
Formalizing Style to Understand Descriptions

of Software Architecture

Gregory Abowd� Robert Allen

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

David Garlan

July 21, 1995

Abstract

The software architecture of most systems is usually described informally and diagrammatically by

means of boxes and lines. In order for these descriptions to be meaningful, the diagrams are understood

by interpreting the boxes and lines in speci�c, conventionalized ways. The informal, imprecise nature

of these interpretations has a number of limitations. In this paper we consider these conventionalized

interpretations as architectural styles and provide a formal framework for their uniform de�nition. In

addition to providing a template for precisely de�ning new architectural styles, this framework allows for

analysis within and between di�erent architectural styles.

Keywords: software architecture, software design, architectural style, architectural description, archi-

tectural analysis, formal speci�cation, the Z notation

1 Introduction

Software architecture is an important level of description for software systems [16, 26]. At this level of
abstraction key design issues include gross-level decomposition of a system into interacting subsystems, the
assignment of function to computational components, protocols of interaction between those components,
global system properties (such as throughput and latency), and life-cycle issues (such as maintainability,
extent of reuse, and platform independence).

When designers discuss or present a software architecture for a speci�c system, they typically treat
the system as a collection of interacting components. Components de�ne the primary computations of the
application. The interactions, or connections, between components de�ne the ways in which the components
communicate, or otherwise interact with each other. In practice a large variety of component and connector
types are used to represent di�erent forms of computation or interaction [16]. Examples of component types
include �lters, objects, databases, and servers. Examples of connector types include pipes, procedure calls,
message passing, and event broadcast.

Most architectural descriptions are informal and diagrammatic, using annotated boxes to represent com-
ponents and lines to represent the connections. In order for these descriptions to be meaningful at all, a
number of questions about the described system must be answered:

� What computations do the boxes and their annotations represent?

� Are the boxes somehow similar in behavior?

�Gregory Abowd's current address is College of Computing, Georgia Institute of Technology, Atlanta, Georgia.

1

� What control/data relationships are indicated by the lines?

� How is the overall behavior of the system determined by the behavior of its parts?

� Does the diagram make sense|that is, does it represent a legal con�guration of boxes and lines?

Simple box-and-line diagrams by themselves cannot answer these questions directly: most diagrammatic
notations are not su�ciently expressive to serve as a complete architectural speci�cation. Consequently
designers typically resort to conventional interpretations of their diagrams in order to provide those answers.
For example, an architectural description for one system might use boxes to represent �lters and lines to
represent piped (dataow) channels between �lters. For another system, boxes might represent abstract data
types or objects, and lines might represent procedure calls. In a system description containing more than
one kind of component or connection type, the di�erent types are often distinguished by di�erent graphical
conventions.

While useful in documenting system designs, such diagrams|even with their conventional interpretations|
have a number of serious limitations. Because they are imprecise, it is di�cult or even impossible to attach
unambiguous meanings to the descriptions. This makes it di�cult to know when an implementation agrees
with the architectural description. Consequently, it is di�cult to know how changes to one a�ect the other.
Similarly, lack of precision precludes formal analysis: it is virtually impossible to reason formally about a
system's architectural description or to make rigorous comparisons between di�erent architectural descrip-
tions.

The most common solution to the inadequacies of informal interpretation of architectural description
is to constrain the architectural notation so that it maps directly into a well-de�ned execution model.
This is typically done by casting architectural descriptions in terms of module-level notations provided by
programming languages (e.g., Ada packages and tasks, C++ classes, etc.). For example, components can be
restricted to be abstract data types whose interface is described solely in terms of procedure signatures, and
connectors can be restricted to procedure call. When constrained in this way, architectural descriptions can
be mapped directly to facilities of a programming language (or other executable base), and can thereby be
given precise meanings.1

This approach, however, has a number of problems. Most signi�cantly, it limits the expressiveness
of architectural description to just those structures and building blocks supported directly by the target
implementation language. If, for instance, architectural connections have to be phrased in terms of procedure
calls, then alternative forms of interaction|such as event broadcast or higher-level interactions characterized
by protocols of communication|cannot be represented directly. Moreover, alternative forms of interaction
must be encoded into the primitives at hand, obscuring the intent of the designer. Finally, the relatively low
level of description may make it di�cult to understand and reason about the architectural design.

In this paper we advocate a di�erent approach: permit a variety of conventional interpretations to
be assigned to architectural diagrams, but create a framework for understanding and de�ning them more
precisely. To make this possible what is needed is a exible way to assign formal semantics to architectural
descriptions in a way that is consistent with the informal conventions used by their creators. In this way,
designers can use the abstractions that are appropriate to the architectural description at hand, but still have
the precision of a formal model. In e�ect, the model provides the additional semantic details not present in
the diagrammatic representations.

More speci�cally, as we will see, we can view the collection of conventions that are used to interpret a
class of architectural descriptions as de�ning an architectural style. To understand the meaning of a speci�c
architectural design then requires both a description of the design (usually in the form of an architectural
diagram), as well as an indication of the style under which the description is to be understood.

To elaborate, as illustrated in Figure 1, an architectural diagram identi�es the number and connectivity
of computational entities. However, it is the style that tells us what kinds of components should exist, the
control/data relationships between components, and other semantic details, such as constraints on topology.
For example, if we interpret the diagram of Figure 1 with respect to a client-server architectural style, the

1This assumes, of course, that the programming language itself has well-de�ned semantics.

2

AND

Diagram Style

• client-server
• blackboard
• event syst
• pipe and filter

Figure 1: How style distinguishes similar descriptions

Syntax Semantics

f ⊕g

(x : A → P(x))

State
meaning

Figure 2: Approach to formalizing architectural style

system could be understood as consisting of two kinds of components (clients and servers) connected by a
request-reply protocol initiated by the clients. Interpreting the diagram as a blackboard system [25], would
indicate the presence of a central blackboard together with three knowledge sources. Interpreting the same
diagram under the pipe-�lter style, on the other hand, could allow us to infer that the diagram is illegal,
because by convention pipes are not used for two-way communication between components in that style.

In this paper, we show that this basic idea can be made precise. Speci�cally, architectural styles can be
described formally in terms of a small set of mappings from the syntactic domain of architectural descriptions
to the semantic domain of architectural meaning. (See Figure 2.) The approach provides a framework in
which new styles can be de�ned by instantiating similar sets of de�nitions. The formal model further makes
it possible to gain insight into the properties of a style and its relationships to other styles.

The main thrust of our argument and examples is to demonstrate how to give meanings to architectural
descriptions. In one respect this is nothing new: programming language researchers have been providing
denotational semantics of programming languages for years. What is novel, however, is the specialization of
the general semantic approach to the problem of understanding software architecture. As we will show, this
can be done by providing a syntactic and semantic framework in which architectural styles give meanings to
architectural diagrams.

The specialization of general theory to this particular domain has a number of signi�cant engineering
bene�ts. First, it provides a template for formalizing new architectural styles in a uniform way, thereby
simplifying and regularizing the way styles are given meanings. Second, it provides uniform criteria (in
the form of proof obligations) for demonstrating that the notational constraints on a style are su�cient to
provide meanings for all described systems. Third, it makes possible a uni�ed semantic base through which
individual styles can be analyzed and di�erent stylistic interpretations can be compared.

1.1 Related work

The ideas presented in this paper are most closely related to four other areas of research: architectural
taxonomies and handbooks; languages for architectural description; work on domain-speci�c software archi-
tectures; and other formal models for architectural speci�cation.

3

Architectural taxonomies and handbooks

Architectural design has long been recognized as a critical aspect in engineering large software systems [9, 24].
However, it is only recently that software architecture has begun to emerge as a discipline of study in its own
right. This has come about in part by a recognition of the central role of common design patterns and idioms
| or architectural style. Among early e�orts to identify, name, and analyze these patterns, in 1989 Shaw
categorized a number of idioms [29] and later Garlan and Shaw [16] extended this list, providing several
examples of their use in understanding real systems. Concurrently, Perry and Wolf [26] also recognized the
importance of architectural patterns and outlined the use of styles in characterizing applications such as
compilers.

A di�erent, but related, area of activity has recently emerged in the object-oriented community through
the articulation of design patterns. Inspired, in part, by Christopher Alexander's work on pattern lan-
guages [1], these e�orts have led to handbooks of common patterns for organizing software [10, 27]. The
patterns usually consist of a small number of objects that interact in speci�c ways.

Our research builds on such earlier taxonomic e�orts by recognizing the importance of architectural ab-
stractions as semantic entities worthy of study. But it goes beyond that work by showing how to make
architectural descriptions more precise. In particular, early work on cataloging the ways software engineers
express their architectural designs, convinced us that it is foolhardy to attempt to limit the number of
architectural patterns, or simply to reduce them to more familiar, primitive programming language con-
structs. On the other hand, it is clear that the study of architectural patterns can bene�t substantially from
techniques for making their description more formal, and hence more analyzable [31].

Languages for architectural description

In an attempt to provide architectural design with better notations, several new languages have been proposed
for architectural description. Rapide [20] provides a module description language, whose interface model is
based on events and event patterns. UniCon [30] provides an architectural description language in which both
components and connectors have interfaces and can be associated with implementations. Wright [5] is an
architectural speci�cation language that allows one to de�ne the semantics of connectors as formal protocols
in a variant of CSP [18]. To the extent that these languages have well-de�ned semantics, they provide a formal
basis for architectural description. However, in their current form, none of them is speci�cally concerned with
the de�nition of architectural style: while stylistic constraints can be added to the description of a speci�c
system, none of the languages currently make it possible to de�ne an architectural style as an independent
semantic entity.

Closer in spirit to our work is the architectural description framework provided by the Aesop System [11].
Aesop was speci�cally designed to support the de�nition of architectural styles. New styles are de�ned as
a system of object types, which provide a design vocabulary for the style, and are then used to support
a design environment specialized for the style. Stylistic constraints are enforced by the \methods" of the
object types. As such, Aesop provides an operational basis for style de�nition. This contrasts with the more
direct \denotational" approach of this paper.

Domain-speci�c software architectures

A growing number of industrial research and development e�orts are creating domain-speci�c architectural
styles|or \reference architectures"| for speci�c product families [7, 8, 22]. This work is based on the idea
that a common architecture of a collection of related systems can be extracted so that each new system can be
built by \instantiating" the shared architecture. Examples include the standard decomposition of a compiler
(which permits undergraduates to construct a new compiler in a semester), standardized communication
protocols (which allow vendors to interoperate by providing services at di�erent layers of abstraction),
fourth generation languages (which exploit the common patterns of business information processing), user
interface toolkits and frameworks, and various product architectures in domains such as command and
control, avionics, manufacturing, and mobile robotics [17, 34].

4

Our work was inspired, in part, by the demonstrable bene�ts in developing such styles. However, to
the extent that those e�orts have formalized their architectural frameworks at all, the semantic descriptions
are developed from scratch, and each uses di�erent, idiosyncratic conventions and semantic bases. Such
formal descriptions are therefore di�cult to develop and, having developed them, few comparisons can be
made between di�erent styles. In contrast, our work attempts to �nd a common basis for de�ning many
architectural styles and for making semantic comparisons between them.

Other formal models for architecture

In earlier work the authors and other colleagues, have provided formalmodels for several speci�c architectural
styles, including a class of signal processing systems [12], a pipe-�lter style [2], and an implicit invocation
style [14]. Each of these speci�cations was an independent speci�cation e�ort, and required considerable
expertise. This previous experience provided strong motivation for developing a uni�ed framework for
de�ning architectural styles. In fact, two examples of architectural styles used in this paper were adapted
from our earlier work.

Other bases for formal modelling of architecture have been proposed. In their investigations of architec-
tural re�nement, Moriconi and his colleagues have characterized styles as theories in �rst order predicate
logic. [23]. While that view of architectural style is consistent with ours, in this paper we show how to
provide structure to the formal description of architectural style, and thereby simplify and regularize the
de�nition of the theory associated with it. We also focus more on the analysis of properties of styles than
on the question of re�nement between styles.

Inverardi and Wolf have used the Chemical Abstract Machine [6] as a formal basis for architectural
description [19]. Architectural elements are represented by \molecules" and architectural interaction by
\reactions." It remains to be seen whether this provides a better formal basis than the (set-theoretic) one we
have chosen. In any case, to date their work has primarily focused on the description of speci�c architectures,
rather than architectural styles.

In their work on architectures for distributed systems, Magee and Kramer have used the �-calculus to
model the dynamic aspects of architectures described in the Darwin language [21]. Their work can be viewed
as a good example of formalization for a particular style (embodied in Darwin) in a semantic model di�erent
than the one we use in this paper.

Finally, as noted earlier, two of the authors (Allen and Garlan) have developed an alternative formalism
for architectural speci�cation based on CSP [5]. While the use of CSP has a number of bene�ts over
Z|especially for describing the dynamic behavior of a system|thus far, their architectural speci�cation
language does not support the de�nition of architectural styles.

1.2 Overview of the rest of the paper

In Section 2, we begin by outlining the method we use to de�ne an architectural style. The signi�cance of
the method de�ned in Section 2 is that it provides a uniform approach to de�ning any architectural style
and for reasoning within and between styles. To demonstrate this, in the following sections we de�ne two
quite di�erent architectural styles and show examples of analyses for each. The key points are that there is
a uniform way to give semantics to styles and that such formalisms can support useful formal analyses.

Before de�ning the two styles in Section 3, we �rst abstract and formalize the concepts behind the box-
and-line diagrams that are prevalent in current informal architectural descriptions as a syntactic domain.
This portion of our formalism is style-independent. In Section 4 we de�ne a pipe-�lter (PF) style. Then
in Section 5 we show how speci�c substyles of PF emerge from that de�nition. We also outline two non-
trivial analyses to show how the formalism can be used to reason about the properties of styles. The �rst
analysis shows that PF supports hierarchical decomposition of components into sub-PF systems. The second
examines the question of implementing the general PF model using �nitely-bu�ered pipes, and provides
su�cient conditions for doing this. A second style|an implicit invocation event system (ES)|is the subject
of Section 6. Our discussion of ES will be somewhat shorter than PF, but we will outline how it is de�ned

5

and do similar substyle and hierarchical analysis of it in order to demonstrate the leverage gained through
the formal framework.

Throughout the paper, we use the Z speci�cation language to describe the formal model. Appendix A
summarizes most of the Z notation used in this paper. For additional details on Z, see [32]. However, it is
important to note that the use of Z is not critical to the approach that we are advocating. Indeed, the main
contribution of this paper is in de�ning the framework for style de�nition and then demonstrating its value
for architectural analysis of various styles. Many other formal notations would su�ce for this purpose.

2 What's in a Style?

In order to provide a precise meaning for architectural descriptions it is important to distinguish the abstract
syntactic domain of architectural descriptions from the semantic domain of architectural meanings. Having
done this we can then provide a map, or meaning function, from one to the other.

We take as our starting point the view that the syntactic domain of architectural description (among
other things) supports the description of systems in terms of three basic syntactic classes: components, which
are the locus of computation; connectors, which de�ne the interactions between components;2 and con�gu-
rations, which are collections of interacting components and connectors. Additionally, various style-speci�c
concrete notations may be used to represent these visually, facilitate the description of legal computations
and interactions, and constrain the set of describable systems. We are not as concerned in this paper with
the speci�cs of these concrete notations as we are with their purpose in easing the description of architectural
instances.

A purely syntactic description may have some bene�ts as an informal design notation. For example,
the connectors may be interpreted as de�ning data and/or control ows through the system. But as we
argued in the introduction, such informal approaches have serious limitations. In particular, questions such
as how components compute, what data is communicated, or how the ow of information is controlled,
cannot be answered with any precision. Since it is the purpose of this paper to provide an improved basis for
understanding the meaning of architectural descriptions, we will take the view that architectural style is an
interpretation from syntax to semantics (see Figure 2), and outline a framework for precise style de�nition.

In this framework, style de�nition starts with a formal de�nition of the syntactic domain in which
architectures are described. In Section 3 we do this generically by providing formal de�nitions of the syntactic
classes: component, connector and con�guration. These represent the basic elements of an architectural
diagram. Next, for each style we must de�ne a semantic model that captures both the static and dynamic
meanings of the class of systems built in that style. Finally, as with a denotational approach to programming
languages, we provide a mapping from the syntactic descriptions to the semantic model for the style. Given
the nature of architectural descriptions, this amounts to the de�nition of three meaning functions that link
the syntactic descriptions to their semantic counterparts. For a style X , we would declare the meaning
functions as partial functions from the abstract syntax to the semantic models.

MX
Comp : Component� CompXsem

MX
Conn : Connector� ConnXsem

MX
Conf : Con�guration� Conf Xsem

Here Component is the abstract syntactic class of components (to be de�ned in Section 3) and CompXsem
denotes the semantic model of a component in style X . Thus, MX

Comp is a meaning function from the
general abstract syntax for components to the style-speci�c semantic model. It is modeled as a partial
function (using the Z symbol �) to indicate that some elements of Component may not have a meaning
in a given style. In fact, as we will see, part of the de�nition of a style will be to determine which syntactic

2In practice the implementation of a connectormay involve some computations{ such as bu�ers for communication, dispatch-

ing of events, synchronization over shared variables, etc. But we distinguish these computations from those of the components:

the former is typically a computation of the underlying support system, while the latter is a computation of the application

itself.

6

elements can legally be assigned a meaning. This is done by de�ning explicitly the domain of the meaning
functions|or using the generic notation above, dom(MX

Comp). Similar conventions are used to de�ne the
meaning functions for connectors and con�gurations.

The �nal step in the formal de�nition of an architectural style is to make explicit the constraints that this
style imposes on the syntactic descriptions. Because the meaning functions are declared as partial functions
on the syntactic domains, not every syntactic construct may have a meaning in a given style. Expressing
these constraints explicitly generates a proof obligation to show that the meaning function is well-de�ned
for all syntactic elements that meet the constraints. By making the constraints explicit we de�ne precisely
the descriptions that are reasonable in the style.

A formal de�nition of an architectural style, based on the method outlined above, provides a foundation
for further analysis of the style. We discuss two di�erent forms of analysis in this paper. The �rst form
of analysis is within a particular style, identifying important substyles that can be understood as further
syntactic restrictions on a more general style. The second form of analysis is between styles, comparing
di�erent semantic models to see if they share similar properties.

To summarize, the steps we will follow are:

1. formalize abstract syntax for architectures

2. for a given style:

� de�ne the semantic model

� discuss concrete syntax for easing syntactic descriptions in a given style

� de�ne the mapping from abstract syntax into semantic model

� make explicit the constraints on the syntax

3. demonstrate analysis within and between formally de�ned architectural styles.

3 The Abstract Syntax of Software Architectures

The basic syntactic elements of an architectural description are components, connectors, and con�gurations
of components and connectors. In this section we formalize these elements.

3.1 Components

Components are the active, computational entities of a system (see Figure 3). They accomplish tasks through

ports

computation

Figure 3: A component and a connector

internal computation and external communication with the rest of the system. The relationship between a
component and its environment is de�ned explicitly as a collection of interaction points, or ports. Intuitively,
ports generalize the traditional notion of a module interface. In the simplest case, a port might represent a
procedure that can be called or a variable that can be accessed in an interaction with another component.
But a port might also represent something much more complex, such as a collection of procedures, a set

7

of events that can be broadcast, or a database access protocol. (For more details on the use of ports for
de�ning complex interfaces see [4].)

We di�erentiate between components with the same port interface based on a description of the com-
putation they perform. In this abstraction of component syntax, we model this reference to computational
behavior with a placeholder for some concrete computational description. That is to say, we leave the de-
tails of port naming and description unbound at this point. Since we are not concerned with details of the
construction of ports or the computational description for components, we model these as \given" sets.3

An architectural component, as a syntactic entity, is a collection of ports together with a description of its
computation. We use the Z schema, Component to represent this

[PORT ;COMPDESC]

Component
ports : �PORT
description : COMPDESC

3.2 Connectors

Connectors de�ne the interaction between components (see Figure 4). Each connector provides a way for a

roles

protocol

Figure 4: A connector

collection of ports to come into contact, and logically de�nes the protocol through which a set of components
will interact.

Like components, connectors are de�ned as independent entities. A connector has an interface that
consists of a set of roles. Each role de�nes the expected behavior of one of the participants in an interaction.
For example, a pipe would have a reader and a writer role; a multicast connector would have a single
announcer and multiple receiver roles; a client-server connector would have requester and provider roles.
The overall behavior of a connector (and hence of the interaction it speci�es) is logically de�ned by a
protocol. For example, the protocol of a client-server connector might require that initialization occur before
any request is made. Thus the description of the protocol of interaction provided by a connector is separated
from its interface (of roles) in the same way that the computation description of a component is separated
from its interface (of ports).

Again, in this model we are not concerned with the detailed speci�cation of roles and protocol of interac-
tion, so we introduce these notions as given sets. An architectural connector is then modeled as a collection
of roles and a description of its interaction protocol, as de�ned in the schema Connector .

[ROLE ;CONNDESC]

3In Z a given set simply de�nes a primitive collection of elements, which can be compared for equality, but otherwise have

no internal structure|see Appendix A.

8

Connector
roles : �ROLE
description : CONNDESC

3.3 Con�gurations

A con�guration is a collection of component instances which interact by means of connector instances (see
Figure 5). Instances of components and connectors are identi�ed by naming elements from the syntactic

computation

attachment

computation

computation

protocol

Figure 5: A con�guration

class. To name instances of components and connectors we introduce two new given sets, COMPNAME
and CONNNAME . These sets are also used to name instances of ports or roles (resp.) associated with a
component or connector (resp.), and so we introduce two type synonyms for convenience.

[COMPNAME ;CONNNAME]
PortInst == COMPNAME � PORT
RoleInst == CONNNAME � ROLE

The association between component and connector instances is modeled by an attachment between the
roles of the connectors and the ports of the components. This reects the intuition discussed above, in which
the connector interface identi�es roles in the interaction that are to be �lled by various component ports.
This leads to a certain asymmetry: while a port may �ll many roles, meeting the needs of several di�erent
communications, a role may have at most one port that �lls it.

The model for a con�guration is given below. Instances of components and connectors are modeled by
partial functions from the naming set to the syntactic class. Each name-element pair in these functions
indicates an instance of that element in the con�guration. Attachments are modeled as a partial function
from the roles of the connector instances to the ports of the component instances. Using a partial function
enforces the consistency constraints described above: namely, that there is at most one port for each role,
but possibly multiple roles for a single port.

Con�guration
components : COMPNAME� Component
connectors : CONNNAME�Connector
attachment : RoleInst� PortInst

8 cn : CONNNAME ; r : ROLE j (cn; r) 2 domattachment
� cn 2 domconnectors ^ r 2 (connectors(cn)):roles

8 cn : COMPNAME ; p : PORT j (cn; p) 2 ran attachment
� cn 2 domcomponents ^ p 2 (components(cn)):ports

The schema Con�guration imposes two additional constraints (below the separating line) that must be
satis�ed by all con�gurations. The �rst constraint ensures that any role instance in the attachment is a

9

role for some named connector in the con�guration. The second constraint similarly ensures that all port
instances described by the con�guration appear on an actual component instance. Together, these two
constraints enforce a lexical scoping on attachments within a con�guration.

4 The Pipe-Filter Style

In this section, we show how this framework can be used to model the syntactic elements of a pipe-�lter
style (PF). This style is representative of coarse-grained dataow systems such as those supported by Unix
pipes. Figure 6 provides a pictorial overview of the pipe-�lter architectural style. Components are �lters.
Their computation is a transition function from input ports to output ports. The connectors, pipes, support
dataow between two �lters.

transition

transition

transition transition

transition

Filter Pipe

Key

Figure 6: An instance of the pipe-�lter style

4.1 Semantic Model

The �rst part of de�ning a style is to provide a semantic model for the components, connectors, and con�g-
urations of the style. This is perhaps the hardest part of the process, since to do this properly we must come
to grips with the intuition behind the use of the style. In the case of PF, an appropriate formal description
of the semantic domain already exists [2, 3]. Here we will use only those aspects of the model that are
necessary to illustrate the basic ideas.

The PF style interprets components as �lters, which are typed stream transducers. These can be modeled
as state machines that receive their input and place their output as sequences on data ports. At this level of
abstraction we are not interested in the representational details of the internal state and data, so we declare
them as given sets in our speci�cation. Data ports de�ne the interfaces for �lters and we also introduce
them as a given set in our model. Note that these are distinct from the ports that form the interface for
components in the syntactic descriptions.

[STATE ;DATA;DATAPORT]

In order to de�ne the behavior of a �lter, we must know its input and output data ports and the type
of data that may be passed along each data port. This latter information can be represented by a (partial)
function from data ports to their alphabet. At any point in time, the data ports of the �lter will hold all
data (as a sequence) that has been received (for input data ports) or produced (for output data ports) but
not yet removed. The state machine behavior of the �lter is modeled as a transition function that takes an

10

internal state and input data and results in a new internal state and output data. In addition we identify a
starting internal state. This information about a �lter is formalized in the schema Filter . Some constraints
on �lters that we enforce are:

� input and output data ports are distinct (�rst predicate);

� a �lter transition is determined by looking at data on the input ports only and results in information
provided to the output ports only (the �nal predicate).

Filter
inputs; outputs : �DATAPORT
alphabet : DATAPORT��DATA
states : � STATE
start : STATE
transitions : (STATE � (DATAPORT� seqDATA))

#(STATE � (DATAPORT� seqDATA))

inputs \ outputs = �
domalphabet = inputs [outputs
start 2 states

8 s1; s2 : STATE ; ps1; ps2 : DATAPORT� seqDATA
� ((s1; ps1); (s2; ps2)) 2 transitions)

s1 2 states ^ s2 2 states
^ domps1 = inputs ^ domps2 = outputs
^ (8 i : inputs � ran(ps1(i)) � alphabet(i))
^ (8 o : outputs � ran(ps2(o)) � alphabet(o))

We de�ne the semantics of a �lter operationally. At any point in a computation, a �lter is de�ned by its
current internal state, constrained to be in the set of possible states for the �lter, and the data at each of
its input and output ports (which must be in the alphabet of that port).

FilterState
f : Filter
curstate : STATE
instate; outstate : DATAPORT� seqDATA

curstate 2 f :states
dom instate = f :inputs
domoutstate = f :outputs
8 p : f :inputs � ran(instate(p)) � f :alphabet(p)
8 p : f :outputs � ran(outstate(p)) � f :alphabet(p)

A single computational step for a �lter transforms some input data into output data. The order of data
is preserved, so input data is consumed in the order it arrived and output data is kept in the order it is
produced. The result of a computation step for a �lter is the removal of some data o� the input ports, a
transformation of that data, which will depend on the �lter's current internal state, a change in the current
state and the addition of the transformed data to the output ports. The schema FilterCompute encapsulates
just such a computational step. We make use of the � convention to describe this transition from one state
of the �lter to another (see Appendix A).

11

FilterStep
�FilterState

f 0 = f

9 in; out : DATAPORT� seqDATA �
((curstate; in); (curstate0; out)) 2 f :transitions

^ 8 p : f :inputs � instate(p) = in(p) � instate 0(p)
^ 8 p : f :outputs � outstate0(p) = outstate(p) � out(p)

The data ports of �lters are connected by pipes, which we model as typed streams of data. Each pipe has
a distinct source and sink for receiving and sending data. Recall that a DATAPORT represents an input or
an output of some particular �lter. Thus, a pipe represents a data transmission from one �lter to another.

Pipe
source; sink : DATAPORT
alphabet : �DATA

source 6= sink

The protocol or behavior of a pipe is de�ned by giving its transmission policy. At any point in time, the
pipe has some data residing at its source port and some data at its sink port.

PipeState
p : Pipe
sourcedata : seqDATA
sinkdata : seqDATA

ran sourcedata � p:alphabet
ran sinkdata � p:alphabet

A single step in the behavior of a pipe results in some nonempty subsequence of data being removed from
the source data port, in the order in which it arrived there, and being delivered, unchanged in content and
order, to the sink data port.

PipeStep
�PipeState

p = p 0

9 deliver : seqDATA j #deliver > 0 �
(deliver � sourcedata0 = sourcedata) ^ (sinkdata0 = sinkdata � deliver)

We can now model a pipe-�lter con�guration as a set of �lters connected by pipes. Because the
DATAPORT identi�ers represent global names, we disallow name clashes between the data ports of dis-
tinct �lters and pipes. The set of interactions in the system is modeled by identifying each pipe source with
a unique �lter output and each pipe sink with a unique �lter input.

12

InteractingFilterSet
�lters : �Filter
pipes : �Pipe

8 f1; f2 : �lters j f1 6= f2 � (f1:inputs [f1:outputs) \ (f2:inputs [f2:outputs) = �
8 p1; p2 : pipes j p1 6= p2 � fp1:source; p1:sinkg \ fp2:source; p2:sinkg = �
8 p : pipes � 9 f1; f2 : �lters �

p:source 2 f1:outputs
^ p:sink 2 f2:inputs
^ f1:alphabet(p:source) = p:alphabet
^ f2:alphabet(p:sink) = p:alphabet

The behavior of an interacting set of �lters is de�ned as the behaviors of the constituent �lters and pipes.
The state of the system identi�es �lter and pipe states with �lters and pipes in the system.

PFSystemState
sys : InteractingFilterSet
�lterstates : �FilterState
pipestates : �PipeState

sys:�lters = ffs : �lterstates � fs:f g
8 fs1; fs2 : �lterstates � fs1:f = fs2:f , fs1 = fs2

sys:pipes = fps : pipestates � ps:pg
8 ps1; ps2 : pipestates � ps1:p = ps2:p , ps1 = ps2

A step in this behavior is either a computation step for one �lter or a transmission step for one pipe, all
else remaining unchanged. The de�nition of a system-level �lter or pipe computation step are not given here.
Those de�nitions are not di�cult, but the framing conditions stating that all else remains unchanged are
somewhat cumbersome. Full details of these speci�cations are given in [3]. We summarize here by limiting
a system computation to only an individual �lter or pipe computation.

PFSystemStep b= SystemFilterStep _ SystemPipeStep

A legal trace of the system is a sequence of computation steps. (We will need this de�nition of traces in our
analysis of the PF style later in Section 5.)

T PF : InteractingFilterSet"�(seqPFSystemState)

8 s : InteractingFilterSet �
PFtraces(s) = ftrace : seqPFSystemState j

trace(1):sys = s ^
8 i : 1::(#trace � 1)
� (9PFSystemState; PFSystemState 0

� �PFSystemState = trace(i)
^ �PFSystemState0 = trace(i + 1)
^ PFSystemStep
^ sys = s)

g

13

inputs: char in;
outputs: char out;
execution:
char c;
while (TRUE) f
c = read(in);
if (c >= 'a' && c <= 'z') fwrite(out,c+'A'-'a');g
else fwrite(out,c);g

g

Figure 7: Concrete Description of a Capitalizing Filter

T PF : InteractingFilterSet"�(seqPFSystemState)

8 s : InteractingFilterSet � T PF (s) =
ftrace : seqPFSystemState j 8 i : 1::(#trace � 1) � (9PFSystemState; PFSystemState 0

� �PFSystemState = trace(i)
^ �PFSystemState0 = trace(i + 1)
^ PFSystemStep
^ sys = s)g

4.2 Concrete Syntax

The second part of a style de�nition is the creation of a style-speci�c concrete syntax. This part of the de�-
nition augments the basic graphical depiction, typically with syntactic information not easily representable
diagrammitically.

While the details of such syntax are important, in this paper we are more concerned with understanding
the relationship between these descriptions and their associated meanings. In that regard, it is enough
to know that there exist �lter and pipe description languages that determine the interesting subset of the
possible component and connector descriptions in the PF style. Formally, we represent these languages as
subsets of the respective description languages introduced in Section 3.

FilterDescriptions : �COMPDESC
PipeDescriptions : �CONNDESC

For concreteness, Figure 7 illustrates the de�nition of a �lter that capitalizes its character input stream using
one notation developed for this style [3].

4.3 Meaning Functions

The third part of a style description is to de�ne the meaning of the architectural syntax in terms of the
semantic model.

As indicated in Section 2, to give meaning to components we need to specify a partial function of the
form:

MX
Comp : Component� CompXsem

From the de�nition of Filter , we can see that it is possible for two �lters to be identical up to naming of data
ports and states. Therefore, we can de�ne an equivalence relation on elements in Filter . We treat two �lters
as equivalent if and only if there is an isomorphism between their states, and their input and output data

14

ports that preserves the behavior de�ned by their transition functions. This equivalence relation is denoted
by ��l . The detailed de�nition of ��l is not given below, though it is straightforward. (The underscores
indicate that the de�ned operator is an in�x operator.)

��l : Filter# Filter

The meaning function for PF components, written below asMPF
Comp, identi�es the syntactic elementComponent

with an equivalence class of �lters. So in this example, CompXsem is replaced by sets of �lters, or �Filter .
To complete the mapping from syntax to semantics, we need to have an injective function, called DataPort

below, from named instances of the syntactic ports to the semantic data ports. The reason we have the
function DataPorts is to provide a way of distinguishing aspects of the semantic model that are named in
the syntactic descriptions. The functionMPF

Comp provides a correspondence between the description and the
semantic model. The syntax, however, provides a means of naming parts, or aspects, of a computation. In
the case of PF, di�erent inputs and di�erent outputs are distinguished. It is therefore necessary to carry
that distinction into the semantic model.

For example, a �lter might divide its input into two output streams depending on the values seen (e.g.
all values less than a threshold go to one, and all above it to another). We need to be able to specify which
pipes in a system get which output ports. If the high values go to the handler for low values, and vice-versa,
the system would have a dramatically di�erent e�ect.

As we will see when the entire system is de�ned, DataPort serves to ensure that the correct interactions
are indeed achieved. It will also allow multiple instances of the same �lter to be used in a system, by mapping
the local names of the syntactic description into the global names of the semantic model.

DataPort : PortInst�DATAPORT
MPF

Comp : Component��Filter

8 c : Component ; f1; f2 : Filter j f1 2MPF
Comp(c)

� f2 2M
PF
Comp(c), f1 ��l f2

8 c : Component ; n : COMPNAME j c 2 domMPF
Comp

� 9 f :MPF
Comp(c) � DataPort�fng � c:ports� = (f :inputs [f :outputs)

In Section 4.4 we will discuss what constraints on components must hold in order to give them meaning in
the PF style. That is, we will explicitly de�ne the domain of the function MPF

Comp.
Connectors are given meaning in PF by interpreting them as pipes. The concrete syntax for pipes

speci�es the type of data transmitted. Two pipes are considered equivalent if they have the same alphabets.
Of course, in the context of a set of interacting �lters, the pipes are distinguished by the data ports they
connect.

MPF
Conn : Connector��Pipe

8 c : Connector ; p1; p2 : Pipe j p1 2MPF
Conn (c)

� p2 2M
PF
Conn (c), p1:alphabet = p2:alphabet

We can now de�ne the meaning of con�gurations in the PF style. Components are interpreted as �lters
and connectors as pipes. The attachments are realized semantically by equating pipe sources with unique
�lter outputs and pipe sinks with unique �lter inputs. To do this we select appropriate �lter or pipe elements
from the equivalence classes de�ned by the meaning functionsMPF

Comp andM
PF
Conn . In the syntactic domain,

we declare that reader and writer are distinct roles for connectors. The reader roles are mapped to sink data
ports of the pipe and the writer roles are mapped to source data ports.

reader ;writer : ROLE

reader 6= writer

15

MPF
Conf : Con�guration� InteractingFilterSet

8 cfg : domMPF
Conf �

(MPF
Conf (cfg)):�lters = fn : COMPNAME ; c : Component ; f : Filter j

(n; c) 2 cfg :components
^ f 2MPF

Comp(c)
^ f :outputs [f :inputs = DataPort�fng � c:ports�
� f g

^
(MPF

Conf (cfg)):pipes = fn : CONNNAME ; c : Connector ; p : Pipe j
(n; c) 2 cfg :connectors

^ p 2MPF
Conn (c)

^ p:source = DataPort(cfg :attachment(n;writer))
^ p:sink = DataPort(cfg :attachment(n; reader))
� pg

4.4 Syntactic Constraints

The �nal part of de�ning a style is to make explicit the syntactic preconditions that must be satis�ed in order
to translate to the semantic domain. Since the meaning functions are partial, only a subset of all components,
connectors and con�gurations are given a meaning in the PF style. This corresponds to the intuition that
only some architectural descriptions represent valid pipe-�lter systems. In particular, for components we
demand that the computation associated with the component can be de�ned using the concrete language
of FilterDescription and that the named component ports can be realized as data ports of some �lter. We
can express these syntactic constraints in Z by use of schema inclusion in which the original speci�cation
of type Component is included in the speci�cation of syntactically legal PF components and then further
constrained. (See Appendix A for a discussion of schema inclusion.)

LegalPFComponent
Component

description 2 FilterDescriptions

By specifying this explicit syntactic constraint, we are actually asserting two things. First, only com-
ponent descriptions that satisfy this constraint can be legally interpreted as a �lter. This is equivalent to
asserting that the domain of MPF

Comp is LegalPFComponent .

domMPF
Comp = LegalPFComponent

Second, this assertion results in a proof obligation that we have not invalidated our de�nition of MPF
Comp.

In other words, we must show that given any legal PF component, we can apply MPF
Comp to obtain a �lter.

That is, we must show

8 c : LegalPFComponent � MPF
Comp(c) 6= �

This amounts to demonstrating that

8 c : LegalPFComponent ; n : COMPNAME �
9 f : Filter � DataPort�fng � c:ports� = f :inputs [f :outputs

or, in essence, that the function DataPort is reasonably constructed and that therefore, the domain restriction
to MPF

Comp is valid.

16

Similarly, we constrain the de�nition of connectors to be those having a concrete description interpretable
as a stream alphabet and having only two roles, reader and writer .

LegalPFConnector
Connector

description 2 PipeDescriptions
roles = freader ;writerg

Once again, we formally restrict the meaning function to cover legal values.

domMPF
Conn = LegalPFConnector

This also results in a proof obligation. Since MPF
Conn as de�ned could be total, however, the proof is trivial.

As one might expect, the constraints we enforce on con�gurations are more complex. For the pipe and
�lter style de�ned above these are:

1. Each named component is a legal �lter.

2. Each named connector is a legal pipe.

3. Every pipe reader is attached to a unique �lter input with the same alphabet.

4. Every pipe writer is attached to a unique �lter output with the same alphabet.

In the following schema, the �rst two predicates below the line express the �rst two constraints above. The
third predicate below states that all pipe roles are attached to some named ports. The fourth predicate says
that the attachment function is injective, that is, no two roles can be attached to the same port instances.
The last two predicates express the alphabet constraint.

LegalPFCon�guration
Con�guration

8 c : ran components � c 2 LegalPFComponent
8 c : ran connectors � c 2 LegalPFConnector

domattachment = domconnectors � freader ;writerg
attachment 2 RoleInst� PortInst

8 n : CONNNAME ; n0 : COMPNAME ; port : PORT �
attachment(n;writer) = (n0; port))

(9 �l :MPF
Comp(components(n

0)); pipe :MPF
Conn (connectors(n)) �

DataPort(n0; port) 2 �l :outputs ^ �l :alphabet(DataPort(n0; port)) = pipe:alphabet)

8 n : CONNNAME ; n0 : COMPNAME ; port : PORT �
attachment(n; reader) = (n0; port))

(9 �l :MPF
Comp(components(n

0)); pipe :MPF
Conn (connectors(n)) �

DataPort(n0; port) 2 �l :inputs ^ �l :alphabet(DataPort(n0; port)) = pipe:alphabet)

A straightforward argument shows that any syntactically legal con�guration can be assigned a meaning by
MPF

Conf , so we restrict its domain to LegalPFCon�g .

domMPF
Conf = LegalPFCon�g

This concludes the formal de�nition of the PF style. We will now see how we can use this de�nition to
analyze the style.

17

5 Analyzing the PF style

Although there is direct value in clarifying our intuitions about an architectural style by providing an
unambiguous model of it, an additional reason to formalize architectural style is to support reasoning about
properties of the style. In this section we present three representative examples of analysis that are supported
by our formal framework. First, we show how to relate a style to its \substyles" through incremental syntactic
restrictions on the domain of the meaning functions. Second, we can investigate important architectural
properties by reasoning about the semantic model. Our example will show that the PF style supports
hierarchical decomposition. Third, we will consider the issue of when a general PF system can be implemented
using �nitely-bu�ered pipes.

5.1 De�ning architectural substyles

It is common for one style to be understood in terms of another. Many of these substyles can be understood
as additional constraints on the syntax of the more general style. For example, in the PF style we can
identify the following common substyles:

� systems without feedback loops, or cycles;

� a pipeline; and

� only \fan-out" components.

To address such topological restrictions we consider a PF con�guration as a directed graph in whicn two
components are connected if any of their ports are attached to a common pipe.

PFGraph
LegalPFCon�g
connect : COMPNAME# COMPNAME

connect =
f(c1; p1); (c2; p2) : PortInst ; pipe : domconnectors j

attachment(pipe;writer) = (c1; p1) ^ attachment(pipe; reader) = (c2; p2)
� (c1; c2)g

A PF system with no feedback loops is one in which the connection graph is acyclic.

Acyclic
PFGraph

idCOMPNAME \ connect+ = �

To express acyclic pipe-�lter architectures as an independent style, we restrict the meaning function
MPF

Conf to con�gurations satisfying Acyclic. The other meaning functions are the same as before.

MAcyclic
Comp : Component��Filter

MAcyclic
Conn : Connector��Pipe

MAcyclic
Conf : Con�guration� InteractingFilterSet

MAcyclic
Comp =MPF

Comp

MAcyclic
Conn =MPF

Conn

MAcyclic

Conf = fAcyclic � �Con�gurationg �MPF
Conf

A pipeline architecture is a PF system in which the connection graph is a linear sequence of �lters.

18

Pipeline
PFGraph

9 �lters : seqCOMPNAME j ran �lters = domcomponents �
connect = fi : 1 : : (#�lters � 1) � (�lters(i); �lters(i + 1))g

A PF substyle allowing only fan-out has a connection graph whose inverse is a function, that is, compo-
nents are connected to a unique parent component that provides its input.

FanOut
PFGraph

connect� 2 COMPNAME �COMPNAME

ArchGraph
Con�guration
connect : COMPNAME# COMPNAME
outbound : �ROLE ^ inbound : �ROLE

connect =
fc1; c2 : dom components; p1; p2 : PORT ; rout : outbound ; rin : inbound ; n : dom connectors

j attachment(n; rout) = (c1; p1) ^ attachment(n; rin) = (c2; p2)
� (c1; c2)g

PFGraph can now be rewritten as a specialization of ArchGraph by indicating that the writer role is the
only outbound role and the reader role is the only inbound role.

PFGraph
ArchGraph
LegalPFCon�g

outbound = fwriter g
inbound = f reader g

An architectural topology with no feedback is one in which the connection graph is acyclic.

AcyclicArch
ArchGraph

idCOMPNAME \ connect+ = �

The acyclic PF substyle is easily derived from this.

AcyclicPF b= PFGraph ^ AcyclicArch

5.2 Hierarchical Decomposition

One desirable property of an architectural description is encapsulation: components (or connectors) may
themselves be represented hierarchically as an architectural con�guration. By de�ning a style formally, we
can investigate the properties of a style make it possible to encapsulate a con�guration as a higher-level
entity in that style.

19

For PF, it would seem intuitively plausible that a con�guration of pipes and �lters can be bundled up
as another semantically-equivalent �lter. But what exactly does this mean? While it is relatively obvious
what is involved at the syntactic, diagrammatic level, it is much less clear how to understand the issue at
a deeper, semantic level. In this section we provide one answer. In particular, we use the formal model to
explain at a semantic level what is meant by \equivalence" between a �lter and a con�guration, and show
that we can always �nd an equivalent �lter for any con�guration.

The basic idea behind equivalence is that a system's computations are equivalent to that of a single
�lter if there is a correspondence between the \externally visible" parts of the system's traces and the �lter's
traces. The externally visible parts of a system state are the data on the inputs and outputs of �lters that are
not attached to any pipe. To get things started, we need to refer to the ports on the �lters in a con�guration
that are not attached to any pipe.

UnBoundPorts : InteractingFilterSet��DATAPORT

8 s : InteractingFilterSet �
UnboundPorts(s) =

ff : s:�lters; dp : DATAPORT j
dp 2 (f :inputs [f :outputs) ^ : (9 p : s:pipes � dp = p:sink _ dp = p:source)

� dpg

Recall the de�nition of legal traces, T PF (Section 4.1). We can now extract the externally observable
traces of a system by projecting out only the states of the unbound ports.

external : PFSystemState" (DATAPORT� seqDATA)

8 ss : PFSystemState �
external(ss) =

ffs : ss:�lterstates; dp : DATAPORT
j dp 2 UnboundPorts(ss:sys) ^ dp 2 fs:�lter :inputs
� dp 7! fs:instate(dp)g
[
ffs : ss:�lterstates; dp : DATAPORT
j dp 2 UnboundPorts(ss:sys) ^ dp 2 fs:�lter :outputs
� dp 7! fs:outstate(dp)g

T PF
ext : InteractingFilterSet"�(seq(DATAPORT� seqDATA))

8 s : InteractingFilterSet ; t : T PF (s) � t � external 2 T PF
ext (s)

We can now de�ne what it means for two computations to be equivalent:

equivPF : InteractingFilterSet# InteractingFilterSet

equivPF = fsys1; sys2 : InteractingFilterSet � T PF
ext (sys1) = T PF

ext (sys2)g

In order to address the equivalence of a system with a single �lter, it is simplest to view the �lter as a
PF system containing exactly that �lter and no pipes:

SingleFilter
InteractingFilterSet

#�lters = 1 ^ #pipes = 0

The encapsulation property can now be stated formally: For any set of interacting �lters there is a
corresponding single �lter that has equivalent externally observable traces:

20

8 sys : InteractingFilterSet �
9 �l : SingleFilter � (sys; �l) 2 equivPF

The proof of the theorem proceeds by induction. There are two simple base cases|a system with no
�lters, and a system with exactly one �lter. The latter case is trivial, and the former follows from the
existence of a �lter with no inputs and no outputs.

The �rst induction case is for a system with no pipes:

#sys:�lters = n + 1 ^ #sys:pipes = 0

We divide the system into two parts, a system with n �lters, sysn , and a single �lter f . By the induction
hypothesis, the sysn can be encapsulated as a �lter fn . It remains to contruct a �lter f 0 that is equivalent
to the computation of the two �lters fn and f .

f 0 is constructed by mapping pairs of states, one each from f and fn , into a single state using an auxiliary
function fstatefun:

fstatefun : (STATE � STATE)� STATE

We know that fstatefun exists because STATE is a countably in�nite set. We can now construct f 0 as
follows:

f 0:states = fstatefun�f :states � fn :states�
f 0:inputs = f :inputs [fn :inputs
f 0:outputs = f :outputs [fn :outputs
f 0:alphabet = f :alphabet [fn :alphabet

f 0:transitions =
f ((s1; i); (s2; o)) : f :transitions; sn : fn :states

� ((fstatefun(s1; sn); i [ff : fn :inputs � f 7! hig);
(fstatefun(s2; sn); o [ff : fn :outputs � f 7! hig)) g

[
f ((s1; i); (s2; o)) : fn :transitions; s : f :states

� ((fstatefun(s; s1); i [ff : f :inputs � f 7! hig);
(fstatefun(s; s2); o [ff : f :outputs � f 7! hig)) g

This yields a \union" of the two �lters. The transitions of f 0 are either a transition of fn or of f . A
transition is constructed by changing the internal state and ports of one of the fn or f . The other �lter's
state is unchanged, its inputs are ignored, and its outputs are left untouched. This is exactly the behavior
of a SystemFilterStep, and so f 0 is indeed the required �lter.

The second and �nal induction step handles the addition of pipes to a system:

sys:�lters = F ^ #sys:pipes = n + 1

Again, the induction hypothesis ensures that we can divide sys into a system sysn and a single pipe p,
such that sysn has an equivalent �lter fn . We construct a �lter f 0 that is equivalent to a system containing
fn and p. In order to do so, we must encode the internal state of fn and the full state of p as a single element
of internal state.

pstatefun : STATE � seqDATA� seqDATA� STATE

pstatefun exists because STATE and DATA are both countable (and seqDATA includes only �nite se-
quences). We will use pstatefun as follows: the STATE represents the state of fn , the �rst sequence rep-
resents the source side of p (an output of fn), and the second sequence represents the sink side of p (an
input to fn). The transition function of f 0 combines transitions of the �lter fn with transmissions of the pipe

21

p, with all input and output data from the source or sink of p being subsumed into the state of fn . The
construction of f 0 follows.

f 0:states = pstatefun�fn :states � seq p:alphabet � seq p:alphabet�
f 0:inputs = fn :inputs n fp:sinkg
f 0:outputs = fn :outputs n fp:sourceg
f 0:alphabet = fp:sink ; p:sourceg� fn :alphabet
f 0:transitions =

f((st1; i); (st2; o)) : fn :transitions; d1; d2 : seq p:alphabet �
((pstatefun(st1; d1; d2 � i(p:sink)); fp:sinkg� i);
(pstatefun(st2; o(p:source)� d1; d2); fp:sourceg� o))g

[
fst : fn :states; d1; d2; d : seq p:alphabet

� ((pstatefun(st ; d1 � d ; d2); (f 0:inputs � f�g));
(pstatefun(st ; d1; d � d2); (f 0:outputs � f�g)))g

The two induction steps all pipe-�lter systems, and so the theorem is proved.

It might seem that this result is so obvious as not to require a proof (or even a formal model and
argument). Interestingly, however, our �rst attempt to de�ne a PF system failed the proof, and led us to
revise architectural model. This earlier version of PF modelled the internal computations of a �lter as �nite
state machine, although pipes were as above. This led to problems because in an encapsulated PF system,
the pipes can retain in�nite state, thereby leading to an in�nite state machine. In Section 6.6 we will see
another example where such an encapsulation theorem fails to hold.

5.3 Finitely-Implementable Pipes

As a third example of style analysis, we consider the problem of understanding when a PF system can be
e�ciently implemented using traditional mechanisms for pipe communication.

An important property of the pipe-�lter style, as it has been de�ned above, is that a pipe-�lter computa-
tion can use an in�nite amount of bu�er space for its pipes. Consequently there are con�gurations of �lters
and pipes that do not �t into any �xed amount of storage space. This may present a practical problem to
implementers of systems in the style|particularly if the target implementation uses �xed sized bu�ers for
its pipe implementations (as does Unix, for example). It would thus be valuable for a system developer to
have a means of analyzing whether a described system can be implemented using �nitely-bu�ered pipes. In
this section we make these notions precise, and show how our architectural framework leads to su�cient
conditions under which we can guarantee that a PF system can be implemented in this way.

De�nition of Finitely-Implementable Pipe-Filter System

In order to understand the properties of systems that can be implemented using �xed bu�ering space, we
must �rst understand how bu�er space can be consumed. Then we can de�ne what it means for a system
to be able to execute in �nite space.

We consider a system to be �nitely-implementable if all of its computations can be carried out using �nite
bu�ers in the pipes. To make this idea precise, we must �rst clarify which of a system's computations are
of interest. We will consider only terminated computations. As we will see, restricting the computations to
those that have terminated will permit us to restrict the intermediate stages used in a computation without
limiting the functional capabilities of a system. Formally, a terminated computation is a system trace where
there is no computation step that will extend it. (Again, we use T PF (s) to refer to the traces of a system
s.)

22

TerminationsOf : InteractingFilterSet"�(seq SystemState)

8 s : InteractingFilterSet � TerminationsOf (s) =
ft : T PF (s) j6 9 SystemComputeStep � �SystemState = t(#t)g

We must also de�ne what it means for a computation to be \�nite." A �nitely-bounded computation is
a trace where at no point in the computation does any pipe contain more than a �xed amount of data. (For
later ease of manipulation, our de�nition is parameterized by the actual space bound.)

FinitelyBoundedTracesOf : (� InteractingFilterSet)"�(seq SystemState)

8 n : ; s : InteractingFilterSet � FinitelyBoundedTracesOf (n; s) =
ft : LegalTracesOf (s) j 8 state : ran t � 8 pipeState : s:pipe states � #source data +#sink data � ng

For convenience, we combine these to describe the set of \desirable" computations:

FiniteTerminationsOf : (� InteractingFilterSet)"�(seq SystemState)

8 n : ; s : InteractingFilterSet � FiniteTerminationsOf (n; s) = FiniteTracesOf (n; s) \TerminationsOf (s)

Given these de�nitions, we can characterize the criterion a systemmust meet in order to be implementable
using �xed bu�er space. A system is �nitely-implementable if for every terminating computation of the
system there is an equivalent computation that is �nitely bounded:

FinitelyImplementable : �(� InteractingFilterSet)

FinitelyImplementable = fn : ; s : InteractingFilterSet j
8 t : TerminationsOf (s) � 9 t 0 : FiniteTerminationsOf (n; s)

� t(#t) = t 0(#t 0) ^ t(1) = t 0(1)g

Thus a system S is implementable in �xed space exactly when there exists an n such that FinitelyImplementable(n; S).

Analyzing Systems for Finite Implementability

While the de�nition of �nitely-implementable is precise, the de�nition is not a particularly useful one,
since it provides no guidance for determining whether a given system meets the criterion. It is clearly
impractical to check most systems by directly considering all of possible traces|as seems to be implied by
the FinitelyImplementable predicate.

Instead, we would like to provide more structured criteria that can be applied to a system in parts, yet
still provide overall system guarantees. In the remainder of this section, we describe such checks, giving
rules for �lters that will translate to a su�cient condition for complete pipe-�lter systems. While the checks
themselves are relatively straightforward, formalizing them permits us to argue that together they imply the
�nite-bu�ering property.

One reason a system might require an in�nite bu�er is that the receiving �lter might hang on its input,
thus allowing an arbitrary amount of data to pile up on the pipe that supplies it. We must therefore use
only �lters that guarantee to eventually empty out any pipes that provide it input data:

NoHangFilter : �(� Filter)

NoHangFilter = fn : ; f : Filter j
dom f :transitions = f :states � fin : f :inputs; s : seqDATA

j #s = n ^ 8 v : ran s � v 2 f :alphabet(in)g

The predicate NoHangFilter de�nes those �lters that will always be able to read when they get enough input.
Another problem can arise if a �lter having two or more inputs ports receives an unbounded amount of

data at one input while it is blocked on another. This again can result in a pile-up of data in a pipe. One

23

way to avoid this problem, is to require that upstream �lters be balanced (i.e., that they not deliver large
amounts of data on one pipe while ignoring another):4

BalancedFilter : �(� Filter)

BalancedFilter = fn : ; f : Filter j
8 istate; ostate : STATE ; istrings; ostrings : DATAPORT� seqDATA

j ((istate; istrings); (ostate; ostrings)) 2 f :transitions
� 8 in : f :inputs � #istrings(in) = n
^ 8 out : f :outputs � #ostrings(out) = n

g

Balanced �lters that do not hang, together with an acyclic connection graph, are su�cient to guarantee
a �nitely implementable system. Formally stated:

8 n : ; s : InteractingFilterSet

j (s 2 ranMAcyclic

Conf) ^ (8 f : s:�lters � BalancedFilter(n; f) ^ NoHangFilter(n; f))

� FinitelyImplementable(n; s)

Notice that what we have done is to localized the checks to individual �lters: the theorem states that if
all �lters have the desired property the system as a whole will be �nitely-implementable. Thus the abstract
de�nition has been turned into a usable result.

In outline, the proof of this property is based on the idea that the computations in a trace of a pipe-
�lter system can be reordered without a�ecting the �nal state of the computation. The only restriction on
reordering is that if one computation enables another one, then it cannot be moved to after the computation
it enables. Given this property, we can reorder the computations of a trace that violates the constraint
on bu�er size to move computations that reduce bu�er size so that they happen before computations that
increase bu�er size. (Appendix B sketches the proof in more detail.)

6 Event System Style

In this section, we show how the same method of de�nition for the PF style can be used to describe another
common architectural style, event systems with implicit invocation (ES). The importance of this section
is not so much the details of the ES style, but that we are able to de�ne this style in exactly the same
way as we did for the PF style. Though it is an important contribution that we are able to formalize one
architectural style, such as PF, and reason about its properties, it is far more important that we provide a
method for others to de�ne any of a number of interesting architectural styles, and subject those styles to
similar analyses. Hence our discussion of ES will not be as thorough as PF in an attempt to highlight for
the reader the form of the de�nition and analysis.

6.1 Event Systems

Event systems are based on the idea that components in a system interact by means of event broadcast: events
\announced" by one component can trigger \method" invocations at the interfaces of zero or more other
components. Event systems are becoming increasingly important as a exible tool integration technique,
since they allow the implicit invocation of tools when some other tool announces an event[14, 13, 28].

For the purposes of this paper we will treat each component in an event system as an object with a
private, internal state and a collection of methods that can be invoked externally to alter the state. A
component responds to an incoming method by transforming its internal state and announcing some events.
Connection in the system consists of an association between announced events and the methods that should

4Of course, it is not necessary for �lters to be balanced in order to avoid the problem. For illustrative purposes, in this

paper we are only concerned with a set of su�cient conditions.

24

be invoked when those events are announced. Event announcement by one object in the system, therefore,
results implicitly in the invocation of another object's method. Figure 8 gives an overview of the event
system architectural style.

methods events

Object Distributor

compute

Key

compute

compute

compute

compute

compute

Figure 8: The event system style

6.2 Semantic Domain

The ES style interprets components as objects with a vocabulary of methods and events. Methods and events
are the interaction points in the semantic model for event systems. Here we will model an object as a state
machine with a transition function relating method invocations to state transitions and event announcement.

[METHOD ;EVENT]

Object
methods : �METHOD
events : �EVENT
states : � STATE
start : STATE
transitions : (METHOD � STATE)� (STATE � �EVENT)

start 2 states
dom transitions = methods � states
ran transitions � f s : states; es : � events � (s; es) g

The ES style interprets connectors as distributors, which take announced events and transform them into
method invocations. Our model of a distributor below is understood as saying that whenever any event in
events is announced, then every method in methods must be invoked.

Distributor
events : �EVENT
methods : �METHOD

25

A collection of objects and distributors are joined to form a set of interacting objects. The overall binding
of methods to events is derived from the bindings of the individual distributors in the system. There are two
constraints we want to enforce. First, there can be no name clash between the local methods of the objects.
Second, distributors can only bind events and methods that are de�ned in the system. This second semantic
constraint means that we do not allow an event to be announced from some source outside the system and
we do not allow method invocations on objects outside the system.

InteractingObjectSet
objects : �Object
distributors : �Distributor
binding : EVENT#METHOD

8 o1; o2 : objects j o1 6= o2 � o1:methods \ o2:methods = �

binding =
S
f d :distributorsg d :events � d :methods

8 e : dombinding � 9 o : objects � e 2 o:events
8m : ran binding � 9 o : objects � e 2 o:methods

At any point in time, each object in the system will be in some legal state and the system will have
some methods that have been invoked but not executed and some events that have been announced and not
yet distributed. Since more than one occurrence of the same event or method can be pending, we model
announced events and invoked methods as bags, or multisets (see Appendix A).

IOState
InteractingObjectSet
state : Object� STATE
invoked : bagMETHOD
announced : bagEVENT

domstate = objects
8 o : dom state � state(o) 2 o:states

Wewill defer the discussion of the dynamic behavior of ES until later on when we discuss the encapsulation
property for this style.

6.3 Concrete Syntax

A concrete syntax for events systems can be developed as an extension of regular programming languages [33].
The details of these extensions are not particularly important for this discussion. These concrete descriptions
de�ne a subset of allowable computation and communication descriptions.

ObjectDescriptions : �COMPDESC
DistributorDescriptions : �CONNDESC

For example, Figure 9 illustrates a concrete syntax for the communication description extension that
allows an Ada package interface to specify events announced by that package and the method to be invoked
when an event is announced by some other package [15].

6.4 Meaning Functions

The de�nition of meaning functions for ES proceeds exactly as for PF. The meaning function for ES compo-
nents, written MES

Comp, associates the syntactic elements of Component with equivalence classes of objects.
Equivalence between objects is denoted by �obj .

26

for Package 1
declare Event 1 X : Integer;
declare Event 2
when Event 3 => Method 1 B

end for Package 1
for Package 2
declare Event 3 A,B : Integer;
when Event 1 => Method 2 X
when Event 2 => Method 4

end for Package 2

Figure 9: Event System Description Example

To complete the mapping from syntax to semantics, we need to link ports and roles (the syntactic
elements) to methods and events (the semantic interaction points). We want methods and events to be
uniquely associated with object instances. Therefore, named port instances are identi�ed as either a method
or event, but not both.

EventasPort : PortInst� EVENT
MethodasPort : PortInst�METHOD

hdomEventasPort ; domMethodasPorti partition PortInst

8 n; n0 : COMPNAME ; p : PORT �
(n; p) 2 domEventasPort , (n0; p) 2 domEventasPort ^
(n; p) 2 domMethodasPort , (n0; p) 2 domMethodasPort

The ES style interprets components as (equivalence classes of) objects, matching the methods and events
of the object to corresponding port instances.

MES
Comp : Component��Object

8 c : Component ; o1; o2 : Object j o1 2MES
Comp(c)

� o2 2M
ES
Comp(c), o1 �obj o2

8 n : COMPNAME ; c : domMES
Comp

� 9 o :MES
Comp(c)

� EventasPort��o:events� [MethodasPort��o:methods� = f n g � c:ports

The ES style interprets connectors as distributors. Roles are identi�ed as either event roles or method
roles. The distributor represented must have the same number of events and methods as the connector has
roles. Note that we are essentially de�ning a criteria for equivalence of distributors.

EventRoles : �ROLE
MethodRoles : �ROLE

hEventRoles;MethodRolesi partition ROLE

MES
Conn : Connector��Distributor

8 c : domMES
Conn ; d : Distributor j d 2MES

Conn (c) �
#(d :events) = #(c:roles \ EventRoles) ^ #(d :methods) = #(c:roles \MethodRoles)

27

The meaning of a con�guration is derived from the meaning of its components, its connectors, and the
attachment function. The attachment links events announced by an object to the same event received by
one or more distributors. Also the attachment links methods received by an object to the same method
invoked by one or more distributors. The de�nition of this mapping function is similar to the one in PF,
and we elide it here. (See Appendix C for the details.)

MES
Conf : Con�guration� InteractingObjectSet

: : :

6.5 Syntactic Constraints

The syntactic constraints in the ES style can be expressed by making explicit the domain for the meaning
functions. For components, we simply restrict interpretation to those whose computation can be described
using the concrete language of ObjectDescriptions.

LegalObject
Component

description 2 ObjectDescriptions

Similarly for distributors, we restrict the abstract syntax to include only those connectors whose protocol
can be described by the language of DistributorDescriptions.

LegalDistributor
Connector

description 2 DistributorDescriptions

A legal con�guration is one in which the components are legal objects, the connectors are legal distribu-
tors, and attachments only occur between event roles and event ports or between method roles and method
ports. Furthermore, since we do not allow dangling event-method bindings in the semantic model, we must
ensure syntactically that there are no unattached roles in the con�guration.

LegalESCon�g
Con�guration

8 c : ran components � c 2 LegalObject
8 c : ran connectors � c 2 LegalDistributor

8 n : CONNNAME ;m : COMPNAME ; role : ROLE ; port : PORT j
((n; role); (m; port)) 2 attachment �

role 2 EventRoles , (m; port) 2 domEventasPort ^
role 2MethodRoles , (m; port) 2 domMethodasPort

8 cn : domconnectors; r : connectors(cn):roles � (cn; r) 2 domattachment

The domains of the meaning functions are accordingly de�ned.

domMES
Comp = LegalObject

domMES
Conn = LegalDistributor

domMES
Conf = LegalESCon�g

As before, there is a proof obligation to show that these domain restrictions are su�cient to guarantee
the mapping results in semantically legal entities.

28

6.6 Analysis of ES

As with PF, we now examine some of the analyses that can be applied to ES.

De�ning architectural substyles

Garlan and Notkin have used the event system model to investigate the di�erences between various imple-
mentations of an implicit invocation mechanism [14]. Their examples concentrate on restrictions to the kinds
of events that objects can announce and the form of the event to method binding that a distributor allows.
(For example, we might insist that at most one object announce a given type of event, or that there are
no cycles induced by event-method chaining.) Since we have left the interpretation of events and methods
open and allow distributors to bind events to methods arbitrarily, all of those styles are substyles of ES as
it appears in this paper.

We can specify syntactic constraints that limit the topology of an event system the same way we did for
PF. Similar to how we de�ned a connectivity graph in PF, we can de�ne one for ES as well. Recall that the
connection graph indicates when an instance of a component has one of its outbound ports connected to an
inbound port of another component instance. For ES, we can de�ne the connectivity graph by indicating
that the event roles are the outbound roles and method roles are the inbound roles.

ESGraph
ArchGraph
LegalESCon�g

outbound = EventRoles
inbound = MethodRoles

The acyclic substyle of ES is then de�ned as a syntactic specialization on the more general style.

AcyclicES b= ESGraph ^ AcyclicArch

Another substyle of ES is one with a global event name space. In the current semantic model, events are
uniquely associated to objects, and so they are treated independently with respect to distribution. In the
global events substyle, we would like to treat events from di�erent objects in the same way, meaning that if
either event is announced, the same set of methods are invoked in the system. There are two ways we can
go about de�ning this substyle. We can either adjust the semantic model and the meaning functions for ES,
or we can add further constraints on legal ES con�gurations. We will demonstrate the latter.

In the global events substyle, we want instances of the same port to be treated the same way, that is,
if one instance is attached to a connector, then the other instance is also attached to that same connector.
Given what attachment means in ES in terms of event distribution, this constraint means that the event
from either component will result in the same distribution, or the events are essentially the same. This
syntactic constraint is de�ned below.

GlobalEvents
LegalESCon�g

8 n1; n2 : COMPNAME ; p : PORT j
(n1; p) 2 domEventasPort

^ p 2 (components(n1)):ports
^ p 2 (components(n2)):ports
� (8 d : CONNNAME �

(9 r1 : ROLE � attachment(d ; r1) = (n1; p)),
(9 r2 : ROLE � attachment(d ; r2) = (n2; p)))

29

Properties of the semantic domain

We proposed the encapsulation property in Section 5.2 and demonstrated that it was supported by the
semantic de�nition for the PF style. We now want to investigate whether encapsulation holds for the semantic
domain we have de�ned for ES. The key to proving this property in the PF example was to determine the
behavior of a collection of semantic elements (a set of interacting �lters for PF; a set of interacting objects
for ES) externally and then decide whether that behavior could be matched by a single element (a �lter in
PF or an object in ES).

While we were able to prove that this property does hold for PF, it does not hold for event systems.
In this section we prove a simple atomicity property on the computations of single objects, and show a
counter-example that proves this property does not hold of all event systems (i.e., con�gurations of objects).
We thus prove that not all event systems can be encapsulated as single objects.

Before proceeding with the proof, we must precisely de�ne encapsulation for event systems. Recall that
encapsulation relies on de�ning a correspondence between external behavior of a collection of architectural
elements and a single element. First, we need to de�ne the externally observable behavior of a set of
interacting objects. In the PF example, we de�ned the external behavior in terms of the unbound input
and output ports of the system. For ES, we will de�ne external behavior as methods which are not invoked
internally (by some distributor in the encapsulated system) and events which are not translated internally.

UnboundMethods : InteractingObjectSet��(Object �METHOD)
UnboundEvents : InteractingObjectSet��(Object � EVENT)

8 s : InteractingObjectSet �
UnboundMethods(s) =

fo : s:objects;m : METHOD j m 2 (o:methods) ^ : (9 d : s:distributors � m 2 d :methods)
� (o;m)g

UnboundEvents(s) =
fo : s:objects; e : EVENT j e 2 (o:events) ^ : (9 d : s:distributors � e 2 d :events)

� (o; e)g

The externally observed state consists only of the bag of invoked methods and the bag of announced events

external : IOState" (bagMETHOD � bagEVENT)

8 ss : IOState �
external(ss) = (UnboundMethods(ss:sys) � ss:invoked ;UnboundEvents(ss:sys) � ss:announced)

The external behavior, denoted by ESExttraces extracts the externally observable information from the legal
computational traces in T ES .

T ES
ext : InteractingObjectSet"�(seq(bagMETHOD � bagEVENT))

8 s : InteractingObjectSet ; t : seq IOState �
t 2 T ES (s), t � external 2 ESExttraces(s)

The equivalence of two event systems can now be de�ned:

equivES : InteractingObjectSet# InteractingObjectSet

equivES = fsys1; sys2 : InteractingObjectSet j ESExtTraces(sys1) = ESExtTraces(sys2)g

By equating a single object with a system that contains it (as we did for a single �lter), the encapsulation
theorem can now be stated for event systems.

30

SingleObject
InteractingObjectSet

#objects = 1 ^ #distributors = 0

8 sys : InteractingObjectSet �
9 obj : SingleObject � (sys; obj) 2 equivES

This is false. To understand why this is so, we must look in more detail at the possible computations a
system. The computation of an object in a sysem is de�ned as follows:

ObjectComputeStep
�IOState
�InteractingObjectSet

9m :METHOD ; o : objects �
m 2 o:methods ^ m � invoked
^ invoked 0 = invoked ! fm 7! 1g
^ announced v announced 0

^ ((state(o);m); (state0(o); announced 0 ! announced)) 2 o:transitions
^ fog� state = fog� state0

A key property of this schema is that the number of methods that have been invoked but not dealt with
is reduced by one:

#invoked 0 = #invoked � 1

Because every step in a trace of a SingleObject is a computation step of that object, this observation can
be translated to a property of the traces of all SingleObjects:

8 so : SingleObject ; tr : ESExtTraces(so); i : 1 : :#tr � 1
� #�rst(tr(i)) = #�rst(tr(i + 1)) + 1

Essentially, this states that all computations of a single object are atomic, i.e. all computation is the
result of a method invocation and completes in a single step; no future computation can result without
another method to trigger it.

Keeping this property in mind, we can now construct a counter-example, sysdist , to our proposed encap-
sulation theorem:

sysdist :objects = fo1; o2g
sysdist :distributers = fdg

9m1 : o1:methods; m2 : o2:methods; e1 : o1:events;
e2 : o2:events; s1 : o1:states; s2 : o2:states �

d :methods = fm2g
^ d :events = fe1g
^ ((s1;m1); (s1; e1)) 2 o1:transitions
^ ((s2;m2); (s2; e2)) 2 o2:transitions

To see that sysdist is a valid counter-example, we observe the following trace:

h(fm1 7! 1g;�); (�;�); (�;�); (�; fe2 7! 1gi

31

The �rst step is a transition of o1, the second of d , and the third of o2. Neither of the transitions after
the �rst decreases the size of the bag of methods, and therefore cannot be duplicated by any SingleObject :

: 9 so : SingleObject � (sysdist ; so) 2 equivES

which contradicts the encapsulation property.
This result is useful because it tells us that if we want to provide hierarchical event systems we must

do one of two things. Either we have to change the semantic model or we have to �nd ways to restrict the
class of descriptions to a subset for which the encapsulation property holds. In the former case we would
need to view method invocation as non-atomic. In the latter case we might restrict decompositions to be
con�gurations that do not have any internal event-method bindings.

7 Conclusions

We have argued that a formal approach to architectural style permits the precise interpretation and analysis
of architectural descriptions. This has two important bene�ts. First, precision facilitates e�ective commu-
nication about systems at the architectural level. Misunderstandings inherent in ambiguous and incomplete
speci�cations can be avoided without abandoning the architectural paradigm. Second, a formal understand-
ing of classes of systems aids reasoning about properties of styles. Such \analytic leverage" is only partly
a consequence of having formal machinery to push through proofs. Arguably much more important is the
fact that the exercise of producing a formal model (a) helps suggest the right questions to ask (e.g., does
the encapsulation property hold?), and (b) leads one to determine with some precision where the problems
are likely to arise. In this respect the formalism acts as a tool that focuses and augments our intuition and
informal reasoning skills, rather than supplanting them.

However, as with any proposed use of formalism in software engineering, it is important to look not only
at the bene�ts, but also the costs. Indeed, most attempts to apply formal methods to real software systems
have failed in large measure because the costs of producing a formal model are simply too high.

There are several reasons why the kinds of formalisms proposed in this paper stand better long-term
prospects for success. First, rather than speci�cing individual systems, we are focusing on the problem of
specifying families of systems. Thus the e�ort required to produce the speci�cation can be amortized over
a potentially large number of speci�c systems.

Second, the result of style analysis is a set of general theorems about all systems in the family. (For
example, we showed that all legal pipe-�lter systems can be decomposed hierarchically, and furthermore
they can be implemented using �nite bu�ers if they satisfy certain additional contraints.) Consequently, the
implementor of a speci�c system can simply rely on these general results, without having to deal with the
formal model itself.

Third, a key component of our approach is the use of a common framework for style speci�cation. This
means that a new style can often be speci�ed as an incremental modi�cation to an existing style (e.g., as we
did for pipelines). Even when a completely new style must be de�ned (as with ES), the framework provides
considerable reuse, since the syntactic basis remains the same, and the form of speci�cation is narrowly
prescribed.

Finally, the approach we have outlined above permits varying degrees of formality within the overall
framework. It is possible to de�ne a style at a much less detailed level than we did with the two main
examples of this paper. Those wishing to use the structure to model only a few aspects of a style can do so,
while others can use it to produce the more detailed models illustrated in this paper.

Acknowledgments

A shorter version of this paper appeared as \Using Style to Understand Descriptions of Software Archi-
tecture," in Proceedings of SIGSOFT'94: Foundations of Software Engineering, Dec 1994. The paper also
expands on material previously appearing in conference proceedings [14] and [2].

32

The authors would like to thank various colleagues whose comments on this work have helped us to clarify
our thoughts, especially Daniel Jackson, John Ockerbloom, Mary Shaw, Jeannette Wing, David Wile, Amy
Moormann Zaremski, and the anonymous reviewers.

The research reported here was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air
Force Materiel Command,USAF, and the Advanced Research Projects Agency (ARPA) under grant F33615-
93-1-1330; by National Science Foundation Grant CCR-9109469; and by a grant from Siemens Corporate
Research. Views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the o�cial policies, either expressed or implied, of Wright Laboratory, the US
Department of Defense, the United States Government, the National Science Foundation, or Siemens Cor-
poration. The US Government is authorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation thereon.

References

[1] Alexander, C., et al. A Pattern Language: Towns, Buildings, Construction. Oxford University
Press, New York, 1977.

[2] Allen, R., and Garlan, D. A formal approach to software architectures. In Proceedings of IFIP'92
(September 1992), J. van Leeuwen, Ed., Elsevier Science Publishers B.V.

[3] Allen, R., and Garlan, D. Towards formalized software architectures. Tech. Rep. CMU-CS-92-163,
Carnegie Mellon University, School of Computer Science, July 1992.

[4] Allen, R., and Garlan, D. Beyond de�nition/use: Architectural interconnection. In Proceedings of
the ACM Interface De�nition Language Workshop (August 1994), vol. 29(8), SIGPLAN Notices.

[5] Allen, R., and Garlan, D. Formalizing architectural connection. In Proceedings of the Sixteenth
International Conference on Software Engineering (Sorrento, Italy, May 1994), pp. 71{80.

[6] Berry, G., and Boudol, G. The chemical abstract machine. Theoretical Computer Science, 96
(1992), 217{248.

[7] Proceedings of the Workshop on Domain-Speci�c Software Architectures (Hidden Vallen, PA, July 1990),
Software Engineering Institute.

[8] Earl, A. A reference model for computer assisted software engineering environment frameworks. Tech.
Rep. HPL-SEG-TN-90-11, Hewlett Packard Laboratories, Bristol, England, August 1990.

[9] Freeman, P., and A.I.Wasserman. Tutorial on Software Design Techniques. IEEE Computer Society
Press, 1976.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Design. Addison-Wesley, 1994.

[11] Garlan, D., Allen, R., and Ockerbloom, J. Exploiting style in architectural design environments.
In Proceedings of SIGSOFT'94: The Second ACM SIGSOFT Symposium on the Foundations of Software
Engineering (December 1994), ACM Press.

[12] Garlan, D., and Delisle, N. Formal speci�cations as reusable frameworks. In VDM'90: VDM and
Z { Formal Methods in Software Development (Kiel, Germany, April 1990), Springer-Verlag, LNCS 428,
pp. 150{163.

[13] Garlan, D., Kaiser, G. E., and Notkin, D. Using tool abstraction to compose systems. IEEE
Computer 25, 6 (June 1992).

33

[14] Garlan, D., and Notkin, D. Formalizingdesign spaces: Implicit invocationmechanisms. In VDM'91:
Formal Software Development Methods (Noordwijkerhout, The Netherlands, October 1991), Springer-
Verlag, LNCS 551, pp. 31{44.

[15] Garlan, D., and Scott, C. Adding implicit invocation to traditional programming languages. In
Proceedings of the Fifteenth International Conference on Software Engineering (Baltimore, MD, May
1993).

[16] Garlan, D., and Shaw, M. An introduction to software architecture. In Advances in Software
Engineering and Knowledge Engineering (Singapore, 1993), V. Ambriola and G. Tortora, Eds., World
Scienti�c Publishing Company, pp. 1{39. Also appears as SCS and SEI technical reports: CMU-CS-94-
166, CMU/SEI-94-TR-21, ESC-TR-94-021.

[17] Hayes-Roth, B., Pfleger, K., Lalanda, P., Morignot, P., and Balabanovic, M. A domain-
speci�c software architecture for adaptive intelligent systems. IEEE Transactions on Software Engi-
neering, Special Issue on Software Architecture 21, 4 (April 1995), 288{301.

[18] Hoare, C. Communicating Sequential Processes. Prentice Hall, 1985.

[19] Inverardi, P., and Wolf, A. Formal speci�cation and analysis of software architectures using
the chemical, abstract machine model. IEEE Transactions on Software Engineering, Special Issue on
Software Architecture 21, 4 (April 1995), 373{386.

[20] Luckham, D. C., Augustin, L. M., Kenney, J. J., Veera, J., Bryan, D., and Mann, W. Spec-
i�cation and analysis of system architecture using Rapide. IEEE Transactions on Software Engineering,
Special Issue on Software Architecture 21, 4 (April 1995), 336{355.

[21] Magee, J., and Kramer, J. Modelling distributed software architectures. In Proceedings of the
First International Workshop on Architectures for Software Systems (April 1995), Reissued as Carnegie
Mellon University Technical Report CMU-CS-95-151.

[22] Mettala, E., and Graham, M. H. The domain-speci�c software architecture program. Tech. Rep.
CMU/SEI-92-SR-9, Carnegie Mellon Software Engineering Institute, June 1992.

[23] Moriconi, M., Qian, X., and Riemenschneider, R. Correct architecture re�nement. IEEE Trans-
actions on Software Engineering, Special Issue on Software Architecture 21, 4 (April 1995), 356{372.

[24] Morris, C. R., and Ferguson, C. H. How architecture wins technology wars. Harvard Business
Review 71, 2 (March-April 1993).

[25] Nii, H. P. Blackboard systems Parts 1 & 2. AI Magazine 7 nos 3 (pp. 38-53) and 4 (pp. 62-69) (1986).

[26] Perry, D. E., and Wolf, A. L. Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes 17, 4 (October 1992), 40{52.

[27] Pree, W. Design Patterns for Object-Oriented Software Development. Addison-Wesley, ACM Press,
1995.

[28] Reiss, S. Connecting tools using message passing in the Field Environment. IEEE Software 7, 4 (July
1990), 57{66.

[29] Shaw, M. Larger scale systems require higher level abstractions. Proceedings Fifth International
Workshop on Software Speci�cation and Design, IEEE Computer Society, Software Engineering Notes
14, 3 (May 1989), 143{146.

34

[30] Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M., and Zelesnik, G. Abstractions
for software architecture and tools to support them. IEEE Transactions on Software Engineering, Special
Issue on Software Architecture 21, 4 (April 1995), 314{335.

[31] Shaw, M., and Garlan, D. Formulations and formalisms in software architecture. vol. 1000 of
Lecture Notes in Computer Science. Springer-Verlag, 1995.

[32] Spivey, J. The Z Notation: A Reference Manual. Prentice Hall, 1989.

[33] Sullivan, K. J., and Notkin, D. Reconciling environment integration and software evolution. ACM
Transactions on Software Engineering and Methodology 1, 3 (July 1992), 229{268.

[34] Vestal, S. Mode changes in real-time architecture description language. In Proceedings of the Second
International Workshop on Con�gurable Distributed Systems (March 1994).

A A Guide to the Z Notation Used in this Paper

The Z notation is a mathematical language developed mainly at the Programming Research Group at the
University of Oxford over the last 15 years. The mathematical roots of Z are in �rst order logic and set
theory. The notation uses standard logical connectives (^, _,), etc.) and set-theoretic operations (2, [,
\, etc.) with their standard semantics. Using the language of Z, we can provide a model of a mathematical
object. That these objects bear a resemblance to computational objects reects the intention that Z be
used as a speci�cation language for software engineering. In this appendix, we describe the basics of the Z
notation used in this paper. The standard reference for practitioners of Z, and the basis for our use of Z, is
Spivey's reference manual [32].

A Z speci�cation consists of sections of mathematical text interspersed with prose. The mathematical
text is a collection of types together with some predicates that must hold on the values of each type. Types
in Z are sets of values. Z provides some fundamental types in its basic toolkit that are primitive, such as
for natural numbers and � for integers. In addition, we can introduce further primitive types, called given
types, by writing them in square brackets. By convention, given types are written in all capital letters.
The construction of elements in a given type is not provided in a speci�cation, usually because that level
of detail is not necessary for the purposes of the speci�cation. Prose surrounding the declaration of a given
type should indicate the reason the speci�er has introduced the type rather than use an existing type. For
example, we could introduce two given sets to represent all possible authors and papers that those authors
might write. For use in this appendix, no further information about authors or papers need me made explicit,
so we write:

[AUTHOR;PAPER]

An element of a type is declared using a colon (:). So we would write author : AUTHOR and read this
as \author is of type AUTHOR", meaning author is an element in the set of values de�ned by AUTHOR.
Since AUTHOR is a set, we could also write author 2 AUTHOR, using the set membership function 2. Z
uses the : notation when a variable is declared and 2 to express predicates over bound variables.

New types can also be de�ned by constructing them from primitive types using the following type
constructors:

� �X is the set of all subsets with elements from type X , also called the powerset of X.

� X � Y is the type consisting of all ordered pairs (x ; y) whose �rst element is of type X and whose
second element is of type Y , also called the cross-product of X and Y .

� seqX is the set of all sequences, or lists, of elements from X , including empty and in�nite sequences.

35

� bagX is the set of all bags of elements from X . A bag is a collection of elements from some base type
in which the number of times an element occurs is signi�cant.

� Relations and functions between types identify special subsets of the cross product type. The ones
used in this paper are:

{ X#Y is the set of all relations between domain type X and range type Y . A relation is simply
a subset of X �Y .

{ X �Y is the set of all partial functions between X and Y . A partial function does not have to
be de�ned on all elements of its domain type.

{ X"Y is the set of all total functions. Total functions are de�ned on all elements of the domain
type.

{ X � Y is the set of all partial functions from X to Y whose inverse is a partial function from
Y to X (also called 1-1 or injective).

{ X �Y denotes the total injective functions from X to Y .

{ X �Y denotes the bijective functions from X to Y , i.e., the functions from X to Y that are a
1-1 correspondence (total, injective and surjective).

Part of the power of Z types, which often confuses those unfamiliar with the notation, is that many of the
constructed types are derived from each other. Functions and relations are derived from the cross-product
constructor. Sequences and bags, in turn, are derived from partial functions. For instance, the type seqX is
a subsect of the �nite partial functions from the natural numbers () to the type X, with the constraint that
the domain of the function be a segment 1 : : n of natural numbers, for some n. The type bagX indicates
a partial function from the type X to the positive natural numbers (1, not including 0), reecting the
count of elements in X that are in the bag. Because these types are derived from more primitive types, it is
possible to manipulate them using operations de�ned on the more primitive type. For example, since a bag
is a function, we can ask about its domain, or use functional overriding to change the contents of a particular
bag.

Z has a special type constructor, called the schema, an abstract version of the Pascal record or the C
struct type constructors. A schema de�nes a binding of identi�ers (or variables) to their values in some type.
For example, we could specify the type Proceedings as a schema for a typical conference proceedings. The
information we might want to specify about a proceedings would be the set of all authors and an index from
authors to the papers they wrote. We represent this binding in the boxed schema notation below.

Proceedings
authors : �AUTHOR
index : AUTHOR# PAPER

A \dot" notation is used to select elements of a schema type. So we could refer to the authors in the
proceedings sigsoft93 : Proceedings by writing sigsoft93:authors.

In addition to declaring the bindings between identi�ers and values, a schema can specify invariants that
must hold between the values of identi�ers. In the boxed notation, these invariants are written under a
dividing line. All common identi�ers below the line are scoped by the declarations above the line. If we
wanted to model the invariant that the set of authors in type Proceedings can and must include only those
authors appearing in the index, we could state that authors is the domain of the index relation. We would
write this as follows.

EssentialProceedings
authors : �AUTHOR
index : AUTHOR# PAPER

authors = dom index

36

Z allows for schema inclusion to facilitate a more modular approach to a speci�cation. In the above
example, we could have introduced the invariant on the set of authors as

EssentialProceedings
Proceedings

authors = dom index

including the declarations and invariants of Proceedings in the new schema EssentialProceedings. Z de�nes a
calculus of schema operations of which inclusion is just one example. We do not use many schema operations
in this paper, so we direct the interested reader to Spivey's reference manual.

In addition to the schema calculus for de�ning schema expressions, Z usage relies on some notational
conventions for describing the behavior of state machines. The schema represents a binding from identi�ers
to values. We can view this binding as the static description of some state machine, that is, the view of
the state machine at some point in time. Operations on the state machine are transitions from one legal
state to another and can be described as a relationship between the values of identi�ers before and after the
operation. One of the most common conventions is the � convention for describing operations. If Schema
is a schema type, then �Schema is notationally equivalent to two \copies" of Schema, one of which has all
of its identi�ers decorated with dashes (0) to indicate the state after the operation. So, we could write

ProceedingsOp
�Proceedings

which is equivalent to

ProceedingsOp
Proceedings
Proceedings0

or

ProceedingsOp
authors : �AUTHOR
index : AUTHOR# PAPER
authors 0 : �AUTHOR
index 0 : AUTHOR# PAPER

Some other operations and notational conventions used in Z are:

� Point == � introduces the type Point as a type synonym for the cross product. Type synonyms
are a notational convenience.

� If f is a relation, function or sequence, then dom f is the domain of f and ran f is the range of f .

� If S is a set (or sequence), then # S is the size (or length) of S .

� a � b is the concatenation of sequences a and b.

� If R is a relation, then R� is its relational inverse and R+ is its transitive closure. If S is a set of
elements in the domain type of R, then R� S � is the image over R of the set of elements in S , that is,
the set of elements in the range type of R that are related to elements in S under R.

� If f and g are functions of the type X � Y , then f � g is another function of type X � Y which
agrees with g everywhere in X that g is de�ned. On the rest of its domain, it agrees with f .

37

� A function is understood as a mapping from one set to another. The expression x 7! y , indicates a
mapping from an element in one set (x : X) to an element in another y : Y . This `maplet' notation
is convenient when used in conjunction with functional overriding. The expression f 0 = f � f x 7! y g
indicates that the new function f 0 agrees with the old function f at every point in its domain except
x , which is to be mapped to element y .

� 8 decl j pred1 � pred2 is read \for all variables in decl satisfying pred1, we have that pred2 holds."

� 9 decl j pred1 � pred2 is read \there exist(s) variable(s) in decl satisfying pred1 such that pred2 holds."

� f decl j pred � expressiong is a set comprehension for the set of values expression ranging over variables
in decl satisfying the predicate pred .

B Proof Sketch for Finitely-Implementable Criterion

First, we provide a means of identifying what computation is represented by a step in a computation trace:

ftrace : �(� FilterStep � seq SystemState)ptrace : �(� PipeStep � seq SystemState)

ftrace = fi : ; fs : FilterStep; tr : seq SystemState j
fs � FilterState 2 tr(i):�lter states ^ fs � FilterState0 2 tr(i + 1):�lter statesg

ptrace = fi : ; ps : PipeStep; tr : seq SystemState j
ps � PipeState 2 tr(i):pipe states ^ ps � PipeState0 2 tr(i + 1):pipe statesg

Given these de�nitions, we must show that it is possible to reorder the computation of a pipe-�lter system,
under certain circumstances. Here is an example, which indicates that independent �lter computations can
be swapped:

8 fs1; fs2 : FilterStep; tr : seq SystemState
j tr 2 LegalTracesOf (tr(1):sys) ^ fs1:�lter 6= fs2:�lter

^ ftrace(#tr � 2; fs1; tr) ^ ftrace(#tr � 1; fs2; tr)
� 9 tr2 : LegalTracesOf (tr(1):sys) j

#tr = #tr2
^ (1 : :#tr � 2� tr) = (1 : :#tr � 2� tr2)
^ ftrace(#tr � 2; fs2; tr2) ^ ftrace(#tr � 1; fs1; tr2)

This can be proved using the de�nition SystemFilterStep: Because the sequences tr and tr2 are identical
up to the last two steps, the state tr(#tr � 2) is identical to the state tr2(#tr � 2). By the de�nition of
ftrace, we know that fs2 � FilterState 2 tr(#tr�1):�lter states. Because we know (from LegalTracesOf and
ftrace(#tr � 2; fs1; tr)) that tr(#tr � 2) and tr(#tr � 1) are related by SystemFilterStep, and because (by
assumption) fs1 and fs2 do not refer to the same �lter, this implies that fs2 � FilterState 2 tr(#tr � 1). By
de�nition of LegalTracesOf and SystemFilterStep, this implies that we can extend 1 : :#tr � 2� tr so that
ftrace(#tr�2; fs2; 1 : :#tr�1�tr2). By a similar argument, we can show that fs1 � FilterState 2 tr2(#tr�1)
and so tr2 can be constructed such that ftrace(#tr � 1; fs1; tr2), which proves the property. This property
and others like it allow us to reorder a given computation trace.

Next we must show that whenever a �lter's bu�ers become full in a legal computation, there must be a
later computation that will reduce their size:

8 i : ; tr : seq SystemState; f : FilterState
j tr 2 TerminationsOf (tr(1):sys) ^ f 2 tr(i):�lter states
^ tr(1):sys is balanced etc. with bu�er size n
^ 9 p : f :�lter :inputs � #f :instate(p) = n
� 9 j : i + 1 : :#tr ; fs : FilterStep

j ftrace(j ; f2; tr) ^ f2:�lter = f :�lter

38

With this result, we can complete the proof: Consider any trace of a system that violates the bu�er size
constraint. Take the �rst computation step that would cause a bu�er size to exceed the limit. Because the
bu�er is already full, we know that there must be a computation later in the sequence that reads from that
bu�er. Because the system is acyclic, we know that the bu�er cannot be both read and written by the same
component, so it must be possible to move the computation that reads the bu�er to before the computation
that would write it. Once this move is made, the writing computation will no longer cause the bu�er size
limit to be exceeded. This reordering process can be continued with any later computations that would
exceed the bu�er size limit. Eventually all steps that violate the bu�er size constraint will have been moved
to a safe place in the computation, and the reordered trace be in the set FiniteTerminationsOf (n; system).

C Con�guration Map for ES

MES
Conf : Con�guration� InteractingObjectSet

: : :8 cfg : domMES
Conf �

(MES
Conf (cfg)):objects =

fn : domcfg :components; c : Component ; o : Object j
cfg :components(n) = c

^ o 2MES
Comp(c)

^ EventasPort��o:events� [MethodasPort��o:methods� = fng � c:ports
� og

^
(MES

Conf (cfg)):distributors =
fn : domcfg :connectors; c : Connector ; d : Distributor j

cfg :connectors(n) = c
^ d 2MES

Conn (c)
^ d :events = fn0 : COMPNAME ; p : PORT

j 9 r : c:roles \ EventRoles � cfg :attachment(n; r) = (n0; p)
� EventasPort(n0; p)g

^ d :methods = fn0 : COMPNAME ; p : PORT
j 9 r : c:roles \MethodRoles � cfg :attachment(n; r) = (n0; p)
�MethodasPort(n 0; p)g

� dg

39

