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ABSTRACT 
Many software systems do not have a documented system 
architecture. These are often large, complex systems that are 
difficult to understand and maintain. One approach to recov- 
ering the understanding of a system is to extract architectural 
documentation from the system implementation. To evaluate 
the effectiveness of this approach, we extracted architectural 
documentation from the LinuxTM kernel. The Linux kernel 
is a good candidate for a case study because it is a large (800 
KLOC) system that is in widespread use and it is represen- 
tative of many existing systems. Our study resulted in docu- 
mentation that is useful for understanding the Linux system 
structure. Also, we learned several useful lessons about ex- 
tracting a system’s architecture. 

Keywords 
Software architecture, architecture recovery, redocumenta- 
tion 

1 INTRODUCTION 
Recent research [ 12,151 suggests that large software systems 
should be designed with a documented software architecture. 
This architecture provides a building plan for a system at 
a high level of abstraction. Individual functions and even 
modules are not described in detail; instead, subsystems and 
relations between them are documented. This level of ab- 
straction is appropriate for understanding an entire software 
system, and provides a good mechanism for system under- 
standing. 

We now know that using a documented software architecture 
throughout the lifetime of a software system can improve the 
quality and maintainability of the system. However, many 
existing systems do not have a documented system architec- 
ture. These systems are too valuable to discard or re-develop, 
but are often plagued by high maintenance costs, poor perfor- 
mance, or security risks. There is an approach that appears to 
be a promising way to get the benefits of a documented soft- 
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ware architecture for these legacy systems: we can use auto- 
mated tools to help extract architectural documentation from 
a system implementation. This approach has been used suc- 
cessfully by several researchers [3, 6, 10, 18, 201 to extract 
an architectural description from complex software systems. 

Architectural redocumentation restores system understand- 
ing by abstracting important entities and their relationships 
in a large software system. This enhanced understanding can 
be used as part of a re-engineering effort, as a way to reduce 
maintenance costs, or as an input to a system evaluation. 
Unless architectural documentation is maintained, it will 
become obsolete as the system undergoes further changes. 
Finnigan et al. [3, 191 propose a way to keep architectural 
documentation up to date. First, automated tools are com- 
bined with human effort to extract system documentation and 
store it in a Software Bookshelf. As the system changes af- 
ter the documentation extraction, a librarian uses automated 
tools to compare the system’s implementation with the doc- 
umentation. The librarian updates the documentation to re- 
flect system changes (or perhaps prevents system changes 
that cause architectural erosion as described by Ferry and 
Wolf [ 121). 

LinuxTM is a Unix TM-like operating sy stem that has re- 
ceived much popular attention [8]. Linux is based on the 
Open SourceTM concept [ 131, which means that there are no 
barriers to discussing the details of the system implementa- 
tion. Linux has an interesting software structure that is sim- 
ilar to other large software systems. Linux is also a system 
that is growing rapidly; the source code for the Linux sys- 
tem has approximately doubled every year from 10 KLOC 
in 1991 to 1.5 MLOC in 1998 [9]. 

Because Linux is an interesting representative of existing 
software systems, we chose to examine it as a case study. 
In particular, we studied the Linux kernel, which is respon- 
sible for process, memory, and hardware device manage- 
ment. The Linux kernel is itself a large system (approxi- 
mately 800 KLOC). Although there is some existing docu- 
mentation about the Linux kernel [7, 141, this documentation 
describes individual subsystems and algorithms. There is no 
architectural documentation that describes the system struc- 
ture at a high level of abstraction. 
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The Linux kernel is a good guinea pig for architectural re- 
covery. It is a large system in widespread use, and it is 
an interesting representative of real software systems. Be- 
cause Linux is freely available, there are no barriers to dis- 
cussing its architectural structure in detail. To promote fur- 
ther use of the Linux kernel as a case study, we are making 
the architectural relations and system architecture that we ex- 
tracted from the system implementation available to other 
researchers [ 111. 

Case Study Approach 
tie types of architectural documentation are particularly 
beneficial to humans trying to understand a software system: 
a conceptual architecture and a concrete architecture’. The 
conceptual architecture shows how developers think about 
a system; it shows relationships between subsystems that 
are ‘meaningful’ to developers. For example, a subsystem 
might depend on another only for debugging purposes, but 
this dependency might not be shown in a conceptual archi- 
tecture of the system. In contrast, the concrete architecture 
of a system shows the relationships that exist in the imple- 
mented system. While the conceptual architecture is easier 
to understand because it contains only essential relations, the 
concrete architecture is necessary when making decisions re- 
quiring implementation-specific knowledge. 

Linux has neither a documented conceptual nor a docu- 
mented concrete architecture. There is existing documen- 
tation that describes the kernel, but it describes individual 
subsystems in detail instead of concisely describing the re- 
lations between subsystems. As a first step in our recovery 
effort, we examined the existing documentation to determine 
the conceptual architecture of the Linux system. This con- 
ceptual architecture helped when examining the system im- 
plementation to form the concrete architecture-it allowed 
us to concentrate on important relationships, and provided 
an initial system structure. 

Our approach to extracting the concrete architecture of the 
Linux kernel was as follows: 

q Examine existing documentation to form a conceptual 
architecture of the Linux kernel. 

l Group source files into subsystems based on directory 
structure, naming conventions, source code comments, 
and examination of the source code. Use the conceptual 
architecture as a guide in to what subsystems should be 
created and where files should be clustered. 

l Extract relations between source files in the Linux im- 
plementation. 

l Use the relations between source files and clustering of 
files to determine relations between subsystems. 

l Use the clustering and relationships to form a concrete 
architecture of the Linux system. 

1 Some people may prefer to use the term “as-built architectare” or else 
“high level design” instead of “concrete architecture”. 

Paper Organization 
The rest of this paper is organized as follows. Section 2 
describes the conceptual architecture of Linux. Section 3 
describes the process we used to extract the Linux concrete 
architecture. Section 4 describes the concrete <architecture. 
Section 5 draws conclusions from this work. 

2 CONCEPTUAL ARCHITECTURE 
We began our study of the Linux kernel by forming its con- 
ceptual architecture. This conceptual architecture acts as a 
framework which we use while examining the system imple- 
mentation. The conceptual architecture helps us understand 
the volume of detail in the implementation by providing a 
suggested system structure. 

We used descriptions [ 16, 171 of related operating systems 
(Unix and Minix) and existing Linux documentation to cre- 
ate an architectural description of the structure we expected 
to find in the Linux system. After reviewing existing docu- 
mentation [7, 141, we arrived at the conceptual architecture, 
shown at its highest level of abstraction in Figure 1. 

Communication 

Legend: ( Subsystem 1 -depends on- 

Figure 1: Linux Conceptual Architecture 

The seven major subsystems are the following: 

1. The Process Scheduler is responsible for supporting 
multitasking by changing which user process executes. 

2. The Memory Manager subsystem provides a separate 
memory space for each user process, and uses swapping 
to support more processes than fit in physical memory. 

3. The File System provides access to hardware devices. 
User processes can access keyboards, tape drives, hard 
drives, and modems using one interface that is imple- 
mented by the File System. 

4. The Network Interface encapsulates access to network 
devices in a similar manner to the File System. User 
processes can communicate with other computers using 
several different types of network hardware and trans- 
mission protocols. 

5. The Inter-Process Communication (IPC) subsystem al- 
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lows user processes to communicate with other pro- 
cesses on the same computer. Synchronization, mem- 
ory sharing, and inter-process messaging primitives are 
supported by the IPC subsystem. 

6. The Initialization subsystem is responsible for initializ- 
ing the rest of the Linux kernel with appropriate user 
configured settings. 

7. The Library subsystem contains routines which are 
used throughout the kernel. 

Each of the seven kernel subsystems has additional sub- 
subsystems hierarchically nested within it. The relationships 
shown in Figure 1 are ‘depends-on’ relationships. For ex- 
ample, the Memory Manager subsystem depends on the File 
System to swap memory to and from disk. For clarity, the 
relations from the Initialization subsystem and to the Library 
subsystem are omitted. The Initialization subsystem depends 
on all other kernel subsystems since it calls initialization rou- 
tines throughout the kernel, and all of the kernel subsystems 
depend on the Library subsystem. 

File System Conceptual Architecture 
The Linux kernel is a large system that has a complex system 
structure. Its subsystems have sub-architectures of consid- 
erable size and complexity. Due to size limitations, we will 
focus on only one of these in this paper, the File System. De- 
tails of the other kernel subsystems are available in previous 
papers [l, 21. 

There are three main roles that the File System performs: 

1. It provides access to a wide variety of hardware devices. 
2. It supports several different logical file system formats 

that control how files are mapped to physical locations 
on hardware devices. 

3. It allows programs to be stored in several executable file 
formats, including interpreted scripts. 

Figure 2 shows the conceptual architecture of the Linux File 
System. In this figure, double-headed arrows indicate depen- 
dence on or from all of the File System subsystems. This in- 
dicates that all of the File System subsystems depend on the 
Library subsystem, and the Initialization subsystem depends 
on all of the File System subsystems since it calls functions 
to initialize them. 

Linux uses the facade design pattern [4] to allow user, pro- 
cesses and other parts of the kernel to use elements of the 
File System through a single interface. The facade design 
pattern uses a single subsystem which provides a single, sim- 
ple facade interface to the subsystems within a system. Since 
clients only depend on the facade interface, the subsystems 
that implement system functionality can change their im- 
plementation without affecting clients. This design pattern 
allows clients to take advantage of a wide variety of hard- 
ware devices, logical file system formats, and executable for- 
mats without depending directly on any of the subsystems 

Figure 2: File System Conceptual Architecture 

that implement specific functionality. Since user processes 
and other parts of the kernel depend only on the System 
Call Interface, subsystem interdependency is reduced sub- 
stantially. The architecture of the Linux File System follows 
the ‘object-oriented’ or ‘data abstraction’ architectural style 
described by Shaw and Garlan [ 151. The subsystems of the 
File System act to encapsulate state and functionality related 
to hardware devices or logical file systems. These subsys- 
tems interact through method calls. 

The main roles of the File System are implemented in five 
subsystems. 

1. The Device Drivers subsystem performs all communi- 
cation with hardware devices supported by Linux. 

2. The Logical File Systems implements several logical 
file systems that can be placed on hardware devices; 
these different file systems allow interoperability with 
different operating systems, and also allow specialized 
functionality such as encryption, compression, and high 
performance. 

3. The Executable File Formats subsystem allows clients 
to execute programs from several different executable 
file formats, including not only compiled programs, but 
also interpreted scripts. 

4. The File Quota subsystem allows system administrators 
to limit the amount of file storage that individual users 
may use. 

5. The Buffer Cache subsystem provides memory buffers 
for input/output operations, and reduces hardware ac- 
cesses by caching data and eliminating redundant reads 
and writes. 

There are two other subsystems in the File System: the 
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System Call Interface and Virtual File System subsystems. 
These two subsystems are facade interfaces. The Virtual File 
System combines functionality from the Logical File Sys- 
tems and Device Drivers into a single interface. Other ker- 
nel subsystems can use the ‘Virtual File System and treat all 
hardware devices as files, without depending on any particu- 
lar hardware device driver or logical file system. The System 
Call Interface subsystem presents a similar unified interface. 
User processes can use the System Call Interface to access 
any functionality in the File System, without depending on 
the implementation of subsystems within the File System. 

The dependency relations shown in Figure 2 are based on 
existing system documentation. Some of the dependencies 
that are perhaps unexpected are the following: 

l The Device Driver subsystem depends on the F’rocess 
Scheduler. While a hardware request is being com- 
pleted, the associated device driver informs the Process 
Scheduler that the requesting user process should be 
suspended so that another process can execute. 

l The Logical File System subsystem depends on the Net- 
work Interface subsystem. Three of the logical file 
system implementations represent files that are stored 
on another computer and accessed using the network. 
These three logical file systems depend on the Network 
Interface to communicate with the remote computer. 

l The Memory Manager subsystem depends on the Vir- 
tual File System subsystem to swap memory to and 
from secondary storage. 

In our conceptual architecture, no kernel subsystem depends 
on any particular File System Format subsystem, Device 
Driver subsystem, or ExecutableFile Format subsystem. The 
Memory Manager subsystem is the only subsystem to de- 
pend on the File System, and it does so through the Virtual 
File System subsystem facade. Because of the facade design 
pattern, the Linux File System architecture is very flexible. 
It appears it would be easily maintainable because there are 
few dependencies. 

The documentation we reviewed provided us with a con- 
ceptual architecture that indicates the Linux system is im- 
plemented according to strong implementation-hiding prin- 
ciples, and that the system should be easily understandable 
and maintainable. To find out whether the implementation 
matches this architecture, we need to extract a concrete ar- 
chitecture from the system implementation. 

3 EXTFtACTION METHODOLOGY 
To determine what relations exist in the system implemen- 
tation, we need to look at the definitive artifact-the system 
source code. The size of the Linux kernel implementation 
(800 KLOC) makes it too costly to examine the source man- 
ually. Instead, we used automated tools to extract relations 
from the source code then combined these relations into a 
concrete system architecture. 

Figure 3: Extraction Process 

Figure 3 shows an overview of the process we used to extract 
a concrete system architecture from the Linux kernel. We be- 
gan by determining which source files were part of the ker- 
nel. Next, we used a source-code extractor called c f x [ 111. 
This tool extracts relations such as ‘function z calls function 
y’ and ‘source file x.c defines function z’. The tools extracts 
function call and variable access relations; these imply con- 
trol flow and data flow dependencies. 

The output of c f x is a set of relations between functions and 
variables. These relations are too detailed for human con- 
sumption. We used the grok [5, 1 I] tool to determine rela- 
tions between source files based on the relations between the 
functions and variables defined within the source files. With 
1682 source files in the kernel implementation, even rela- 
tions between source files are at too low a level for easy sys- 
tem understanding. Instead of relations between source files, 
we would like to examine relations between subsystems. To 
achieve this result, we manually created a tree structured 
decomposition of the Linux system into subsystems. Each 
source file was manually assigned to a single subsystem, and 
each subsystem was assigned to a single containing subsys- 
tem. We used the subsystems from our conceptual architec- 
ture as an initial set of subsystems, and assigned source files 
to subsystems based on several criteria: directory structure, 
file naming conventions, source code comments,,documen- 
tation, or, as a last resort, examination of the source code. If 
a set of source files seemed logically related, we’created a 
new subsystem to contain them. I’ 

After we manually created a hierarchical description of the 
subsystems and source files in the Linux kernel, we used the 
grok tool to determine what relations exist between subsys- 
tems, based on the relations between the source files that are 
contained in the subsystems. The output of the grok tool is 
at the appropriate level of abstraction (inter-subsystem), but 
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it is still difficult to understand directly. We used a visuali- 
sation tool called lsedit [5, 1 l] to visualise the extracted 
system structure. After viewing the extracted structure, we 
refined the hierarchical decomposition of the system by mov- 
ing some source files to more appropriate subsystems. 

Our extraction process combined tool support and human in- 
terpretation to extract the concrete architecture of the Linux 
kernel. 

Hierarchical Decomposition 
Before viewing the concrete architecture of the Linux kernel, 
we manually created a hierarchical decomposition of the sys- 
tem structure, assigning source files to subsystems, and sub- 
systems hierarchically to subsystems. Figure 4 shows part of 
this hierarchical decomposition (some subsystems are omit- 
ted for brevity). 

Initialization 

Device Logical File 
Drivers Systems 

Jo4 h 

Legend: 

(Subsystem 
A 

contained subsystems omitted subsystems 

Figure 4: Partial Subsystem Hierarchy 

The seven major subsystems from Figure 1 are shown in the 
second and third rows of Figure 4. These subsystems also 
have corresponding directories in the source code implemen- 
tation, which allowed us to quickly assign files within these 
directories to one of the major subsystems. Two of these 
major subsystems (the File System and Network Interface 
subsystems) had further subdirectories. Where possible, we 
used the directory structure to assign source files to appro- 
priate subsystems. Where directory structure was not suffi- 
cient, we used file naming conventions and examination of 
the source code to/place source files in subsystems. After 
applying these rules, we arrived at a tree-structured decom- 
position of the Linux kernel such that each source file was 
placed in a single subsystem. 

We used this hierarchical decomposition to view relations 

between subsystems instead of relations between source 
files. This level of abstraction made it possible for us to con- 
sider the structure of the entire Linux system. 

4 CONCRETE ARCHITECTURE 
A combination of automated extraction tools and human 
interpretation allowed us to determine the structure of the 
Linux kernel implementation. Figure 5 shows the relations 
that we found at the highest level of abstraction. 

Communication 

) Initialization pp6l Library 1 

Legend: I] -extracted dependency- 

Figure 5: Linux Concrete Architecture 

The concrete architecture in Figure 5 has the same subsys- 
tems as the conceptual architecture in Figure 1. However, 
the dependency relations appear to be quite different from 
the conceptual architecture. The conceptual architecture has 
relatively few dependencies between top-level systems with 
only 19 inter-subsystem dependencies. In contrast, the con- 
crete architecture that we extracted is almost fully connected, 
with 37 inter-subsystem dependencies out of a possible 42. 

When we examined these unexpected dependency relations, 
we learned that they appeared for several reasons. In some 
cases, Linux developers avoided existing interfaces for better 
efficiency; in other cases, it appeared that the dependencies 
appeared only for expediency. Whether or not these depen- 
dencies are required or desirable, we learned that a concrete 
implementation is likely to have more dependencies than a 
conceptual architecture indicates. 

File System Concrete Architecture 
To further compare the conceptual and concrete architectures 
of the Linux system, we examined the File System. Figure 6 
shows the concrete architecture that we extracted from the 
File System subsystem. 

The differences that we noted at the highest level of abstrac- 
tion were also present within the File System. The concrete 
architecture of the File System has the same subsystems as 
the conceptual architecture, but there are substantially more 
dependency relations. 
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Figure 6: File System Concrete Architecture 

We studied the dependencies that appear in the concrete ar- 
chitecture but not in the conceptual architecture. Some we 
found to be quite surprising: the Network Interface subsys- 
tem depends on the Logical File System implementation di- 
rectly, which we did not predict in the conceptual architec- 
ture. We found that two file systems (NCPFS and SMBFS) 
that use the network were implemented by having the Net- 
work Interface directly call functions in the implementation 
of these logical file systems. This is substantially differ- 
ent from our conceptual architecture, which predicted that 
the Network Interface would not depend on the File Sys- 
tem at all, since network-oriented file systems would call the 
Network Interface to implement their functionality. From 
this dependency, we learned that unexpected dependencies 
can occur if control flow is implemented differently than ex- 
pected. 

Another dependency that we did not expect is the depen- 
dency of the Process Scheduler on the Device Driver sub- 
system. The Process Scheduler has a routine (printk) to 
print messages to the console. The printk routine calls a 
routine which is implemented within the Device Drivers sub- 
system of the File System. This dependency wasn’t part of 
our conceptual architecture. 

We found that all of the File System subsystems depended 
on the Inter-Process Communication (IPC) subsystem, con- 
trary to the conceptual architecture prediction that none of 
these subsystems would depend on the IPC subsystem. Upon 
examination, we found that the IPC subsystem implements 
synchronization primitives that are used not only by user pro- 
cesses, but also by the rest of the kernel. 

In addition to the above unexpected dependencies, we found 

that several dependencies bould not be explained by an ex- 
amination of the source and system documentation. It ap- 
pears that these dependencies are due to developers avoiding 
existing interfaces for expediency. 

Overall, the concrete structure of the File System is simi- 
lar to the conceptual architecture that we formed based on 
available documentation and related systems. However, we 
found that there were substantially more depe.ndency rela- 
tions, caused by missed dependencies in the documentation, 
functionality that was implemented in multiple subsystems, 
and unexpected control flow implementations. Although 
there are substantially more dependencies in the concrete ar- 
chitecture of the File System than the conceptual architec- 
ture, the system is still far from fully connected. It appears 
that it is not as easy to maintain and update the File System 
as the conceptual architecture indicates, but the File System 
still appears flexible and open to change. 

Logical File System Concrete Architecture 
To further explore the concrete architecture Of the Linux ker- 
nel, we examined the Logical File Systems concrete archi- 
tecture. The Logical File Systems subsystem contains sev- 
enteen different logical file systems. These file systems are 
responsible for mapping logical files (which are presented to 
user processes through the System Call Interface) to physi- 
cal locations on storage devices. Figure 7 shows the concrete 
architecture of the Logical File Systems subsystem. 

In the conceptual architecture in Figure 2, we predicted that 
there would be a separation between the interface to logical 
file systems and their implementations. We expected that 
other kernel subsystems would not depend directly on any 
implementation of a logical file system, instead depending 

560 



) Device Drivers 

i I 
Logical File Systems 

minix nia ext 

Figure 7: Logical File System Concrete Architecture 

only on the Virtual File System subsystem. This separation 
follows the facade design pattern [4]. When we extracted 
relations from the system implementation, we found that the 
situation was not so simple. 

One set of dependencies that we did not expect are due to 
the PROC file system. This file system is a special file sys- 
tem that reports status information about the kernel, and al- 
lows access to the status and memory of executing processes. 
To accomplish this reporting, the PROC file system relies 
on other kernel subsystems to perform reporting about their 
status. Because the reporting functionality is implemented 
throughout the kernel, the Process Scheduler and Network 
Interface subsystems depend on the PROC file system. 

Another dependency that we did not expect is the depen- 
dency of the IS0 subsystem on the CD-ROM device driver. 
We had expected that logical file systems would not depend 
on any particular device driver implementation, instead de- 
pending only on the Facade Interface of the Device Driver 
subsystem. We found that the IS09660 logical file system is 
only used on CD-ROM devices, and there are data types that 
are defined by the CD-ROM device driver and used by the 
IS09660 file system. 

We did find that the different Logical File Systems are rel- 
atively independent of each other. The exceptions are those 
systems that reuse code: the SMBFS, NCPFS, FAT, VFAT, 
UMSDOS, and MSDOS subsystems implement access to 
various MS-DOSTM related file systems. Because these 

subsystems share functionality, they reuse code. This reuse 
leads to dependencies between the subsystems. The imple- 
mentation of the EXT2, XIA, SYSV, EXT, and MINIX file 
systems is based on similar reuse, again leading to unex- 
pected dependencies. 

The Logical File Systems subsystem of the Linux File Sys- 
tem has more dependencies than we had predicted in our 
conceptual architecture. In addition, different Logical File 
Systems are not isolated from each other to the extent that 
we had expected based on system documentation. However, 
the facade design pattern is apparent in the extracted system 
structure, and it appears to be relatively easy to add more 
logical file systems or update existing ones. 

5 CONCLUSIONS 
In our study, we used existing documentation and knowledge 
of related systems to form the conceptual architecture of the 
Linux system. Next, we used automated tools and human in- 
terpretation to extract the concrete architecture of the Linux 
kernel. 

The conceptual architecture of the Linux kernel contains ab- 
stractions (such as the facade design pattern) which appear to 
limit inter-system dependencies and promote maintainabil- 
ity and extendibility. Although we were able to find these 
abstractions in the concrete architecture, we found that there 
were unexpected dependencies at all levels of abstraction. 
These extra dependencies act to reduce the maintainability 
of the Linux kernel. As the system grows, it is possible that 
these dependencies will need to be eliminated. 

Lessons Learned 
Our extraction effort showed us that automated tools are 
very helpful in extracting the architecture from a system’s 
implementation. Our tools automatically extracted facts, 
and showed us relations at any level of abstraction that we 
wanted. However, we still needed a human’s judgement to 
determine an appropriate hierarchical decomposition of the 
system structure based on idiosyncratic details such as direc- 
tory structure, file naming conventions, and examination of 
source code. 

We found that the concrete architecture of the Linux kernel 
has substantially more dependencies than the conceptual ar- 
chitecture. In fact, the Linux kernel is almost completely 
connected at the highest level of abstraction. We found the 
following reasons for additional dependencies: 

l The conceptual architecture missed the use of some 
subsystems; for example, the IPC subsystem imple- 
ments synchronization primitives that are used through- 
out the kernel, but the conceptual architecture shows the 
IPC subsystem used dnly by user processes. 

l Some functionality that the conceptual architecture 
showed in a single subsystem was implemented in sev- 
eral subsystems, leading to additional dependencies. 
For example, the PROC file system is implemented 
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throughout the kernel. 
l The conceptual architecture might show control flow in 

one manner, but the implementation might use a dif- 
ferent mechanism. For example, the conceptual archi- 
tecture showed that the network-oriented file systems 
depended on the Network Interface. In the concrete ar- 
chitecture, we found that the Network Interface directly 
calls two of these logical file systems. 

l In some cases, Linux developers improved system effi- 
ciency by bypassing existing interfaces. 

In addition to the above reasons for additional dependencies, 
it seems that some of these dependencies exist for developer 
expediency. One comment in a header file states “The read- 
only stuff doesn’t really belong here, but any other place is 
probably as bad and I don’t want to create yet another include 
file.” 

The Linux system could be restructured to remove some un- 
expected dependencies. One thing that seems to have af- 
fected the use of implementation details is the organization 
of the source code: most of the header files that define sys- 
tem details are located in a single directory. Thus it is dif- 
ficult to determine which header files define interfaces that 
should be used throughout the kernel, and which header files 
define interfaces for use within a single subsystem. In some 
cases, the placement of the header files is required by the 
implementation technique: the super-block of the virtual file 
system contains a union of information for each of the dif- 
ferent logical file systems. This means that the file system 
(and any module that uses it) needs to have knowledge about 
the details of the implementation of each of the logical file 
systems. 

After reviewing the concrete structure of the Linux ker- 
nel, it would be possible to update the conceptual architec- 
ture. Some dependencies in the conceptual architecture that 
we formed based on documentation were missed by simple 
omission-we did not see mention of the dependencies in 
the documentation, nor do they appear in related systems. 
The concrete architecture should be used to refine the con- 
ceptual architecture, but it is not desirable to add all relations 
from the concrete architecture since many of these relations 
are not essential, and hinder system understanding because 
of the additional complexity. For example, the dependence 
of the Process Scheduler on the Device Drivers subsystem 
of the File System through the single call in the implemen- 
tation of printk could be omitted from the conceptual ar- 
chitecture. The development of the conceptual and concrete 
architectures seems to be best accomplished with an iterative 
process. 

Although the structure of the Linux system is desirable in 
many cases because of efficiency or other considerations, it 
is likely that many unnecessary dependencies could be elim- 
inated if the system was restructured to avoid using imple- 
mentation details directly. It may not be reasonable to do 

this with Linux at this point, but perhaps when new systems 
are implemented, automated tools such as those used in this 
case study can detect and prevent these spurious relations. 
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