
Linux as a Case Study: Its Extracted Software Architecture

Ivan T. Bowman and Richard C. Holt
Dept. of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3Gl

CANADA
+1(519) 888-4567 x4671

{itbowman,holt}@plg.uwaterloo.cd

ABSTRACT
Many software systems do not have a documented system
architecture. These are often large, complex systems that are
difficult to understand and maintain. One approach to recov-
ering the understanding of a system is to extract architectural
documentation from the system implementation. To evaluate
the effectiveness of this approach, we extracted architectural
documentation from the LinuxTM kernel. The Linux kernel
is a good candidate for a case study because it is a large (800
KLOC) system that is in widespread use and it is represen-
tative of many existing systems. Our study resulted in docu-
mentation that is useful for understanding the Linux system
structure. Also, we learned several useful lessons about ex-
tracting a system’s architecture.

Keywords
Software architecture, architecture recovery, redocumenta-
tion

1 INTRODUCTION
Recent research [12,151 suggests that large software systems
should be designed with a documented software architecture.
This architecture provides a building plan for a system at
a high level of abstraction. Individual functions and even
modules are not described in detail; instead, subsystems and
relations between them are documented. This level of ab-
straction is appropriate for understanding an entire software
system, and provides a good mechanism for system under-
standing.

We now know that using a documented software architecture
throughout the lifetime of a software system can improve the
quality and maintainability of the system. However, many
existing systems do not have a documented system architec-
ture. These systems are too valuable to discard or re-develop,
but are often plagued by high maintenance costs, poor perfor-
mance, or security risks. There is an approach that appears to
be a promising way to get the benefits of a documented soft-

&mission to make digital or hard copies of all or part ofthis work fix
personal or classroom WC is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. TO COW
othcr\vise, to republish, to post on servers or to redistribute LO kits.
requires prior specific permission and/or a kc.
ICSE ‘99 Los Angclcs CA
Copyright ACM 1999 I-58 I13-074-0/99/05...$5.00

Neil V. Brewster
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Onttiio M5S lA4

CANADA
+1 (416) 978-5036

brewste@cs.toronto.edu

ware architecture for these legacy systems: we can use auto-
mated tools to help extract architectural documentation from
a system implementation. This approach has been used suc-
cessfully by several researchers [3, 6, 10, 18, 201 to extract
an architectural description from complex software systems.

Architectural redocumentation restores system understand-
ing by abstracting important entities and their relationships
in a large software system. This enhanced understanding can
be used as part of a re-engineering effort, as a way to reduce
maintenance costs, or as an input to a system evaluation.
Unless architectural documentation is maintained, it will
become obsolete as the system undergoes further changes.
Finnigan et al. [3, 191 propose a way to keep architectural
documentation up to date. First, automated tools are com-
bined with human effort to extract system documentation and
store it in a Software Bookshelf. As the system changes af-
ter the documentation extraction, a librarian uses automated
tools to compare the system’s implementation with the doc-
umentation. The librarian updates the documentation to re-
flect system changes (or perhaps prevents system changes
that cause architectural erosion as described by Ferry and
Wolf [121).

LinuxTM is a Unix TM-like operating sy stem that has re-
ceived much popular attention [8]. Linux is based on the
Open SourceTM concept [131, which means that there are no
barriers to discussing the details of the system implementa-
tion. Linux has an interesting software structure that is sim-
ilar to other large software systems. Linux is also a system
that is growing rapidly; the source code for the Linux sys-
tem has approximately doubled every year from 10 KLOC
in 1991 to 1.5 MLOC in 1998 [9].

Because Linux is an interesting representative of existing
software systems, we chose to examine it as a case study.
In particular, we studied the Linux kernel, which is respon-
sible for process, memory, and hardware device manage-
ment. The Linux kernel is itself a large system (approxi-
mately 800 KLOC). Although there is some existing docu-
mentation about the Linux kernel [7, 141, this documentation
describes individual subsystems and algorithms. There is no
architectural documentation that describes the system struc-
ture at a high level of abstraction.

555

The Linux kernel is a good guinea pig for architectural re-
covery. It is a large system in widespread use, and it is
an interesting representative of real software systems. Be-
cause Linux is freely available, there are no barriers to dis-
cussing its architectural structure in detail. To promote fur-
ther use of the Linux kernel as a case study, we are making
the architectural relations and system architecture that we ex-
tracted from the system implementation available to other
researchers [111.

Case Study Approach
tie types of architectural documentation are particularly
beneficial to humans trying to understand a software system:
a conceptual architecture and a concrete architecture’. The
conceptual architecture shows how developers think about
a system; it shows relationships between subsystems that
are ‘meaningful’ to developers. For example, a subsystem
might depend on another only for debugging purposes, but
this dependency might not be shown in a conceptual archi-
tecture of the system. In contrast, the concrete architecture
of a system shows the relationships that exist in the imple-
mented system. While the conceptual architecture is easier
to understand because it contains only essential relations, the
concrete architecture is necessary when making decisions re-
quiring implementation-specific knowledge.

Linux has neither a documented conceptual nor a docu-
mented concrete architecture. There is existing documen-
tation that describes the kernel, but it describes individual
subsystems in detail instead of concisely describing the re-
lations between subsystems. As a first step in our recovery
effort, we examined the existing documentation to determine
the conceptual architecture of the Linux system. This con-
ceptual architecture helped when examining the system im-
plementation to form the concrete architecture-it allowed
us to concentrate on important relationships, and provided
an initial system structure.

Our approach to extracting the concrete architecture of the
Linux kernel was as follows:

q Examine existing documentation to form a conceptual
architecture of the Linux kernel.

l Group source files into subsystems based on directory
structure, naming conventions, source code comments,
and examination of the source code. Use the conceptual
architecture as a guide in to what subsystems should be
created and where files should be clustered.

l Extract relations between source files in the Linux im-
plementation.

l Use the relations between source files and clustering of
files to determine relations between subsystems.

l Use the clustering and relationships to form a concrete
architecture of the Linux system.

1 Some people may prefer to use the term “as-built architectare” or else
“high level design” instead of “concrete architecture”.

Paper Organization
The rest of this paper is organized as follows. Section 2
describes the conceptual architecture of Linux. Section 3
describes the process we used to extract the Linux concrete
architecture. Section 4 describes the concrete <architecture.
Section 5 draws conclusions from this work.

2 CONCEPTUAL ARCHITECTURE
We began our study of the Linux kernel by forming its con-
ceptual architecture. This conceptual architecture acts as a
framework which we use while examining the system imple-
mentation. The conceptual architecture helps us understand
the volume of detail in the implementation by providing a
suggested system structure.

We used descriptions [16, 171 of related operating systems
(Unix and Minix) and existing Linux documentation to cre-
ate an architectural description of the structure we expected
to find in the Linux system. After reviewing existing docu-
mentation [7, 141, we arrived at the conceptual architecture,
shown at its highest level of abstraction in Figure 1.

Communication

Legend: (Subsystem 1 -depends on-

Figure 1: Linux Conceptual Architecture

The seven major subsystems are the following:

1. The Process Scheduler is responsible for supporting
multitasking by changing which user process executes.

2. The Memory Manager subsystem provides a separate
memory space for each user process, and uses swapping
to support more processes than fit in physical memory.

3. The File System provides access to hardware devices.
User processes can access keyboards, tape drives, hard
drives, and modems using one interface that is imple-
mented by the File System.

4. The Network Interface encapsulates access to network
devices in a similar manner to the File System. User
processes can communicate with other computers using
several different types of network hardware and trans-
mission protocols.

5. The Inter-Process Communication (IPC) subsystem al-

556

lows user processes to communicate with other pro-
cesses on the same computer. Synchronization, mem-
ory sharing, and inter-process messaging primitives are
supported by the IPC subsystem.

6. The Initialization subsystem is responsible for initializ-
ing the rest of the Linux kernel with appropriate user
configured settings.

7. The Library subsystem contains routines which are
used throughout the kernel.

Each of the seven kernel subsystems has additional sub-
subsystems hierarchically nested within it. The relationships
shown in Figure 1 are ‘depends-on’ relationships. For ex-
ample, the Memory Manager subsystem depends on the File
System to swap memory to and from disk. For clarity, the
relations from the Initialization subsystem and to the Library
subsystem are omitted. The Initialization subsystem depends
on all other kernel subsystems since it calls initialization rou-
tines throughout the kernel, and all of the kernel subsystems
depend on the Library subsystem.

File System Conceptual Architecture
The Linux kernel is a large system that has a complex system
structure. Its subsystems have sub-architectures of consid-
erable size and complexity. Due to size limitations, we will
focus on only one of these in this paper, the File System. De-
tails of the other kernel subsystems are available in previous
papers [l, 21.

There are three main roles that the File System performs:

1. It provides access to a wide variety of hardware devices.
2. It supports several different logical file system formats

that control how files are mapped to physical locations
on hardware devices.

3. It allows programs to be stored in several executable file
formats, including interpreted scripts.

Figure 2 shows the conceptual architecture of the Linux File
System. In this figure, double-headed arrows indicate depen-
dence on or from all of the File System subsystems. This in-
dicates that all of the File System subsystems depend on the
Library subsystem, and the Initialization subsystem depends
on all of the File System subsystems since it calls functions
to initialize them.

Linux uses the facade design pattern [4] to allow user, pro-
cesses and other parts of the kernel to use elements of the
File System through a single interface. The facade design
pattern uses a single subsystem which provides a single, sim-
ple facade interface to the subsystems within a system. Since
clients only depend on the facade interface, the subsystems
that implement system functionality can change their im-
plementation without affecting clients. This design pattern
allows clients to take advantage of a wide variety of hard-
ware devices, logical file system formats, and executable for-
mats without depending directly on any of the subsystems

Figure 2: File System Conceptual Architecture

that implement specific functionality. Since user processes
and other parts of the kernel depend only on the System
Call Interface, subsystem interdependency is reduced sub-
stantially. The architecture of the Linux File System follows
the ‘object-oriented’ or ‘data abstraction’ architectural style
described by Shaw and Garlan [151. The subsystems of the
File System act to encapsulate state and functionality related
to hardware devices or logical file systems. These subsys-
tems interact through method calls.

The main roles of the File System are implemented in five
subsystems.

1. The Device Drivers subsystem performs all communi-
cation with hardware devices supported by Linux.

2. The Logical File Systems implements several logical
file systems that can be placed on hardware devices;
these different file systems allow interoperability with
different operating systems, and also allow specialized
functionality such as encryption, compression, and high
performance.

3. The Executable File Formats subsystem allows clients
to execute programs from several different executable
file formats, including not only compiled programs, but
also interpreted scripts.

4. The File Quota subsystem allows system administrators
to limit the amount of file storage that individual users
may use.

5. The Buffer Cache subsystem provides memory buffers
for input/output operations, and reduces hardware ac-
cesses by caching data and eliminating redundant reads
and writes.

There are two other subsystems in the File System: the

557

System Call Interface and Virtual File System subsystems.
These two subsystems are facade interfaces. The Virtual File
System combines functionality from the Logical File Sys-
tems and Device Drivers into a single interface. Other ker-
nel subsystems can use the ‘Virtual File System and treat all
hardware devices as files, without depending on any particu-
lar hardware device driver or logical file system. The System
Call Interface subsystem presents a similar unified interface.
User processes can use the System Call Interface to access
any functionality in the File System, without depending on
the implementation of subsystems within the File System.

The dependency relations shown in Figure 2 are based on
existing system documentation. Some of the dependencies
that are perhaps unexpected are the following:

l The Device Driver subsystem depends on the F’rocess
Scheduler. While a hardware request is being com-
pleted, the associated device driver informs the Process
Scheduler that the requesting user process should be
suspended so that another process can execute.

l The Logical File System subsystem depends on the Net-
work Interface subsystem. Three of the logical file
system implementations represent files that are stored
on another computer and accessed using the network.
These three logical file systems depend on the Network
Interface to communicate with the remote computer.

l The Memory Manager subsystem depends on the Vir-
tual File System subsystem to swap memory to and
from secondary storage.

In our conceptual architecture, no kernel subsystem depends
on any particular File System Format subsystem, Device
Driver subsystem, or ExecutableFile Format subsystem. The
Memory Manager subsystem is the only subsystem to de-
pend on the File System, and it does so through the Virtual
File System subsystem facade. Because of the facade design
pattern, the Linux File System architecture is very flexible.
It appears it would be easily maintainable because there are
few dependencies.

The documentation we reviewed provided us with a con-
ceptual architecture that indicates the Linux system is im-
plemented according to strong implementation-hiding prin-
ciples, and that the system should be easily understandable
and maintainable. To find out whether the implementation
matches this architecture, we need to extract a concrete ar-
chitecture from the system implementation.

3 EXTFtACTION METHODOLOGY
To determine what relations exist in the system implemen-
tation, we need to look at the definitive artifact-the system
source code. The size of the Linux kernel implementation
(800 KLOC) makes it too costly to examine the source man-
ually. Instead, we used automated tools to extract relations
from the source code then combined these relations into a
concrete system architecture.

Figure 3: Extraction Process

Figure 3 shows an overview of the process we used to extract
a concrete system architecture from the Linux kernel. We be-
gan by determining which source files were part of the ker-
nel. Next, we used a source-code extractor called c f x [111.
This tool extracts relations such as ‘function z calls function
y’ and ‘source file x.c defines function z’. The tools extracts
function call and variable access relations; these imply con-
trol flow and data flow dependencies.

The output of c f x is a set of relations between functions and
variables. These relations are too detailed for human con-
sumption. We used the grok [5, 1 I] tool to determine rela-
tions between source files based on the relations between the
functions and variables defined within the source files. With
1682 source files in the kernel implementation, even rela-
tions between source files are at too low a level for easy sys-
tem understanding. Instead of relations between source files,
we would like to examine relations between subsystems. To
achieve this result, we manually created a tree structured
decomposition of the Linux system into subsystems. Each
source file was manually assigned to a single subsystem, and
each subsystem was assigned to a single containing subsys-
tem. We used the subsystems from our conceptual architec-
ture as an initial set of subsystems, and assigned source files
to subsystems based on several criteria: directory structure,
file naming conventions, source code comments,,documen-
tation, or, as a last resort, examination of the source code. If
a set of source files seemed logically related, we’created a
new subsystem to contain them. I’

After we manually created a hierarchical description of the
subsystems and source files in the Linux kernel, we used the
grok tool to determine what relations exist between subsys-
tems, based on the relations between the source files that are
contained in the subsystems. The output of the grok tool is
at the appropriate level of abstraction (inter-subsystem), but

558

it is still difficult to understand directly. We used a visuali-
sation tool called lsedit [5, 1 l] to visualise the extracted
system structure. After viewing the extracted structure, we
refined the hierarchical decomposition of the system by mov-
ing some source files to more appropriate subsystems.

Our extraction process combined tool support and human in-
terpretation to extract the concrete architecture of the Linux
kernel.

Hierarchical Decomposition
Before viewing the concrete architecture of the Linux kernel,
we manually created a hierarchical decomposition of the sys-
tem structure, assigning source files to subsystems, and sub-
systems hierarchically to subsystems. Figure 4 shows part of
this hierarchical decomposition (some subsystems are omit-
ted for brevity).

Initialization

Device Logical File
Drivers Systems

Jo4 h

Legend:

(Subsystem
A

contained subsystems omitted subsystems

Figure 4: Partial Subsystem Hierarchy

The seven major subsystems from Figure 1 are shown in the
second and third rows of Figure 4. These subsystems also
have corresponding directories in the source code implemen-
tation, which allowed us to quickly assign files within these
directories to one of the major subsystems. Two of these
major subsystems (the File System and Network Interface
subsystems) had further subdirectories. Where possible, we
used the directory structure to assign source files to appro-
priate subsystems. Where directory structure was not suffi-
cient, we used file naming conventions and examination of
the source code to/place source files in subsystems. After
applying these rules, we arrived at a tree-structured decom-
position of the Linux kernel such that each source file was
placed in a single subsystem.

We used this hierarchical decomposition to view relations

between subsystems instead of relations between source
files. This level of abstraction made it possible for us to con-
sider the structure of the entire Linux system.

4 CONCRETE ARCHITECTURE
A combination of automated extraction tools and human
interpretation allowed us to determine the structure of the
Linux kernel implementation. Figure 5 shows the relations
that we found at the highest level of abstraction.

Communication

) Initialization pp6l Library 1

Legend: I] -extracted dependency-

Figure 5: Linux Concrete Architecture

The concrete architecture in Figure 5 has the same subsys-
tems as the conceptual architecture in Figure 1. However,
the dependency relations appear to be quite different from
the conceptual architecture. The conceptual architecture has
relatively few dependencies between top-level systems with
only 19 inter-subsystem dependencies. In contrast, the con-
crete architecture that we extracted is almost fully connected,
with 37 inter-subsystem dependencies out of a possible 42.

When we examined these unexpected dependency relations,
we learned that they appeared for several reasons. In some
cases, Linux developers avoided existing interfaces for better
efficiency; in other cases, it appeared that the dependencies
appeared only for expediency. Whether or not these depen-
dencies are required or desirable, we learned that a concrete
implementation is likely to have more dependencies than a
conceptual architecture indicates.

File System Concrete Architecture
To further compare the conceptual and concrete architectures
of the Linux system, we examined the File System. Figure 6
shows the concrete architecture that we extracted from the
File System subsystem.

The differences that we noted at the highest level of abstrac-
tion were also present within the File System. The concrete
architecture of the File System has the same subsystems as
the conceptual architecture, but there are substantially more
dependency relations.

559

J Lo&al File

-7-J
‘stems Y /

I-
I !

Process

’ I

Inter.Process
* Scheduler Communication

Legend: depends on * depends on all ___H

Figure 6: File System Concrete Architecture

We studied the dependencies that appear in the concrete ar-
chitecture but not in the conceptual architecture. Some we
found to be quite surprising: the Network Interface subsys-
tem depends on the Logical File System implementation di-
rectly, which we did not predict in the conceptual architec-
ture. We found that two file systems (NCPFS and SMBFS)
that use the network were implemented by having the Net-
work Interface directly call functions in the implementation
of these logical file systems. This is substantially differ-
ent from our conceptual architecture, which predicted that
the Network Interface would not depend on the File Sys-
tem at all, since network-oriented file systems would call the
Network Interface to implement their functionality. From
this dependency, we learned that unexpected dependencies
can occur if control flow is implemented differently than ex-
pected.

Another dependency that we did not expect is the depen-
dency of the Process Scheduler on the Device Driver sub-
system. The Process Scheduler has a routine (printk) to
print messages to the console. The printk routine calls a
routine which is implemented within the Device Drivers sub-
system of the File System. This dependency wasn’t part of
our conceptual architecture.

We found that all of the File System subsystems depended
on the Inter-Process Communication (IPC) subsystem, con-
trary to the conceptual architecture prediction that none of
these subsystems would depend on the IPC subsystem. Upon
examination, we found that the IPC subsystem implements
synchronization primitives that are used not only by user pro-
cesses, but also by the rest of the kernel.

In addition to the above unexpected dependencies, we found

that several dependencies bould not be explained by an ex-
amination of the source and system documentation. It ap-
pears that these dependencies are due to developers avoiding
existing interfaces for expediency.

Overall, the concrete structure of the File System is simi-
lar to the conceptual architecture that we formed based on
available documentation and related systems. However, we
found that there were substantially more depe.ndency rela-
tions, caused by missed dependencies in the documentation,
functionality that was implemented in multiple subsystems,
and unexpected control flow implementations. Although
there are substantially more dependencies in the concrete ar-
chitecture of the File System than the conceptual architec-
ture, the system is still far from fully connected. It appears
that it is not as easy to maintain and update the File System
as the conceptual architecture indicates, but the File System
still appears flexible and open to change.

Logical File System Concrete Architecture
To further explore the concrete architecture Of the Linux ker-
nel, we examined the Logical File Systems concrete archi-
tecture. The Logical File Systems subsystem contains sev-
enteen different logical file systems. These file systems are
responsible for mapping logical files (which are presented to
user processes through the System Call Interface) to physi-
cal locations on storage devices. Figure 7 shows the concrete
architecture of the Logical File Systems subsystem.

In the conceptual architecture in Figure 2, we predicted that
there would be a separation between the interface to logical
file systems and their implementations. We expected that
other kernel subsystems would not depend directly on any
implementation of a logical file system, instead depending

560

) Device Drivers

i I
Logical File Systems

minix nia ext

Figure 7: Logical File System Concrete Architecture

only on the Virtual File System subsystem. This separation
follows the facade design pattern [4]. When we extracted
relations from the system implementation, we found that the
situation was not so simple.

One set of dependencies that we did not expect are due to
the PROC file system. This file system is a special file sys-
tem that reports status information about the kernel, and al-
lows access to the status and memory of executing processes.
To accomplish this reporting, the PROC file system relies
on other kernel subsystems to perform reporting about their
status. Because the reporting functionality is implemented
throughout the kernel, the Process Scheduler and Network
Interface subsystems depend on the PROC file system.

Another dependency that we did not expect is the depen-
dency of the IS0 subsystem on the CD-ROM device driver.
We had expected that logical file systems would not depend
on any particular device driver implementation, instead de-
pending only on the Facade Interface of the Device Driver
subsystem. We found that the IS09660 logical file system is
only used on CD-ROM devices, and there are data types that
are defined by the CD-ROM device driver and used by the
IS09660 file system.

We did find that the different Logical File Systems are rel-
atively independent of each other. The exceptions are those
systems that reuse code: the SMBFS, NCPFS, FAT, VFAT,
UMSDOS, and MSDOS subsystems implement access to
various MS-DOSTM related file systems. Because these

subsystems share functionality, they reuse code. This reuse
leads to dependencies between the subsystems. The imple-
mentation of the EXT2, XIA, SYSV, EXT, and MINIX file
systems is based on similar reuse, again leading to unex-
pected dependencies.

The Logical File Systems subsystem of the Linux File Sys-
tem has more dependencies than we had predicted in our
conceptual architecture. In addition, different Logical File
Systems are not isolated from each other to the extent that
we had expected based on system documentation. However,
the facade design pattern is apparent in the extracted system
structure, and it appears to be relatively easy to add more
logical file systems or update existing ones.

5 CONCLUSIONS
In our study, we used existing documentation and knowledge
of related systems to form the conceptual architecture of the
Linux system. Next, we used automated tools and human in-
terpretation to extract the concrete architecture of the Linux
kernel.

The conceptual architecture of the Linux kernel contains ab-
stractions (such as the facade design pattern) which appear to
limit inter-system dependencies and promote maintainabil-
ity and extendibility. Although we were able to find these
abstractions in the concrete architecture, we found that there
were unexpected dependencies at all levels of abstraction.
These extra dependencies act to reduce the maintainability
of the Linux kernel. As the system grows, it is possible that
these dependencies will need to be eliminated.

Lessons Learned
Our extraction effort showed us that automated tools are
very helpful in extracting the architecture from a system’s
implementation. Our tools automatically extracted facts,
and showed us relations at any level of abstraction that we
wanted. However, we still needed a human’s judgement to
determine an appropriate hierarchical decomposition of the
system structure based on idiosyncratic details such as direc-
tory structure, file naming conventions, and examination of
source code.

We found that the concrete architecture of the Linux kernel
has substantially more dependencies than the conceptual ar-
chitecture. In fact, the Linux kernel is almost completely
connected at the highest level of abstraction. We found the
following reasons for additional dependencies:

l The conceptual architecture missed the use of some
subsystems; for example, the IPC subsystem imple-
ments synchronization primitives that are used through-
out the kernel, but the conceptual architecture shows the
IPC subsystem used dnly by user processes.

l Some functionality that the conceptual architecture
showed in a single subsystem was implemented in sev-
eral subsystems, leading to additional dependencies.
For example, the PROC file system is implemented

561

throughout the kernel.
l The conceptual architecture might show control flow in

one manner, but the implementation might use a dif-
ferent mechanism. For example, the conceptual archi-
tecture showed that the network-oriented file systems
depended on the Network Interface. In the concrete ar-
chitecture, we found that the Network Interface directly
calls two of these logical file systems.

l In some cases, Linux developers improved system effi-
ciency by bypassing existing interfaces.

In addition to the above reasons for additional dependencies,
it seems that some of these dependencies exist for developer
expediency. One comment in a header file states “The read-
only stuff doesn’t really belong here, but any other place is
probably as bad and I don’t want to create yet another include
file.”

The Linux system could be restructured to remove some un-
expected dependencies. One thing that seems to have af-
fected the use of implementation details is the organization
of the source code: most of the header files that define sys-
tem details are located in a single directory. Thus it is dif-
ficult to determine which header files define interfaces that
should be used throughout the kernel, and which header files
define interfaces for use within a single subsystem. In some
cases, the placement of the header files is required by the
implementation technique: the super-block of the virtual file
system contains a union of information for each of the dif-
ferent logical file systems. This means that the file system
(and any module that uses it) needs to have knowledge about
the details of the implementation of each of the logical file
systems.

After reviewing the concrete structure of the Linux ker-
nel, it would be possible to update the conceptual architec-
ture. Some dependencies in the conceptual architecture that
we formed based on documentation were missed by simple
omission-we did not see mention of the dependencies in
the documentation, nor do they appear in related systems.
The concrete architecture should be used to refine the con-
ceptual architecture, but it is not desirable to add all relations
from the concrete architecture since many of these relations
are not essential, and hinder system understanding because
of the additional complexity. For example, the dependence
of the Process Scheduler on the Device Drivers subsystem
of the File System through the single call in the implemen-
tation of printk could be omitted from the conceptual ar-
chitecture. The development of the conceptual and concrete
architectures seems to be best accomplished with an iterative
process.

Although the structure of the Linux system is desirable in
many cases because of efficiency or other considerations, it
is likely that many unnecessary dependencies could be elim-
inated if the system was restructured to avoid using imple-
mentation details directly. It may not be reasonable to do

this with Linux at this point, but perhaps when new systems
are implemented, automated tools such as those used in this
case study can detect and prevent these spurious relations.

ACKNOWLEDGEMENTS
The authors would like to thank Gary Farmaner for his sup-
port with the extraction tools. We would also like to thank
Meyer Tanuan and Saheem Siddiqi for their help in extract-
ing an earlier version of the architecture. Susan Sim provided
valuable feedback on an earlier draft of this paper. The con-
tribution of the Linux developer community is gratefully ac-
knowledged. This work was supported in part by the CSER
(Consortium for Software Engineering) as well as by CITO
(Centre for Information Technology, Ontario).

REFERENCES

r11

l-21

[31

[41

PI

161

[71

Bl

PI

[lOI

Ivan Bowman. Conceptual architecture of the linux ker-
nel. Available at http://plg.uwaterloo.ca/
"itbowman/CS746G/al/, 1998.

Ivan Bowman, Saheem Siddiqi, and Meyer Tanuan.
Concrete architecture of the linux kernel. Available
at http://plg.uwaterloo.ca/-itbowman/
CS746G/a2/, 1998.

I? J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kon-
togiannis, H. A. Mtiller, J. Mylopoulos, S. G. Rerelgut,
M. Stanley, and K. Wong. The software bookshelf. IBM
Systems Journal, 36(4):564-593, October 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison-Wesley, 1994.

R.C. Holt. Structural manipulation of software archi-
tecture using tarski relational algebra. In Eighth Work-
ing Conference on Reverse Engineering (WCRE’98),
October 1998. To appear.

Rick Kazman and Jeromy Carriere. View extraction
and view fusion in architectural understanding. In 5th
International Conference on Software Reuse, Victoria,
BC, Canada, June 1998.

The linux kernel hacker’s guide. Available at
http://www.redhat.com:808O/HyperMews/get/
khg.html.

Josh McHugh. Freeware children. Forbes Magazine,
August 1998.

Josh McHugh. Linux: The making of a global hack.
Forbes Magazine, August 1998.

Gail C. Murphy, David Notkin, and Kevin Sullivan.
Software reflexion models: Bridging the gap between
source and high-level models. In Proceedings of the
Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 18-28, Washington,
DC, October 1995. IEEE Computer Society Press.

562

[ll] PBS tools. Available at http://www.turing.
cs.toronto.edu/pbs.

[12] Dewayne E. Perry and Alexander L. Wolf. Founda-
tions for the study of software architecture. ACM SIG-
SOFTSoftware Engineering Notes, 17(4):40-52, Octo-
ber 1992.

[131 Eric S. Raymond. The cathedral and the bazaar.
Availableat http://sagan.earthspace.net/
"esr/writings/cathedral-bazaar/,lg%'.

[14] David A. Rusling. The linux kernel. Available at
http://sunsite.unc.edu/Linux/LDP/
tlk/tlk.html.

[151 Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall
Press, April 1996.

[16] Abraham Silberschatz and Peter Baer Galvin. Oper-
ating System Concepts. Addison-Wesley, 5th edition,
1997.

[17] Andrew S. Tanenbaum. Modern Operating Systems.
Prentice Hall, 1992.

[181 Vassilios Tzerpos and R.C. Holt. A hybrid process
for recovering software architecture. In Proceedings
of CASCON I996, Toronto, Canada, November 1996.

[191 Vassilios Tzerpos, R.C. Holt, and Gary Farmaner. Web-
based presentation of hierarchic software architecture.
In Workshop on Software Engineering (on) the World-
Wide Web, Boston, May 1997. International Confer-
ence on Software Engineering 1997.

[20] Kenny Wong, Scott R. Tilley, Hausi A. Mtiller, and
Margaret-Anne D. Storey. Structural redocumentation:
A case study. IEEE Somare, 11(6):501-520, January
1995.

563

