ath Selection Criteria!

Lori A. Clarke, Andy Podgurski, Debra J. Richardson, Steven J. Zeil

Software Development Laboratory

Denartme
Depar

n w0
ment o1 mp

t of Computer and Information Science

Ambherst, Massachusetts 01003

Abstract

A number of path selection testing criteria have been pro-
posed throughout the years. Unfortunately, little work has been
done on comparing these criteria. To determine what would be
an effective path selection criterion for revealing errors in pro-
grams, we have undertaken an evaluation of these criteria. This
paper reports on the results of our evaluation for those path se-
lection criteria based on data flow relationships. We show how
these criteria relate to each other, thereby demonstrating some
of their strengths and weaknesses.

1. INTRODUCTION

Ever since Stucki experimentally showed that programmers
select test data that provide very poor coverage of their code
[Stuc73), researchers have been concerned with developing effec-
tive coverage criteria. A coverage criterion is usually satisfied
by a set of paths through a program, where a path is a sequence
of statements. An effective criterion requires paths with a high
probability of revealing errors — that is, when the program is
run with test data that causes the selected paths to be exe-
cuted, there is a high probability that errors, if they exist, will
be exposed by those test runs. Of course, the effectiveness of
such a criterion depends not only ou the selected paths but also
on the test data for those paths. In this paper, we assume that
a reasopable test data selection criterion exists and look only
at the path selection problem.

Testing all the paths in a program is often impossible, be-
cause programs with loops may contain an infinite number of
paths. Thus, a path selection criterion should specify only a
subset of a program’s paths. It is generally agreed that, at a
minimum, this subset should require that every branch, and
thus every statement, in a program be executed at least once.
Other factors, such as loop coverage and data relationships,
should also be considered. A number of path selection criteria
bave been proposed [Lask83,Ntaf84,Rapp85]. Unfortunately,
there has been little work done on comparing or evaluating the
different criteria. We are currently undertaking a study of path
selection criteria, working toward the formulation of a more ef-
fective criterion that builds upon the strengths of existing ones.

In this paper we formally compare data flow path selection
criteria |[Lask83,Ntaf84, Rapp85]. To facilitate this comparison,
we define all the criteria using a single set of terms, rather than
using the terminology of the criteria’s originators. Although

1This work was sapported in part by NSF Grants MCS-8303320 and DCR-
8404217.

CH2139-4/85/0000/0244 © 1EEE 1985

244

our definitions are usually equivalent in meaning to those given
by the criteria’s originators, some are not. This occurs for two
reasons. First, some of the original definitions are ambiguous.
Second, as originally defined, some of the criteria differ from

thae stated intent of thoir aunthore In hath cnasas wa hava triad
VAL OVAULVLE JMVLALIY VUl VALV GULMVIO. AU VULV LGOUS WU LIaVYC Llicu

to redefine the criteria in ways that strengthen them yet seem
consistent with the intent of their originators.

The next section of this paper presents our terminology.
Section 3 defines the criteria using the terminology presented in
Section 2. In Section 4 we compare each criterion to the others
and present a subsumption graph showing their relationships.
The conclusion discusses issues that must be considered in order
to evaluate these criteria more meaningfully. This paper lays
the foundation for such future research.

2. TERMINOLOGY

Our evaluation considers the application of a path selection
criterion to a module. To simplify the discussion, we assume a
module is either a main program or a single subprogram and
has only one entry and one exit point. In applying a path
selection criterion, a module is represented by a directed graph
that describes the possible flow of control through the module.
A control flow graphof a module M is a directed graph G(M) =
(N, E,nytart, "fingt), Where N is the (finite) set of nodes, E C
N x N is the set of edges, nyet € N is called the start node, and
Nged € N is called the final node. Each node in N except the
start node and the final node represents a statement fragment
in M, where a statement fragment can be a part of a statement
or a whole statement. We assume the control flow graphs are
defined so that each assignment statement is represented by
a node, as is the predicate from each conditional statement.
For each pair of distinct nodes m and n in N for which there
is a possible transfer of control from the statement fragment
represented by m to that represented by n, there is a single
edge (m,n) in E. We assume that E contains no edges of the
form (n,n). There is also an edge in E from the start node to
the entry point of M and an edge in E from the exit point to
the final node.

The control flow graph defines the paths within a mod-
ule. Let G(M) = (N, E, nyat, nfaet) be a control flow graph.
A subpath in G(M) is a finite, possibly empty, sequence of
nodes p = (ny,nz,...,ny,) ? such that for all 4, 1 < ¢ < |p|,
(ni,ni31) € E. A subpath formed by the concatenation of two
subpaths p; and p; is denoted by p1 - p2. An instial subpath
is a subpath whose first node is the start node nyes. A path
is an initial subpath whose last node is the final node, ng.q.

3We denote the length of (the ber of el

e 8 by [s].

ts in) a seq

The set of all paths in G(M) is denoted by PATHS(M). The
graph G(M) is well-formed iff every node in N occurs along
some path in PATHS(M). In this paper, we consider only well-
formed control flow graphs.

A loop of a control flow graph G(M) is the subgraph of
G(M) corresponding to a looping construct in module M. An
entry node of a loop L is a node n in L such that there is an
edge (m,n) in G(M), where m iz not in L. An ezst node for
L is a node n outside L such that there is an edge (m,n) in
G(M), where m is in L. We assume that all loops have single
entry and single exit nodes.

We will frequently need to distinguish between several types
of subpaths that visit loops. A cycle is a subpath that begins
and ends with the same node and that contains at least two
edges. A cycle (n) - p - (n) such that the nodes of p are distinct
and do not include n is called a simple cycle. Subpaths through
loops need not contain cycles. A traversalof a loop L is a sub-
path within L that begins with the entry node of L, does not
return to that node, and ends with a predecessor of either the
entry node or the exit node of L. A traversal of a loop repre-
sents a single iteration of the loop, or possibly a “fall through”
execution of the loop. A subpath is said to traverse a loop L if
the subpath contains a traversal of L. Finally, consider a com-
bination of cycles and traversals encountered during a complete
execution of a loop. A complete loop-subpathor cl-subpath for a
loop L is a subpath (m)-p-(n) such that m and n occur outside
L, while p is a nonempty subpath lying entirely within L.

The path selection criteria described in this paper are based
on data flow analysis and thus are concerned with definitions
and uses of variables. Let z be a variable in a module M. A
definition of z is associated with each node n in G(M) that
represents a statement fragment that can assign a value to z;
this definition is denoted by dn(z). The set of variables for
which there is a definition associated with a particular node n
is denoted by DEFINED(n). A use of z is associated with each
node n in G(M) that represents a statement fragment that can
access the value of z; this use is denoted by u,(z). 3 The set of
variables for which there is a use associated with a particular
node n is denoted by USED(n).

A use un(z) is called a predicate use iff node n represents
the predicate from a conditional branch statement; otherwise
tin(z) is called a computation use. Note that a predicate use
is associated with any node having two or more successors. A
node representing a predicate is assumed to have at least one
variable use but no definitions associated with it.

Data flow analysis is concerned not simply with the def-
initions and uses of variables, but also with subpaths from
definitions to statements where those definitions are used. A
definition-clear subpath with respect to (wrt) a variable z is a
subpath p such that for all nodes n in p, z ¢ DEFINED(n)
and z does not become undefined at n. A definition dm(z)
reaches a use u,(z) iff there is a subpath (m) - p - (n) such that
p is definition-clear wrt z. It is possible that a given defini-
tion might not reach any use or that a given use might not
be reached by any definitions. Since anomalies like these are
normally considered to be errors, and since they are easily de-
tectable via static analysis, we assume that every definition of
a variable z reaches at least one use of z and that every use of
z is reached by at least one definition of z.

*When nodes are subscripted, as in n;, we abbreviate the notation to
di(z) and «;(z).

245

When a module receives information from a calling module
via parameters or global variables, we add a node, ng, to the
control flow graph and associate with it definitions of those vari-
ables importing information. The edge (nyet, m), where m is
the node representing the entry point of the module, is replaced
by the edges (nuut, Nis) a0d (ng, m). We assume that there is
at least one definition associated with a control flow graph, al-
though this definition may be associated with ng. Similarly,
when a module returns information via parameters or global
variables, we add a node, n.«, to the control flow graph and
associate with it uses of those variables exporting information
from the module. The edge (m,ngey), where m is the node
representing the exit point of the module, is replaced by the
edges (m, now) and (Bow, Bfnd)-

A path selection criterion, or simply a criterion, is a pred-
icate that assigns a truth value to any pair (M, P), where M
is a module and P is a subset of PATHS(M). A pair (M, P)
satisfies a criterion C iff C(M,P) = true. A path selection
criterion C) subsumes a criterion C; iff every pair (M, P) that
satisfies C) also satisfies C,. Two criteria are equivalent iff each
subsumes the other. A criterion C strictly subsumes a criterion
C, iff C; subsumes C,, but C2 does not subsume C;. Two cri-
teria are incomparable if neither criterion subsumes the other.
Note that the subsumption relation defines a partial order on
any set of path selection eriteria.

3. DEFINITIONS OF THE CRITERIA

In this section we define the family of path selection cri-
teria proposed by Rapps and Weyuker, the Required k-Tuples
criteria proposed by Ntafos, and the three criteria proposed
by Laski and Korel. We remind the reader that the following
assumptions have been made:

. There are no edges of the form (n,n);

. Every control flow graph i» well-formed;

. Every control flow graph contains at least one definstion;

. Every definition reaches at lcast one use;

. Every use s reached by at least one definition;

. At least one use is associated with each node representing
@ predicate;

. No definitions are associated with a node representing a
predicate.

D s o

-~

3.1 The Rapps and Weyuker Pamily of Criteria

Rapps and Weyuker define a family of path selection crite-
ria and analyze these criteria in an attempt to specify the sub-
sumption relationships that exist among the members of the
family [Rapp82,Rapp85,Weyus4]. This family includes three
well-established control flow criteria and some new path selec-
tion criteria based on the concepts of data flow analysis.

The control flow criteria considered by Rapps and Weyuker
are All-Paths (path coverage), All-Edges (branch coverage), and
All-Nodes (statement coverage).

The pair (M, P) satisfics the All-Paths criterion iff P =
PATHS(M).

The pair (M, P) satisfics the All-Edges criterion iff for all
edges ¢, there s at least one path in P along which ¢ occurs.

The pair (M, P) satisfics the All-Nodes criterion iff for all
nodes n, there is at least one path in P along which n occurs.

It is well-known that (for well-formed graphs) All-Paths sub-
sumes All-Edges, which subsumes All-Nodes. For most modules
M, the only pairs (M, P) that satisfy the All-Paths criterion are
those whose path set P is infinite. Thus, All-Paths is not useful
for such modules. On the other hand, important combinations
of nodes and/or edges might not be required by either All-Edges
or All-Nodes. The data flow criteria developed by Rapps and
Weyuker distinguish combinations that are important in terms
of the flow of data through a module.

Rapps and Weyuker first define a criterion that requires a
path set to contain at least one definition-clear subpath from a
definition to some use reached by that definition.

The pair (M, P) satisfics the All-Defs criterion iff for all def-
initions,dm(z), there is at least one subpath (m) -p - (n) in P
such that p is definition-clear wrt z and there 48 a use up(z)
assoctated with node n.

Next, Rapps and Weyuker define a criterion that requires a
path set to contain at least one definition-clear subpath from
each definition to each use reached by that definition and each
successor of the use. The significance of the successor nodes is
that they force all branches to be taken following a predicate.

The poir (M, P) satisfics the All-Uses criterion iff for all def-
initions dn(z), all uses u,(z) reached by dp(z), and all succes-
sors n' of node n, P contains ot least one subpath (m)-p-(n,n')
such that p is definition-clear wrt z.

Rapps and Weyuker define three criteria that are similar
to All-Uszes but that distinguish between computation uses and
predicate uses.

The pasr (M, P) satisfics the All-C-Uses/Some-P-Uses cri-
terion iff for all definstions dm(z):

1. For all computation uses un(z) reached by dm(z), P con-
tasns at least one subpath (m)-p-(n) such that p is definstion-
clear wrt z.

2. If there is no computation use of z reached by din(z), then
for at least one predicate use u,(z), P contains a subpath
(m) - p - (n) such that p ss definition-clear wrt z.

The pair (M, P) satisfics the All-P-Uses/Some-C-Uses cri-
terion iff for all definstions d(z):

1. For all predicate uses un(z) reached by dm(2z) and all suc-
cessors n' of node n, P contains at least one subpath (m) -
p-(n,n') such that p is definition-clear wrt z.

2. If there ia no predicate use of z reached by dm(2), then for
at least one computation use up(z), P contains a subpath
(m) - p - (n) such that p is definition-clear wrt z.

The pair (M, P) aatisfics the Al-P-Uses criterion iff for all
definitions dm(z), oll predicate uses un(z) reached by dm(z),
and all successorsn’ of node n, P contains at least one subpath
(m) - p - (n,n') such that p is definstion-clear wrt z.

The final criterion, All-DU-Paths (DU stands for definition-
use), goes a step further than All-Uses; rather than requiring
one definition-clear subpath from every definition to all the suc-
cessor nodes of each use reached by that definition, All-DU-
Paths requires every such definition-clear subpath that is a sim-
ple cycle or cycle-free. This limitation on cycles is included to
ensure that the path set is finite.

246

The pair (M, P) satisfics the AN-DU-Paths criterion iff for
all definitions dm(z), all uses un(z), and all successor nodes n'
of n, P contains every subpath (m)-p-(n,n') such that (m)-p-(n)
1 a simple cycle or cycle-free and p is definition-clear wrt z.

3.2 Ntafos’s Required k-Tuples Criteria

Ntafos also uses data flow information to overcome the short-
comings of using control flow information alone to select paths.
He defines a class of path selection criteria, based on data flow
analysis, called Required k-Tuples [Ntaf81,Ntaf84]. These crite-
ria require that a path set cover chains of alternating definitions
and uses, called k-dr snteractions. The ith definition of a k-dr
interaction reaches the ith use, which occurs at the same node
as the (i + 1)st definition. Thus a k-dr interaction propagates
information along a subpath, which is called an interaction sub-
path for the k-dr interaction.

The Required k-Tuples criteria are only defined for k > 2.
A 2-dr interaction is simply a pair [dm(z),un(z)] such that
dm(z) reaches un(z) and m # n. An interaction subpath for
this 2-dr interaction is a subpath (m) - p - (n) such that p is
definition-clear wrt z. For k > 3, a k-dr interaction is a se-
quence & = {dy(z1), u2(21), d2(22), - .-, di—y(Zk-1), up(Z2-1)} of
k — 1 definitions and & — 1 uses associated with k distinct nodes
ny,n2,...,ng, where for all ¢, 1 < 1 < k, the ith definition
di(z;) reaches the sth use u;4,(2;). Note that the variables
Z1,%2,...,Zt—~3 Deed not be distinct. An interaction subpath
for x is a subpath p = (ny) - py - (n2) -p2----- Pr—-1 - (ng) such
that for all ¢, 1 < s < k, subpath p; is definition-clear wrt z;.

As defined by Ntafos, each Required k-Tuples criterion re-
quires only that a path set contain at least one interaction sub-
path for every k-dr interaction in a module’s control flow graph,
and some additional subpaths if the first definition or last use
of a k-dr interaction occurs in a loop or if the last use is a predi-
cate use. This means that the Required k-Tuples criterion does
not necessarily subsume the Required (k — 1)-Tuples criterion
for a fixed k£ > 2, since for any module there exists a constant
n such that there are no k-dr interactions for ¥k > n. It is
clear from Ntafos’ examples, however, that he did intend the
Required k-Tuples criterion to subsume the Required (k — 1)-
Tuples criterion for £ > 2. Our definition of the criteria assures
this.

In Ntafos’ definition of the Required k-Tuples criteria, defi-
nitions and uses of all the variables in a module are associated
with a “source” and “sink” node, respectively. This is appar-
ently done to detect data flow anomalies. To achieve the same
effect, we require that: (1) the control flow graphs to which
Ntafos’ criteria are applied always contain the nodes ng, and
n,u, (2) definitions of all variables (not just those that import
information) are associated with ng, and (3) uses of all vari-
ables (not just those that export information) are associated
with n,.

We now formally define the Required k-Tuples criteria. Let
k be a fixed integer, k > 2.

The pair (M, P) satisfics the Required k-Tuples criterion iff
Jor all l-dr interactions X in G(M), 2 < I < k, each of the
following condstions holds:

1. For all successorsm of the node n; associated with the last
use in A, P contains a subpath p - (m) such that p is an
snteraction subpath for A.

2. If the node ny associated with the first definition in X oc-
curs in a loop, then P contains subpathsp = p;-(n,} -p2-ps
and p' = p}-(n1)-pyps such that: (n1)-pz-ps and (ny)-py-p}
begin with interaction subpaths for A, py - (n1) - p2 %2 a cl-
subpath for the loop L immediately contasning n, * that
traverses L a minimal number of times, and p} - (n,) - p}
18 a cl-subpath for L that traverses L some larger number
of times.

8. If the node n; associated with the last use in A occurs in
a loop, then P contains subpaths p = py - p2 - (ny) - ps and
p' = p}-ph-(ni)-py such that: py-p2-(ny) and p!-ph-(ny) end
with snteraction subpaths for A, p2 - (ny) - ps 15 @ cl-subpath
Jor the loop L immediately containing ny that traverses L
a minimal number of times, and p-(n;)-p} is a cl-subpath
Jor L that traverses L some larger number of times.

3.3 The Laski and Korel Criteria

Laski and Korel define three path selection criteria based
on data flow analysis [Lask83]. We refer to these as the Reach

Coverage criterion (Strategy I), the Context Coverage crite-

rion {Strategy II), and the Ordered Context Coverage criterion

(modified Strategy).

The Reach Coverage criterion was originally defined by Her-

man {Herm76)]. It requires that a path set contain at least one
subpath between each definition and each use reached by that
definition.

The pair (M, P) satisfies the Reach Coverage criterion iff
for all definitions d,(z) and all uses up(z) reached by dpm(z), P
contains at least one subpath(m)-p-(n) such that p is definition-
clear wrt z.

Before defining the remaining two criteria, some additional
terminology must be introduced. Let n be a node in a con-
trol flow graph G(M), and let {z;,z2,...,2%} be a nonempty
subset of USED(n). An ordered definition contezt of node n is
a sequence of definitions ODC(n) = [d1(z1), d2(z2), ..., di(zs))
for which there exists a subpath p - (n), called an ordered con-
tezt subpath, with the following property: for all 4,1 <3 < k,
p = p;i - (n;) - g;, where g; is definition-clear wrt z;; and for all
7, § < 7 < k, either n; = nj, or n; occurs along ¢;. Thus, an
ordered definition context of a node is a sequence of definitions
that occur along the same subpath and that reach uses at the
node. The order of the definitions in the sequence is the same
as their order along the subpath.

Again, let n be a node in a control flow graph G(M), and
let {z1,22,...,2;} be a nonempty subset of USED(n). A def-
tnition contezt of a node n is a set of definitions DC(n) =
{di(z1),d2(22),...,di(zs)} for which there exists a subpath
p - (n), called a contest subpath, with the following property:
foralli,1 << <k, p=p;-(n:)-q; where ¢; is definition-clear
wrt z;. Thus, a definition context of a node is a set of defini-
tions of variables used at the node, which reach the node along
some initial subpath. Note that for any node n, a definition
context DC(n) is the set of definitions in at least one sequence
QDC(n), and an ordered context subpath for any such ODG(n)
is a context subpath for DC(n).

The Context Coverage and Ordered Context Coverage cri-
teria defined here differ somewhat from those originally defined
by Laski and Korel, who require a definition context or or-
dered definition context of a node to include definitions of all

“A loop L immediately contains a node iff L contains the node and there
is no subloop of L that also contains it.

247

All-Paths
All-DU-Paths
All-Uses
A“—C-W/\WURS /
Some-P-Uses Some-C-Uses
All-Defs All-P-Uses
All-Edges
All-Nodes

Figure 1: The Rapps and Weyuker Subsumption
Hierarchy.

variables used at the node, instead of just a subset. Thus the
criteria we define require paths to a statement even when there
is Do path that defines all the variables used at the statement
— a situation that might legitimately occur, for example, in a
call to a procedure that references some of its parameters con-
ditionally. We now formally define the Context Coverage and
Ordered Context Coverage criteria:

The pair (M, P) satisfics the Context Coverage criterion iff
Jor all definstion contests DC(n), P contains at least one con-
tezt subpath for DC(n).

The pair (M, P) satisfics the Ordered Context Coverage
criterion iff for all ordered definition contests ODC(n), P con-
tainas at least one ordered contezt subpath for ODC(n).

4. ANALYSIS OF THE CRITERIA

4.1 Evaluating the Rapps and Weyuker Hierar-
chy

The Rapps and Weyuker path selection criteria defined in
Section 3 are those presented in [Rapp85]. In that paper, Rapps
and Weyuker propose a partial ordering of their criteria, as il-
lustrated in the subsumption graph of Figure 1. It is inter-
esting to note that the definition of the All-DU-Paths crite-
rion presented in [Rapp85)] differs from the earlier definitions
in [Rapp82,Weyu84]. The earlier definitions of All-DU-Paths
required only cycle-free subpaths, while the newer definition
requires simple cycles as well. Without this change, it can
be shown that All-DU-Paths does not even subsume All-Defs
[Clar85A].

In order to demonstrate that the position of the newer ver-
sion of the All-DU-Paths criterion in the subsumption hierarchy
of Figure 1 is correct, we prove that All-DU-Paths strictly sub-
sumes the All-Uses criterion.

Theorem 1 The All-DU-Paths criterion strictly subsumes the
All-Uses criterion.

4, 00 ,d; {y)

ny, isput Cx, y);
na if x < 0 then
ny X = 1; 2 up

oed if; ‘(ﬁ}) ;)
ny if y > O then u, ®)

. . 4

ns y = 0;

end if; > R
ne output (x, y); (ﬁf)(e ug (%), (y)

Figure 2: Module M, and its control flow graph G(M,).

Proof. We first prove that All-DU-Paths subsumes All-Uses,
by showing that any pair not satifying the All-Uses criterion
cannot satisfv the All-DU.Paths criterion either. Let (A P) he

a0 SALISLy A0 AL-0V-278508 COLENIoN €13A0T. LS UL, 17 De

a pair not satisfying the All-Uses criterion. Then there exists a
definition dm(z), a use u,(z) reached by dy, (2}, and a successor
n' of node n such that P contains no subpath of the form (m)-
p - {n,n'), where p is definition-clear wrt z. Assume, by way of
contradiction, that (M, P) satisfies the All-DU-Paths criterion.
Because dm(z) reaches un(z), there exists a subpath (m)-p-
(n,n') in G(M) such that p is definition-clear wrt z. It follows
[Clar85A] that G(M) also contains a subpath g = (m)-p'-(n, n')
such that (m)-p'-(n) is cycle-free or is a simple cycle, and p' is
definition-clear wrt z. Because (M, P) satisfies All-DU-Paths,
P must contain ¢. But this is a contradiction, and we must
conclude that (M, P) cannot satisfy All-DU-Paths. Thus, All-
DU-Paths subsumes All-Uses.

We now show that All-Uses does not subsume All-DU-Paths.
Consider the module M; shown in Figure 2. The pair {M;, P;)
satisfies All-Uses, where

Pl = {(nM1nly"?y"&y"ly"ﬁy"ﬁy“ﬁl‘)y (l)

(nMy ny, n, ng, nNe, "ﬁl‘)}
It does not satisfy All-DU-Paths, however, because P does not
contain the subpath (n),nz,n3,ny4,ne,ngay). Thus, All-Uses
does not subsume All-DU-Paths. O

4.2 Incorporating Ntafos’s Required k-Tuples Cri-
teria

In this section, we compare Ntafos’s Required k-Tuples cri-
teria to the Rapps and Weyuker criteria. The All-Paths crite-
rion obviously subsumes each of the Required k-Tuples criteria.
None of the Required k-Tuples criteria subsume the All-Defs
criterion, because the Required k-Tuples criteria do not require
that a variable definition be covered if its only use is at the
node where the definition occurs. The All-DU-Paths criterion
does not subsume any of the Required k-Tuples criteria, be-
cause All-DU-Paths does not require each loop containing a
definition or use to be tested with at least two cl-subpaths as
the Required k-Tuples criteria do. These last two facts imply
that the Required k-Tuples criteria are incomparable to all the
criteria that are subsumed by All-DU-Paths and that subsume
All-Defs. Because the Required k-Tuples criteria require that
both edges from a branch predicate be covered, they do sub-
sume the All-P-Uses criterion. We now formally state and prove
each of these relationships.

Theorem 2 There is no Required k- Tuples criterson that sub-
sumes the All-Defs criterion.

Proof. Consider the module M, shown in Figure 3, The pro-
cedure fsa called in M; implements a finite state automaton.

248

a;,, {state) +d;, (char)

n; state := inpitial; 4. (accept)
repeat df(]st:ate)
ng input (char);
ny if char ¢ 3., {(charj
a4 ¢ d, {char)
{blank, cr} then) 2
ny fsa (state, 1y (char)
cher, accept); d4(scate d, (accept)
ond if; 4 (state) 4, (char)
ns uwntil char = cr; (Ch”)
ng output (accept);
u6(aceept)
ot (St2te) (B \9
uout(char)
uout(w)

Figure 3: Module M; and its control flow graph G(M;).

It inputs state and char and outputs state and accept. The
2-dr interactions and 3-dr interactions associated with G(Mz)
are as follows:

[da(accept), us(accept)], [du(accept), uou(accept)],

[di(state), us(atate)), [dr(state), uou(state)],

{d2(char), us(char)), [d2(char), us(char)],

{d2(char), us(char)), [dz2(char), uou(char)),

[da(state), uouw(state)],

[d(accept), uo(accept)], [de(accept), uoulaccept)],

[d1(state), us(state), dy(state), u,w(state)],

[d1(state), us(state), dy(accept), ue(accept)],

[d1(state), us(state), dy(accept), u,m(accept)),

{d2(char), us(char), de(state), u,w(state)],

[d2(char), us(char), dy(accept), ug(accept)],

[d2{char), uq(char), dy(accept), uou(accept)].
There are no k-dr interactions associated with G(Mz) for k >
3. The pair (M2, P) satisfies each Required k-Tuples criterion,
where P = {P!;szpa} and

n= (nM) N, Ny, N2, N3, N4, Ng, N2, 13, N5, Ne, Nout, nﬁl‘)

P2 = (Notat, Nin, N1, N2, N3, 14, N5, N6, Nowt, Nfinad)

P3 = (Nutart, Nin, N1, N2, B3, N5, N6, Bowt; Nfinal)-
However, (M, P) does not satisfy the All-Defs criterion, be-
cause P does not contain a definition-clear subpath wrt the
variable state from the definition dy(state) to a use of state
(there is no use u,w associated with G(Mg) for All-Defs). [7]

Corollary 1 The All-Paths criterion strictly subsumes each of
the Required k- Tuples criteria.

Theorem 8 The All-DU-Paths criterion doec not subsume the
Required 2- Tuples criterion.

Proof. Consider the module M shown in Figure 4. The pair
(Ms, P) satisfies the All-DU-Paths criterion, where
P= {(nM) n:, n2, ns, N2, ns, Ny, "ﬁud)}

It does not satisfy the Required 2-Tuples criterion, however,
because there is no subpath in P that covers the 2-dr interaction

("? - . d, ()
N
n, daput (X);
repeat "y d, () ,u, (x)
ng x :®=x +1;
ny until x > O; {3 U360
ne output (%);

Figure 4: Module M; and its control flow graph G(M;).

{di(z), u2(2)} and contains a cl-subpath for the loop in G(Ms)
that traverses it a minimum number of times (in this case once).

a

Corollary 2 Each Required k-Tuples criterion is incompara-
ble to the the All-DU-Paths criterion, the All-Uses criterion,
the All-C-Uses/Some-P-Uses criterion, the All-P-Uses/Some-
C-Uses criterion, and the All-Defs criterion.

Theorem 4 Each Requiredk-Tuples criterion subsumes the All-
P-Uses criterion.

The proof of this theorem is straightforward [Clar85A] and is
omitted here.

Corollary 8 Each Requiredk-Tuples criterion strictly subsumes
the All-P-Uses criterion, the All-Edges criterion, and the
All-Nodes criterion.

4.3 Incorporating the Laski and Korel Criteria

In this section we demonstrate the subsumption relation-
ships that exist between the Laski and Korel criteria and those
of Rapps and Weyuker and of Ntafos. We first show that Laski
and Korel’s criteria form a hierarchy. The Ordered Context
Coverage criterion subsumes the Context Coverage criterion
because all ordered context subpaths for an ordered definition
context ODC(n) are context subpaths for any definition con-
text containing the same definitions as ODC(n). The subsump-
tion is strict because a context subpath for a definition context
DC(n) is not necessarily an ordered context subpath for all the
ordered definition contexts containing the same definitions as
DC(n). The Context Coverage criterion subsumes the Reach
Coverage criterion because every definition reaching a use at a
node must appear in some definition context of that node. ©
This subsumption is strict because the Reach Coverage criterion
does not require paths exercising combinations of definitions as
the Context Coverage criterion does. We now formally state
and prove these relationships.

Theorem § The Contezt Coverage criterion strictly subsumes
the Reach Coverage criterion.

Proof. The proof that the Context Coverage criterion sub-
sumes the Reach Coverage criterion is straightforward [Clar85A)
and is omitted here. We show that Reach Coverage does pot
subsume Context Coverage. Consider again the module M,
shown in Figure 2. The pair (M, P;) satisfies Reach Coverage,
where P, is defined by Equation (1). It does not satisfy Context
Coverage, however, because P; contains no context subpath for
the definition context DC(ng) = {d(z),ds(y)}. O

Theorem 6 The Ordered Contezt Coverage criterion strictly
aubsumes the Contest Coverage criterion.

Proof. It is easy to see that the Ordered Context Coverage
criterion subsumes the Context Coverage criterion. We prove
here that Context Coverage does not subsume Ordered Context
Coverage. Consider the module M, shown in shown in Figure 5.
The definition contexts associated with G(Mj) are as follows:

DCi(n2) = {di(2)}
DCy(ns) = {di(2),di(y)} DCz(ns) = {di(z),de(y)}
DCs(ns) = {ds(z),di(y)} DCu(ns) = {ds(z),de(y)}

®Note that, as pointed out in Section 3.2, this is not true for Laski and
Korel’s original definition of a definition context.

DC(n2) = {ds(2)}

249

4 4, {
ny input (x, y, 3); b @ d, (x) 1 (v} edy 2)
na while ci(s) loop) s
ns s = 2(x,y); u,(2 ug (%) ug (y
ny it ¢2(z) then @
s x i E d,(2) uy{x),
slse @ @ u3 (y)
ne y =2 @
end if; @ 4
ny end loop; 35?3@5\/) a6 ug(®
ng output (x, ¥): 5 @

Figure 5: Module M; and its control flow graph G(M,).

DCi(na) = {ds(2)}
SaR
DCi{ne) = {dsl2
e LN diy)) DCalne) = (d1(2),de(s))
DO = T a DCxon) = (dn(a) o).

The pair (M, P) satisfies Context Coverage, where P = {pi, pz,
ps,ps} and

(nstart, n1, 12, N3, Ng, N5, BY, N2, Ny, By, B, 07, N2, N8, Nfinel)
(Rnart, 1y, 2, B3, R4, A5, 07, B2, B3, g, N6,

n7, N2, N3, Ny, N, N7, N2, N8, Nadd)

ps = (nl“ﬂ» ng, n2, Ns, Ny, Ne, N7, N2, 13, N4, Ne, N7, N2, N8, nﬁ.ud)
D4 (nm,nl,”h nO,"M)'

1 41
P2

This pair does not satisfy the Ordered Context Coverage cri-
terion, however, because P does not contain an ordered con-
text subpath for the ordered definition context ODC(ns) =
ds(y), ds(2)]. o

Having shown how Laski and Korel’s three criteria relate
to each other, we show how they relate to the other data flow
criteris. The Ordered Context Coverage criterion does not sub-
sume the All-Nodes criterion, because Ordered Context Cover-
age does not require that both branches following a predicate
use be taken. The All-DU-Paths criterion does not subsume
the Context Coverage criterion, because the presence of a loop
between a definition and a node may cause all the context sub-
paths for a definition context of the node to contain non-simple
cycles. None of the Required k-Tuples criteria subsumes Con-
text Coverage either, because the definitions in a definition con-
text are not necessarily linked by an interaction subpath. These
three facts imply that Ordered Context Coverage and Con-
text Coverage are incomparable to all the criteria that are sub-
sumed by Al-DU-Paths or the Required k-Tuples criteria and
that subsume All-Nodes. The All-Uses criterion is similar to
the Reach Coverage criterion, but strictly subsumes it because
Reach Coverage does not require that all branches following a
predicate use be covered as All-Uses does. Finally, Reach Cov-
erage strictly subsumes the All-C-Uses/Some-P-Uses criterion
because it requires that every use be exercised at least once.
It follows from this and the fact that the All-P-Uses/Some-
C-Uses criterion is incomparable to All-C-Uses/Some-P-Uses
that Reach Coverage is incomparable to the criteria that are
subsumed by All-P-Uses/Some-C-Use and that subsume All-
Nodes.

Theorem T The Ordered Contest Coverage criterion does not
subsume the All-Nodes criterion.

Proof. Consider the module Mg shown in Figure 6. The only
ordered definition context associated with G(M;) is ODC(n;) =
[di(z)]. Thus the pair (Ms, P) satisfies the Ordered Context

ny iaput (x); 4, (x)
ny if x = 1 thea @ @
ng output (1); u,, (x)
olse @ @ 2
n, output (0); .®
end if; Qg

Figure 8: Module M; and its control flow graph G(M;s).

Coverage criterion, where
P = {(nutart, n1,n2,n3,ngaa)}.

It do_es not satisfy the All-Nodes criterion, however, because
node n4 does not occur along the path in P. O

Corollary 4 The All-Paths criterion strictly subsumes the Or-
dered Contezt Coverage criterion.

Theorem 8 The All-DU-Paths criterion does not subsume the
Contezt Coverage criterion.

Proof. Consider again the module M, shown in Figure 5. The
pair (Mg, P) satisfies the All-DU-Paths criterion, where P =

{Pl’Pz,P.'-} and

n= (nmvnb”za ns, N4, ns,N7,N2, N3, Ny, no;”";”z:”&;”ﬁl‘)
2= (nMYnlynZ)naynﬁld)-

This pair does not satisfy the Context Coverage criterion, how-
ever, because P does not contain a context subpath for the
definition context DC(ns) = {d1(z),ds(2)}. a

Theorem 9 There i3 no Required k-Tuples criterion that sub-
sumes the Contezt Coverage criterion.

Proof. Consider again the module M; shown in Figure 2. The
pair (M, P;) satisfies each Required k-Tuples criterion, where
P, is defined by Equation (1). It does not satisfy the Context
Coverage criterion, however, because P; contains no context
subpath for the definition context DC(n¢) = {di(z),ds(y)}. []

Corollary & The Contezt Coverage and Ordered Contezt Cov-
erage critersa are incomparable to the All-DU-Paths, Required
k-Tuples, All-Uses, All-P-Uses/Some-C-Uses, All-P-Uses, All-
Edges, and All-Nodes criteria.

Theorem 10 The All-Uses criterion strictly subsumes the
Reach Coverage crsterion.

Proof. It is clear that the All-Uses criterion subsumes the
Reach Coverage criterion. The Reach Coverage criterion can-
not subsume the All-Uses criterion, because by Theorem 5 the
Context Coverage criterion subsumes Reach coverage and by
Corollary 5 Context Coverage does not subsume All-Uses. [}

Theorem 11 The Reach Coverage criterion strictly subsumes
the All-C-Uses/Some-P-Uses criterion.

Proof. Clearly, the Reach Coverage criterion subsumes the All-
C-Uses/Some-P-Uses criterion. We prove here that the All-C-
Uses/Some-P-Uses criterion does not subsume the Reach Cov-
erage criterion. Consider the module M, shown in Figure 7.
The pair (Mg, P) satisfies All-C-Uses/Some-P-Uses, where

P = {(nutart, 71, n2, N6, nga) }-

250

ny inpaut (x);
ny if x > O then

ns if x > 1 then

ny output (0);
else

ns outpat (1);
end if;

else
ne output (2);
" end if;

Figure 7: Module M, and its control flow graph G(M,).

It does not satisfy Reach Coverage, however, because P does
not contain the subpath (n,,nz,ns). O

Corollary 8 The Reach Coverage criterion ss incomparable to
the All-P-Uses/Some-C-Uses, All-P-Uses, All-Edges, and All-
Nodes criteria.

The final subsumption hierarchy, which includes all the cri-
teria considered, is shown in Figure 8.

6. CONCLUSION

This paper demonstrates the subsumption relationships that
exist among the data flow path selection criteria proposed by
Rapps and Weyuker, Ntafos, and Laski and Korel. Since these
criteria have related goals, we chose them first for evaluation.
Other types of path selection criteria must also be considered
and their place in the subsumption hierarchy determined. Once
the subsumption relationships are clearly understood, a number
of important issues will still remain to be addressed. In par-
ticular, we intend to continue this investigation by considering
the effect of minor enhancements to the existing criteria, the
difference between the criteria in terms of their error detection
capabilities, and the effect of infeasible paths as well as other
troublesome features of programming languages.

Our overall goal is to formulate an effective path selection
criterion. We expect that this criterion will exploit the data
flow relationships used by the three families of data flow path
selection criteria considered in this paper. From this study, it
is clear that all three families of criteria have a unique contri-
bution to make, although there is substantial overlap among
them. Now that their relationships are better understood, we
intend to continue our investigation, focusing on the differences
in error detection capabilities among the criteria and on flexi-
ble guidelines for replacing infeasible paths with executable ones
when appropriate.

All-Paths

Ordered Context Cov. All-DU-Paths Required k-Tuples

Context Coverage All-Uses

Reach Coverage

ALL-C-Uses / Al-P-Uses/
Some-P-Uses Some-C-Uses
Al-Defs All-P-Uses
AllLEdges
|
All-Nodes

Figure 8: The Final Subsumption Hierarchy.

REFERENCES

[Clar85A] L. A. Clarke, A. Podgurski, D. J. Richardson, and S.

[Herm?76)

{Lask83]

[Ntaf81}

[Ntafs4]

{Rapp82]

[Rapp85]

[Stuc73]

[Weyu84]

J. Zeil, “A Comparison of Data Flow Path Selection
Criteria,” COINS Tech. Rep. no. 85-16, Dept. of
Comp. and Information Sci., University of Mass.,
Ambherst, June 1985.

P. M. Herman, “A Data Flow Analysis Approach to
Program Testing,” The Australian Computer Jour-
nal, vol. 8. no. 3, Nov. 1976.

J. W. Laski and B. Korel, “A Data Flow Oriented
Program Testing Strategy,” IEEE Trans. on Soft-
ware Eng., vol. SE-9, no. 3, pp. 347-354, May 1983.

S. C. Ntafos, “On Testing With Required Elements,”
Proc. IEEE COMPSAC 81, pp. 132-139, Nov. 1981.

S. C. Ntafos, “On Required Element Testing,” JEEE
Trans. on Software Eng., vol. SE-10, no. 6, pp. 795~
803, Nov. 1984.

S. Rapps and E. J. Weyuker, “Data Flow Analysis
Techniques for Test Data Selection,” Proc. 6th Int.
Conf. Software Eng., pp. 272-277, Sept. 1982.

S. Rapps and E, J. Weyuker, “Selecting Software Test
Data Using Data Flow Information,” IEEE Trans. on
Software Eng., vol. SE-11, 4, pp. 367-375, April 1985.

L. G. Stucki, “Automatic Generation of Self-Metric
Software,” Recordings 1978 IEEE Symp. Software
Reliabilsty, pp. 94-100, April 1973.

E. J. Weyuker, “The Complexity of Data Flow Crite-
ria for Test Data Selection,” Information Processing
Letters, vol. 19, pp. 103-109, North-Holland, August
1984.

251

