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Abstract 

A number of path selection testing criteria have been pro- 
posed throughout the years. Unfortunately, little work has been 
done on comparing these criteria. To determine what would be 
an effective path selection criterion for revealing errors in pro 
grams, we have undertaken in evaluation of these criteria. This 
paper reports on the results of our evaluation for those path se- 
lection criteria based on data flow relationships. We show how 
these criteria relate to each other, thereby demonstrating some 
of their strengths and weaknesses. 

1. INTRODUCTION 

Ever since Stucki experimentally showed that programmers 
select test data that provide very poor coverage of their code 
(Stuc731, researchers have been concerned with developing effec- 
tive coverage criteria. A coverage criterion is usually satisfied 
by a set of paths through a program, where a path is a sequence 
of statements. An effective criterion requires paths with a high 
probability of revealing errors - that is, when the program is 
nm with test data that causes the selected paths to be exe- 
cuted, there is a high probability that errors, if they exist, will 
be exposed by those test runs. Of course, the effectiveness of 
such a criterion depends not only on the selected paths but also 
on the test data for those paths. In this paper, we assume that 
a reasonable test data selection criterion exists and look only 
at the path selection problem. 

Testing all the paths in a program is often impossible, be- 
cause programs with loops may contain an infinite number of 
paths. Thus, a path selection criterion should specify only a 
subset of a program’s paths. It is generally agreed that, at a 
minimum, this subset should require that every branch, and 
thus every statement, in a program be executed at least once. 
Other factors, such as loop coverage and data relationships, 
should also be considered. A number of path selection criteria 
have been proposed (LaskBS,Ntaf84,Rapp85]. Unfortunately, 
there has been little work done on comparing or evaluating the 
different criteria. We are currently undertaking a study of path 
selection criteria, working toward the formulation of a more ef- 
fective criterion that builds upon the strengths of existing ones. 

In this paper we formally compare data Bow path selection 
criteria [Lask83,Ntaf34,Rapp85]. To facilitate this comparison, 
we define all the criteria using a single set of terms, rather than 
using the terminology of the criteria’s originators. Although 
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our definitions are usually equivalent in meaning to those given 
by the criteria’s originators, some are not. This occurs for two 
reasons. First, come of the original definitions are ambiguous. 
Second, as originally defined, some of the criteria differ from 
the stated intent of their authors. In both cases we have tried 
to redetine the criteria in ways that strengthen them yet seem 
consistent with the intent of their originators. 

The next section of this paper presents our terminology. 
Section 3 defines the criteria using the terminology presented in 
Section 2. In Section 4 we compare each criterion to the others 
and present a subsumption graph showing their relationships. 
The conclusion discusses issues that must be considered in order 
to evaluate these criteria more meaningfully. This paper lays 
the foundation for such future research. 

2. TERMINOLOGY 

Our evaluation considers the application of a path selection 
criterion to a module. To simplify the discussion, we assume a 
module is either a main program or a single subprogram and 
has only one entry and one exit point. In applying a path 
selection criterion, a module is represented by a directed graph 
that describes the possible flow of control through the module. 
A controlj?ow graphof a module M is a directed graph G(M) = 
(N, E,n-,nw), where N is the (S&e) set of nodes, E C 
N x N is the set of edges, nM E N is called the #tart node, and 
nw E N is called the final node. Each node in N except the 
start node and the final node represents a statement fragment 
iu M, where a statement fragment can be a part of a statement 
or a whole statement. We assume the control Sow graphs are 
defined so that each assignment statement is represented by 
a node, as is the predicate from each conditional statement. 
For each pair of distinct nodes m and n in N for which there 
is a possible transfer of control from the statement fragment 
represented by m to that represented by n, there is a single 
edge (m,n) in E. We assume that E contains no edges of the 
form (n,n). There is also an edge in E from the start node to 
the entry point of M and an edge in E from the exit point to 
the final node. 

The control Row graph defines the paths within a mod- 
ule. Let G(M) = (N, E,nw,nw) be a control flow graph. 
A subpath in G(M) is a finite, possibly empty, sequence of 
nodes p = (nl,nz,...,nb,) * such that for all i, 1 5 i < lpi, 
(nip ni+r) E E. A subpath formed by the concatenation of two 
subpaths p1 and p2 is denoted by pr . ~2. An, initial eubpath 
is a subpath whose first node is the start node nu. A path 
is an initial aubpath whose last node is the final node, nw. 

‘We denote the length of (the namber of elements in) l seqoence l by Irl. 

244 



The set of all paths in G(M) is denoted by PATHS(M). The 
graph G(M) is well-formed iff every node in N occws along 
some path in PATHS(M). In this paper, we consider only well- 
formed control Bow graphs. 

A loop of a control flow graph G(M) is the subgraph of 
G(M) corresponding to a looping construct in module M. An 
entry node of a loop L is a node n in L such that there is an 
edge (m, n) in G(M), where m is not in L. An ezit node for 
L is a node n outside t such that there is an edge (m, n) in 
G(M), where m is in L. We assume that all loops have single 
entry and single exit nodes. 

We will frequently need to distinguish between several types 
of subpaths that visit loops. A cycle is a subpath that begins 
and ends with the same node and that contains at least two 
edges. A cycle (n) .p. (n) such that the nodes of p are distinct 
and do not include n is called a simple cycle. Subpaths through 
loops need not contain cycles. A traversalof a loop L is a sub- 
path within L that begins with the entry node of L, does not 
return to that node, and ends with a predecessor of either the 
entry node or the exit node of L. A traversal of a loop repre- 
sents a single iteration of the loop, or possibly a “fall through” 
execution of the loop. A subpath is said to traverse a loop L if 
the subpath contains a traversal of L. Finally, consider a com- 
bination of cycles and traversals encountered during a complete 
execution of a loop. A complete loop-subpothor cl-rubpathfor a 
loop L is a subpath (m).p.(n) such that m and n occur outside 
L, while p is a nonempty subpath lying entirely within L. 

The path selection criteria described in this paper are based 
on data flow analysis and thus are concerned with definitions 
and uses of variables. Let z be a variable in a module M. A 
definition of z is associated with each node n in G(M) that 
represents a statement fragment that can assign a value to z; 
this definition is denoted by d,,(z). The set of variables for 
which there is a definition associated with a particular node n 
is denoted by DEFINED(n). A u6e of z is associated with each 
node n in G(M) that represents a statement fragment that can 
access the value of z; this use is denoted by u,(z). s The set of 
variables for which there is a use associated with a particular 
node n is denoted by USED(n). 

A use u”(z) is called a predicate u6e iff node n represents 
the predicate from a conditional branch statement; otherwise 
u”(t) is called a computation u6e. Note that a predicate use 
is associated with any node having two or more successors. A 
node representing a predicate is assumed to have at least one 
variable use but no definitions associated with it. 

Data Bow analysis is concerned not simply with the def- 
initions and uses of variables, but also with subpaths from 
definitions to statements where those definitions are used. A 
definition-clear rubpath with respect to (wrt) a variable z is a 
subpath p such that for all nodes n in p, z 4 DEFINED(n) 
and z does not become undefined at n. A de&&ion dm(z) 

reacher a use U”(Z) iff there is a subpath (m) -p. (n) such that 
p is definition-clear wrt z. It is possible that a given de&- 
tion might not reach any use or that a given use might not 
be reached by any definitions. Since anomalies lie these are 
normally considered to be errors, and since they are easily de- 
tectable via static analysis, we assume that every deEnition of 
a variable z reaches at least one use of z and that every use of 
z is reached by at least one definition of z. 

When a module receives inlorslatien from a calling module 
via parameters or global variables, we add a node, ta+, to the 
control tlow graph and associate with it definitions of those vari- 
ables importing information. The edge (nd, m), where m is 
the node representing the entry point of the module, is replaced 
by the edges (nw,n*) and (n*,m). We assume that there is 
at least one definition associated with a control Row graph, al- 
though this definition may be associated with nb. Similarly, 
when a module returns information via parameters or global 
variables, we add’s node, nd, to the control Bow graph and 
associate with it uses of those variables exporting information 
from the module. The edge (m,nw), where m is the node 
representing the exit point of the module, is replaced by the 
edges (m, nd) and OZOJ, n+d. 

A pafh relection criterion, or simply a criterion, is a pred- 
icate that assigns a truth value to any pair (M,P), where M 
is a module and P is a subset of PATHS(M). A pair (M, P) 
ratisfier a criterion C iff C(M,P) = true. A path selection 
criterion Cl 6Ub6Ume6 a criterion cz iff every pair (M, P) that 
satisfies Cl also satisfies Cz. Two criteria are equivalent iff each 
subsumes the other. A criterion Cl strictlg 6Ub6Ume6 a criterion 
C2 iff Cl subsumes C2, but C2 does not subsume Cl. Two cri- 
teria are incomparable if neither criterion subsumes the other. 
Note that the subsumption relation defines a partial order on 
any set of path selection criteria. 

3. DEFINITIONS OF THE CRITERIA 

In this section we de6ne the family of path selection cri- 
teria proposed by Rapps and Weyuker, the Required k-Tuples 
criteria proposed by Ntafos, and the three criteria proposed 
by Laski and Korel. We remind the reader that the following 
assumptions have been made: 

f. There arc no edge6 o/ the form (n, n); 
2. Every control flow graph iv well-formed; 
9. Every control pow graph contain6 at least one definition; 
4. Every definition reachec at leart one ure; 
5. Every uee i.9 reached by af leart one definition; 
6. At least one u6e i6 associated with each node representing 

a predicate; 
7. No definition6 are a66ociafed 6th a node reprerenting a 

predicate. 

3.1 The Rappr and Weyuker Family of Criteria 

Rapps and Weyuker define a family of path selection crite- 
ria and analyze these criteria in an attempt to specify the sub- 
sumption relationships that exist among the members of the 
family [Rapp82,Rapp85,Weyu84]. This family includes three 
well-established control flow criteria and some new path selec- 
tion criteria based on the concepts of data Bow analysis. 

The control Bow criteria considered by Rapps and Weyuker 
are All-Paths (path coverage), All-Edges (branch coverage), and 
All-Nodes (statement coverage). 

The pair (M,P) ratiefier the All-Paths criterion iff P = 
PATHS(M). 

The pair (M,P) ratisficr the All-Edges criterion iff for all 
edge6 e, there i6 at leart one path in P $ong which e occurd. 

The pair (M,P) ratisfier the AD-Node6 criterion iff for all 
node6 n, there ie at least one path in P along which n occurs. 
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It is well-known that (for well-formed graphs) All-Paths sub- 
sumes All-Edges, which subsumes All-Nodes. For most modules 
M, the ody pairs (M, P) that satisfy the All-Paths criterion 8re 
those whose path set P is infinite. Thus, All-Paths is not usefu) 
for such modules. On the other hand, important combinations 
of nodes and/or edges might not be required by either All-Edges 
or All-Nodes. The data flow criteria developed by Rapps and 
Weyuker distinguish combinations that 8re important in terms 
of the tlow of data through a module. 

Raw and Weyuker first define a criterion that requires a 
path set to contain at least one definition-clear subpath from 8 
definition to some use reached by that definition. 

The pair (AI, P) sofisfiee the All-Defs criterion iff for 011 dcf- 
initiomdf,(z), there is at leoat one su6poth (m) . p . (n) in P 
6UCh that p is definition-clear wrt z and there is o use u,(z) 
ossocioted with node n. 

Next, Rapps and Weyuker define a criterion that requires 8 
path set to contain at least one definition-clear subpath from 
each de6nition to each use reached by that definition and each 
successor of the use. The significance of the successor nodes is 
that they force all branches to be taken following 8 predicate. 

The poir (M, P) rotiafier the All-Uses criterion #for all dcf- 
initiond d,,,(z), 011 uued u,(z) reached bv a(z), and all ducceb- 
6ora n’ of node n, P contoim at leort one subpoth (m) .p. (n, n’) 
ruch that p ir definition-clear cart z. 

Rapps and Weyuker define three criteria that are similar 
to All-Uses but that distinguish between computation uses and 
predicate uses. 

The pair (A4, P) rotiufier the All-C-Uses/Some-P-Uses cri- 
terion iflfor all definitions d,,,(z): 

1. For all computation udee u,(z) reached by d,,,(z), P con- 
taint ot least one subpoth(m).p*(n) ruch thatp is definition- 
clear wrt 2. 

2. ff there ir no computation ure of z reached bu d,,,(z), then 
for of leost one predicate ure u,(z), P contains o subpoth 
(m) .p * (n) ruch that p is definition-clear wrt z. 

The pair (M, P) satisfier the All-P-Uses/Some-C-Uses cri- 
terion if/or 011 definitiorrr d,,,(z): 

1. For all predicate urea U,,(Z) reached by d,(z) ond 011 MC- 
censors n’ of node n, P contains ot lea& one rubpath (m) . 
p - (n, n’) such that p is definition-clear wrt z. 

2. If there ir no predicate ure of z reached by d,(z), then for 
at least one computation ume u”(z), P contoim o rubpath 
(m) . p . (n) ruch that p is definition-clear wrt z. 

The pair (M, P) rotbfier the All-P-Uses criterion #for 011 
definitions d,(z), all predicate uses u,(z) reached by d,(z), 
ond oil ducce4aora n’ of node n, P contains at least one rubpoth 
(m) . p . (n, n’) ruch that p ir definition-clear wrt Z. 

The final criterion, All-DU-Paths (DU stand5 for de&&ion- 
use), goes 8 step further than All-Uses; rather than requiring 
one definition-clear subpath from every definition to all the suc- 
cessor nodes of each use reached by that definition, AlI-DU- 
Paths requires every such definition-clear subpath that is a sim- 

ple cycle or cycle-free. This limitation on cycles is included to 
ensure that the path set is finite. 

The pair (M, P) rotirfier the All-DU-Paths criterion iff for -. 
011 definition d,,,(z), 011 urea u,(z), and all 8ucceeoor nodes n’ 
of n, P contoinr every rubpath(m).p.(n, n’) ruch that (m).pjn) 
is a simple cycle or cycle-free ondp is definition-clear tort z. 

3.2 Ntafoef Required k-lhples Criteria 

Ntafos also uses data Bow information to overcome the short- 
comings of using control flow information alone to select paths. 
He defines a class of path selection criteria, based on data Row 
analysis, called Required k-Tuples [NtafSl,Nt8f34]. These crite- 
ria require that a path set cover chains of alternating definitions 
and uses, called k-dr interactions. The ith definition of a k-dr 
interaction reaches the ith use, which occum at the same node 
8s the (i + 1)st definition. Thus a k-dr kteraction propagates 
information along a subpath, which is called 8n interaction sub- 
path for the A-dr interaction. 

The Required k-Tuples criteria 8re only defined for k 2 2. 
A 2-dr interaction is simply a pair [d,,,(z),u,(z)] such that 
d,,,(z) reaches u,(z) and m # n. An interaction subpath for 
this 2.dr interaction is a subpath (m) . p . (n) such that p is 
definition-clear wrt z. For k 2: 3, a k-dr interaction is a se- 
quence IC = Idl(z1),uz(zl),dz(z5), . . . ,4-1(a-d,udzu)l of 

k - 1 definitions and k - 1 uses associated with k distinct nodes 
nl,nz, . . . ,nk, where for 8ll i, 1 5 i < k, the ith definition 
di(zi) reaches the ith use ui+l(zi). Note that the variables 
zl,zs, . . . , Zk-1 need not be distinct. An interaction subpath 
for K is 8 subpath p = (nl) .pl . (n2) -p2 ...--pksl a(nk) such 
that for roll i, 1 I i < k, subpath pi is definition-clear wrt zi. 

As defined by Ntafos, each Required k-Tuples criterion re- 
quires only that a path set contain at least one interaction sub- 
path for every k-dr interaction in a module’s control Bow graph, 
and some additional subpaths if the first definition or last use 
of a k-dr interaction occurs in a loop or if the last use is a predi- 
cate use. This meBIw that the Required k-Tuples criterion does 
not necessarily subsume the Required (k - 1).Tuples criterion 
for a 6xed k > 2, since for any module there exists a constant 
n such that there are no k-dr intemctions for k > n. It is 
clear from Ntafos’ examples, however, that he did intend the 
Required k-Tuples criterion to subsume the Required (k - 1). 
Tuples criterion for k > 2. Our definition of the criteria sssures 
this. 

In Ntafos’ definition of the Required k-l\uples criteria, defi- 
nitions and uses of all the vsriables in a module are associated 
with a %ourcen and “sink” node, respectively. This is appar- 
ently done to detect data Bow anomalies. To achieve the same 
effect, we require that: (1) the control Bow graphs to which 
Ntafos’ criteria are applied olwoyr contain the nodes nb and 
nd, (2) definitions of all variables (not just those that import 
information) are associated with n*, and (3) usea of all vari- 
ables (not just those that export information) 8re associated 
with n,+ 

We now formally define the Required k-Tuples criteria. Let 
k be a 6xed integer, k 12. 

The pair (M, P) rotisfier the Required k-Tuples criterion ifl 
for all I-dr interoctionr A in G(M), 2 5 1 5 k, each of the 
following conditions holds: 

f. For 011 auccenaore m of the node nl orsocioted with the last 
use in A, P contoim o rubpoth p. (m) ruch that p is on 
interaction subpoth for A. 
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9. I” the node tal arrociated with the first definition in A oc- 
cura in a loop, then P contain subpaths p = p1 .(nl) .pz ‘pa 
andp’ = pi.(nl).p:.p: such that: (nl).pz.ps and (nl).pi.p; 
begin with interaction subpaths for A, p1 . (ni) 1 pz is a cl- 
subpath for the loop C immediately containing nl 4 that 
traverses L a minimal number of times, and pi . (n,) . pi 
is a cl-subpath for L that traverser L come larger number 
o/ timea. 

All-Paths 

AU-DU-Paths 

AU-&es 

9. If the node nl associated with the last we in A occur8 in 
a loop, then P contain subpaths p = p1 . pz . (n,) . ps and 
p’ = pi.p;-(nr)-p: such that: pl.pz.(n,) andp\,p;.(n,) end 
with interaction subpathsfor A, ~2. (nl) -pa is a cl-subpath 
for the loop L immediately containing rat that traverses L 
a minimal number of times, and p)2. (n,) -pi is a cl-rubpath 
for L that traverses L uome larger number of times. 

3.3 The La&i and Morel Criteria 

Laski and Korel define three path selection criteria based 
0x1 data flow analysis [Lask83]. We refer to these aa the Reach 
Coverage criterion (Strategy I), the Context Coverage crite- 
rion (Strategy II), and the Ordered Context Coverage criterion 
(modified Strategy II). 

Some-P-Uses Some-C-Uses 

AU-Edges 

1 
All-Nodes 

The Reach Coverage criterion was originally defined by Her- 
man [Herm76]. It requires that a path set contain at least one 
subpath between each definition and each use reached by that 
definition. 

Figure 1: The Rappr and Weyuker Subrumption 
Hierarchy. 

The pair (M,P) satiejier the Reach Coverage criterion if 
for all dejinitionr d,,,(z) and all urea u,(z) reached by a(z), P 
contain at least one subpath(p.(n) ruch thatp ia dejinition- 
clear tort 2. 

Before defining the remaining two criteria, some additional 
terminology must be introduced. Let n be a node in a con- 
trol Row graph G(M), and let (21, ~2,. . . , ZL} be a nonempty 
subset of USED(n). An ordered definition contert of node n is 
a sequence of definitions ODC(n) = [dl(zl), d2(z2), . . . , dL(zh)] 
for which there exists a subpath p. (n), called an ordered con- 
tezt rubpath, with the following property: for all i, 1 5 i 5 k, 
p = pi . (ni) . qi, where qi in de&&ion-clear WI% Zi; and for all 
j, i < j 5 k, either ni = nj, or nj occws along qi. Thus, an 
ordered de6nition context of a node is a sequence of de&&ions 
that occur along the same subpath and that reach uses at the 
node. The order of the definitions in the sequence is the same 
aa their order along the subpath. 

variables used at the node, instead of just a subset. Thus the 
criteria we define require paths to a statement even when there 
is no path that defines all the variables used at the statement 
- a situation that might legitimately occur, for example, in a 
call to a procedure that references some of its parameters con- 
ditionally. We now formally define the Context Coverage and 
Ordered Context Coverage criteria: 

The pair (M, P) ratisfier the Context Coverage criterion iff 
for all definition contezte DC(n), P contain at least one con- 
tezt rubpathfor DC(n). 

The pair (M,P) #atisfier the Ordered Context Coverage 
criterion iff for all ordered definition contertr ODC(n), P con- 
taint at least one ordered contezt tubpathfor ODC(n). 

4. ANALYSIS OF THE CRITERIA 

4.1 Evaluating the Rapps and Weyuker Hierar- 

Again, let n be a node in a control flow graph G(M), and 
let {z1,22,..., zk} be a nonempty subset of USED(n). A def- 
inition contezt of a node n is a set of definitiona DC(n) = 
(4(a), &(a), . . . , dk(zs)} for which there exists a subpath 
p . (n), called a contett rubpath, with the following property: 
for all i, 1 5 i 5 k, p = pi . (ni) . qi, where qi is definition-clear 
wrt Zi. Thus, a definition context of a node is a set of defiui- 
tione of variables used at the node, which reach the node along 
some initial subpath. Note that for any node n, a definition 
context DC(n) is the set of de6nitiona in at least one sequence 
ODC(n), and an ordered context subpath for any such ODC(n) 
is a context subpath for DC(n). 

chy 
The Rapps and Weyuker path selection criteria defined in 

Section 3 are those presented in [Rapp85]. In that paper, Rapps 
and Weyuker propose a partial ordering of their criteria, as il- 
lustrated in the subsumption graph of Figure 1. It is inter- 
esting to note that the de&&ion of the All-DU-Paths crite- 
rion presented in [Rapp85] differs from the earlier definitions 
in [Rapp82,Weyu84]. The earlier definitions of All-DU-Patha 
required only cycle-free subpaths, while the newer definition 
requires simple cycles as well. Without this change, it can 
be shown that All-DU-Paths does not even subsume All-Defs 
[c~~sA]. 

The Context Coverage and Ordered Context Coverage cri- In order to demonstrate that the position of the newer ver- 

teria defined here differ somewhat from those originally defined sion of the All-DU-Paths criterion in the aubsumption hierarchy 

by Laski and Korel, who require a de&&ion context or or- of Figure 1 is correct, we prove that All-DU-Paths strictly sub- 

dered definition context of a node to include definitions of all sumes the All-Uses criterion. 

‘A loop L immediafely contains l node iff L contains the node snd there 
in ao aobloop of L that also coat&s it. 

Theorem 1 The All-D&Pa& criterion rtrictlg rubsumes the 
All-Ueer criterion. 
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laplIt (x, y); 
dl (x) ,dl W 

na if x < 0 thrn 

ns x := 1; .2 
l rd if; 3 

n4 if y > 0 thoa 

n5 y := 0; 
and if; 

b 

u2 (x) 

d3 (x) 

“4 u4 (x) 

“5 dg (Yl 

nb output (x, y); e@+ "6 us (x) 'U6 (y) 

Figure 2: Module Ml and itm control flow graph G(&). 

Proof. We first prove that All-DU-Paths subsumes All-Uses, 
by showing that any pair not satifying the All-Uses criterion 
cannot satisfy the All-DU-Paths criterion either. Let (M, P) be 
a pair not satisfying the All-Uses criterion. Then there exists a 
definition d,,,(z), a use u,(z) reached by dm(z), and a successor 
n’ of node n such that P containa no subpath of the form (m) . 
p . (n, n’), where p is definition-clear wrt z. Assume, by way of 
contradiction, that (M, P) satisfies the All-DU-Paths criterion. 
Because d,,,(z) reiiches u,(z), there exists a subpath (m) .p - 
(n, n’) in G(M) such that p is definition-clear wrt z. It follows 
[Clar85A] that G(M) also containa a subpath q = (m).p’.(n,n’) 
such that (m) . p’ . (n) is cycle-free or is a simple cycle, and p’ is 
de&ition-clear wrt z. Because (M, P) satisfies All-DU-Paths, 
P must contain q. But this is a contradiction, and we must 
conclude that (M, P) cannot satisfy All-DU-Paths. Thus, All- 
DU-Paths subsumes Ail-Uses. 

We now show that All-Uses does not subsume All-DU-Paths. 
Consider the module A& shown in Figure 2. The pair (A&, PI) 
satisfies All-Uses, where 

(1) 

It does not satisfy All-DU-Paths, however, because P does not 
contain the subpath (nl,n2,n3,n4,ne,nM). Thus, All-Uses 
does not subsume All-DU-Paths. 0 

4.2 Incorporating Ntafoe’s Required k-Tuplee Cri- 
teria 

In this section, we compare Ntafos’s Required A-Tuples cri- 
teria to the Rapps and Weyuker criteria. The All-Paths crite- 
rion obviously subsumes each of the Required k-Tuples criteria. 
None of the Required k-Tuples criteria subsume the All-Defs 
criterion, because the Required k-Tuplee criteria do not require 
that a variable definition be covered if its only use is at the 
node where the definition occurs. The All-DU-Paths criterion 
does not subsume any of the Required k-Tuples criteria, be- 
cause All-DU-Paths does not require each loop containing a 
de&n&ion or use to be tested with at least two cl-subpaths aa 
the Required k-Tuples criteria do. These last two facts imply 
that the Required k-Tuples criteria are incomparable to all the 
criteria that are subsumed by All-DU-Paths and that subsume 
All-Defs. Because the Required k-Tuples criteria require that 
both edges from a branch predicate be covered, they do sub- 
sume the All-P-Uses criterion. We now formally state and prove 
each of these relationships. 

Theorem 2 There is no Required k- Tuplee criterion that sub- 
eumee the All-Defs criterion. 

Proof. Consider the module M2 shown in Figure 3, The pro- 
cedure fra called in Z& implements a Enite state automaton. 

l tmto := initial; 
rrprat 

input (char) ; 
if chu !Z 

{blank. cr) than 
fm (&at., 

l ad if; 
anti1 chu - cr; 
oatpot (aceapt); 

dinMat .din(cW 

dhkce@) 

dl (stat4 

d2 (char) 

u3 ~~) 

d ktate,d baccspt) 
“: katate) 3, (Char) 
ugkkl-d 

Us(==e) 

y& (accept) 

Figure 3: Module A42 and itm control flow graph G(M2). 

It inputs state and char and outputs atate and accept. The 
2-dr interactions and 3-dr interactions associated with G(M2) 
are as follows: 

[db( accept), ue( accept)], (dh(occept), ud(accepf)], 
[d,(utate),ur(etate)], [dl(state),ud(state)], 
[dz(char),us(char)l, [&(ch4,ur(char% 
[d2(char),ua(char)], [dz(char),u4cWl, 
[dd(state),ud(atate)], 

Idr(accep4, ub(acceP~)], [dr(accept), ud(accept)], 
[dl(state),ur(state),d~(state),u~(state)], 
[dl(state),ua(state), d~(accept),u~(accept)], 
[dl(state),ur(state),d4(accept),ud(accept)], 
(dz(char), ur(char), dd(rtate), ud(state)], 
[dz(char), ur(char), dd(accepf), ue(accept)], 
[d2(char),u~(char),d~(accept),u~(accepf)]. 

There are no k-dr interactions associated with G(M2) for k > 
3. The pair (Mz, P) satisfies each Required k-Tuples criterion, 
where P = {PI,P~,PS) and 

PI = (nrlul,n*,nl,n2,n~,n4,ns,n2,n5,ns,nbtn~,n~) 

Pi = (n#W, nh nl, n2, n3, n4,% nb, nd, n&d) 

P5=(n~,ni,nl,nz,ns,na,ns,n~,nlll). 

However, (M2,P) does not satisfy the All-Defs criterion, be- 
cause P does not contain a definition-clear subpath wrt the 
variable state from the definition dd(state) to a use of rtate 
(there is no use ud associated with G(M2) for All-Defs). 0 

Corollary 1 The All-Pathr criterion strictly rubrumer each of 
the Required k- Tuples criteria. 

Theorem S The All-DU-Pathr criterion doer not subsume the 
Required 2- Tupler criterion. 

Proof. Consider the module M shown in Figure 4. The pair 
(A&, P) satisfies the All-DU-Paths criterion, where 

p = {(n.*rl,nlln2,nS,n2,n5,n4,nltJ)). 

It does not satisfy the Required 2-Tuples criterion, however, 
because there is no subpath in P that covers the 2-dr interaction 

input (x); 
fg- “1 

nl 

rop*at 9 

dl (x) 

‘“2 

Qi 

d2 (xl ,uz (x) 

4 x := x l I; 

n5 until x > 0; i3 u3 (X) 

n4 ootpat (xl; 
u4 w 4 :ah4 -33 

Figure 4: Module IL& and its cokrol Row graph G(N). 
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(dl(z),u2(z)] and contains a cl-subpath for the loop in G(s) 
that travemes it a minimum number of times (in this case once). 

q 
corollas 2 Each Required k-Tuples criterion ia incofvara- 

b[e to the the All-DU-Path6 criterion, the A/l-uses criterion, 
the All-C-~6e6/~ome-P-Uses criterion, the All-P-U6e8/Some- 
C-fJeee criterion, and the All-Defa criterion. 

Theorem 4 Each Requiredk- Tuples criterion subsumes the AIf- 
P-Uses criterion. 

The proof of this theorem is straightforward [Clar85A] and is 
omitted here. q 
Coro)lary S Each Requiredk- Tuples criterion strictly 6ub6um66 

the All-P-uses criterion, the All-Edge6 criterion, and the 
All-Nodes criterion. 

4.3 Incorporating the La&i and Morel Criteria 

In this section we demonstrate the subsumption relation- 
ships that exist between the Laski and Korel criteria and those 
of Rapps and Weyuker and of Ntafos. We first show that Laski 
and Korel’s criteria form a hierarchy. The Ordered Context 
Coverage criterion subsumes the Context Coverage criterion 
because all ordered context subpaths for an ordered definition 
context ODC(n) are context subpaths for any delinition con- 
text containing the same definitions as ODC(n). The subsump- 
tion is strict because a context subpath for a definition context 
DC(n) is not necessarily au ordered context subpath for all the 
ordered definition contexts containing the same deSnitions as 
DC(n). The Context Coverage criterion subsumes the Reach 
Coverage criterion because every definition reaching a use at a 

node must appear in some definition context of that node. s 
This subsumption is strict because the Reach Coverage criterion 
does not require paths exercising combinations of deli&ions as 
the Context Coverage criterion does. We now formally state 
and prove these relationships. 

Theorem 6 The Contezt Gooerage criterion strictly subsume6 
the Reach Coverage criterion. 

Proof. The proof that the Context Coverage criterion sub- 
sumes the Reach Coverage criterion is straightforward [ClarSSA] 
and is omitted here. We show that Reach Coverage does not 
subsume Context Coverage. Consider again the module Mi 
shown in Figure 2. The pair (&, PI) satisfies Reach Coverage, 
where PI is defined by Equation (1). It does not satisfy Context 
Coverage, however, because PI contains no context subpath for 
the definition context DC(n6) = {dI(z),d6(y)}. q 
Theorem 0 The Ordered Conteat Coverage criterion rtrictly 
6ub6umer the Contett Coverage criterion. 

Proof. It is easy to see that the Ordered Context Coverage 
criterion subsumes the Context Coverage criterion. We prove 
here that Context Coverage does not subsume Ordered Context 
Coverage. Consider the module a shown in shown in Figure 5. 
The definition contexts associated with G(M) are as follows: 

DG(n2) = {4(z)) DCzt4 = {ds(t)} 
DCl(ns) = {dlb),dl(u)) DC&u) = {dl(z),d&)} 
DC&s) = (da(z), b(u)) OCR = {ds(z),ds(g)} 

‘Note tht, u pointed oat in Section 3.2, thin in not tme for L&i ad 
Korel’s original definition of a definition context. 

w input (x. J. s); dlW,dl(~),dl(z) 

nl rhil. cl(s) loop 
n3 n :- r(x.y); u2(z) u* (x) 'U8 (Y) 

n4 ii cl(r) tha 
nb x :- x; 

l lno 
d (z),"~(x), 
“;(y) 

n4 J :- t 

l lld it; 
u4 (2) 

n7 l ad loop; 
d6(y) .",(z) 

n6 ootprrt k y); 

Figure 6: Module k& and its control Bow graph G(M). 

DCl(nr) = {ds(t)) 
Dcl(ns) = V&)} 
DCl(ns) = (d&J) 
DC~(~~) = (dl(z),dl(y)} DC&%) = {dl(4de(g)I 
DC&~) = {d6(Z),dl(U)} DC&s) = {da(~)~de(u)~~ 

The pair (A& P) satisfies Context Coverage, where P = {PI, ~2, 

~s,prI and 

pl = (n~,nl,n2,n3,nr,n6,nT,n2,n3,n4,n6,n7,n2,nS,nlU) 

p2 = (nrlul,nl,nz,ns,n(,n6,n7,n2,ns,n4,nb, 

n7,nz,ns,nr,no,n7,n2,ns,nlU) 

ps = (nrlu(,nl,n2,n~,n~,no,n7,n2,ns,n4,ns,n7,nz,ns,n~) 

PC = (nr(u(,nlrn2,ns,n&. 

This pair does not satisfy the Ordered Context Coverage cri- 
terion, however, because P does not contain rm ordered con- 
text subnath for the ordered definition context ODC(ns) = 

hh’),&)l. q 
Having shown how Laski and Korel’s three criteria relate 

to each other, we show how they relate to the other data Bow 
criteria. The Ordered Context Coverage criterion does not sub. 
sume the Ah-Nodes criterion, because Ordered Context Cover- 
age does not require that both branches following a predicate 
use be taken. The All.DU.Paths criterion does not subsume 
the Context Coverage criterion, because the presence of a loop 
between a definition and a node may cause all the context sub- 
paths for a definition context of the node to contain non-simple 
cycles. None of the Required k-Tuples criteria subsumes Con- 
text Coverage either, because the definitions in a definition con- 
text are not necessarily linked by an interaction aubpath. These 
three facts imply that Ordered Context Coverage and Con- 
text Coverage are incomparable to all the criteria that are sub. 
sumed by Ah-DU-Paths or the Required k-Tuples criteria and 
that subsume All-Nodes. The All-Uses criterion is similar to 
the Reach Coverage criterion, but strictly subsumes it because 
Reach Coverage does not require that all branches following a 
predicate use be covered as All-Uses does. Finally, Reach COV- 
erage strictly subsumes the All-C-Uses/Some-P-Uses criterion 
because it requires that every use be exercised at least once. 
It follows from this and the fact that the Ah-P-Uses/Some- 
C-Uses criterion is incomparable to Ah-C-Uses/Some-P-Uses 
that Reach Coverage is incomparable to the criteria that are 
subsumed by Ail-P-Uses/Some-C-Use and that subsume All- 
Nodes. 

Theorem 7 The Ordered Contest Coverage criterion doe6 not 
rubrume the All-Node6 criterion. 

Proof. Consider the module A2.s shown in Figure 6. The only 
ordered definition context Msociated with G(&) is ODG(ns) = 
I&(w)). Thus the pair (I&P) satisfies the Ordered Context 
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n1 input cd; .5 1 dl (xl 
n2 if x = 1 tllon 
n4 ootpot (1) ; 

*I*. 

a 

2 u2 (x) 

n4 ontpllt (0); 5 4 

and if; tG 

Figure 8: Module I& and its control flow graph C(M). 

Coverage criterion, where 

P= {b~,nl,nz,ns,n~)). 

It does not satisfy the All-Nodes criterion, however, because 
node*nd does not occur along the path in P. cl 

Corollary 4 The All-Pathr criterion rfrictlg rubrumea the Or- 
dered Contezt Coverage criterion. 

Theorem 8 The Ail-DU-Pathe criterion doer not rubsume the 
Contezt Coverage criterion. 

Proof. Consider a&in the module A& shown in Figure 5. The 
pair (Mi,P) satisfies the All-DU-Paths criterion, where P = 
{PI,PZ,PS) and 

PI = (n~,nl,nz,ns,n4,ns,nr,nz,ns,nr,ne,n7,nz,ns,n~) 

~2 = (nrlr(,nl,n2,m,nw). 

This pair does not satisfy the Context Coverage criterion, how- 
ever, because P does not contain a context subpath for the 
definition context DC(ns) = {dl(z),de(z)}. cl 

Theorem 9 There is no Required k- Tupler criterion that sub- 
uumeo the Contezt Coverage criferion. 

Proof. Consider again the module Ml shown in Figure 2. The 
pair (Ml, PI) satisfies each Required k-Tuples criterion, where 
PI is defined by Equation (1). It does not satisfy the Context 
Coverage criterion, however, because PI contains no context 
subpath for the de&&ion context lX’(ns) = {dl(z),db(y)}. 0 

Corollary 5 The Contezt Cooerage and Ordered Contett Cov- 
erage criteria arc incomparable to the All-D&Paths, Required 
k-Tuples, All-Uses, All-P-Uses/Some-C-User, All-P-User, All- 
Edgca, and All-Nodca criteria. 

Theorem 10 The All-User criterion rtrictly rubsumes the 
Reach Cooerage criterion. 

Proof. It is clear that the All-Uses criterion subsumes the 
Reach Coverage criterion. The Reach Coverage criterion can- 
not subsume the All-Uses criterion, because by Theorem 5 the 
Context Coverage criterion subsumes Reach coverage and by 
Corollary 5 Context Coverage does not subsume All-Uses. 0 

Theorem 11 The Reach Coverage criterion rtrictly rubsumea 
the All-C-Uses/Some-P-lee criterion. 

Proof. Clearly, the Reach Coverage criterion subsumes the All- 
C-Uses/Some-P-Uses criterion. We prove here that the All-C. 
Uses/Some-P-Uses criterion does not subsume the Reach Cov- 
erage criterion. Consider the module fi shown in Figure 7. 
The pair (A&, P) satisfies All-C-Uses/Some-P-Uses, where 

P = {hw, nl, n2, m, n&j. 
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nl input w ; 
n2 if x > 0 ttloa c!g--+@ 3(x) 

n4 if x > 1 thrn 
n4 output (0) ; “2 u2 (xl 

l I*. 
n6 output (I) ; 

II3 (x) 3 6 

end If; "4 "5 
Oh. 

n6 output (1) ; 

a 

"f 
l ad if; 

Figure 7: Module A& and its control flow graph C(A&,). 

It does not satisfy Reach Coverage, however, because P does 
not contain the subpath (nl, n2, ns). cl 

Corollary 6 The Reach Coverage criterion a2 incomparable to 
the All-P-Uses/Some-C-Gee, All-P-&e,, All-Edges, and All- 
Node, criteria. 

The final subsumption hierarchy, which includes all the cri- 
teria considered, is shown in Figure 8. 

5. CONCLUSION 

This paper demonstrates the subsumption relationships that 
exist among the data Bow path selection criteria proposed by 
Rapps and Weyuker, Ntafos, and Laski and Korel. Since these 
criteria have related goals, we chose them 6rst for evaluation. 
Other types of path selection criteria must also be considered 
and their place in the subsumption hierarchy determined. Once 
the subsumption relationships are clearly understood, a number 
of important issues will still remain to be addressed. In par- 
ticular, we intend to continue this investigation by considering 
the effect of minor enhancements to the existing criteria, the 
difference between the criteria in terms of their error detection 
capabilities, and the effect of infeasible paths as well as other 
troublesome features of programming languages. 

Our overall goal is to formulate an effective path selection 
criterion. We expect that this criterion will exploit the data 
Bow relationships used by the three families of data flow path 
selection criteria considered in this paper. From this study, it 
is clear that all three families of criteria have a unique contri- 
bution to make, although there is substantial overlap among 
them. Now that their relationships are better understood, we 
intend to continue our investigation, focusing on the differences 
in error detection capabilities among the criteria and on Bexi- 
ble guidelines for replacing infeasible paths with executable ones 
when appropriate. 
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Figure 8: The Final Subeumption Hierarchy. 
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