
 

The Application of Eye Movement 
Biometrics in the Automated Detection 
of Mild Traumatic Brain Injury

 
Abstract 
This paper presents a pilot study for the automated 
detection of mild traumatic brain injury (mTBI) via the 
application of eye movement biometrics. Biometric fea-
ture vectors from multiple paradigms are evaluated for 
their ability to differentiate subjects diagnosed with 
mTBI from healthy subjects within a small subject pool. 
Supervised and unsupervised machine learning tech-
niques were applied to the problem, with preliminary 
results indicating a potential 100% classification accu-
racy from a supervised learning technique and 89% 
classification accuracy from an unsupervised technique. 
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Introduction 
Traumatic brain injury (TBI) is defined by the American 
Congress of Rehabilitation Medicine [11] as any physi-
cal trauma that results in memory loss, altered mental 
state, loss of consciousness, or focal neurological defi-
cits. TBI is classified as “mild” (mTBI) when loss of con-
sciousness does not exceed 30 minutes, Glasgow Coma 
Scale does not exceed 13-15 after 30 minutes, and 
memory loss does not extend beyond a 24-hour period. 
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According to reports from the Centers for Disease Con-
trol and Prevention [4], approximately 1.7 million peo-
ple are diagnosed with TBI each year in the United 
States, of which nearly 75% (or 1.3 million) are inci-
dences of mTBI. This does not account for the undiag-
nosed occurrences of mTBI that are thought to exceed 
25% of the reported figure, or nearly 425,000 undiag-
nosed cases per year. 

Each year there are approximately 52,000 TBI-related 
deaths in the United States, accounting for roughly 
one-third (30.5%) of all injury-related deaths [4]. mTBI 
increases the risk of TBI [5], and can cause neurologi-
cal disorders which persist years after injury [16], af-
fecting thought, behavior, and emotion, producing 
physical symptoms such as fatigue, nausea, vertigo, 
headache, lethargy, and blurred vision [11]. 

The ability to diagnose mTBI is especially important for 
active military personnel and professional sports play-
ers, for whom it is common to sustain repeated head 
trauma, the severity of which can range from inconse-
quential to severe. Unfortunately, there are few quanti-
tative measures by which to assess the presence and 
severity of TBI, with health care professionals often 
employing qualitative guidelines to assist in diagnosis. 

Eye movements have been utilized by physicians to 
diagnose many common neurological disorders for dec-
ades [17]. Due to the integrated nature of the oculo-
motor plant and brainstem control [3], neurological 
disorders are often expressed through abnormalities in 
human eye movements [17]. 

Previous Research 
In 1995, Hellerstein et al. conducted a qualitative study 
on the effects of mTBI on patient vision. Within an age-
matched subject pool of 16 mTBI patients and 16 
healthy controls, it was found that subjects diagnosed 
with mTBI exhibited significant abnormalities in ver-
gence and smooth pursuit eye movements. 

In 2004, Heiteger et al. conducted a quantitative study 
on the effects of mTBI exhibited in reflexive, anti-, and 
memory-guided saccades. In general, mTBI patients 
displayed significantly less spatial accuracy, longer sac-
cadic latency, and more target errors than matched 
(age, gender, education) control subjects within a 
population of 60 participants. This was followed, in 
2006, by a longitudinal study [8] of the recovery of 
oculomotor function in mTBI patients, which document-
ed noticeable deficits up to a year after injury. 

In 2007, Drew et al. conducted a quantitative study on 
the effects of mTBI on saccades in a gap-saccade task. 
With a matched (age, gender, education) subject pool 
of 20 mTBI patients and 20 healthy controls, it was 
found that saccadic latency was significantly greater for 
mTBI patients immediately following injury, but recov-
ered quickly, with no statistically significant difference 
after 1 week of recovery. 

In 2011, Ciuffreda et al. published a list of diagnostic 
oculomotor parameters identified from over a decade of 
clinical research. Results indicated that mTBI patients 
exhibit specific types of anomalies with respect to ver-
gence, versional, and accommodative eye movements. 



 

Motivation & Hypothesis 
While there is substantial evidence that mTBI causes 
measurable deficits in oculomotor behavior [1, 2, 6-8], 
there has been little attempt to develop automated di-
agnostic tools, and many aspects of the visual system 
remain unstudied, despite the accuracy and affordabil-
ity of modern eye tracking systems [3]. Over the past 
decade, an emergent sub-field of biometrics has grown 
around the idea that the unique properties of the ocu-
lomotor control system can be interpreted from the 
measurable properties of eye movements [9, 10, 14, 
15]. Therefore, we hypothesize that eye movement 
biometrics will exhibit patterns that may assist in the 
diagnosis of mTBI, providing an automated framework 
with which to reduce the workload of physicians. 

Methodology 
High-resolution recordings from an openly available eye 
movement database [12], were utilized to allow for the 
reproducibility of the considered experiments, with col-
lection methodology presented in the following section. 

Apparatus & Software 
Binocular eye movements were recorded using the Eye-
Link 1000 eye tracking system, with accuracy of 0.25° 
– 0.5°, resolution of 0.01° RMS, and sampling rate of 
1000 Hz. The recordings exhibited an average calibra-
tion accuracy of 0.8° (±0.6), with an average data loss 
of 2.3% (±3.9). The stimulus was presented on a flat 
screen monitor positioned at distance of 685 mm from 
the subject, with dimensions of 640×400 mm, and res-
olution of 2560×1600 pixels. A chin rest was employed 
to improve stability. 

Participants 
Eye movement recordings were collected for 32 sub-
jects (26 males, 6 females), ages 18 – 40 with an av-
erage age of 23 (±5.4). Of these, 2 subjects had re-
cently sustained head injuries resulting in mTBI; one 
subject was recorded the day after the injury and the 
other was recorded 111 days after the injury. Both 
mTBI subjects and 27 of the healthy subjects per-
formed 4 recordings per stimulus, and 3 of the healthy 
subjects performed 2 recordings per stimulus. Subjects 
were given a 20-minute break between the 1st and 2nd 
recording session, with 2 weeks between the 2nd and 
3rd recording session, and 20 minutes between the 3rd 
and 4th recording session. mTBI injuries were self-
reported by subjects after data collection, and data col-
lection procedures were approved by IRB committee. 

Procedure 
Eye movement recordings were generated for two 
stimuli, designed to evoke fixed-amplitude horizontal 
(30°) and vertical saccades (20°), at regular 1-second 
intervals. For both stimuli, a small white dot jumped 
back and forth on a plain black background, eliciting a 
saccade with each jump. The amplitude was chosen 
due to screen constraints and complications associated 
with separating low-amplitude saccades (less than 1°). 
Subjects were instructed to follow the white dot with 
their eyes, with 100 saccades elicited per recording. For 
each recording session, the horizontal and vertical 
stimuli were presented approximately 2 minutes apart. 

Algorithm Heuristic 
for i ← 1 to Eye movement recording count 
   do mTBI ← 0 
      if Fixation Quantiative Score < Average 
      then mTBI ← mTBI + 1/7 
      if Fixation Count < Average 
      then mTBI ← mTBI + 1/7 
      if Multi-Corrected Undershoot < Average 
      then mTBI ← mTBI + 1/7 
      if Fixation Duration > Average 
      then mTBI ← mTBI + 1/7 
      if Saccade Amplitude > Average 
      then mTBI ← mTBI + 1/7 
      if Simple Overshoot > Average 
      then mTBI ← mTBI + 1/7 
      if Activation-Time Constant > Average 
      then mTBI ← mTBI + 1/7 
 
Figure 1: Unsupervised learning technique. 



 

Biometric feature vectors and standardized quality 
measures [13] were extracted from each recording ac-
cording to the CEM-P [9], CEM-B [10], COB [14], and 
OPC [15] eye movement biometric techniques. CEM 
techniques are related to the conscious behavior of the 
human visual system, COB techniques are related to 
subconscious corrective behavior of the human visual 
system, and OPC techniques are related to the physical 
structure of the oculomotor plant. Average feature val-
ues were utilized in the case of CEM-B and OPC, which 
operate by comparing the distribution of features. Fea-
ture vectors were examined manually in an attempt to 
identify patterns or clustering that might be utilized to 
distinguish between mTBI and healthy recordings. 

Fixation quantitative score represents the ratio of 
measured fixation points against the total number of 
stimuli. Fixation count is the total number of measured 
fixations. Multi-corrected undershoot is the number of 
saccades which undershoot the target stimulus and are 
followed by more than one corrective saccade.  Fixation 
duration is the average fixation duration across the re-
cording. Vectorial saccade amplitude represents the 
average Euclidean distance covered by each saccade. 
Simple overshoot is the number of saccades that over-
shoot the target stimulus and are not followed by cor-
rective saccades. The agonist muscle activation-time 
constant is a constant in the mathematical model of the 
oculomotor plant responsible for transforming the neu-
ronal control signal into contractile force over time, 
with respect to the agonist extraocular muscle. 

During manual examination of the biometric feature 
vectors, it was noted that (in both horizontal and verti-
cal stimulus recordings) there was a strong tendency 
for subjects with mTBI to exhibit: lower than average 

values of the fixation quantitative score, fixation count, 
and multi-corrected undershoot; and higher than aver-
age values of fixation duration, vectorial saccade ampli-
tude, simple overshoot, and the agonist muscle activa-
tion-time constant. 

After potentially relevant biomarkers were established, 
two algorithms were implemented to assess the accu-
racy of mTBI detection with supervised and unsuper-
vised learning techniques. The supervised learning 
technique utilized support vector regression with a ra-
dial basis function (gamma = 1) applied to the 7 fea-
tures identified during manual examination. Leave-one-
out cross-validation was performed to obtain mTBI de-
tection scores for each recording. The unsupervised 
learning technique utilized a heuristic method, given in 
Figure 1, in which the probability of mTBI was estimat-
ed as the percent of features above or below average. 

Results 
For each recording session mTBI detection scores were 
averaged between the horizontal and vertical stimuli, 
regression values were binned, and simple thresholding 
was applied to the mTBI detection scores generated by 
each algorithm to calculate confusion matrices, sensi-
tivity, specificity, and accuracy. 

Detection Scores 
mTBI detection scores are presented as a histogram in 
Figures 2 and 3. Based on the distribution of detection 
scores, arbitrary thresholding was employed to meas-
ure the achievable accuracy. For the supervised tech-
nique, recordings with detection score ≤ -0.870 were 
classified as mTBI. For the unsupervised technique, 
recordings with detection score ≥ 0.79 were classified 
as mTBI.  
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Figure 3: Unsupervised score histogram. 
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Figure 2: Supervised score histogram. 



 

Classification Accuracy 
Confusion matrices are presented in Figures 4 and 5. 
For the supervised technique, these results indicate a 
potential 100% specificity, 100% sensitivity, and 100% 
accuracy, and for the unsupervised technique, 89% 
specificity, 100% sensitivity, and 89% accuracy. 

Discussion 
During our manual examination of biometric feature 
vectors, we also attempted to identify features that 
might exhibit potential recovery patterns; that is, bio-
metric features in mTBI subjects that changed linearly 
and consistently over time. While several features were 
noted during examination, there was no crossover in 
the biometric features noted for the horizontal and ver-
tical stimulus recordings. This suggests rather strongly 
that the patterns exhibited by these features were due 
to random chance. 

Further, in our initial investigations of these techniques, 
the considered experiments were repeated to include all 
available biometric features. The inclusion of these ex-
traneous features reduced the overall accuracy of these 
techniques, enforcing the need for dimensionality re-
duction, and confirming that mTBI does not affect all 
aspects of the oculomotor system evenly. 

The results of these experiments are encouraging, and 
suggest rather strongly that it is possible to detect 
mTBI using automated eye movement techniques. 
Though the supervised technique required training data 
and, subsequently, cross-validation to reduce the likeli-
hood of overfitting, it was able to achieve linear sepa-
rability between mTBI and healthy subjects. Similarly, 
while the unsupervised technique was unable to 
achieve linear separability, the achievable accuracy was 

relatively high, resulting in a small amount of false pos-
itives that could easily be identified during post-
diagnostic screening. 

At the same time, it is important to note that the sam-
ple size in this pilot study is too small to draw specific 
conclusions. It is entirely possible that the separability 
of mTBI from healthy subjects is due to unknown or 
unmeasurable factors. Despite this, the accuracy 
achieved by these techniques is sufficient to warrant 
further study, and future research will likely see a sub-
stantial increase in the size of the considered subject 
pool, in addition to algorithmic improvements. 

Conclusion 
This paper has presented a pilot study for the automat-
ed detection of mild traumatic brain injury (mTBI) via 
the application of eye movement biometrics. Biometric 
feature vectors from multiple paradigms were evaluat-
ed for their ability to differentiate subjects diagnosed 
with mTBI from healthy subjects within a small subject 
pool. It was found that the fixation quantitative score, 
fixation count, fixation duration, vectorial saccade am-
plitude, simple overshoot, multi-corrected undershoot, 
and the agonist muscle activation-time constant exhib-
ited obvious clustering in mTBI patients. 

Supervised and unsupervised machine learning tech-
niques were applied to the classification problem, based 
on support vector machine and heuristic algorithms. 
The supervised technique achieved a potential 0% false 
positive rate, 0% false negative rate, and 100% accu-
racy, while the unsupervised technique achieved a po-
tential 11% false positive rate, 0% false negative rate, 
and 89% accuracy. The accuracy achieved by these 
techniques is encouraging and warrants further study. 

Figure 4: Supervised confusion matrix. 

Figure 5: Unsupervised confusion matrix. 
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