
It would appear that we have reached the limits of what it is possible to achieve with
computer technology, although one should be careful with such statements, as they tend to
sound pretty silly in 5years time.

-John Von Neumann 1949

As you have learned, the architecture-or topology-of a neural network
plays an important role in how effective
it is. You've also learned that choosing
the parameters for that architecture is
more of an art than a science and

usually involves an awful lot of hands-on
tweaking. Although you can develop a
"feel" for this, wouldn't it be great if
your networks evolved to find the best
topology along with the network
weights? A network that is simple
enough to learn whatever it is you want
it to learn, yet not so simple that it loses
its ability to generalize?

When using an evolutionary algorithm
to evolve neural network topology, we
can imagine an undulating fitness
landscape where each point in search
space represents a certain type of archi
tecture. The goal of an EANN (Evolu
tionary Artificial Neural Network),
therefore, is to traverse that landscape as
best it can before alighting upon the
global optima.

A fair amount of time and thought has been put into this problem by a number of
different researchers, and I'm going to spend the first part of this chapter describing
some of the many techniques available. The second part of the chapter willbe spent
describing a simple implementation of what I consider to be one of the better methods.

The Competing Conventions Problem '"
:

As with every other problem tackled with evolutionary algorithms, any potential
solution has to figure out a way of encoding the networks, a way of assigning fitness
scores, and valid operators for performing genome mutation and/or crossover. I say
or crossover because a few methods dispose with this potentially troublesome opera
tor altogether, preferring to rely entirely on mutation operators to navigate the
search space. So before I describe some of the popular EANNs, let me show you why
this operator can be so problematic.

The 'I:ompet.ing l:onvent.ion5
Problem
One of the main difficulties with encoding candidate networks is called the compet
ing conventions problem-sometimes referred to as the structural-functional map
ping problem. Simply put, this is where a system of encoding may provide several
different ways of encoding networks that exhibit identical functionality. For ex
ample, imagine a simple encoding scheme where a network is encoded as the order
in which the hidden neurons appear in a layer. Figure 11.1 shows a couple of
examples of simple networks.

~

j
t

[

=

Network 1 Network 2

Figure 11.1

A simple encoding

scheme.
~

[

[
I

Using the simple scheme I've just proposed, Network 1 may be encoded as:
ABCD

and Network 2 as:

DCBA

c:

I

\~~

I
tI

RI

I
;
~

~

If you look carefully, you'll notice that, although the order of the neurons is differ
ent-and therefore the genomes are different-both networks are essentially
identical. They will both exhibit exactly the same behavior. And this is where the
problem lies, because if you now attempt to apply a crossover operator to these two
networks, lets say at the midpoint of the genome, the resultant offspring will be:

A B BA or Dee D
This is an undesirable result because not

only have both offspring inherited
duplicated neurons, they have also lost
50% of the functionality of their parents
and are unlikely to show a performance
improvement. (Even if one of them did
go on to produce such '70s classics as
Super Trooper and Dancing Queen. <smile».

Obviously, the larger the networks are,
the more frequently this problem is
encountered. And this results in a more

negative effect on the population of
genomes. Consequently, it is a problem
researchers do their best to avoid when

designing an encoding scheme.

Direct Encoding
There are two methodologies of EANN encoding: direct encoding and indirect

encoding. The former attempts to specify the exact structure of the network by
encoding the number of neurons, number of connections, and so on, directly into
the genome. The latter makes use of growth rules, which may even define the
network structure recursively. I'll be discussing those in a moment, but first let's
take a look at some examples of direct encoding.

GENITDR
GENITOR is one of the simplest techniques to be found and is also one of the
earliest. A typical version of this algorithm encodes the genome as a bit string. Each
gene is encoded with nine bits. The first bit indicates whether there is a connection

between neurons and the rest represent the weight (-127 to 127). Given the network
shown in Figure 11.2, the genome is encoded as:

110010000 000000010 101000011 000000101 110000011

Where the bit in bold is the connectivity bit.

Figure 11.2

GENITOR encoding. The light gray connectivity lines

indicate disabled connections.

The disadvantage of this technique, as with many of the encoding techniques
developed to date, is that a maximal network topology must be designed for each
problem addressed in order for all the potential connectivity. to be represented
within the genome. Additionally, this type of encoding will suffer from the compet
ing conventions problem.

Binary Mat.rix En£:oding
One popular method of direct encoding is to use a binary adjacency matrix. As an
example, take a look at the network shown in Figure 11.3.

A

BC0EFigure 11.3

A I 0 I 0 I 1

I 1I 0 IBinary matrix

representation for aB

0001o Isimple 5-node network

C

00001

0

00001

E

00000

As you can see, the connectivity for this network can be represented as a matrix of
binary digits, where a 1 represents a connection between neurons and a 0 signifies
no connection. The chromosome can then be encoded byjust assigning each row
(or column) of the matrix to a gene. Like so:

00 I 10 000 I 0 0000 I 0000 I 00000

However, because the network shown is entirely feedforward, this encoding is wasteful
because half the matrix will alwayscontain zeros. Realizing this, we can dispose of
one-half of the matrix, as shown in Figure 11.4, and encode the chromosome as:

011001001 I

which, I'm sure you will agree, is much more efficient!

Once encoded, the bit strings may be run through a genetic algorithm to evolve
the topologies. Each generation, the chromosomes are decoded and the resultant
networks initialized with random weights. The networks are then trained and a
fitness is assigned. If, for example, backprop is used as the training mechanism,
the fitness function could be proportional to the error generated, with an addi
tional penalty as the number of connections increases in order to keep the network
size at a minimum.

:Q;

~

I

A

B

c

D

E

A B c D E Figure 11.4

The adjusted matrix.

~I
Obviously, if your training approach can handle any form of connectivity, not just
feedforward, then the entire matrix may be represented. Figure 11.5 shows an
example of this. A genetic algorithm training approach would be okay with this type
of network, but standard backpropagation would not.

Node-Ba§ed Encoding

ABCDEFigure 11.5

A I 0 I 0 I 1

I 0 I 0 INetwork with recurrent

connectivity.
IB 00010

C

01001

0

10001

E

01000
W

Some Relat.ed Problems

Node-based encoding tackles the problem by encoding all the required information
about each neuron in a single gene. For each neuron (or node), its gene will
contain information about the other neurons it is connected to and/or the weights
associated with those connections. Some node-based encoding schemes even go so
far as to specify an associated activation function and learning rate. (A learning
rate, don't forget, is used when the network is trained using a gradient descent
method like backpropagation.)

Because the code project for this chapter uses node-based encoding, I'll be discuss
ing this technique in a lot more detail later on, but for now,just so you get the idea,
let's look at a simple example that encodes just the connectivity of a network.

It has been demonstrated that when using matrix encoding (and some other forms
of direct encoding), performance deteriorates as the size of the chromosome
increases. Because the size increases in proportion to the square of the number of
neurons, performance deteriorates pretty quickly. This is known as the scalability

problem. Also, the user still has to decide how many neurons will make up the
maximal architecture before the matrix can be created. In addition, this type of
representation does not address the competing conventions problem discussed
earlier. It's very likely, when using this encoding, that two or more chromosomes
may display the same functionality. If these chromosomes are then mated, the
resultant offspring has little chance of being fitter than either parent. For this
reason, it's quite common for the crossover operator to be dismissed altogether
with this technique.

ISm In. Evolving Neural Network Topology
I =- '--'

Network 1

~~[!J[f]~

Network 2

~~[!][!J

Figure 11.6

Node-based encoding.

••

Figure 11.6 shows two simple networks and their chromosomes. Each gene contains
a node identifier and a list of incoming connections. In code, a simplified gene and
genome structure would look something like this:

struct SGene

int NodeID;

struct SGenome

vector<SGene> chromosome;

vector<Node*> vecpNodes;

fitness;double

I~
i

I
} ;

Mutation operators using this sort of encoding can be varied and are simple to
implement. They include such mutations as adding a link, removing a link, adding
a node, or removing a node. The crossover operator, however, is a different beast
altogether. Care must be taken to ensure valid offspring are produced and that
neurons are not left stranded without any incoming and outgoing connections.
Figure 11.7 shows the resultant offspring if the two chromosomes from Figure 11.6
are mated after the third gene (the "C" gene).

;~
Crossover in aaion.

Figure 11.7
Parent 2

~~][tJ~
t

1
~~[!]~~

f

Parent 1

~[!]~~[f]
Once valid genetic algorithm operators have been defined, the neural networks
encoded using the described scheme may be evolved as follows (assuming they are
trained using a training set in conjunction with a gradient descent algorithm like
backpropagation) :

1. Create an initial random population of chromosomes.

2. Train the networks and assign a fitness score based on the overall error value
of each network (target output - best trained output). It is also feasible to
penalize the score as the networks grow in size. This will favor populations
with fewer neurons and links.

3. Choose two parents using your favorite selection technique (fitness propor-
tionate, tournament, and so on).

4. Use the crossover operator where appropriate.

5. Use the mutation operator/s where appropriate.

6. Repeat Steps 3,4, and 5 until a new population is created.

7. Go to Step 2 and keep repeating until a satisfactory network is evolved.

I
••

Figure 11.8

Path-based encoding.

Because each path alwaysbegins with an input neuron and always ends with an
output neuron, this type of encoding guarantees there are no useless neurons
referred to in ~e chromosome. The operator used for recombination is two-point
crossover. (This ensures the chromosomes are always bound with an input and
output neuron). Several mutation operators are typically used:

• Create a new path and insert into the chromosome.

• Choose a section of path and delete.

• Select a path segment and insert a neuron.

• Select a path segment and remove a neuron.

Because the networks defined by this type of encoding are not restricted to
feedforward networks (links can be recurrent), a training approach such as genetic
algorithms must be used to determine the ideal connection weights.

Path-based encoding defines the structure of a neural network by encoding the
routes from each input neuron to each output neuron. For example, given the
network described by Figure 11.8, the paths are:

I --7A --7C--7 3

I--7D--7B--74

I--7D--7C--73

2--7D--7C--73

2--7D--7B--74

Later in the chapter, I'll be showing you how to use node-based encoding to evolve
the topology and the connection weights at the same time.

Path-Ba!ied Encoding

&I

m~

Indirect Encoding
:ndirect encoding methods more closely mimic the way genotypes are mapped to
)henotypes in biological systems and typically result in more compact genomes.
Each gene in a biological organism does not give rise to a single physical feature;
rather, the interactions between different permutations of genes are expressed.
Indirect encoding techniques try to emulate this mechanism by applying a series of
growth rules to a chromosome. These rules often specify many connections simulta
neously and may even be applied recursively. Let's take a look at a couple of these
techniques, so you get a feel for how they can work.

Grammar-Ba§E!d Enc:oding
This type of encoding uses a series of developmental rules that can be expressed as
a type of grammar. The grammar consists of a series of left-hand side symbols (LHS)
and right-hand side symbols (RHS). Whenever a LHS symbol is seen by the develop
ment process, it's replaced by a number of RHS symbols. The development process
starts off with a start symbol (a LHS symbol) and uses one of the production rules to
create a new set of symbols. Production rules are then applied to these symbols until

,a set of terminal symbols has been reached. At this point, the development process
stops and the terminal symbols are expressed as a phenotype.

If you're anything like me, that last paragraph probably sounded like gobbledygook!
Jhis is a difficult idea to understand at first, and it's best illustrated with diagrams.
;rake a look at Figure 11.9, which shows an example of a set of production rules.

The S is the start symbol and the Is and Osare terminal symbols. Now examine
Fi~re 11.10 to see how these rules are used to replace the start symbol S with more
symbolsin the grammar, and then how these symbols in turn are replaced by more
sympolsuntil the terminal symbols have been reached. As you can clearly see, what
We Ipaveended up with is a binary matrix from which a phenotype can be con
structed. Cool huh?

-- - - - --- '

S~A B
CD

A~C p
a C

a--.O 0
.00

B~a aa e

b~O 0
o 1

C~a aa a

C~ 10
o 1

D~a aa b

o 1
e~O 1 p~ 1 11 1

Figure 11.9

Example production

rules (or grammar

based encoding.

1 0 1 1 0.0 0 0
o 1 1 1 0 0 0 0

cpa a 001 0 0 0 0 1

S~A B ~ a cae ~ 0 0 0 1 0 0 0 1
C D a a a a 0 0 0 0 0 0 0 0

a a a bOO 0 0 0 0 0 0
000 000 0 0
o 0 0 0 0 0 0 1

Figure 11.10

Following the growth rules.

!

A genetic algorithm is used to evolve the growth rules. Each rule can be expressed
in the chromosome by four positions corresponding to the four symbols in the RHS
of the rule. The actual position (its loci) of the rule along the length of the chromo
some determines its LHS. The number of non-terminal symbols can be in any
range. The inventors of this technique used the symbols A through Z and a through
p. The rules that had terminal symbols as their RHS were predefined, so the chro
mosome only had to encode the rules consisting of non-terminal symbols. There
fore, the chromosome for the example shown in Figure 11.10 would be:

ABCD cpac aaae aaaa aaab

where the first four positions correspond to the start symbol S, the second four to
the LHS symbol A, and so on.

Bi-Dimen!iional Growth Encoding
This is a rather unusual type of encoding. The neurons are represented by having a
fixed position in two-dimensional space, and the algorithm uses rules to actually
growaxons, like tendrils reaching through the space. A connection is made when an
axon touches another neuron. This is definitely a method best illustrated with a
diagram, so take a look at Figure 11.11 to see what's going on.

~I

~

I
i
I.a

Figure 1 1.1 1

Axons growing outward

from n'eurons located in

2D space.

-The left-hand side of Figure 11.11 shows the neurons with all their axons growing
'outward, and the right-hand side shows where connections have been established.

ifhe designers of this technique use a genome encoding which consists of 40 blocks,
'each representing a neuron. There are five blocks at the beginning of the genome
to represent input neurons, five at the end to represent output neurons, and the
~emaining thirty are used as hidden neurons.
1/

E~chblock has eight genes.

,I • Gene1 determines if the neuron is present or not.

• Gene2 is the X position of the neuron in 2D space.

• Gene3 is the Y position.

• Gene4 is the branching angle of the axon growth rule. Each time the axon
divides, it divides using this angle.

f. Gene5 is the segment length of each axon.
• Gene6 is the connection weight.
• Gene7 is the bias.

• GeneS is a neuron type gene. This gene in the original experiment was used
to determine which input the input neuron represented.

As you can imagine, this technique is tricky to implement and also pretty slow to

;volve.So, although it's interesting, it's not really of much practical use.

Andthat ends your whistle-stop tour of encoding techniques. Next, I'll show you a

---- _£.·~:~"""'I"\rlp~h;jsp.d encoding to grow your ~etworks from scratch.

NEAT
NEAT is short for Neuro Evolution of Augmenting Topologiesand has been developed by
Kenneth Stanley Owen and Risto Miikkulainen at the University of Texas. It uses
node-based encoding to describe the network structure and connection weights,
and has a nifty way of avoiding the competing convention problem by utilizing the
historical data generated when new nodes and links are created. NEAT also at
tempts to keep the size of the networks it produces to a minimum by starting the
evolution using a population of networks of minimal topology and adding neurons
and connections throughout the run. Because nature works in this way-by increas
ing the complexity of organisms over time-this is an attractive solution and is
partly the reason I've chosen to highlight this technique in this chapter.

There's quite a bit of source code required to implement this concept, so the
related code is listed as I describe each part of the NEAT paradigm. This way (if I do
it in the proper order <smile», the source will help to reinforce the textual expla
nations and help you to grasp the concepts quickly. You can find all the source code
for this chapter in the Chapter11/NEAT Sweepers folder on the CD.

First, let me describe how the networks are encoded.

The NEAT Genome
The NEAT genome structure contains a list of neuron genes and a list of link genes. A
link gene, as you may have guessed, contains information about the two neurons it
is connected to, the weight attached to that connection, a flag to indicate whether
the link is enabled, a flag to indicate if the link is recurrent, and an innovation
number (more on this in a moment). A neuron gene describes that neuron's
function within the network-whether it be an input neuron, an output neuron, a
hidden neuron, or a bias neuron. Each neuron gene also possesses a unique identi
fication number.

Figure 11.12 shows the gene lists for a genome describing a simple network.

5Link6ene
The link gene structure is called SLinkGene and can be found in genes.h. Its defini
tion is listed here:

struct SLinkGene'

lithe IDs of the two neurons this link connects

Weight: 1.2Weight:-3Weight:0.7Weight:-2.1Weight:1.1Weight:0.8Weight:-1

From:

1From: 1From: 2From: 3From: 3From: 4From: 5

To:

3To: 4To: 4To: 4To: 5To: 5To: 3

Enabled:

yEnabled:yEnabled:yEnabled:yEnabled:NEnabled:YEnabled:Y

Recurrent: N

Recurrent: NRecurrent: NRecurrent: NRecurrent: NRecurrent: NRecurrent: Y

Innovation: 1

Innovation: 6Innovation: 2Innovation: 8Innovation: 3Innovation: 4Innovation: 7 Figure 11.12

Encoding a network the

NEAT way.

Link Genes

[

Neuron Genes

int FromNeuron.

ToNeuron;

double dWeight;

Ilflag to indicate if this link is currently enabled or not

bool bEnabled;

Ilflag to indicate if this link is recurrent or not

bool bRecurrent;

111'11 be telling you all about this value shortly

int InnovationID;

SL inkGene() {}

SLinkGeneCint in.

int out.

struct SNeuronGene

return (lhs.InnovationIO < rhs.InnovationIO);

SNeuronGene

false):bEnabled(enable),

InnovationIO(tag),

FromNeuron(in) ,

ToNeuron(out),

dWeight(w),

bRecurrent(rec)

rec =

enable,

tag,

bool

int

double w,

bool

{}

Ilits identification number

int iIO;

Iloverload '<' used for sorting(we use the innovation IO as the criteria)

friend bool operator«const SLinkGene& lhs, const SLinkGene& rhs)

{

}

} ;

Ilits type

neuron_type NeuronType;

This is an enumerated type. The values are input, hidden, bias, output, and none. You
will see how the none type is used when I discuss innovations in the next section.

Ilis it recurrent?

bool bRecurrent;

A recurrent neuron is defined in NEAT as a neuron with a connection that loops back
on itself. See Figure 11.13

The neuron gene structure is called SNeuronGene and is found in genes.h. Here is its
definition:

I Figure 11.13

A neuron with two incoming links: an outgoing

link and a looped recurrent link.

//sets the curvature of the sigmoid function

double dActivationResponse:

In this implementation, the sigmoid function's activation response is also evolved
separately for each neuron.

//position in network grid

double dSplitY. dSplitX;

If you imagine a neural network laid out on a 2D grid, it's useful to know the coor
dinates of each neuron on that grid. Among other things, this information can be
used to render the network to the display as a visual aid for the user.

When a genome is first constructed, all the neurons are assigned a Spl itX and a IIJ ~
Spl itY value. I'lljust stick to discussing the Spl itY value for now, but the Spl itX value U ,

is calculated in a similar way.Each input neuron is assigned a Sp 1itY value of 0 and
each output neuron a value of 1. When a neuron is added, it effectively splits a link,
and so the new neuron is assigned a Sp 1itY value halfway between its two neighbors.
Figure 11.14 should help clarify this.

o

Figure 11.14

Some example Spl itY

. depths.

~

Here's the definition of the genome class. There will be some methods and mem
bers you will not understand the purpose of just yet, but just take a quick glance at
the class for now and move onto the next section ..

A$well as being used to calculate the display coordinates for the network render
routine, this information is also invaluable for calculating the overall network depth
and for determining if a newly created link is recurrent.

SNeuronGeneCneuron_type

int

double

double

bool

(I

I;

I:Genome

type,

id,

y,

x,

r = false):iIDCidJ,

NeuronTypeCtype),

bRecurrentCr),

pNeuronMarkerCNULL),

dSpl itYCy),

dSpl itXCx)

I

(Please note, I have omitted the accessor methods for the sake of brevity).

class CGenome

private:

Ilits identification number

int m_GenomeID;

Iiall the neurons which make up this genome

vector<SNeuronGene> m_vecNeurons;

/land all the links

vector<SLinkGene> m_vecLinks;

Ilpointer to its phenotype

CNeuralNet* m_pPhenotype;

Ilits raw fitness score

double m_dFitness;

score after i~ has been placed into a

adjusted accordingly

m_dAdjustedFitness;

Ilits fitness

Iispecies and

double

lithe number of

Ilfor the next

double

offspring this individual

generation

m_dAmountToSpawn;

is required to spawn

Ilreturns true if the specified link is already part of the genome

bool OuplicateLink(int Neuronln. int NeuronOut);

Ilkeeps a track of which species this genome is in (only used

Ilfor display purposes)

int m_iSpecies;

II keep a record of the

int

number of inputs

m_iNumlnputs.

m_iNumOutputs;

and outputs

Ilgiven a neuron id this function just finds its position in

Ilm_vecNeurons

int GetElementPos(int neuron_id);

Iitests if the passed 10 is the same as any existing neuron IOs. Used

Ilin AddNeuron

bool AlreadyHaveThisNeuronIO(const int 10);

public:

CGenome();

Iithis constructor creates a minimal genome where there are output &

Ilinput neurons and every input neuron is connected to each output neuron

~

Ilthis function mutates the connection weights

void MutateWeights(double mut_rate.

Iladd a link to the genome dependent upon the mutation rate

void AddLink(double MutationRate.
double ChanceOfRecurrent.

CInnovation &innovation.

int NumTrysToFindLoop.

int NumTrysToAddLink);

Ilcreate a neural network from the genome

CNeuralNet* CreatePhenotype(int depth);

of SLinkGenes

MutationRate.

&innovation.

NumTrysToFindOldLink);

a genome from a vector

and an 10 number

id.
neurons.

genes.

inputs.

outputs);

AddNeuron(double

CInnovation

int

Iland a neuron

void

Ildelete the neural network

void OeletePhenotype();

Ilassignment operator

CGenome& operator =(const CGenome& g);

Ilcopy constructor

CGenome(const CGenome& g);

-CGenome();

Ilthis constructor creates

II a vector of SNeuronGenes

CGenome(int

vector(SNeuronGene>

vector(SLinkGene>

int

int

CGenome(int id. int inputs. int outputs);

//perturbs the

void

double prob_new_mut,

double dMaxPertubation);

activation responses of the neurons

MutateActivationResponse(double mut_rate,

double MaxPertubation);

//calculates the compatibility score between this genome and

//another genome

double GetCompatibilityScore(const CGenome &genome);

void SortGenes();

//overload '<' used for sorting. From fittest to poorest.

friend bool operator«const CGenome& lhs, const CGenome& rhs)

{

return (lhs.m_dFitness > rhs.m_dFitness);

}

} ;

Operator§ and Innovation§
Now that you've seen how a network structure is encoded, let's have a look at the
ways a genome may be mutated. There are four mutation operators in use in this
implementation of NEAT: a mutation to add a link gene to the genome, a mutation
to add a neuron gene, a mutation for perturbing the connection weights, and a
mutation that can alter the response curve of the activation function for each
neuron. The connection weight mutation works very similarly to the mutation
operators you've seen in the rest of the book, so I'll not show you the code. It simply
steps through the connection weights and perturbs each one within predefined
limits based on a mutation rate. There is one difference however, this time there is a
probability the weight is rePlaced with a completely new weight. The chance of this
occurring is set by the parameter dProbabi 1ityWei ghtRepl aced.

An innovation occurs whenever new structure is added to a genome, either by
adding a link gene or by adding a neuron gene, and is simply a record of that
change. A global database of all the innovations is maintained-each innovation
having its own unique identification number. Each time a link or neuron addition
occurs, the database is referenced to see if that innovation has been previously)

} ;

Figure 11.1 5

Mutation to add a neuron.

Add Neu~ "

-'

int InnovationID;

int

Neuron!n;

int

NeuronOut;

int

NeuronID;

neuron_type NeuronType;

//new neuron or new link?

innov_type InnovationType;

Each innovation is recorded in a SInnovati on structure. The definition of this struc
ture looks like this:

/*constructors and extraneous members omitted*/

struct SInnovation

created. If it has, then the new gene is assigned the existing innovation ID number.
If not, a new innovation is created, added to the database, and the gene is tagged
with the newly created innovation ID.

As an example, imagine you are evolving a network that has two inputs and one
output. The network on the left of Figure 11.15 describes the basic structure each
member of the population possesses at the commencement of the run. The network
on the right shows the result of a mutation that adds a neuron to the network. When
neuron 4 is added, three innovations are created: an innovation for the neuron, and
innovations for each of the new connections between neurons 1-4and 4-3. (The old
link gene between neurons 1 and 3 still exists in the genome, but it is disabled).

The innovation type can be either new_neuron or new_l ink. You can find the defini
tions for SInnovation and the class CInnovation, which keeps track of all the innova
tions, in the file CInnovation.h.

Because NEAT grows structure by adding neurons and links, all the genomes in the
initial population start off representing identical minimal topologies (but with
different connection weights). When the genomes are created, the program auto
matically defines innovations for all the starting neurons and connections. As a
result, the innovation database prior to the mutation shown in Figurel1.15 will look
a little like Table 11.1.

Input and output neurons are assigned a value of -1 for the in and out values to
avoid confusion. Similarly, new links are assigned a neuron ID of -1 (because they're
not neurons! <smile».

Mter the addition of neuron 4, shown in Figure 11.15, the innovation database will
have grown to include the new innovations shown in Table 11.2.

If at any time in the future a different genome stumbles across this identical muta
tion (adding neuron number 4), the innovation database is referenced and the
correct innovation ID is assigned to the newly created gene. In this way,the genes
contain a historical record of any structural changes. This information is invaluable
for designing a valid crossover operator, as you shall see shortly.

Let me take you through the code for the AddLink and AddNeuron mutation operators.

Innovations Before the Neuron Addition

Innovation ID

TypeInOutNeuron IDNeuron Type

new_neuron

-I-I I input

2

new_neuron-I-I 2 input

3

new_neuron-I-I 3 output

-4

new_linkI3 -I none

5

new -'ink23 -I none

I:Genome::AddLink

Iljust return dependent on the mutation rate

if (RandFloat() > MutationRate) return;

MutationRate.

ChanceOfLooped.

&innovation. lithe database of innovations

NumTrysToFindLoop.

NumTrysToAddLink)

Table 11.2 Innovations After the Neuron Addition

Innovation ID

Type.InOutNeuron IDNeuron Type

new_neuron

-I-I 1 input

2

new_neuron-I-I 2 input

3

new_neuron-I-I 3 output

4

new_linkI3 -I none

5
new_link23 -I none

6

new_neuronI3 4 hidden

7

new_link14 -I none

8
new_link43-I none

Iidefine holders for the two neurons to be linked. If we find two

Ilvalid neurons to link these values will become >= O.

void CGenome::AddLink(double

double

CInnovation

int

int

This operator adds one of three different kinds of links:

• A forward link

• A recurrent link

• A looped recurrent link

Figure 11.16 shows an example of each type of link.

Here's the code for adding links to genomes. I've added additional comments
where necessary.

Forward

Recurrent

Looped recurrent

Figure 11.16

Different types of links.

int ID_neuron1 = -1;

int ID_neuron2 = -1;

Ilflag set if a recurrent link. is selected to be added

bool bRecurrent = false;

Ilfirst test to see if an attempt should be made to create a

Illink that loops back into the same neuron

if (RandFloat() < ChanceOfLooped)

(

IIYES: try NumTrysToFindLoop times to find a neuron that is not an

Ilinput or bias neuron and does not already have a loopback

Ilconnection

while(NumTrysToFindLoop--)

(
Ilgrab a random neuron

I
R

~

int NeuronPos = Randlnt(m_iNumlnputs+l. m_vecNeurons.size()-l);

Ilcheck to make sure the neuron does not already have a loopback

Illink and that it is not an input or bias neuron

if (!m_vecNeurons[NeuronPos].bRecurrent &&

(m_vecNeurons[NeuronPos].NeuronType 1= bias) &&

(m_vecNeurons[NeuronPos].NeuronType != input))

ID_neuronl = ID_neuron2 = m_vecNeurons[NeuronPos].iID;

m_vecNeurons[NeuronPos].bRecurrent = true;

bRecurrent = true;

NumTrysToFindLoop = 0;

First, the code checks to see if there is a chance of a looped recurrent link being
added. If so, then it attempts NumTrysToFi ndLoop times to find an appropriate neuron. If
no neuron is found, the program continues to look for two unconnected neurons.

else

IINo: try to find two unlinked neurons. Make NumTrysToAddLink

Ilattempts

while(NumTrysToAddLink--)

{

Because some networks will already have existing connections between all its avail
able neurons, the code has to make sure it doesn't enter an infinite loop when it
tries to find two unconnected neurons. To prevent this from happening, the pro
gram only tries NumTrysToAddL ink times to find two unlinked neurons. This value is set
in CParams.cpp.

Ilchoose two neurons. the second must not be an input or a bias

ID_neuronl = m_vecNeurons[Randlnt(O. m_vecNeurons.size()-l)].iID;

ID_neuron2 =

m_vecNeurons[RandInt(m_iNumInputs+1. m_vecNeurons.size()-l)].iIO;

if (IO_neuron2 == 2)

(
continue;

//make sure these two are not already linked and that they are

//not the same neuron

if (!(OuplicateLink(IO_neuron1. IO_neuron2) I I

(IO_neuron1 == IO_neuron2»)

NumTrysToAddLink = 0:

else

IO_neuron1 = -1:

IO_neuron2 = -1:

//return if unsuccessful in finding a link

if ((IO_neuron1 < 0) I I (IO_neuron2 < 0))

{

return:

//check to see if we have already created this innovation

int id = innovation.Checklnnovation(IO_neuron1. IO_neuron2. new_link);

Here, the code examines the innovation database to see if this link has already been
discovered by another genome. Checklnnovation returns either the ID number of the
innovation or, if the link is a new innovation, a negative value.

//is this link recurrent?

if (m_vecNeurons[GetElementPos(IO_neuron1)].dSplitY >

m_vecNeurons[GetElementPos(IO_neuron2)].dSplitY)

bRecurrent = true;

Here, the split values for the two neurons are compared to see if the link feeds
forward or backward.

if (id < 0)

(

Ilwe need to create a new innovation

innovation.CreateNew1nnovation(1D_neuron1, 1D_neuron2, new_link);

Iinow create the new gene

int id = innovation.NextNumber() - 1;

If the program enters this section of code, then the innovation is a new one. Before
the new gene is created, the innovation is added to the database and an identifica
tion number is retrieved. The new gene will be tagged with this identification
number.

SLinkGene NewGene(1D_neuron1,

1D_neuron2,

true,

id,

RandomClamped(),

bRecurrent);

m_vecLinks.push_back(NewGene);

else

lithe innovation has already been created so all we need to

lido is create the new gene USing the existing innovation 1D

SLinkGene NewGene(1D_neuron1,

1D_neuron2,

true,

id,

RandomClamped(),

bRecurrent) ;

m_vecLinks.push_back(NewGene);
uu .,_

return;

£:Genome::AddNeuron
To add a neuron to a network, first a link must be chosen and then disabled. Two new

links are then created to join the new neuron to its neighbors. See Figure 11.17.

Figure 11.17

Adding a neuron to a network.

Before

After

This means that every time a neuron is added, three innovations are created (or
repeated if they have already been discovered): one for the neuron gene and two
for the connection genes.

void CGenome::AddNeuron(double

CInnovation

int

MutationRate.

&innovations. lIthe innovation database

NumTrysToFindOldLink)

Iljust return dependent on mutation rate

if (RandFloat() > MutationRate) return;

Ilif a valid link is found into which to insert the new neuron

Ilthis value is set to true.

bool bOone = false;

Iithis will hold the index into m_vecLinks of the chosen link gene

int ChosenLink = 0;

Ilfirst a link is chosen to split. If the genome is small the code makes

Iisure one of the older links is split to ensure a chaining effect does

Iinot occur. Here. if the genome contains less than 5 hidden neurons it

Ilis considered to be too small to select a link at random.

const int SizeThreshold = m_iNumInputs + m_iNumOutPuts + 5;

if (m_vecLinks.size() < SizeThreshold)

(

while(NumTrysToFindOldLink--)

{

Ilchoose a link with a bias towards the older links in the genome

ChosenLink = RandInt(O. NumGenes()-l-(int)sqrt(NumGenes(»);

Ilmake sure the link is enabled and that it is not a recurrent link

Ilor has a bias input

int FromNeuron = m_vecLinks[ChosenLink].FromNeuron;

if «m_vecLinks[ChosenLink].bEnabled) &&

(!m_vecLinks[ChosenLink].bRecurrent) &&

(m_vecNeurons[GetElementPos(FromNeuron)].NeuronType != bias»

bOone = true;

NumTrysToFindOldLink = 0;

if (! bOone)

Ilfailed to find a decent link

return;

Early on in the development of the networks, a problem can occur where the same
link is split repeatedly creating a chaining effect, as shown in Figure 11.18.

Obviously, this is undesirable, so the following code checks the number of neurons
in the genome to see if the structure is below a certain size threshold. If it is, mea
sures are taken to ensure that older links are selected in preference to newer ones.

1
Figure 11.18

The chaining effect

/\~/\~I\~/\
else

Ilthe.genome is of sufficient size for any link to be acceptable

while (!bOone)

[
ChosenLink = RandInt(O. NumGenes()-l);

Ilmake sure the link is enabled and that it is not a recurrent link

Ilor has a BIAS input

int FromNeuron = m_vecLinks[ChosenLink].FromNeuron;

if ((m_vecLinks[ChosenLink].bEnabled) &&

(!m_vecLinks[ChosenLink].bRecurrent) &&

(m_vecNeurons[GetElementPos(FromNeuron)].NeuronType != bias»

bOone = true;

Iidisable this gene

m_vecLinks[ChosenLink].bEnabled = false;

Ilgrab the weight from the gene (we want to use this for the weight of

Iione of the new links so the split does not disturb anything the

liNN may have already learned

double OriginalWeight = m_vecLinks[ChosenL_!!1!]_._~~ei~h_t; u __ u __

I

~
!

=

[

When a link is disabled and two new links are created, the old weight from the
disabled link is used as the weight for one of the new links, and the weight for the
other link is set to 1. In this way, the addition of a neuron creates as little disruptiOJ
as possible to any existing learned behavior. See Figure 11.19.

double NewWidth = (m_vecNeurons[GetElementPos(from)].dSplitX +

m_vecNeurons[GetElementPos(to)].dSplitX) /2;

depth

Figure 11.19

Assigning weights to the new link genes.

depth and width of the new neuron. We can use the

link feeds backwards or forwards

(m_vecNeurons[GetElementPos(from)].dSplitY +

m_vecNeurons[GetElementPos(to)].dSplitY) /2;

the neurons this link connects

m_vecLinks[ChosenLink].FromNeuron;

m_vecLinks[ChosenLink].ToNeuron;

//calculate the

/lto see if the

double NewDepth

//identify

int from =

int to

After

Before

//Now to see if this innovation has been created previously by

//another member of the population

int id = innovations.Checklnnovation(from.

to.

new_neuron);

/*it is possible for NEAT to repeatedly do the following:

1. Find a link. Lets say we choose link 1 to 5

2. Disable the link.

3. Add a new neuron and two new links

4. The link disabled in Step 2 may be re-enabled when this genome

is recombined with a genome that has that link enabled.

5 etc etc

Therefore. the following checks to see if a neuron ID is already being used.

If it is. the function creates a new innovation for the neuron. */

if (id >= 0)

{

int NeuronID = innovations.GetNeuronID(id);

if (AlreadyHaveThisNeuronID(NeuronID»

{

id = -1;

Al readyHaveThi sNeuronID returns true if (you guessed it) the genome already has a
neuron with an identical ID. If this is the case, then a new innovation needs to be
created, so id is reset to -1.

if (id < 0) //this is a new innovation

{

//add the innovation for the new neuron

int NewNeuronID = innovations.CreateNewlnnovation(from.

to.

new_neuron.

hidden.

NewWidth.

NewDepth) ;

//Create the new neuron gene and add it.

m_vecNeurons.push_back(SNeuronGene(hidden.

NewNeuron10.

NewOepth.

NewWidth»;

//Two new link innovations are required. one for each of the

//new links created when this gene is split.

// first link

//get the next innovation 10

int idLinkl = innovations.NextNumberC);

//create the new innovation

innovations.CreateNew1nnovationCfrom.

NewNeuron10.

new_l ink);

//create the new gene

SLinkGene linklCfrom.

NewNeuron10.

true.

idLinkl.

1.0) ;

m_vecLinks.push_backClinkl);

// second link

//get the next innovation 10

int idLink2 = innovations.NextNumberC);

//create the new innovation

innovations.CreateNew1nnovationCNewNeuronIO.

to.

new_link);

//create the new gene'

SLinkGene link2CNewNeuron10.

1'" " ./' i ! h-·--! '>~'. 'i c--~. ~--, ~-_::_.w,~/ NEAT ~

j "cn

to,

true,

idLi nk2.

Original Weight);

m_vecLinks.push_back(link2);

else //existing innovation

//this innovation has already been created so grab the relevant neuron

//and link info from the innovation database

int NewNeuronID = innovations.GetNeuronID(id);

//get the innovation IDs for the two new link genes

int idLinkl = innovations.CheckInnovation(from, NewNeuronID, new_link);

int idLink2 = innovations.CheckInnovation(NewNeuronID. to, new_link);

//this should never happen because the innovations *should* have already

//occurred

if ((idLinkl < 0) I I (idLink2 < 0))

(
MessageBox(NULL, "Error in CGenome::AddNode", "Problem!", MB_OK);

return;

lI,
t::.

~

//now we need to create 2 new genes to represent the new links

SLinkGene linkl(from. NewNeuronID, true. idLinkl, 1.0);

~). SLinkGene link2(NewNeuronID. to, true, idLink2. OriginalWeight);

~

m_vecLinks.push_back(linkl);

m_vecLinks.push_back(link2);

, //create the new neuron

~NeuronGene NewNeuron(hidden, NewNeuronID, NewDepth, NewWidth);

II and add it

m_vecNeurons.push_back(NewNeuron);

return;

The genes shown are the link genes for each phenotype. As you can see, the pheno
types have very different topologies, yet we can easily create an offspring from them
by matching up the innovation numbers of the genomes before swapping over the
appropriate genes, as shown in Figure 11.21.

Those genes that do not match in the middle of the genomes are called disjoint genes,
whereas those that do not match at the end are called excess genes. Crossover pro
ceeds a little like multi-point crossover, discussed earlier in the book. As the operator
iterates down the length of each genome, the offspring inherits matching genes
randomly. Disjoint and excess genes are only inherited from the fittest parent.

How Innovations Help in the Design of a Valid
£:rossover Operator
As I discussed at the beginning of this chapter, the crossover operator for EANNs
can often be more trouble than it's worth. In addition to ensuring that crossover
does not produce invalid networks, care must also be taken to avoid the competing
conventions problem. The designers of NEAT have managed to steer clear of both
these evils by using the innovation IDs as historical gene markers. Because each
innovation has a unique ID, the genes can be tracked chronologically, which means
similar genes in different genomes can be aligned prior to crossover. To see this
clearly, take a look at Figure 11.20.

Figure 11.20

Two phenotypes with

different innovations.

The gray genes are

disabled. The number at

the top of each gene is

that gene's innovation

number.

Parent 2Parent 1

~~

..---~ ---.-- --.------,-.-----,,-"-=.----~"..,-~~-~~...__._-~-~
- - --- -- - ----.

~~ I6T7l~
disjoint

I12l~
disjoint

Figure 11.21

The crossover operator in adion.

~~
disjoint t

I8l9l~
disjoint

m~
excess

~

I

I
~

== dad.Fitness(»

best = (parent_type)RandInt(O, 1);

Ilif they are of equal fitness and length just choose one at

II random

if (mum.NumGenes() == dad.NumGenes(»

(

Ilfirst, calculate the genome we will using the disjoint/excess

Ilgenes from. This is the fittest genome. If they are of equal

Ilfitness use the shorter (because we want to keep the networks

lias small as possible)

parent_type best;

This way,NEAT ensures only valid offspring are created and that the competing
convention problem is avoided. Neat, huh? (sorry, couldn't resist! <smile»

Let me show you the code for the crossover operator, so you can check out the
complete process.

CGenome Cga::Crossover(CGenome& mum, CGenome& dad)

(

else

else

else

hold the offspring's neurons and genes

BabyNeurons;

BabyGenes;

best = MUM;

best = DAD;

if (mum.NumGenes() < dad.NumGenes(»

best = MUM;

if (mum.Fitness() > dad.Fitness(»

(

best = DAD;

else

//create iterators so we can step through each parents genes and set

//them to the first gene of each parent

vector<SLinkGene>::iterator curMum = mum.StartOfGenes();

//these vectors will

vector<SNeuronGene>

vector<SLinkGene>

//temporary vector to store all added neuron IDs

vector<int> vecNeurons;

NEAT Im!I

vector<SLinkGene>::iterator curDad = dad.StartOfGenes();

Iithis will hold a copy of the gene we wish to add at each step

SLinkGene SelectedGene;

Iladd mums genes

SelectedGene = *curMum;

)~if mums innovation number is less than dads
e)se if (curMum->InnovationID < curDad->InnovationID)

is fittest

DAD)

Ilif mum is fittest

if (best == MUM)

{

I lif dad

if (best

(

Ilmove onto mum's next gene

f ++curMum;

t

Ilmove onto dad's next gene·

++curDad;

Iladd dads genes

SelectedGene = *curDad;

lithe end of dad's genes have been reached

else if ((curDad == dad.EndOfGenes()) && (curMum != mum.EndOfGenes()))

{

lithe end of mum's genes have been reached

if ((curMum == mum.EndOfGenes())&&(curDad != dad.EndOfGenes()))

Iistep through each parents genes until we reach the end of both

while (!((curMum == mum.EndOfGenes()) && (curDad == dad.EndOfGenes())))

Ilif mum is fittest add gene

if (best == MUM)

{

SelectedGene = *curMum;

//move onto mum's next gene

++curMum;

//if dad's innovation number is less than mum's

else if (curDad-)InnovationID < curMum-)InnovationID)

//if dad is fittest add gene

if (best = DAD)

{

SelectedGene = *curDad;

//move onto dad's next gene

++curDad;

//if innovation numbers are the same

else if (curDad-)InnovationID == curMum-)InnovationID)

//grab a gene from either parent

if (RandFloat() < O.5f)

{

SelectedGene = *curMum;

else

SelectedGene = *curDad;

//move onto next gene of each parent

++curMum;

++curDad;

//add the selected gene if not already added

if CBabyGenes.sizeC) == 0)

(

BabyGenes.push_backCSelectedGene);

else

if CBabyGenes[BabyGenes.sizeC)-l].InnovationID !=

SelectedGene.lnnovationID)

BabyGenes.push_backCSelectedGene);

//Check if we already have the neurons referred to in SelectedGene.

//If not, they need to be added.

AddNeuronIDCSelectedGene.FromNeuron, vecNeurons);

AddNeuronIDCSelectedGene.ToNeuron, vecNeurons);

}//end while

//now create the required neurons. First sort them into order

sortCvecNeurons.beginC), vecNeurons.endC»;

for (int i=O; i<vecNeurons.size(); i++)

BabyNeurons.push_backCm_plnnovation-)CreateNeuronFromIDCvecNeurons[i]»;

//finally, create the genome

CGenome babyGenomeCm_iNextGenomeID++,

BabyNeurons,

BabyGenes,

mum.NumlnputsC),

•

mum.NumOutputs());

return babyGenome;

Speciation
When structure is added to a genome, either by adding a new connection or a new
neuron, it's quite likely the new individual will be a poor performer until it has a
chance to evolve and establish itself among the population. Unfortunately, this
means there is a high probability of the new individual dying out before it has time
to evolve any potentially interesting behavior. This is obviously undesirable-some
way has to be found of protecting the new innovation in the early days of its evolu
tion. This is where simulating speciation comes in handy ...

Speciation, as the name suggests, is the separation of a population into species. The
question of what exactly is a species, is still one the biologists (and other scientists)
are arguing over, but one of the popular definitions is:

A species is a group of populations with similar characteristics that are capable of

successfully interbreeding with each other to produce healthy, fertile offspring, but are

reproductively isolated from other species.

In nature, a common mechanism for speciation is provided by changes in geogra
phy. Imagine a widespread population of animals, let's call them "critters", which
eventually come to be divided by some geographical change in their environment,
like the creation of a mountain ridge, for example. Over time, these populations
will diversify because of different natural selection pressures and because of differ
ent mutations within their chromosomes. On one side of the mountain, the critters

may start growing thicker fur to cope with a colder climate, and on the other, they
may adapt to become better at avoiding the multitude of predators that lurk there.
Eventually, the two populations will have changed so much from each other that if
they ever did come into contact again, it would be impossible for them to mate
successfully and have offspring. It's at this point they can be considered two differ
ent species.

NEAT simulates sp'eciation to provide evolutionary niches for any new topological
change. This way, similar individuals only have to compete among themselves and
not with the rest of the population. Therefore, they are protected somewhat from
premature extinction. A record of all the species created is kept in a class called
wait for it-CSpeci es. Each epoch, every individual is tested against the first member
in each species and a compatibility distance is calculated. If the compatibility distance

J'
~

1
~

~

Ilindexes into each genome. They are incremented as we

Iithis records the summed difference of weights in matched genes

double WeightDifference = 0;

Iitravel down the length of each genome counting the number of

Iidisjoint genes, the number of excess genes and the number of

Ilmatched genes

double NumDisjoint = 0;

double NumExcess = 0:

double NumMatched = 0;

where N is the number of genes in the larger genome (to normalize for size) and c!,
c2, and c3 are coefficients used to tweak the final value accordingly. If this final value
is below the compatibility threshold, the genomes are said to be of the same species.
If it is higher, the genomes represent different species. The method used to calcu
late the compatibility distance is CGenome: :GetCompati bil ityScore and it looks like this:

double CGenome::GetCompatibilityScore(const CGenome &genome)

{

is within certain boundaries, then the individual is added to that species. If the
individual is incompatible with all the current species, then a new species is created
and the individual is added to that.

Testing for [ompatibility
The compatibility distance is calculated by measuring how diverse the genomes of
two individuals are. Once again, the innovation numbers come in handy here
because we can simply match up the genes, as we did for crossover, and count the
number of excess and disjoint genes. The higher this count, the greater the diver
sity. In addition, the weights of the connections are also compared and a total of the
absolute value of differences is recorded. Consequently, we have three criteria:

• The number of excess genes (E)

• The number of disjoint genes (D)

• The difference in connection weights (W)

Once these values have been determined, the final compatibility distance is calcu
lated using the formula:

c,E c2D
C.Dist=-+-+c3W

N N

,
I
I

Iistep down each genomes length.

int 91 = 0:

int g2 = 0;

while ((gl < m_vecLinks.size()-l) I I (g2 < genome.m_vecLinks.size()-l)

{

Ilwe've reached the end of genome1 but not genome2 so increment

lithe excess score

if (gl == m_vecLinks.size()-l)

{

++g2;

++NumExcess;

continue;

Iland vice versa

if (g2 == genome.m_vecLinks.size()-l)

{

++gl;

++NumExcess;

continue;

Ilget innovation numbers for each gene at this point

int id1 = m_vecLinks[glJ.lnnovationID;

int id2 = genome.m_vecLinks[g2J.lnnovationID;

Ilinnovation numbers are identical so increase the matched score

if (id1 == id2)

(

++gl;

++g2;

++NumMatched;

Ilget the weight difference between these two genes

WeightDifference += fabs(m_vecLinks[glJ.dWeight

genome.m_vecLinks[g2J.dWeight);

Ilinnovation numbers are different so increment the disjoint score

if (id1 < id2)

{

++NumDisjoint;

++gl;

if (id1 > id2)

++NumDisjoint;

++g2;

}llend while

Ilget the length of the longest genome

int longest = genome.NumGenes();

if (NumGenes() > longest)

(
longest = NumGenes();

Iithese are multipliers used to tweak the final score.

canst double mDisjoint = 1;

const double mExcess = 1;

const double mMatched = 0.4;

Ilfinally calculate the scores

double score = (mExcess * NumExcess I (double)longest) +

(mDisjoint * NumDisjoint I (double)longest) +

(mMatched * WeightDifference I NumMatched);

return score;

The 1:5pec:ie§ I:la§§
Once an individual has been assigned to a species, it may only mate with other
members of the same species. However, speciation alone does not protect new
innovation within the population. To do that, we must somehow find a way of
adjusting the fitnesses of each individual in a way that aids younger, more diverse
genomes to remain active for a reasonable length of time. The technique NEAT
uses to do this is called exPlicitfitness sharing.

As I discussed in Chapter 5, "Building a
Better Genetic Algorithm," fitness
sharing is a way of retaining diversity by
sharing the fitness scores of individuals
with similar genomes. With NEAT,
fitness scores are shared by members of
the same species. In practice, this means
that each individual's score is divided by
the size of the species before any selec
tion occurs. What this boils down to is

that species which grow large are penal
ized for their size, whereas smaller
species are given a "foot up" in the
evolutionary race, so to speak.

In addition, young species are given a fitness boost prior to the fitness sharing
calculation. Likewise, old species are penalized. If a species does not show an
improvement over a certain number of generations (the default is 15), then it is
killed off. The exception to this is if the species contains the best performing
individual found so far, in which case the species is allowed to live.

I think the best thing I can do to help clarify all the information I've just thrown at
you is to show you the method that calculates all the fitness adjustments. First
though, let me take a moment to list the CSpeci es class definition:

class CSpecies

private:

//keep a local copy of the first member of this species

CGenome m_Leader;

Ilpointers to all the genomes within this species

vector<CGenome*> m_vecMembers;

lithe species needs an identification number

int m_iSpeciesID;

Ilbest fitness found so far by this species

double m_dBestFitness;

Ilaverage fitness of the species

double m_dAvFitness;

Ilgenerations since fitness has improved. we can use

Iithis info to kill off a species if required

int m_iGensNolmprovement;

Ilage of species

int m_iAge;

Ilhow many

lithe next

double

of this species should be spawned for

population

m_dSpawnsRqd;

pub 1ic :

CSpecies(CGenome &FirstOrg, int SpeciesID);

Iithis method boosts the fitnesses of the young, penalizes the

Ilfitnesse? of the old and then performs fitness sharing over

Iiall the members of the species

void AdjustFitnesses();

Iladds a new individual to the species

void AddMember(CGenome& new_org);

voi d Purge();

//calculates how many offspring this species should spawn

void CalculateSpawnAmount();

//spawns an individual from the species selected at random

//from the best CParams::dSurvivalRate percent

CGenome Spawn();

//--------------------------------------accessor methods

CGenome Leader()const(return m_Leader;}

double NumToSpawn()const(return m_dSpawnsRqd;}

int NumMembers()const(return m_vecMembers.size();}

int GensNolmprovement()const(return m_iGensNolmprovement;}

int ID()const(return m_iSpeciesID;}

double SpeciesLeaderFitness()const(return m_Leader.Fitness();}

double BestFitness()const(return m_dBestFitness;}

int Age()const(return m_iAge;}

//so we can sort species by best fitness. Largest first

friend bool operator«const CSpecies &lhs, const CSpecies &rhs)

return lhs.m_dBestFitness > rhs.m_dBestFitness;

}

} ;

And now for the method that adjusts the fitness scores:

void CSpecies::AdjustFitnesses()

I NEAT mJ
!

double total = 0;

for (int gen=O; gen<m_vecMembers.size(); ++gen)

double fitness = m_vecMembers[gen]-)Fitness();

//boost the fitness scores if the species is young

if (m_iAge < CParams::iYoungBonusAgeThreshhold)

{

fitness *= CParams::dYoungFitnessBonus;

//punish older species

if (m_iAge) CParams::iOldAgeThreshold)

(
fitness *= CParams::dOldAgePenalty;

total += fitness;

//apply fitness sharing to adjusted fitnesses

double AdjustedFitness = fitness/m_vecMembers.size();

m_vecMembers[gen]-)SetAdjFitness(AdjustedFitness);

The I:ga Epoch Method
Because the population is speciated, the epoch method for the NEAT code is
somewhat different (and a hell of a lot longer!) than the epoch functions you've
seen previously in this book. Epoch is part of the Cga class, which is the class that
manipulates all the genomes, species, and innovations.

Let me talk you through the Epoch method so you understand exactly what's going
on at each stage of the process:

vector<CNeuralNet*) Cga::Epoch(const vector<double) &FitnessScores)

c:{I

JJfirst check to make sure we have the correct amount of fitness scores

if (FitnessScores.size() != m_vecGenomes.size(»

(
MessageBox(NULL,"Cga::Epoch(scores/ genomes mismatch)!","Error", MB_OK);

ResetAndKill();

First of all, any phenotypes created during the previous generation are deleted. The
program then examines each species in turn and deletes all of its members apart
from the best performing one. (You use this individual as the genome to be tested
against when the compatibility distances are calculated). If a species hasn't made
any fitness improvement in CPa rams: :iNumGensA 11owedNolmprovement generations, the
species is killed off.

//update the genomes with the fitnesses scored in the last run

for (int gen=O; gen<m_vecGenomes.size(); ++gen)

m_vecGenomes[gen].SetFitness(FitnessScores[gen]);

//sort genomes and keep a record of the best performers

SortAndRecord();

//separate the population into species of similar topology, adjust

//fitnesses and calculate spawn levels

SpeciateAndCalculateSpawnLevels();

Speci ateAndCal cul ateSpawnLevel s commences by calculating the compatibility distance
of each genome against the representative genome from each live species. If the
value is within a set tolerance, the individual is added to that species. If no species
match is found, then a new species is created and the ge,nome added to that.

When all the genomes have been assigned to a species
Speci ateAndCa 1cul ateSpawn Leve 1s calls the member function Adj ustSpeci es Fitnesses to
adjust and share the fitness scores as discussed previously.

Next, Speci ateAndCal cul ateSpawnLevel s calculates how many offspring each individual
is predicted to spawn into the new generation. This is a floating-point value calcu
lated by dividing each genome's adjusted fitness score with the average adjusted
fitness score for the entire population. For example, if a genome had an adjusted
fitness score of 4.4 and the average is 8.0, then the genome should spawn 0.525

offspring. Of course, it's impossible for an organism to spawn a fractional part of
itself, but all the individual spawn amounts for the members of each species are
summed to calculate an overall spawn amount for that species. Table 11.3 may help
clear up any confusion you may have with this process. It shows typical spawn values
for a small population of 20 individuals. The epoch function can now simply iterate
through each species and spawn the required amount of offspring.

To continue with the Epoch method ...

CGenome baby;

Iithis will hold the new population of genomes

vector<CGenome> NewPop;

Ilrequest the offspring from each species. The number of children to

Iispawn is a double which we need to convert to an into

int NumSpawnedSoFar = 0;

spawn from each species is a double

integer it is possible to get an overflow

statement just makes sure that doesn't

CParams::iNumSweepers)

the number to

or down to an

spawned. This

Ilbecause of

II rounded up

Ilof genomes

Ilhappen

if (NumSpawnedSoFar <

(

Iithis is the amount of offspring this species is required to

II spawn. Rounded simply rounds the double up or down.

int NumToSpawn = RoundedCm_vecSpecies[spc].NumToSpawnC»;

Iinow to iterate through each species selecting offspring to be mated and

Ilmutated

for (int spc=O; spc<m_vecSpecies.size(); ++spc)

{

bool bChosenBestYet = false:

while CNumToSpawn--)

{

•

Ilfirst grab the best performing genome from this species and transfer

lito the new population without mutation. This provides per species

Ilelitism

if C!bChosenBestYet)

c:{

r

I5m!J 11. Evolving Neural Net~rlrl< .fri~oIOgy :

I =- --, '-.' ..

baby = m_vecSpecies[spcJ.Leader();

bChosenBestYet = true;

else

Ilif the number of individuals in this species is only one

Iithen we can only perform mutation

if (m_vecSpecies[spcJ.NumMembers() == 1)

(
//spawn a chil d

baby = m_vecSpecies[spcJ.Spawn();

Ilif greater than one we can use the crossover operator

else

Iispawn1

CGenome gl = m_vecSpecies[spcJ.Spawn();

if (RandFl oat() < CPa rams ::dCrossoverRate)

Ilspawn2. make sure it's not the same as gl

CGenome g2 = m_vecSpecies[spcJ.Spawn();

II number of attempts at finding a different genome

int NumAttempts = 5;

while ((gl.l0() == g2.l0()) && (NumAttempts--)

(

g2 = m_vecSpecies[spcJ.Spawn();

if (g1. lO() != g2. lOO)

baby = Crossover(gl. g2);

Table 11.3Species Spawn Amounts
Species 0

Genome ID

FitnessAdjusted Fitness. Spawn Amount
88

10014.44 1.80296

103

9914.3 1.78493

94

9914.3 1.78493

61

9213.28 1.65873

106

375.344 0.667096

108

344.911 0.613007

107

324.622 0.576948

105

II1.588 0.198326

104

71.011 0.126207

Total offspring for this species to spawn: 9.21314 Species I

t.;fGenome ID
FitnessAdjusted FitnessSpawn Amount

\
112

437.980 0.99678

110

437.985 0.99678

~

116

427.8 0.973599

68

417.614 0.950419

III
376.871 0.857695~

\

I115 376.871 0.857695fA
I

Ia

113
173.157 0.394076•

~Total offspring for this species to spawn: 6.02704

~

Species 2

U

~Genome ID
FitnessAdjusted FitnessSpawn Amount

~
Vi

l'!:'~'"

gj
20

5925.56 3.19124

100

146.066 0.757244

116

93.9 0.4868

Total offspring for this species to spawn: 4.43529

~

:/~~,.c!;:~>n[\(i lYj:·,-~/;
:" S> ~>' ,~..":' ic·" NEAT ImiI,---I!!

Because the number of individuals in a species may be small and because only the
best 20% (default value) are retained to be parents, it is sometimes impossible (or
slow) to find a second genome to mate with. The code shown here tries five times to
find a different genome and then aborts.

else

baby = gl;

++m_iNextGenomeID;

baby.SetIDCm_iNextGenomeID);

//now we have a ,spawned child lets mutate it! First there is the

//chance a neuron may be added

if Cbaby.NumNeuronsC) < CParams::iMaxPermittedNeurons)

baby.AddNeuronCCParams::dChanceAddNode.

*m_plnnovation.

CParams::iNumTrysToFindOldLink);

//now there's the chance a link may be added

baby.AddLinkCCParams::dChanceAddLink.

CParams::dChanceAddRecurrentLink.

*m_plnnovation.

CParams::iNumTrysToFindLoopedLink.

CParams::iNumAddLinkAttempts);

//mutate the weights

baby.MutateWeightsCCParams::dMutationRate.

CParams::dProbabilityWeightReplaced.

CParams::dMaxWeightPerturbation);

//mutate the activation response

baby.MutateActivationResponse(CParams::dActivationMutationRate,

CParams::dMaxActivationPerturbation);

Iisort the babies genes by their innovation numbers

baby.SortGenes();

Iladd to new pop

NewPop.push_back(baby);

++NumSpawnedSoFar;

if (NumSpawnedSoFar

(
NumToSpawn = 0;

}//end while

}llend if

}//next speci es

CParams::iNumSweepers)

Ilif there is an underflow due to a rounding error when adding up all

lithe species spawn amounts, and the amount of offspring falls short of

lithe population size, additional children need to be created and added

lito the new population. This is achieved simply, by using tournament

Iiselection over the entire population.

if (NumSpawnedSoFar < CParams::iNumSweepers)

{

Ilcalculate the amount of additional children required

int Rqd = CParams::iNumSweepers - NumSpawnedSoFar;

Ilgrab them

while (Rqd--)

(

NewPop.push_back(TournamentSelection(m_iPopSize/5»;

EImI 11. Evolving Neural Net\'\lrlrk, tripology

I

Ilreplace the current population with the new one

m_vecGenomes = NewPop;

II create the new phenotypes

vector<CNeuralNet*> new_phenotypes;

for (gen=O; gen<m_vecGenomes.size(); ++gen)

(
Ilcalculate max network depth

int depth = CalculateNetDepth(m_vecGenomes[gen]);

CNeuralNet* phenotype = m_vecGenomes[gen].CreatePhenotype(depth);

new_phenotypes.push_back(phenotype);

Ilincrease generation counter

++m_iGeneration;

return new_phenotypes;

I:onvert.ing t.he Genome int.o a Phenot.ype
Well, I've covered just about everything except how a genome is converted into a
phenotype. We're nearly there now! Phenotypes use different neuron and link
structures than the genome. They can be found in phenotype.h, and look like this:

The SLink Structure
The structure for the links is very simple. It just has pointers to the two neurons it
connects and a connection weight. The bool value, bRecurrent, is used by the draw
ing routine in CNeural Net to help render a network into a window.

struct SLink

Ilpointers to the neurons this link 'connects

, '-1-"':'--(''1 (j x ' ',"
I ~~~f'-,--/Ii 1>__ NEAT ED

_'---1 ! / /> :?:~,r -- I~'::_i I .' /1'

CNeuron* pIn;

CNeuron* pOut;

lithe connection weight

double dWeight;

Ilis this link a recurrent link?

bool bRecurrent;

SLink(double dW, CNeuron* pIn, CNeuron* pOut, bool bRec):dWeight(dW),

,pIn(pIn),

pOut (pOut) ,

bRecurrent(bRec)

{}

} ;

The SNeuron Structure
The neuron defined by SNeuron contains much more information than itslit~le

brother SNeuronGene. In addition, itholds the values for the sum of all the inputs X

weights, this value after it'sbeen put through the activation function (in other

words, the output from this neuron), and two std:: vectors-one for storing the

links into the neuron, and the other for storing the links out of the neuron,

struct SNeuron

Iiall the links coming into this neuron

vector<SLink> vecLinksIn;

Iland out

vector<SLink> vecLinksOut;

Iisum of weights x inputs

double dSumActivation;

lithe output from this neuron

double dOutput;

Ilwhat type of neuron is this?

[

neuron_type NeuronType;

ffits identification number

int iNeuronID;

type.

id.

y,
x,

ActResponse):NeuronType(type).

iNeuronID(id),

dSumActivation(O),

dOutput(O),

iPosX(O),

iPosY(O),

dSpl itY(y),

dSpl itX(x),

dActivationResponse(ActResponse)

//-- ctors

SNeuron(neuron_type

int

double

double

double

ffused in visualization of the phenotype

int iPosX, iPosY;

double dSplitY. d~plitX;

ffsets the curvature of the sigmoid function

double dActivationResponse;

{}

} ;

Putting the Bit§ Together
The method that actually creates all the SLinks and SNeurons required for a pheno
type is CGenome; :CreatePhenotype. This function iterates through the genome and
creates any appropriate neurons and all the required links required for pointing to
those neurons. It then creates an instance of the CNeura 1Net class. I'll be discussing
the CNeural Net class immediately after you've had a good look at the following code.

CNeuralNet* CGenome::CreatePhenotype(int depth)

u

~F'!
~

//first make sure there is no existing phenotype for this genome

DeletePhenotype();

//this will hold all the neurons required for the phenotype

vector<SNeuron*> vecNeurons;

//first. create all the required neurons

for (int i=O; i<m_vecNeurons.size(); i++)

SNeuron* pNeuron = new SNeuron(m_vecNeurons[i].NeuronType.

m_vecNeurons[i].iID.

m_vecNeurons[i].dSplity.

m_vecNeurons[i].dSplitX.

m_vecNeurons[i].dActivationResponse);

vecNeurons.push_back(pNeuron);

//now to create the links.

for (int cGene=O; cGene<m_vecLinks.size(); ++cGene)

//make sure the link gene is enabled before the connection is created

if (m_vecLinks[cGene].bEnabled)

(

\=

//get the pointers to

int element

SNeuron* FromNeuron =

the relevant neurons

GetElementPos(m_vecLinks[cGene].FromNeuron);

vecNeurons[element];

element

SNeuron* ToNeuron

GetElementPos(m_vecLinks[cGene].ToNeuron);

vecNeurons[element];

[

//create a link between those two neurons and assign the weight stored

//in the gene

SLink tmpLink(m_vecLinks[cGene].dWeight.

FromNeuron.

ToNeuron.

m_vecLinks[cGene].bRecurrent);

//add new links to neuron

FromNeuron->vecLinksOut.push_back{tmpLink);

ToNeuron->vecLinksln.push_back(tmpLink);

Iinow the neurons contain all the connectivity information, a neural

Iinetwork may be created from them.

m_pPhenotype = new CNeuralNet(vecNeurons. depth);

return m_pPhenotype;

The I:NeuralNet []a§§
This class is pretty simple. It contains a std: :vector of the neurons that comprise the
network, a method to update the network and retrieve its output, and a method to
draw a representation of the network into a user-specified window. The value
m_i Depth is the depth of the network calculated from the spl itV values of its neuron
genes, as discussed earlier. You'll see how this value is used in a moment. The
enumerated type, run_type, is especially important because this is how the user
chooses how the network is updated. I'll elaborate on this after you've taken a
moment to look at the class definition.

class CNeuralNet

private:

vector<SNeuron*> m_vecpNeurons;

lithe depth of the network

int m_iDepth;

public:

CNeuralNet(vector<SNeuron*> neurons,

int

-CNeural Net();

depth) ;

NEAT II!D

Ilupdate network for this clock cycle

vector<double> Update(const vector<double> &inputs. const run_type type);

Ilyou have to select one of these types when updating the network

IIIf snapshot is chosen the network depth is used to completely

Ilflush the inputs through the network. active just updates the

Iinetwork each time-step

enum run_type{snapshot. active};

} ;

Iidraws

void

a graphical representation of the network to a user specified window

DrawNet(HDC &surface.

int cxLeft.

int cxRight.

int cyTop,

int cyBot);

Up until now, all the networks you've seen have run the inputs through the com
plete network, layer by layer, until an output is produced. With NEAT however, a
network can assume any topology with connections between neurons leading
backward, forward, or even looping back on themselves. This makes it next to
impossible to use a layer-based update function because there aren't really any
layers! Because of this, the NEAT update function runs in one of two modes:

active: When using the acti ve update mode, each neuron adds up all the activations
calculated during the preceeding time-step from all its incoming neurons. This means
that the activation values, instead of being flushed through the entire network like a
conventional ANN each time-step, only travel from one neuron to the next. To get
the same result as a layer-based method, this process would have to be repeated as
many times as the network is deep in order to flush all the neuron activations
completely through the network. This mode is appropriate to use if you are using
the network dynamically (like for controlling the minesweepers for instance).

snapshot: If, however, you want NEAT's update function to behave like a regular
-neural network update function, you have to ensure that the activations are flushed
all the way through from the input neurons to the output neurons. To facilitate this,

else

FlushCount = 1;

FlushCount = m_iDepth;

Ilfirst set the outputs of the 'input' neurons to be equal

lito the values passed into the function in inputs

Iithis is an index into the current neuron

int cNeuron = 0;

Ilclear the output vector

outputs.clear();

Iliterate through the network FlushCount times

for (int i=O; i<FlushCount; ++i)

if (type == snapshot)

{

Ilif the mode is snapshot then we require all the neurons to be

Iliterated through as many times as the network is deep. If the

Ilmode is set to active the method can return an output after

Iljust one iteration

int FlushCount = 0;

Ilcreate a vector to put the outputs into

vector<double> outputs;

Update iterates through all the neurons as many times as the network is deep before
spitting out the output. This is why calculating those spl itY values was so important.
You would use this type of update if you were to train a NEAT network using a
training set. (Like we used for the mouse gesture recognition program in Chapter
9, "A Supervised Training Approach").

Here is the code for CNeu ra1Net: :Upda te, which should help clarify the process.

vector<double> CNeuralNet::Update(const vector<double> &inputs,

const run_type type)

NEAT II!D

while (m_vecpNeurons[cNeuron]-)NeuronType == input)

{

m_vecpNeurons[cNeuron]-)dOutput = inputs[cNeuron];

++cNeuron;

Iiset the output of the bias to 1

m_vecpNeurons[cNeuron++]-)dOutput = 1;

Iithen we step through the network a neuron at a time

while (cNeuron < m_vecpNeurons.size())

Iithis will hold the sum of all the inputs x weights

double sum = 0;

Iisum this neuron's inputs by iterating through all the links into

lithe neuron

for (int lnk=O; lnk<m_vecpNeurons[cNeuron]-)vecLinksln.size(); ++lnk)

Ilget this link's weight

double Weight = m_vecpNeurons[cNeuron]-)vecLinksln[lnk].dWeight;

Ilget the output from the neuron this link is coming from

double NeuronOutput =

m_vecpNeurons[cNeuron]-)vecLinksln[lnk].pln-)dOutput;

t-;<i1:,~'lf'

,
//add to sum

sum += Weight * NeuronOutput;

Iinow put the sum through the activation function and assign the

Ilvalue to this neuron's output

m_vecpNeurons[cNeuron]-)dOutput

Sigmoid(sum. m_vecpNeurons[cNeuron]-)dActivationResponse);

if (m_vecpNeurons[cNeuron]-)NeuronType == output)

{

Iladd to our outputs

~

~

outputs.push_back(m_vecpNeurons[cNeuron]->dOutput);

Iinext neuron

++cNeuron;

Illnext iteration through the network

lithe network outputs need to be reset if this type of update is performed

Ilotherwise it is possible for dependencies to be built on the order

lithe training data is presented

if (type == snapshot)

{

for (int n=O; n<m_vecpNeurons.size(); ++n)

{

m_vecpNeurons[n]->dOutput = 0;

Ilreturn the outputs

return outputs;

Note that the outputs of the network must be reset to zero before the function

returns if the snapshot method of updating is required. This is to prevent any depen
dencies on the order the training data is presented. (Training data is usually pre
sented to a network sequentially because doing it randomly would slow down the
learning considerably.)

For example, imagine presenting a training set consisting of a number of points
lying on the circumference of a circle. If the network is not flushed, NEAT might
add recurrent connections that make use of the data stored from the previous
update. This would be okay if you wanted a network that simply mapped inputs to
outputs, but most often you will require the network to generalize.

Running 'the..Demo Program
To demonstrate NEAT in practice, I've plugged in the minesweeper code from
Chapter 8, "Giving Your Bot Senses." I think you'll be pleasantly surprised by how

Summary

Excitory forward connections are shown in gray and inhibitory forward connections
are shown in yellow. Excitory recurrent connections are shown in red and inhibitory
connections are shown in blue. Any connections from the bias neuron are shown in
green. The thickness of the line gives an indication of the magnitude of the connec
tion weight.

Table 11.4 lists the default settings for this project:

~

~

I

[

=

Figure 11.22

NEAT Sweepers in

action.

..------ ---.

;;~>A~\
" ,. i ,fl'l,' , ' / ,\,-,! :;1 t \ "\

~ •• - .' 4; ••• 4 •• ~

• A

~\A"\.1:':1: '. - ",'-"'"

~iV0ii{~\
!,,) ", ""I• / j'.. i/: /f : ~-\,)\\::-~-J •••••• -.'.

!,!,:y<,-~~\\
, i ' __ ~~' •• \

;',::,l/')il/ i t "I'il~~\\
i : l : 11'":,,1i-' :' ,., I ,_.••. \•••• ~'J.~ •• ~

Best Species 10: 0

Spedes Age: 25
Gens no improvement: 0

Species Distribution 8111r

Best Fitness so flu: 165

Generation: 26

Num Species: <4

NEAT performs in comparison! You can either compile it yourself or run the
executable NEAT Sweepers.exe straight from the relevant folder on the CD.

As before, the F key speeds up the evolution, the R key resets it, and the B key shows
the best four minesweepers from the previous generation. Pressing the keys 1
through 4 shows the minesweeper's "trails".

This time there is also an additional window created in which the phenotypes of the
four best minesweepers are drawn, as shown in Figure 11.22.

You've come a long way in this chapter, and learned a lot in the process. To aid your
understanding, the implementation of NEAT I describe in this chapter has been kept
simple and it would be worthwhile for the curious to examine Ken Stanley and Risto
Miikkulainen's original code to gain a fuller insight into the mechanisms of NEAT.
You can find the source code and other articles about NEAT via Ken's Web site at:

http://www.cs.utexas.edu/users/kstanley /

c:

Table 11.4 Default Project Settings for NEAT Sweepers

Parameters for the Minesweepers

Parameter

Num sensors

Sensor range

Num minesweepers

Max turn rate

Scale

Parameters Affecting Evolution

Parameter

Num ticks per epoch

Chance of adding a link

Chance of adding a node

Chance of adding a recurrent link

Crossover rate

Weight mutation rate

Max mutation perturbation

Probability a weight is replaced

Probability the activation response is mutated

Species compatibility threshold

Species old age threshold

Species old age penalty

Species youth threshold

Species youth bonus

Setting

5

25

50

0.2

5

Setting

2000

0.07

0.03

0.05

0.7

0.2

0.5

0.1

0.1

0.26

50

0.7

10

1.3

Stuff to Try
1. Add code to automatically keep the number of species within user-defined

boundaries.

2. Have a go at designing some different mutation operators.

3. Add interspecies mating.

4. Have a go at coding one of the alternative methods for evolving network
topology described at the beginning of the chapter.

r

