset of the initial saccade to the target occurs in a 
200-250ms. temporal window (parameter p1 in Figure 1), 
representing typical saccadic latency of a normal person 
[28]. Each initial saccade is generated in a form of under-
shoot or overshoot with the resulting error of random 
magnitude (p2) not to exceed 2° degrees of the visual an-
gle. If the resulting saccade’s offset (end) position differs 
from the stimulus position by more than 0.5° (p3) a subse-

quent corrective saccade is executed. Each corrective sac-
cade is performed to move an eye fixation closer to the 
stimulus with the resulting error (p4) not to exceed 0.5°. 
The latency (p5) prior to a corrective saccade is randomly 
selected in a range 100-130 ms. [29]. The durations of all 
saccades is computed via formula 2.2�A+21 [30], where A 
represents saccade’s amplitude in degrees of the visual 
angle.  

To ensure that spoofing attack produces accurate fixa-
tion behavior following steps are taken: 1) random jitter 
with amplitude (p6) not to exceed 0.05° is added to simu-
late tremor, 2) blink events are added with characteristics 
that resemble human behavior and signal artifacts pro-
duced by the recording equipment prior and after blinks. 
The duration (p7) of each blink is randomly selected from 
the range 100-400 ms. [31]. Time interval between indi-
vidual blinks is randomly selected in the 14-15 sec. tem-
poral window. To simulate signal artifacts introduced by 
the eye tracking equipment prior and after the blink, the 
positional coordinates for the eye gaze samples immedi-
ately preceding and following a blink are set to the maxi-
mum allowed recording range (±30° in our setup).  

All parameters for which references to the research lit-
erature are not provided are selected empirically after 
manually processing recorded live subject dataset de-
scribed in the methodology section. 

During a spoof attack we simulate only horizontal com-
ponents of movement. Simulation of the vertical compo-
nents can be done by the models described in Section 5.3. 
However, while generation of vertical and horizontal 
components of movement performed by the HVS can be 
fully independent it is also possible to witness different 
synchronization mechanisms imposed by the brain while 
generating oblique saccades [32]. Even in cases when a 
person is asked to make purely horizontal saccades it is 
possible to detect vertical positional shifts in a form of 
jitter and other deviations from purely horizontal trajecto-
ry. Consideration and simulation of the events present in 
the vertical component of movement would introduce un-
necessary complexity into the modeling process at this 
stage of the research. 

Figure 2 presents an example of the recorded trajectory 
and corresponding person-specific simulated trajectory 
created with the replication of the COB events described 
above.  

5. Liveness Detection via OPC 

5.1. Schematic Overview 
For liveness detection, we employ a modification of the 

OPC biometric framework proposed by Komogortsev et 
al. [9]. Figure 3 depicts the framework. In this method, a 
mathematical model of the oculomotor plant simulates 
saccades and compares them to the recorded saccades ex-
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Figure 2. Live signal (black - solid), replica (Spoof III-B, 
described in section 6.2) signal (gray - solid), stimulus (grey 
- dash). 



   
 

 
 

 

tracted from the raw 
positional signal. De-
pending on the magni-
tude of the resulting 
error between simu-
lated and recorded 
saccade an OPC esti-
mation procedure is 
invoked. This proce-
dure refines OPC with 
a goal of producing a 
saccade trajectory that 
is closer to the record-
ed one. The process of 
OPC estimation is 
performed iteratively 
until the error is min-
imized. OPC values 
that produce this min-
imum form become a 
part of the biometric 
template, which can 
be matched to an al-
ready enrolled tem-
plate by a statistical 
test (e.g. Hotelling’s 
T-square). Once two 
templates are matched 
the resulting score 
represents the simi-
larity between the 
templates. The 
liveness detection 
module checks the 
liveness of a biometric 
sample immediately 
after the OPC tem-

plate is generated. A yes/no decision in terms of the 
liveness is made.  

All modules except the liveness detector are described 
in detail in [18]. In this work we provide the description of 
the liveness detector and oculomotor plant mathematical 
models that can be employed either for creating a replica 
of the human eye.   

5.2. Liveness Detector 
The design of our liveness detector has two goals: 1) 

capture the differences between the live and the spoofed 
samples by looking at the variability of the corresponding 
signals, 2) reduce the number of parameters participating 
in the liveness decision.   

Collected data indicates the feasibility of the goal one 
due to the substantial amount of the variability present in 
the eye movement signal captured from a live human and 

relatively low variability in the signal created by the repli-
ca. In addition to what was already stated in the Section 4 
about the complexity of the eye movement behavior and 
its variability we should state that the individual saccade 
trajectories and their characteristics vary (to a certain ex-
tent) even in cases when the same individual makes them. 
This variability propagates to the estimated OPC, there-
fore, providing an opportunity to assess and score liveness.  

To capture the variability differences between live and 
spoofed samples we built covariance matrixes based on 
the OPC values estimated by the OPC biometric frame-
work. Once such matrixes are constructed a Principal 
Component Analysis (PCA) is performed to select a subset 
of characteristic that contains the bulk of the variability. 
Resulting OPC subset is employed to compute corre-
sponding vector of eigen values. To make a decision if 
specific sample is live or a spoof the maximum eigen val-
ue in the vector is compared to a threshold. When a value 
exceeds a threshold the corresponding biometric template 
is marked as a spoof and live otherwise. 

5.3. Mathematical Models of Human Eye 
Eye movement behavior described in Section 4 is made 

possible by the anatomical structure termed the Oculomo-
tor Plant (OP) and is represented by the eye globe, extra-
ocular muscles, surrounding tissues, and neuronal control 
signal coming from the brain. Mathematical models of 
different complexities can represent the OP to simulate 
dynamics of the eye movement behavior for spoofing pur-
poses. Brief description of three OP models employed in 
our work is provided next.  

Model I. Westheimer’s second-order model [33] is one 
of the simpler models of the OP, which represents the eye 
globe and corresponding viscoelasticity via single linear 
elements for inertia, friction, and stiffness. The mechanical 
representation of the model is provided by Figure 3.2 in 
[34]. Individual forces that are generated by the lateral and 
medial rectus are lumped together in a torque that is de-
pendent on the angular eye position and is driven by a 
simplified step neuronal control signal. The magnitude of 
the step signal is controlled by a coefficient that is directly 
related to the amplitude of the corresponding saccade.  

OPC employed for simulation. Westheimer’s model 
puts inertia, friction, and stiffness in direct dependency to 
each other. Therefore, in our implementation of the model, 
only two OPC - stiffness coefficient and step coefficient of 
the neuronal control signal are varied to simulate a sac-
cade’s trajectory.  

Model’s limitations. 1) Unrealistic saccade duration. All 
saccades simulated by this model have constant duration 
independent of their amplitude [35]. This is contrary to 
what is known as a non-constant amplitude-duration rela-
tionship [29]. 2) Unrealistic velocity profile. The peak 
velocity grows linearly with the amplitude of the exhibited 
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saccades, which is different from the exponential relation-
ship between the amplitude and the peak velocity known 
as a main-sequence relationship [29]. 3) Anatomical inac-
curacies. Individual extraocular muscles are not represent-
ed, but lumped together in a simple torque. 4) Simulation 
limitations. The model is capable of only generating 
rightward saccades from the primary1 eye position. To 
generate a leftward saccade we take a mirror image of 
rightward saccades and shift the trajectory to start the 
movement from a non-primary eye position. 

Model II. The second model is the forth-order model 
proposed by Robinson [36]. The mechanical representa-
tion of the model is provided by Figure 10 in [36]. This 
model employs neuronal control signal in a more realistic 
pulse-step form, rather than simplified step form. As a 
result the model is able to simulate saccades of different 
amplitudes and durations, with realistic positional profiles. 
The model breaks OPC into two groups represented by the 
active and passive components. The former group is repre-
sented by the force-velocity relationship, series elasticity, 
and active state tension generated by the neuronal control 
signal. The latter group is represented by the passive com-
ponents of the orbit and the muscles in a form of fast and 
slow viscoelastic elements. All elements are approximated 
via linear mechanical representations, e.g., linear springs 
and voigt elements.  

OPC employed for simulation. Following six parame-
ters are employed for saccade’s simulation in our repre-
sentation: net muscle series elastic stiffness, net muscle 
force-velocity slope, fast/slow passive viscoelastic ele-
ments represented by spring stiffness and viscosity. 

Model’s limitations. 1) Unrealistic velocity profile. Ve-
locity signal has unrealistic bump towards the end of the 
saccade. 2) Anatomical inaccuracies. Forces and compo-
nents of each individual extraocular muscle are lumped 
together. Modeled components are represented via linear 
elements.  3) Simulation limitations. Initially only right-
ward saccades can be executed. In our work this limitation 
is addressed in the same way as for the Westheimer’s 
model.  

Model III is the forth-order model by Komogortsev and 
Khan [37], which is derived from an earlier model of Ba-
hill [35]. The mechanical representation of the model is 
provided by Figure 1 in [37]. This model represents each 
extraocular muscle and their internal forces individually 
with a separate pulse-step neuronal control signal provided 
to each muscle. Each extraocular muscle can play a role of 
the agonist – muscle pulling the eye globe and the antago-
nist – muscle resisting the pull. The forces inside of each 
individual muscle are: force-velocity relationship, series 
elasticity, and active state tension generated by the neu-
ronal control signal [37]. The model lumps together pas-

                                                             
1 Primary eye position is when an eye looks straight ahead. This posi-

tion has coordinates (0,0) and represents the center of the stimulus plane. 

sive viscoelastic characteristics of the eye globe and extra-
ocular muscles into two linear elements. The model is 
capable of generating saccades with positional, velocity, 
and acceleration profiles that are close to the physiological 
data [38] and it is able to perform rightward and leftward 
saccades from any point in the horizontal plane [37]. 

OPC extracted for simulation: Eighteen OPC are em-
ployed for the simulation of a saccade: length tension rela-
tionship, series elasticity, passive viscosity, force velocity 
relationships for the agonist/antagonist muscles, ago-
nist/antagonist muscles’ tension intercept, the agonist 
muscle’s tension slope, and the antagonist muscle’s ten-
sion slope, eye globe’s inertia, pulse height of the neuronal 
control signal in the agonist muscle, pulse width of the 
neuronal control signal in the agonist muscle, four pa-
rameters responsible for transformation of the pulse step 
neuronal control signal into the active state tension, pas-
sive elasticity. Detailed description of each parameter can 
be found in the following sources [9, 37]. 

 Model’s limitations: The model employs a linear repre-
sentation of the major anatomical components represent-
ing the OP, which in the actual OP are non-linear. 

6. Validation Methodology 

6.1. Equipment & Recording Protocol for Captur-
ing Live Samples 

6.1.1 Apparatus & Software 
The live data was recorded using the EyeLink II eye 

tracker with a sampling frequency of 1000Hz [39]. The 
EyeLink II provides drift free eye tracking with a spatial 
resolution of 0.01º, and 0.25-0.5º of positional accuracy. 
EyeLink II enables eye to camera distances between 60 
and 150cm and horizontal and vertical operating range of 
55° and 45° respectively. To ensure high accuracy of the 
eye movement recording a chin rest was employed. The 
chin rest was positioned to assure 70cm distance between 
the display surface and the eyes of the subject. 
6.1.2 Participants & Data Quality 

A total of 32 participants (26 males/6 females), ages 18 
– 40 years with an average age of 23 (SD=5), volunteered 
for the project.  Mean positional accuracy of the record-
ings averaged between all screen regions was 0.80º 
(SD=0.71º). For additional eye positional data quality as-
sessment behavior scores were computed for the live da-
taset by the methodology discussed in [40] using I-VT 
algorithm with micro-saccade filter set at 4° of the visual 
angle. Following scores were obtained as a result 
FQnS=56.9% (SD=12.6), FQlS=1.03° (SD=0.48), 
SQnS=108.7% (SD=27.8). 

All subjects participated in the four recording sessions. 
The first and the second sessions were separated by ap-
proximately 20 minutes. The second and the third eye 
tracking sessions were separated by approximately one 



   
 

 
 

 

week. The third and the fourth sessions were separated by 
approximately 20 minutes. Before each recording session, 
for each subject and eye movement invocation task, the 
eye tracking equipment was recalibrated to ensure high 
positional accuracy of the recorded data. Live and spoof 
data will be publically available here [41]. 
6.1.3 Stimuli 

The goal of the stimulus was to invoke a large number 
of horizontal saccades to allow reliable liveness detection. 
The stimulus was displayed as a jumping dot, consisting of 
a grey disc sized approximately 1º with a small black point 
in the center. The dot performed 100 jumps horizontally. 
Jumps had the amplitude of 30 degrees of the visual angle. 
Subjects were instructed to follow the jumping dot. 

6.2. Spoofing Strategies 
Two strategies are employed by an attacker to generate 

spoof samples via described oculomotor plant models. The 
first strategy assumes that the attacker does not have ac-
cess to the stored OPC biometric template data. In this 
case the attacker employs the default OPC values taken 
from the literature to build a single mechanical replica of 
the eye to represent any authentic user. The second strate-
gy assumes that the attacker has stolen the database with 
stored OPC biometric templates and can employ OPC 
values to produce a personalized replica for each individ-
ual to ensure maximum success of the spoof attack. In this 
case a separate replica is built for each individual by em-
ploying OPC averages obtained from the OPC biometric 
templates generated from all recordings of this person.  

As a result following spoofing attacks are considered. 
Spoof I-A and Spoof II-A represent the attacks performed 
by the replica created by the Model I and Model II respec-
tively employing the first spoof generation strategy. We 
do not consider spoofs for the Models I and II created by 
the second strategy (i.e., Spoofs I-B, II-B), because if the 
corresponding OPC for the model I and II are derived 
from the recorded eye movement signal via framework 
specified by Figure 3 then the saccades generated with 
resulting OPC are very different from normally exhibited 
saccades. As a result spoofing is easily detectable and pro-
duces artificially high classification rates. Model III allows 
creating human-like saccades for both strategies, therefore 
producing attacks Spoof III-A and III-B. 

6.3. Metrics 
Following metrics are employed for the assessment of 

liveness detection and resistance to spoofing attacks. 
𝐶𝑅   = 100 ∙

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑇𝑜𝑡𝑎𝑙𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠  1 

Here CR is Classification Rate.  CorrectlyClassifiedSam-
ples is the number of tests where OPC set was correctly 
identified as spoof or live. TotalAmountOfSamples is the 
total number of classified samples. We abbreviate Classi-

fication Rate as CR further on. 
𝐹𝑆𝐴𝑅 = 100 ∙

𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑆𝑝𝑜𝑜𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑇𝑜𝑡𝑎𝑙𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝑆𝑝𝑜𝑜𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠  2 

Here FSAR is False Spoof Acceptance Rate. Improper-
ClassifiedSpoofSamples is the number of spoof samples 
classified as live and TotalAmountOfSpoofSamples is the 
total amount of spoofed samples in the dataset. 

𝐹𝐿𝑅𝑅 = 100 ∙
𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐿𝑖𝑣𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑇𝑜𝑡𝑎𝑙𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑓𝐿𝑖𝑣𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑠  3 

Here FLRR is False Live Rejection Rate. ImproperClassi-
fiedLiveSamples is the number of live samples that was 
marked by liveness detector as a spoof and TotalAmoun-
tOfLiveSamples is the total amount of live records in the 
dataset. 

6.4. Training & Testing Split 
Validation methodology similar to the discussed by 

Marasco and coleagues [42] is employed. Specifically, the 
dataset is randomly split as 2:1, with former number repre-
senting training part and the latter number representing the 
testing part. To prevent overfitting a 10-fold cross valida-
tion is employed. For each split, the threshold yielding the 
minimal sum of FLRR and FSAR is computed. When sev-
eral threshold provide same error rate the threshold corre-
sponding to the maximal CR is employed. The average 
threshold computed between all splits on the training sub-
sets is employed as final threshold on the testing part of 
the dataset.  

7. Results 
Table I and Figure 4 present results. 

Table I. Spoof detection results. Numbers in the table 
represent percentages. SD represents standard deviation. 

Spoof CR (SD) FSAR (SD) FLRR (SD) EER 
I-A 93 (3.9) 0 (0) 7.4 (4.1) 5 
II-A 80.3 (25.2) 0 (0) 11.8 (7) 8 
III-A 86.4 (4.2) 0 (0) 15.5 (4.6) 17 
III-B 84.7 (4.1) 4 (5.2) 27.4 (4.1) 20 
As expected Spoof I attack created by the simplest OP 

model is least successful. The performance of the individ-
ualized replica represented by the Spoof III-B was the 
most successful with the highest FSAR and FLRR. The 
performance of other models and strategies lies between 
those two performances. 

It is obvious that the employment of more sophisticated 
OP model leads to the higher spoofing success. The use of 
the individualized replica improves spoofing success as 
well. However, creation of more sophisticated spoofing 
models, especially the individualized ones, in reality, can 
be highly cost prohibitive. 

8. Discussion 
Data capture sampling frequency. The signal from 

live humans was captured at 1000Hz with a high-grade 



   
 

 
 

 

commercial eye tracking equipment, providing an oppor-
tunity to obtain the OPC from a very high quality eye po-
sitional signal. The signal from the replica was generated 
also at a frequency of 1000Hz. It remains an open question 
how well the liveness detection framework performs on a 
lower sampling equipment, e.g., an already existing iris 
scanner software-upgraded to capture eye movements at a 
rate of 30Hz. There is evidence that OPC biometrics itself 
can provide person identification capabilities at frequen-
cies as low as 75Hz [10]. However, investigation of OPC 
biometrics’ liveness detection capabilities at 75Hz and 
lower sampling rates is the goal of our future work. 

Types of the spoofing attacks. Our work does not con-
sider the simplest form of the mechanical attack, i.e., eye 
images printed on a high quality printer [2], because it is 
not even possible to properly calibrate eye-tracking soft-
ware using such representation of an eye. Calibration fail-
ure can immediately signal the presence of the spoof, 
therefore making detection of this type of the attack trivial. 
Our work also does not consider zero effort attacks where 
an intruder attempts to impersonate authentic users with 
the non-modified movement of his eyes. High tolerance to 
zero effort attack requires the improvement of biometric 
accuracy of the underlying eye movement-driven bio-
metric modality and is beyond the scope of this work.   

Properties of the simulated signal. Mathematical sim-
ulation of the eye movement signal for spoofing does not 
accurately simulate inaccuracies created by the actual eye 
tracking equipment. Such inaccuracies might affect the 
performance of the liveness detector when a spoofing at-
tack is conducted by an actual mechanical replica. 

While we considered different aspects of the live eye 
movement behavior during the simulation, the effects of 
certain elements of the COB behavior such as express and 
compound saccades [27] were not examined. The inclu-
sion of such events might improve the performance of the 
liveness detector and it is a part of our future work. 

Modeling limitations. We have investigated only lim-
ited subset of the oculomotor plant mathematical models 
considering major classes of models, which, in our opin-
ion, are the easiest to replicate mechanically. It is possible 

that application of more sophisticated models of the ocu-
lomotor plant and the eye movement behavior might result 
in spoofing that is more successful. 

9. Conclusion and Future Work 
This paper outlined and explored liveness detection ca-

pabilities afforded by the movements of the eye. The ap-
proach is based on extracting oculomotor plant character-
istics (OPC) - internal non-visible anatomical structure of 
an individual human eye and making a decision about the 
liveness of the signal based on the variability of those 
characteristics. 

Spoof attacks were conducted by the mechanical repli-
cas simulated via three different mathematical models 
representing human eye. The replicas varied from relative-
ly simple ones that oversimplify the anatomical complexi-
ty of the oculomotor plant to more anatomically accurate 
ones. Two strategies were employed for the creation of the 
replicas. The first strategy employed values for the charac-
teristics of the oculomotor plant taken from the literature 
and the second strategy employed exact values of each 
authentic user. Results indicate that a more accurate indi-
vidualized replica is able to spoof eye movement-driven 
system more successfully, however, even in this error rates 
were relatively low, i.e., FSAR=4%, FLRR=27.4%. 

In our future work we are planning to consider liveness 
detection methods that further employ complex eye 
movement behavior and its parameters as criteria of 
liveness. We are also planning to employ wider variety of 
replicas and larger pool of subjects for liveness testing. 

We hypothesize that liveness detection capabilities af-
forded by the oculomotor plant characteristics will be use-
ful to such projects as UIDAI [43] where hundreds of 
thousands of iris authentication devices will be deployed 
in remote locations with possibly little supervision during 
actual authentication. Assuming that OPC capture is ena-
bled on the existing iris authentication devices by a soft-
ware upgrade such devices will have enhanced biometrics 
and liveness detection capabilities. 
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