
a

DISCUSSING
ASPECTS OF AOP

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 33

HHow would you define AOP?

Gregor Kiczales: Aspect-oriented programming is a new

evolution in the line of technology for separation of con-

cerns—technology that allows design and code to be struc-

tured to reflect the way developers want to think about the

system. AOP builds on existing technologies and provides

additional mechanisms that make it possible to affect the

implementation of systems in a crosscut-

ting way. In AOP, a single aspect can con-

tribute to the implementation of a number

of procedures, modules, or objects. The contribution can be

homogeneous, for example by providing a logging behavior

that all the procedures in a certain interface should follow; or

it can be heterogeneous, for example by implementing the

two sides of a protocol between two different classes.

As with all other separation of concerns technology, the

Tzilla Elrad, Moderator
Mehmet Aksit, Gregor Kiczales,

Karl Lieberherr, and Harold
Ossher, Panelists

34 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

goal of AOP is to make designs and code more mod-
ular, meaning the concerns are localized rather than
scattered and have well-defined interfaces with the rest
of the system. This provides us with the usual benefits
of modularity, including making it possible to reason
about different concerns in relative isolation, making
them (un)pluggable, amenable to separate develop-
ment, and so forth.

Please say more about the nature of crosscutting
concerns and aspects.

Karl Lieberherr: Two concerns crosscut if the
methods related to those concerns intersect. AOP
deals with crosscutting concerns and descriptions,
designs, and implementations for those concerns. The
artifacts used to describe, design, and implement a

given concern are called methods. We say a method is
related to a concern if the method contributes to the
description, design, or implementation of the concern.

GK: One good way to understand crosscutting
concerns and aspects is with an illustration. Con-
sider the UML for a simple figure editor, as depicted
in the figure here, in which there are two concrete
classes of figure element, points, and lines. These
classes manifest good modularity, in that the source
code in each class is closely related (cohesion) and
each class has a clear and well-defined interface. But
consider the concern that the screen manager should
be notified whenever a figure element moves. This
requires every method that moves a figure element
to do the notification.

The red box in the figure is drawn around every
method that must implement this concern, just as the
Point and Line boxes are drawn around every method
that implements those concerns. Notice that the box
for DisplayUpdating fits neither inside of nor around
the other boxes in the figure—instead it cuts across the
other boxes. This is what we call a crosscutting con-
cern. Using just OO programming, the implementa-

tion of crosscutting concerns tends to be scattered out
across the system, just as it would be here. Using the
mechanisms of AOP, we can modularize the imple-
mentation of the DisplayUpdating behavior into a sin-
gle aspect. Because we can implement this behavior in
a single modular unit, it makes it easier for us to think
about it as a single design unit. In this way, having the
programming language mechanisms of aspects lets us
think in terms of aspects at the design level as well.

Mehmet Aksit: It is important to understand that
crosscutting is relative to a particular decomposition.
Crosscutting concerns of a design cannot be neatly
separated from each other. A basic design rule is to rep-
resent significant concerns as first-class abstractions in
the language. This allows them to be composed and
extended. In the figure editor example, there are two
important design concerns: representing the graphical
elements and tracking the movement of graphical ele-
ments. In the figure, classes are used to model the first
concern. This allows them to be extended using aggre-
gation and inheritance. Also, every graphical class
encapsulates its internal data structure. The second
concern requires tracking movements to also be repre-
sented as a separate class. However, the first choice
makes this difficult because the movement functional-
ity is part of the behavior of graphical classes. We
could have designed the system around the tracking
functionality; in that case, the graphical functionality
would crosscut the tracking classes

Harold Ossher: One of the hard things about cross-
cutting concerns is understanding just what cuts across
what. To clarify this, I think the dominant decomposi-
tion notion is helpful. Software written in standard lan-
guages is written as linear text. This means that, just as
a book is divided in only one way into chapters and
paragraphs, so software is decomposed in only one way
into modules (such as classes). This the dominant
decomposition. The modules making up the dominant
decomposition encapsulate certain concerns effectively
(representation and implementation details of objects
of some kind are encapsulated by classes). As noted by
others previously, other concerns cannot be encapsu-
lated within the dominant modules, and end up being
scattered across many modules and tangled with one
another. These are crosscutting concerns.

How do AOP languages make it possible to
modularize crosscutting concerns?

KL: AOP languages use five main elements to modu-
larize crosscutting concerns: a join point model describ-
ing the “hooks” where enhancements may be added; a
means of identifying join points; a means of specifying
behavior at join points; encapsulated units combining
join point specifications and behavior enhancements;
and a method of attachment of units to a program.

Aspects crosscut classes in a
simple figure editor.

Display
aspect modularity cuts across

class modularity

Figure

Point

FigureElement

getX()
getY()
setX(int)
setY(int)

Line2

*

DisplayUpdating

getP1
setP1
setP1(Point)
setP2(Point)

HO: I’ll describe the approach we use in Hyper/J,
which supports identification and modularization of
arbitrary concerns, including crosscutting concerns.
Hyper/J provides a new kind of module, called hyper-
slices (previously called subjects in subject-oriented pro-
gramming). Each hyperslice is a fragment of a class
hierarchy—a hierarchy of classes—but with each class
containing only the subset of methods and variables
specifically pertaining to the concern being modularized.

Referring back to the figure, we would modularize
the concerns in two hyperslices: a Display hyperslice
containing the classes shown, but with just their basic
display behavior, and a DisplayUpdating hyperslice
containing fragments of the Point and Line classes. A
simple (but not the best) way to write this Display-
Updating hyperslice is to implement each method
shown in the figure to do just the tracking needed. A
hyperslice can thus be thought of as a view, or a spe-
cial-purpose domain model, appropriate for the con-
cern at hand. Hyperslices can be written from scratch
as separate Java packages. They can also be extracted
from existing code, within limits, thereby modulariz-
ing concerns that were not modularized in the original
code, a process we call on-demand remodularization.
Systems are built from hyperslices by composition,
discussed later, which results in the synthesis of com-
plete class hierarchies from the fragments, including
the combination of behavior.

How do AOP languages use join points?
GK: In AspectJ the join points are well-defined

points in the execution of the program including
method calls, field accesses, and object construction.
AspectJ makes it possible to give names to sets of join
points and to associate additional implementation that
should run before, after, or around those events.
AspectC works in a similar fashion.

KL: We think of join points as nodes or edges in
some graph. The graph can be a dynamic call graph (a
UML interaction diagram), a class graph (a UML class
diagram), an object graph (a UML object diagram).
For example, in a simple use of the DJ library, the join
point model consists of object graphs. And we add
behavior to those points using visitor objects that add
code to both nodes and edges. An appealing way to
define join points is to use succinct specifications:
Instead of enumerating the join points, we use a short
description that can be filled in with information from
elsewhere to create the list of join points. In adaptive
programming, join points are defined by succinct
specifications called traversal strategies that, if comple-
mented by a class diagram, define the detailed list of
join points. Using traversal strategies leads to loose
coupling between the structural and the numerous
behavioral concerns.

HO: In Hyper/J, composition involves finding cor-
responding join points in the hyperslices being com-
posed and combining the hyperslices at those join
points. Join points include classes, interfaces, methods,
and member variables. Correspondences and details of
composition are specified by composition relation-
ships supplied by the developer. These are often sim-
ple and general, such as “mergeByName” which means
“join points with the same names (and signatures) in
different hyperslices correspond, and combination is
done by merging.” More specific relationships are also
available, to deal with such matters as correspondence
despite name differences, and order of execution and
return value computation for merged methods. Exam-
ples are given in our article in this section, which also
shows an additional use of join points: the ability to
pull software apart at join points, extracting separate
hyperslices from a tangled class hierarchy.

MA: The Composition Filters model uses the join
points to attach concerns to messages that are received
or sent by objects. The important objectives of this
model are to minimize the interference among con-
cerns that are attached to the same join point, to
express concerns in a language-independent way, and
to provide explicit operators for composing concerns.

Does AOP replace OOP?
GK: Absolutely not! When we moved to OOP we

did not throw out procedures and all we had learned
about using them. Similarly, the goal for AOP is to
build on OOP, by supporting separation of those con-
cerns that OOP handles poorly. When programming
in AOP we use procedures, objects, and aspects, each
when most appropriate. And we should say right now
that AOP will not be the last word on the problem of
separation of concerns either. In the future we can
expect to see important new developments in this area.

HO: Following on Gregor’s remark, Hyper/J is
based on an approach we call multidimensional sepa-
ration of concerns, which takes some of the ideas even
further, and which we are beginning to apply to con-
cerns across the life cycle. It supplements OO (or,
potentially, other paradigms), but definitely does not
replace it. In addition to supporting modularization of
crosscutting concerns, MDSOC allows multiple, dif-
ferent decompositions of a system to coexist, and new
ones to be introduced as needed (on-demand remod-
ularization). For example, one developer might work
with a class, encapsulating a data concern (all repre-
sentation details of an abstract data type). Another
might work with a hyperslice encapsulating a “feature
concern:” a collection of members of different classes
that, together, implement that feature. Yet another
might work with a hyperslice encapsulating a business
rule concern: a collection of members of different

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 35

classes that, together, check and enforce some business
rule. Although they overlap, since they carve up the
system in different ways, all these hyperslices can coex-
ist as modules. This finally breaks away from pro-
grams-as-linear-text; we call it overthrowing the
tyranny of the dominant decomposition.

MA: Using Composition Filters extends OOP by
encoding concerns as manipulators of messages that
are received or sent by objects. Composition Filters
builds on the native message-passing mechanism

among objects and leaves the expression of noncross-
cutting concerns to the implementation of objects. It
integrates AOP and OOP in a complementary way.

What do you think is (are) the key issue(s)?
KL: A key issue is the reusability of aspects.To

make aspects more reusable, we introduced the con-
cept of aspectual collaborations, a derivative of
AP&PC presented at OOPSLA 1998. An aspectual
collaboration describes an aspect using a class graph.
When the collaboration is used, the class graph is
mapped into a larger class graph using an adapter.
Aspectual collaborations and adapters lead to better
separation of crosscutting issues expressed in adapters
and reusable behavior expressed in aspectual collabo-
rations. It is not good enough to modularize crosscut-
ting concerns because the modularization might
scatter another concern leading to a program that is
still hard to maintain. We need to modularize cross-
cutting concerns such that they are loosely coupled to
other parts of the program.

GK: Reusability of aspects is certainly one key
issue. AspectJ includes reuse mechanisms similar to
those found in OOP. We know these are useful for
making small reusable aspects. Now we need to
develop expertise in making larger libraries of reusable
aspects. A related issue is how to work with large
numbers of aspects. How do they compose? How do
we think about such designs? What notations should
we use for describing them? These and other related
questions are ones we expect the user and research
communities to explore over the next few years.

MA: According to our viewpoint, the key issues of
AOP can be summarized using the following six
“C”s—Crosscutting, Canonicality, Composability,
Computability, Closure property, and Certifiability:

• The crosscutting property has been explained;
• The canonical property is necessary for the stability

of the implementation of concerns;
• The composability property is necessary for provid-

ing quality factors such as adaptability, reusability,
and extensibility;

• The computability property is
necessary for creating executable
software systems;

• The closure property is neces-
sary for maintaining the quality
factors of the design at the
implementation level; and

• The certifiability property is
necessary for evaluating and
controlling the quality of design
and implementation models.
HO: Along with Mehmet’s six

“C”s, we have four “S”s for successful separation:

• Simultaneous: coexistence of different decomposi-
tions, as described earlier, are important.

• Self-contained: each module should declare what it
depends on, so that it can be understood in isola-
tion. In Hyper/J, we do this using an approach
called declarative completeness.

• Symmetric: there should be no distinction in form
between the modules encapsulating different kinds
of concerns, so that they can be composed together
most flexibly. This is related to Mehmet’s compos-
ability and closure properties. For example, we
want aspects to be able to extend other aspects as
well as classes.

• Spontaneous: it should be possible to identify and
encapsulate new concerns, and even new kinds of
concerns, as they arise during the software life
cycle.
How can OO software engineers benefit from

your approach?
KL: We have implemented the DJ library that

allows Java programmers to write an important class
of functional aspects directly in Java. In addition, the
DJ library is a good tool to define how to reuse an
aspect (class graph mapping). The DJ library is a very
user-friendly implementation of adaptive program-
ming and the loose coupling between structure and
behavior that it offers has an impact on the mainte-
nance cost of the software.

HO: There is a spectrum of scenarios in which our

36 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

Structured programming

Modular programming

Data abstraction

Object-oriented programming

Explicit control constructs

Information hiding

Hide the representation
of data

Objects, with classification
and specialization

Do, while and other loops,
blocks, and so forth

Modules with well-defined
enforced interfaces

Types

Classes, objects,
polymorphism

Key concepts compared.

Technology Key Concepts Constructs

approach can provide benefit, some of them also sup-
ported by other approaches. These include:

• Writing packages in standard Java, to encapsulate
functional or nonfunctional crosscutting concerns.
This includes modular insertion of code, such as
instrumentation, monitoring or debugging code,
into existing classes.

• Extraction and modularization of the code pertain-
ing to concerns not separated out when the code
was written. This can be thought of as post-hoc,
on-demand separation.

• Composing reusable concerns with custom soft-
ware.

• Multiteam development, where each team evolves
its own domain model as its work proceeds, and
these models need to be reconciled and integrated.

• Integration of separately written applications and
domain models, possibly using glue code. Details of
the integration are specified in the composition
relationships.

Many research challenges remain in realizing some
of these scenarios.

MA: Based on our experiences in a number of pilot
projects, we presented a list of obstacles that software
engineers may experience if they adopt OOP lan-
guages. The so-called “lack of support for multiple
views” and “synchronization and real-time composi-
tion anomalies” are some examples of the obstacles
that we have listed. We also categorized the obstacles
with respect to certain application domains. Software
engineers may first look at these publications and
determine if there are similarities between their soft-
ware design problems and our pilot studies. Many of
the identified obstacles have been addressed by our
research work on Composition Filters. If the Compo-
sition Filters model offers a solution to their design
problems, software engineers have two options: (a)
They may adopt the Composition Filters model as a
design-level solution. In this case, filters may be imple-
mented, for example, by using message reflection tech-
niques or (b) They may utilize a Composition Filters
compiler to translate filter specifications to an imple-
mentation language such as Java.

GK: AspectJ is a simple extension to Java. AspectJ
is designed so it can be easily integrated with existing
programming practice and tools. Many AspectJ users
start by writing various development process aspects
like testing, tracing, logging, and contract checking.
They then move on to writing aspects—using
AspectJ tends to reduce development time and make
software easier to debug and modify after it has been
written.

What are one or two key open issues that are
important to address during the post-OO era?

HO: One of the most important open issues is
semantic correctness of aspects and compositions. It
has always been an issue with modular systems to
ensure that modules are correct on their own and that
they interact correctly when composed. The join
point-based composition provided by aspect languages
is much richer than the interface- or message-based
connection provided by most other modularization
mechanisms, complicating both specification and test-
ing of compositions. Even specification and unit test-
ing of individual aspects is an area requiring research.

KL: An important topic is how to deal with
reusable aspects. Consider an adaptive method written
with the DJ Java library. It works with a large family of
Java programs but for which programs does it work as
intended? Consider a reusable aspect in AspectJ that
involves the star operator in the pointcut designators.
It also works with a large family of Java programs but
again, for which programs does it work as intended?
The concept of correctness of a reusable aspect is an
open issue. We need to find good ways to express the
assumptions that need to hold for a reusable aspect to
work correctly in a specific context.

MA: The six “C”s of AOP, introduced previously,
are also our challenges. First, we need to improve our
understanding about the crosscutting concerns. For
example, what kind of crosscutting concerns are typi-
cal in application areas such as e-commerce and what
are the characteristics of these concerns? Second, we
need to define new methods for identifying and speci-
fying canonical models for crosscutting concerns.
Third, we need to specify the relevant composability
operations on the canonical concern models. Fourth,
we should be able to define a—preferably single—
translator for all possible concern specifications so that
new concerns can be introduced without redefining
the translator. In addition, the translator should gener-
ate efficient code. Fifth, we need to improve our
understanding about the static and dynamic character-
istics of crosscutting concerns so that we can maintain
the functional and quality characteristics of the cross-
cutting concepts at runtime. Finally, we need to
develop formal models for determining the functional
and quality characteristics of crosscutting concerns
individually and together.

Doesn’t the ability to compose/weave classes break
the encapsulation that is such an important feature
of OO?

GK: No. AOP adds a new kind of modularity to
the programmer’s toolkit. Crosscutting concerns are an
inherent part of most complex systems. Today pro-
grammers are being forced to write tangled code when-

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 37

ever they have to implement a crosscutting concern.
With AOP, the code for crosscutting concerns is local-
ized, the structure of the crosscutting is explicit, and
the code can often be a good deal shorter as well.

HO: It is true that aspects can introduce new
behavior at join points, such as private methods, that
normally could not be modified except by changing
the source code. However, if these aspects are consid-
ered to be part of the class(es) they extend, just written
separately, then they do not break the class encapsula-
tion. In fact, the encapsulation can be tighter (depend-
ing on the details of the aspect language): the code is
encapsulated by both the aspect and the class, and
need not be made visible even to other aspects of the
same class. Additional visibility or security mecha-
nisms might be appropriate in some environments to
control which developers are allowed to write aspects
that extend specific classes.

MA: Crosscutting concerns in the Composition
Filters model do not depend upon the implementa-
tion details, such as attributes and private methods, of
other concerns. One of the important characteristics
of the Composition Filters model is that concerns are
attached to messages. Filters are modular extensions to
objects; even the implementation language is encapsu-
lated. This makes porting filters to different languages
easy.

Doesn’t dealing with all these concerns make the
program more difficult to understand?

HO: The concerns are there in the program any-
way, all tangled, and they are indeed a major source of
complexity. But, unless the system is badly written,
they are inherent. What these approaches do is allow
the implicit, tangled concerns to be separated out and
made explicit, so developers can see what they’re deal-
ing with. Just as with OO, overzealous separation can
lead to so many modules that their relationships
become obscure. It is still important to follow good
design principles, and separate just those concerns that
need to be separated. That is often hard to predict,
which is why we emphasize the spontaneity property
described previously.

MA: The crosscutting concerns of a design repre-
sent crucial abstractions. It is therefore important to
represent these concerns explicitly, encapsulate their
implementation details, and provide operations to
extend them. AOP languages make crosscutting con-
cerns more understandable and manageable.

Much of software evolution is of unanticipated
nature. How does AOP help?

KL: In our work on aspectual collaborations, we
use an approach similar to Hyper/J. Our aspectual col-
laborations are declaratively complete and talk only
about “abstract” join points. Each aspectual collabora-

tion is formulated in terms of a high-level class graph
and this supports unanticipated reuse that is formu-
lated inside the adapters. Adaptive programming is a
useful tool to deal with unanticipated class diagram
evolution.

HO: Graceful evolution (not involving invasive
changes to existing code) requires suitable hooks.
Many design patterns are intended to provide such
hooks for cases of expected evolution, but it is impos-
sible to provide explicitly all possible hooks for unan-
ticipated evolution. Join points can come to the
rescue. They provide a rich set of hooks that can be
used as needed, without incurring overhead when not
used. A wide class of extensions can thus be imple-
mented as aspects, which can be attached at suitable
join points noninvasively. Since unanticipated evolu-
tion was one of our primary motivations, we have
taken support for it even further in Hyper/J. Some-
times the structure of the class hierarchy turns out to
be unsuitable for some evolutionary task. Sometimes
concerns or kinds of concerns emerge during evolu-
tion that were not separated when the code was origi-
nally written. It is necessary to allow hyperslices to
have different class hierarchies (views, domain mod-
els), and to be able to extract hyperslices from existing
code. Our article in this section discusses these issues
and gives examples.

MA: In the Composition Filters model, aspects can
be attached to or removed from objects even at run-
time. Since the observable behavior of an object is
largely defined by its interaction semantics, filters can
extend objects in many possible ways.

Tzilla Elrad (elrad@iit.edu) is a research professor leading the
Concurrent Programming Research Group in the Department of Com-
puter Science at the Illinois Institute of Technology in Chicago.
Mehmet Aksits (aksit@cs.utwente.nl) is Professor of Software Engi-
neering and Chair of the Department of Computer Science at the Uni-
versity of Twente, The Netherlands.
Gregor Kiczales (gregor@cs.ubc.ca) is Professor and NSERC,
Xerox, Sierra Systems Chair of Software Design at the University of
British Columbia, and Principal Scientist at Xerox PARC.
Karl Lieberherr (lieber@ccs.neu.edu) is Professor of Computer
Science at Northeastern University in Boston, MA.
Harold Ossher (ossher@watson.ibm.com) is a Research Staff
Member at the IBM T.J. Watson Research Center in Yorktown
Heights, NY.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2001 ACM 0002-0782/01/1000 $5.00

c

38 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

