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changes. In particular, we focus on intensional versioning, that is, construction of
versions based on configuration rules. Finally, we provide an overview of systems
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1. INTRODUCTION

Software configuration management
(SCM) is the discipline of managing the
evolution of large and complex software
systems [Tichy 1988]. The importance of
SCM has been widely recognized, as
reflected in particular in the Capability

Maturity Model (CMM) developed by
the Software Engineering Institute
(SEI) [Humphrey 1989; Paulk et al.
1997]. CMM defines levels of maturity
in order to assess software development
processes in organizations. Here SCM is
seen as one of the key elements for
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moving from “initial” (undefined pro-
cess) to “repeatable” (project manage-
ment, SCM, and quality assurance have
come into operation). Furthermore,
SCM plays an important role in achiev-
ing ISO 9000 conformance.

SCM serves different needs [Feiler
1991a].

—As a management support discipline,
SCM is concerned with controlling
changes to software products. It is
this view of SCM that is addressed in
the classical textbook by Bersoff et al.
[1980] and the IEEE standard [IEEE
1983; IEEE 1988]. According to the
latter, SCM covers functionalities
such as identification of product com-
ponents and their versions, change

control (by establishing strict proce-
dures to be followed when performing
a change), status accounting (record-
ing and reporting the status of compo-
nents and change requests), and audit
and review (quality assurance func-
tions to preserve product consistency).
Thus SCM is seen as a support disci-
pline for project managers.

—As a development support discipline,
SCM provides functions that assist
developers in performing coordinated
changes to software products. This
view of SCM is described, for exam-
ple, in the textbook by Babich [1986].
To support developers, SCM is in
charge of accurately recording the
composition of versioned software
products evolving into many revisions
and variants, maintaining consis-
tency between interdependent compo-
nents, reconstructing previously re-
corded software configurations,
building derived objects (compiled
code and executables) from their
sources (program text), and construct-
ing new configurations based on de-
scriptions of their properties.

In this article, SCM is primarily con-
sidered a development support disci-
pline. We provide an overview of version
models implemented both in commercial
systems and research prototypes. A ver-
sion model defines the objects to be ver-
sioned, version identification and orga-
nization, as well as operations for
retrieving existing versions and con-
structing new versions. Software objects
and their relationships constitute the
product space, their versions are orga-
nized in the version space. A versioned
object base combines product and ver-
sion space. A specific version model is
characterized by the way the version
space is structured, by the decision of
which objects are versioned both exter-
nally (from the user’s point of view) and
internally (within the versioned object
base), by the relationships among ver-
sion spaces of different objects, and by
the way reconstruction of old and con-
struction of new versions are supported.
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SCM systems express version models
in varying ways. Many systems, includ-
ing most commercial ones [Rigg et al.
1995], are file-based and apply version-
ing to files and directories [Rochkind
1975; Tichy 1985; Fowler et al. 1994].
Various language-based approaches
have been developed as well based on
modular programming languages [Lamp-
son and Schmidt 1983b], module inter-
connection languages [Prieto-Diaz and
Neighbors 1986], or system modeling
languages [Marzullo and Wiebe 1986].
These languages are typically used to
represent versions of modules and rela-
tionships such as imports, include de-
pendencies, and the like. Finally, sev-
eral SCM systems are founded on
databases and manage versions of ob-
jects and relationships stored in the da-
tabase. Different data models have been
used, including EER [Dittrich et al.
1986; Oquendo et al. 1989], object-ori-
ented [Estublier and Casallas 1994],
and deductive [Zeller and Snelting
1995] ones.

The variety of formalisms makes it
difficult to compare the version models
of different SCM systems with one an-
other. In addition, each system comes
with its own terminology. On the other
hand, the underlying concepts are often
very similar. In order to reveal these
concepts, we introduce a unified termi-
nology. Furthermore, to describe ver-
sion models in a uniform, “canonical”
formalism, we use graphs at many
places in the article. A graph consists of
nodes and edges representing entities
and (binary) relationships, both of
which may be decorated with attributes.
Graphs are well suited to represent the
organization of a versioned object base,
even if the corresponding system is not
graph-based. For example, SCCS [Roch-
kind 1975] and RCS [Tichy 1985] are
both file-based, but the version space of
a text file may be represented naturally
as a version graph. Other formalisms
are used as required, such as textual
languages for expressing configuration
rules.

The main contribution of this article

is to give definitions and introduce a
taxonomy. Furthermore, it provides a
survey of the current state of the art by
describing SCM systems in a unified
terminology and classifying them ac-
cording to the taxonomy. In this way, it
prepares the ground for developing a
uniform version model, that is, a com-
mon framework in which specific ver-
sion models may be expressed. A uni-
form model would assist developers not
only in constructing SCM systems but
also in tailoring them more flexibly to
the needs of their users. Multiple para-
digms could be supported in parallel,
allowing users to switch back and forth
as required. Furthermore, as noted in
Brown et al. [1991], a uniform model
would constitute a common foundation
for integrating heterogeneous SCM sys-
tems in a federated architecture.

In the interest of a thorough discus-
sion, we focus on core issues of version-
ing, namely, the organization of the ver-
sion space, the interrelations of product
space and version space, and the con-
struction of consistent configurations.
Other issues considered essential parts
of SCM are only discussed briefly, in
particular, management of workspaces,
construction of derived objects, coopera-
tion, and distribution: all these issues
are related to version management, but
elaborating on them goes beyond the
scope of this article.

The article is structured as follows.
Before introducing versions, the product
space is described in Section 2. Subse-
quently, we discuss the version space
without making any assumptions about
the product space (Section 3). The inter-
play of product and version space is
addressed in Section 4. Section 5 is de-
voted to intensional versioning (i.e., con-
struction of versions based on rules de-
scribing consistent combinations).
Section 6 provides an overview of sys-
tems that have had significant impact
on the development of the SCM disci-
pline. Related work is discussed in Sec-
tion 7, and a short conclusion is given in
Section 8.
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2. PRODUCT SPACE

The product space describes the struc-
ture of a software product without tak-
ing versioning into account (in other
words, we assume only one version of a
software product). The product space
can be represented by a product graph
whose nodes and edges correspond to
software objects and their relationships,
respectively. Different version models
vary in their assumptions with respect
to the product space. These differences
refer to the types of software objects
and relationships, to the granularity of
object representations, and to the se-
mantic levels of modeling.

2.1 Software Objects

A software object records the result of a
development or maintenance activity.
An SCM system has to manage all kinds
of software objects created throughout
the software life cycle, including re-
quirements specifications, designs, doc-
umentations, program code, test plans,
test cases, user manuals, project plans,
and the like.

Identification is an essential function
provided by SCM. Thus, each software
object carries an object identifier (OID)
that serves to identify it uniquely
within a certain context. An external
OID is a name assigned by the user,
whereas a system-generated, unique
OID may be used internally.

Software objects are rather coarse-
grained units that are structured inter-
nally. For example, a program module is
composed of declarations and state-
ments, and a documentation consists of
sections and paragraphs. Thus a soft-
ware object is composed of more fine-
grained units.

The data model used for representing
the product space may or may not dis-
tinguish explicitly between coarse-
grained and fine-grained units. For
example, file systems make this distinc-
tion, whereas many object-oriented data
models represent coarse- and fine-
grained units in a uniform way. In the

following, we represent the contents of
software objects in long attributes at-
tached to nodes of the product graph.

Software objects may have different
representations, depending on the types
of tools operating on them. In toolkit
environments, software objects are
stored as text files [Rochkind 1975]. In
contrast, syntax trees [Habermann and
Notkin 1986] or graphs [Nagl 1996] are
used in structure-oriented environ-
ments. As discussed later, these repre-
sentations influence the functionality of
an SCM system. For example, a diff
command for comparing two versions of
a program module returns differing text
lines in the case of text files and differ-
ing syntactic units in the case of syntax
trees, respectively.

Independently of the representation
chosen for software objects, we may dis-
tinguish between domain-independent
and domain-specific models of the prod-
uct space. Domain-independent models
make no assumptions about the types of
software objects to be maintained. All
software objects produced throughout
the whole software lifecycle project are
subject to version control [Tichy 1985].
Domain-specific models are tailored to-
wards specific types of software objects
(e.g., abstract data types in algebraic
specifications) [Ehrig et al. 1989].

2.2 Relationships

Software objects are connected by vari-
ous types of relationships. Composition
relationships are used to organize soft-
ware objects with respect to their gran-
ularity. For example, a software product
may be composed of subsystems, which
in turn consist of modules. Objects that
are decomposed are called composite ob-
jects or configurations. Objects residing
at the leaves of the composition hierar-
chy are denoted atomic objects. Note
that an “atomic” software object is still
structured internally; that is, it has a
fine-grained content. The root of a com-
position hierarchy is called the (soft-
ware) product.

The semantics of composite objects
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varies significantly across different
modeling approaches. Furthermore, a
specific approach may support customi-
zable semantics. As a least common de-
nominator, a composite object is defined
as an object o that represents a sub-
graph of the product graph. All objects
that are transitively reachable from o
via composition relationships belong to
this subgraph. There may be structural
constraints with respect to the composi-
tion hierarchy (trees, DAGs), and the
existence of a component may depend
on the existence of its superobject(s).
Furthermore, there may be constraints
with respect to long attributes (e.g.,
long attributes may be attached only to
leaves of the composition hierarchy). Fi-
nally, a composite object may act as a
unit with respect to structural opera-
tions (e.g., copy or delete), abstraction
(encapsulation of components), concur-
rency control (locking of a composite
object includes locking of its compo-
nents), and version control.

Dependency relationships (simply
called dependencies in the following) es-
tablish directed connections between ob-
jects that are orthogonal to composition
relationships. They include, for exam-
ple, lifecycle dependencies between re-
quirements specifications, designs, and
module implementations, import or in-
clude dependencies between modules,
and build dependencies between com-
piled code and source code.

The source and the target of a depen-
dency correspond to a dependent and a
master object, respectively. A depen-
dency implies that the contents of the
dependent must be kept consistent with
the contents of the master. Thus the
dependent may have to be changed
when the master is modified.

Software objects are further classified
into source objects and derived objects. A
source object is created by a human who
is supported by interactive tools, for ex-
ample, text editors or graphical editors.
A derived object is created automati-
cally by a tool, for example, a compiler
or linker. Note that the classification of
a software object as a source or derived

object depends on the available tool sup-
port. Furthermore, software objects may
be partially derived and be partially
constructed manually. For example, the
skeleton of a module body may be cre-
ated automatically from its interface
and subsequently filled in by a pro-
grammer.

The process of creating derived ob-
jects from source and other derived ob-
jects is called system building. The ac-
tions to be performed are specified by
build rules. The build tool has to ensure
that build steps corresponding to these
rules are executed in the correct order;
that is, build dependencies must be
taken into account. In contrast, source
dependencies represent relationships
between source objects (e.g., lifecycle
dependencies as mentioned previously).

2.3 Representations of the Product Space

Figure 1 illustrates different represen-
tations of a sample software product foo
which is implemented in the program-
ming language C. Part (a) shows the
modules of foo and their import depen-
dencies. The top-level module main im-
ports from a and b, which both import
from c. foo may be represented in differ-
ent ways. Some examples are given in
(b), (c), and (d):

—In (b), foo is stored in the file system.
Each module is represented by multi-
ple files. The suffixes .h, .c, .o, and
.exe denote header files, body files,
compiled code, and executables, re-
spectively. Dependencies and build
steps are stored in a text file (the
system model sys, e.g., a make file
[Feldman 1979]).

—In (c), we assume a data model that
supports typed objects and relation-
ships (e.g., an EER model as used in
PCTE [Oquendo et al. 1989]). As in
the file system representation, there
is still a composition tree whose
leaves correspond to single files. How-
ever, dependencies are not repre-
sented in a separate text file. Rather,
the tree is augmented with relation-
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ships reflecting include dependencies.
Build dependencies are not given ex-
plicitly because they can be computed
automatically from source dependen-
cies and composition relationships.

—In (d), there is no longer a spanning
tree, and all files making up a module
are summarized in one object. Fur-
thermore, only a single type of rela-
tionship is used, which represents
source dependencies between mod-

ules.1 This organization, which has
been realized, for example, in POEM
[Lin and Reiss 1995], corresponds di-
rectly to the logical structure dis-
played in (a).

1 This relationship may be annotated by an at-
tribute that distinguishes between include depen-
dencies emanating from header and body.

Figure 1. Different representations of a software product.
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3. VERSION SPACE

A version model defines the items to be
versioned, the common properties
shared by all versions of an item, and
the deltas, that is, the differences be-
tween them. Furthermore, it deter-
mines the way version sets are orga-
nized. To this end, it introduces
dimensions of evolution such as revi-
sions and variants, it defines whether a
version is characterized in terms of the
state it represents or in terms of some
changes relative to some baseline, it
selects a suitable representation for the
version set (e.g., version graphs), and it
also provides operations for retrieving
old versions and constructing new ver-
sions.

The characterization of version mod-
els given in this section is still incom-
plete. Although the previous section de-
scribed the product space without
taking versioning into account, the cur-
rent section conversely focuses on the
version space, abstracting from the
product space. Thus we are not con-
cerned with the kinds of items put un-
der version control, and we also con-
sider versions of a single item only.
However, a version model needs to ad-
dress the interplay between product
space and version space as well (Section
4).

3.1 Versions, Versioned Items, and Deltas

A version v represents a state of an
evolving item i. v is characterized by a
pair v 5 (ps, vs), where ps and vs
denote a state in the product space and
a point in the version space, respec-
tively. The term item covers anything
that may be put under version control,
including, for example, files and directo-
ries in file-based systems, objects stored
in object-oriented databases, entities,
relationships, and attributes in EER da-
tabases, and so on. Versioning can be
applied at any level of granularity,
ranging from a software product down
to text lines.

A versioned item is an item that is put

under version control. In contrast, only
one state is maintained for an unver-
sioned item; that is, changes are per-
formed by overwriting. Versioning re-
quires a sameness criterion; that is,
there must be some way to decide
whether two versions belong to the
same item. This decision can be per-
formed with the help of a unique identi-
fier, for example, an OID in the case of
software objects.

Within a versioned item, each version
must be uniquely identifiable through a
version identifier (VID). Many SCM sys-
tems automatically generate unique
version numbers and offer additional
symbolic (user-defined) names serving
as primary keys. However, a version
can also be identified by an expression,
which is the identification scheme used
by intensional versioning.

All versions of an item share common
properties called invariants. These in-
variants can be represented, for exam-
ple, by unversioned attributes or rela-
tionships. Which invariants are shared
by versions depends on the specific ver-
sion model or the way it is customized
to a certain application. At one end of
the spectrum, versions virtually share
only a common OID. For example, in
systems such as SCCS and RCS ver-
sions of a text file may differ in arbi-
trary ways. At the other end of the
spectrum, versions must share semantic
properties. For example, version control
in algebraic specification [Ehrig et al.
1989] enforces that all versions of a
module body realize the shared inter-
face.

Versions differ with respect to specific
properties (e.g., represented by ver-
sioned attributes). The difference be-
tween two versions is called a delta.
This term suggests that differences
should be small compared to invariants.
Delta can be defined in two ways (Fig-
ure 2):

—a symmetric delta between two ver-
sions v1 and v2 consists of properties
specific to both v1 and v2 (v1 \ v2 and
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v2 \ v1, respectively, where \ denotes
set difference); or

—a directed delta, also called a change,
is a sequence of (elementary) change
operations op1. . .opm which, when
applied to one version v1, yields an-
other version v2 (note the correspon-
dence to transaction logs in databases).

In practice, deltas are not necessarily
small. In the worst case, the common
part of v1 and v2 may even be empty. In
fact, items may undergo major changes,
and the common properties may become
smaller and smaller the more versions
are created. For example, it is usually
unrealistic to assume that all versions
of module bodies realize the same inter-
face (this assumption is made, e.g., in
the algebraic approach already cited
[Ehrig et al. 1989] and in the Gandalf
system [Kaiser and Habermann 1983]).
On the other hand, common properties
do have to be asserted because other-
wise it does not make sense to group
versions at all.

A way out of this dilemma is multi-
level versioning; that is, a version may
have versions themselves. For example,
in Adele [Estublier 1985] a module has
multiple versions of interfaces each of
which is realized by a set of body ver-
sions. DAMOKLES [Dittrich et al. 1986]
generalizes this idea and supports re-
cursive versioning; that is, any version
may be versioned in turn.

3.2 Extensional and Intensional Versioning

A versioned item is a container for a set
V of versions. The functionality of ver-

sion control is heavily influenced by the
way V is defined. Extensional versioning
means that V is defined by enumerating
its members:

V 5 $v1,. . ., vn%.

Extensional versioning supports re-
trieval of previously constructed ver-
sions (which is a necessary requirement
to any version model). All versions are
explicit and have been checked in once
before. Each version is typically identi-
fied by a unique number. The user in-
teracting with the SCM system re-
trieves some version vi, performs
changes on the retrieved version, and
finally submits the changed version as a
new version vi11. To ensure safe re-
trieval of previously constructed ver-
sions, versions can be made immutable.
In many systems, all versions are made
immutable when they are checked into
the object base [Rochkind 1975]; in oth-
ers, explicit operations are provided to
freeze mutable versions [Westfechtel
1996]. Furthermore, immutability may
be enforced selectively (e.g., by distin-
guishing between mutable and immuta-
ble attributes [Estublier and Casallas
1995]).

Intensional versioning is applied
when flexible automatic construction of
consistent versions in a large version
space needs to be supported. Instead of
enumerating its members, the version
set is defined by a predicate:

V 5 $vuc~v!%.

Figure 2. Deltas: (a) symmetric; (b) directed.
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In this case, versions are implicit and
many new combinations are constructed
on demand. The predicate c defines the
constraints that must be satisfied by all
members of V. A specific version v is
described intensionally by its properties
(e.g., the Unix version supporting the
X11 window system). A version is con-
structed in response to some query. For
example, such a query may simply con-
sist of a tuple of attribute values (which
may be considered the VID of the ver-
sion). In this case, a query corresponds
to a (partial or total) function q that
creates versions in V based on at-
tributes ranging over the domains
A1. . .An:

q : A1 x . . . x An 3 V.

Here the term “attribute” is used in a
general way; for example, attributes
may identify variants (e.g., an os at-
tribute determining the operating sys-
tem) or changes (e.g., a Boolean at-
tribute Fix to indicate whether a certain
bug fix should be included or omitted).

The difference between extensional
and intensional versioning may be illus-
trated by comparing SCCS [Rochkind
1975] and RCS [Tichy 1985] to condi-
tional compilation as, for example, sup-
ported with the C programming lan-
guage [Kernighan and Ritchie 1978].
SCCS and RCS store and reconstruct
versions of text files (extensional ver-
sioning). The preprocessor used for con-
ditional compilation constructs any
source file based on the values of pre-
processor variables (intensional version-
ing). All fragments of the source file are
excluded whose conditions evaluate to
false.

From SCCS/RCS and conditional com-
pilation, SCM systems have been devel-
oped that differ significantly in their
versioning capabilities. On the other
hand, it must be emphasized that exten-
sional and intensional versioning are by
no means mutually exclusive, but can
(and should) be combined into a single
SCM system.

3.3 Intents of Evolution: Revisions,
Variants, and Cooperation

Versioning is performed with different
intents. A version intended to supersede
its predecessor is called a revision. Revi-
sions evolve along the time dimension
and may be created for various reasons,
such as fixing bugs, enhancing or ex-
tending functionality, adapting to
changes in base libraries, and the like.
Instead of performing modifications by
overwriting, old revisions are preserved
to support maintenance of software de-
livered to customers, to recover from
erroneous updates, and so on.

Versions intended to coexist are
called variants. For example, variants
of data structures may differ with re-
spect to storage consumption, run-time
efficiency, and access operations. Fur-
thermore, a software product may sup-
port multiple operating systems or win-
dow systems.

Finally, versions may also be main-
tained to support cooperation. In this
case, multiple developers work in paral-
lel on different versions. Each developer
operates in a workspace [Estublier
1996] that contains the versions created
and used. Cooperation policies regulate
when versions are exported from or im-
ported into a workspace. These issues
are closely related to software process
management and in the following are
only discussed in passing (see also Sec-
tion 7.2).

3.4 Representations of the Version Space:
Version Graphs and Grids

Many SCM systems use version graphs
for representing version spaces. A ver-
sion graph consists of nodes and edges
corresponding to (groups of) versions
and their relationships, respectively.
Since a version graph assumes an ex-
plicitly given set of versions, it is ap-
plied in conjunction with extensional
versioning. Despite the limitations dis-
cussed in the following, they are widely
used in practice.

Although a rich variety of version
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graphs is conceivable, the mainstream
of SCM systems is based on a small
number of graph types.

In the simplest case (one-level organi-
zation), a version graph consists of a set
of versions connected by relationships of
a single type, called successor relation-
ships. A version graph of this type pri-
marily represents the evolution history
of a versioned item. “v2 is a successor of
v1” means that v2 has been derived from
v1, for example, by modifying a copy of
v1.

Version graphs may have different
shapes (Figure 3). In the most restric-
tive case, versions are organized into a
sequence of revisions. In a version tree,
successors of nonleaf versions may be
created, for example, in order to main-
tain old versions that have already been
delivered to a customer. In an acyclic
graph, a version may have multiple pre-
decessors, for example, in order to ex-
press that a bug fix in an old version is
merged with the currently developed
version.

Several SCM systems use one of these
different kinds of one-level organiza-
tion, for example, sequences in NSE
[Adams et al. 1989] and acyclic graphs
in PCTE [Oquendo et al. 1989].
DAMOKLES [Dittrich et al. 1986] sup-
ports user-defined structural con-
straints. The structure of a version
graph may be defined in the database
schema as a sequence, a tree, or a di-
rected acyclic graph.

In two-level organization, a version
graph is composed of branches, each of
which consists of a sequence of revi-

sions. Here at least two relationship
types are required, called successor
(within a branch) and offspring (be-
tween branches) in Figure 4. This orga-
nization is applied, for example, in RCS.
ClearCase [Leblang 1994] goes beyond
the RCS organization by recording
merges in the version graph. By means
of merging, changes performed on one
branch can be propagated to another
branch. Essentially, this results in a
directed acyclic graph. However, the
branches are not joined; rather, each of
them continues to exist.

Version graphs as presented previ-
ously support management of variants
only to a limited extent. Variants can be
represented by branches as long as
their number is small. In the case of
multidimensional variation, this ap-
proach breaks down because the num-
ber of branches explodes combinatori-
ally. Let us assume that each dimension
is modeled by an attribute with domain
Ai. Then the number of branches b is
dominated by the product of the domain
cardinalities:

b # uA1u. . .uAnu.

To illustrate this, let us assume that
our sample product foo varies with re-
spect to the operating system (DOS,
Unix, VMS), the database system (Ora-
cle, Informix, dbase), and the window
system (X11, SunViews, Windows). In
this case, up to 27 branches would be
required.

This problem can be solved in the
following ways.

Figure 3. Version graphs (one-level organization): (a) sequence; (b) tree; (c) acyclic graph.
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—Version graphs may be generalized in
order to support multidimensional
variation. In Figure 5(a), versions are
organized into clusters that are used
to construct classification hierarchies
[Dittrich and Lorie 1988].

—Alternatively, versions may be ar-
ranged in a grid (Figure 5b), that is,
an n-dimensional space whose dimen-
sions correspond to variant attributes
[Sciore 1994].

Figure 5 illustrates only the variant
space, assuming that there is no evolu-
tion along the time axis. Revisions can
be represented in the grid by adding a
time dimension (orthogonal version
management [Reichenberger 1994]). In
the case of the version graph, one level
may be added at the bottom and succes-
sor relationships may be introduced to
represent histories.

3.5 State-Based and Change-Based
Versioning

In Section 3.1, a version has been de-
fined as a state of an evolving item.
Version models that focus on the states
of versioned items are called state-
based. In state-based versioning, ver-
sions are described in terms of revisions
and variants.

Changes provide an alternative way
of characterizing versions. In change-

based models, a version is described in
terms of changes applied to some base-
line. To this end, changes are assigned
change identifiers (CID) and potentially
further attributes to characterize the
reasons and the nature of a change.
Change-based versioning provides a
nice link to change requests: a change
request is implemented by a (possibly
composite) change. Thus a version may
be described in terms of the change
requests it implements.

“State- versus change-based” is or-
thogonal to “extensional versus inten-
sional.” State-based extensional version-
ing is provided, for example, by SCCS
and RCS and state-based intensional
versioning can be realized, for example,
by conditional compilation: preprocessor
variables can be used to represent vari-
ants, and a state may be specified by
tuples of values for these variables.
However, we emphasize that in general
conditional compilation can be used for
both state- and change-based versioning
(the latter is done, e.g., in the COV
system [Gulla et al. 1991]).

Change-based versioning comes in
two forms. In the case of change-based
extensional versioning, the version set is
defined explicitly by enumerating its
members and each version is described
by the changes relative to some base-
line. Thus changes are used only for

Figure 4. Version graphs (two-level organization).
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documentation. The OVUM report
about SCM systems [Rigg et al. 1995]
uses the term change package to denote
this form of change-based versioning.
Several SCM systems support change
packages by annotating versions in ver-
sion graphs with change identifiers
(e.g., ClearCase and PCMS).

In change-based intensional version-
ing, changes are combined freely to con-
struct new versions as required. There-
fore a change is considered a partial
function c : V 3 V, where V denotes the
set of all potential versions of some
item. A version v is constructed by ap-
plying a sequence of changes c1 . . . cn to
a baseline b:

v 5 c1 o . . . o cn~b! 5 cn~. . . c1~b!. . .!.

The OVUM report (and also the sur-
vey by Feiler [1991a]) adopts the termi-
nology coined by the Aide-de-Camp sys-
tem [Software Maintenance and
Development Systems 1990] and calls
this form of versioning the change set
model. Further examples of systems
supporting change-based intensional

versioning are the COV system [Gulla
et al. 1991], PIE [Goldstein and Bobrow
1980], DaSC [MacKay 1995], and As-
gard [Micallef and Clemm 1996].

The change space (version space
structured in terms of changes) can be
represented in different ways. The COV
system arranges versions in an n-di-
mensional grid called option space.
Each change corresponds to a Boolean
option that is set to true (false) if the
change is applied (omitted). The Aide-
de-Camp documentation introduces a
matrix representation as shown in Fig-
ure 6(a). Lines and columns correspond
to versions and changes, respectively.
The application of a change is indicated
by a circle at an intersection point. For
example, v1 is constructed by applying
c1, c2, and c3 in order.

Figure 6(b) illustrates the relations to
the version graphs introduced in Fig-
ures 3 and 4, respectively. The versions
shown in (a) are arranged in a graph
whose nodes and edges correspond to
versions and changes, respectively. b
denotes the baseline, and intermediate

Figure 5. n-dimensional variant space: (a) version graph; (b) grid.

Version Models • 243

ACM Computing Surveys, Vol. 30, No. 2, June 1998



versions are anonymous. For example,
the path from b to v1 again contains the
changes c1, c2, and c3. This version
graph explicitly expresses all changes
included in a certain version, and there-
fore provides more information than the
version graphs shown in Figures 3 and
4. In particular, it makes explicit when
certain changes were applied to multi-
ple versions. For example, c4 was used
to construct both v2 and v3. In contrast,
state-based versioning does not name
the changes; that is, the changes are
anonymous. As a consequence, the
changes applied to a version must be
deduced from the topology of the version
graph. This may become difficult if
merging is applied in extensive and
complicated ways (or even impossible if
merges are not recorded at all).

4. INTERPLAY OF PRODUCT SPACE AND
VERSION SPACE

In Section 2, the product space was
described under the assumption that
only one version of each item is main-
tained. In Section 3, basic definitions
for versioning were given without con-
sidering the product space. The current
section combines product space and ver-
sion space into a versioned object base.

So far, we have considered versioning
of a single item only, and we have made
no assumptions concerning the kinds of

items put under version control. As
mentioned earlier, a version model
needs to address the interplay between
product space and version space as well.
In the following, we discuss those as-
pects of version models that are con-
cerned with this interplay. In particu-
lar, we investigate which items are put
under version control, at what granular-
ity versioning is applied both externally
and internally, how versions of different
items are interrelated, what models are
used for representing versioned object
bases, and how the version model may
be related to the data model.

4.1 AND/OR Graphs

AND/OR graphs [Tichy 1982a] provide
a general model for integrating product
space and version space. An AND/OR
graph contains two types of nodes,
namely, AND nodes and OR nodes.
Analogously, a distinction is made be-
tween AND and OR edges, which ema-
nate from AND and OR nodes, respec-
tively. An unversioned product graph
can be represented by an AND/OR
graph consisting exclusively of AND
nodes/edges. Versioning of the product
graph is modeled by introducing OR
nodes. Versioned objects and their ver-
sions are represented by OR nodes and
AND nodes, respectively.

Note that the version graph illus-

Figure 6. Change space: (a) matrix representation; (b) version graph with explicit changes.
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trated in Figure 5(a) can be regarded as
an AND/OR graph as well: version clus-
ters and versions correspond to OR
nodes and AND nodes, respectively.
However, in the following we are not
concerned with the capabilities of
AND/OR graphs to model the version
space of a single object. Rather, we are
interested in the relations between ver-
sions of different objects, abstracting for
the moment from the ways in which
their version spaces are structured.
Therefore in the following a versioned
object is simply represented by an OR
node whose outgoing edges point to its
versions.

AND edges are used to represent both
composition and dependency relation-
ships. A relationship is bound to a spe-
cific version if the corresponding AND
edge ends at an AND node; otherwise it
is called generic. A configuration is rep-
resented by a subgraph spanned by all
nodes that are transitively reachable
from the root node of the configuration.
If all AND edges belonging to this sub-
graph are bound, the configuration is
called bound as well; otherwise it is
called generic. Furthermore, we may
distinguish between partially and to-
tally generic configurations. In the first
case, there are both bound and generic
AND edges; in the latter case, all AND
edges are generic. A bound configura-
tion can be constructed from a generic
configuration by eliminating the OR
nodes, that is, by selecting one succes-
sor of each OR node reached during
traversal from the root node.

In the following, we return to the
examples of product graphs in Figure 1
and compare several approaches to ver-
sioning the product graph. Figure 7
shows AND/OR graphs that are all
based on Figure 1(b).2 In Figure 7(a)
only atomic software objects are ver-
sioned. foo represents a generic configu-
ration. In Figure 7(b) foo is versioned as

well. Each version of foo corresponds to
a bound configuration. In Figure 7(c)
references to components are generic,
and the versions of foo therefore repre-
sent generic configurations.

Using this figure, we may classify ver-
sion models according to the selection
order during the configuration process:

—Product first (Figure 7(a)) means that
the product structure is selected first;
subsequently, versions of components
are selected. This approach is fol-
lowed, for example, by SCCS and
RCS. It suffers from the restriction
that structural versioning cannot be
expressed (the product structure is
the same for all configurations).

—Version first (Figure 7(b)) inverts this
approach: the product version is se-
lected first and uniquely determines
the component versions. Different
product versions may be structured in
different ways. For example, a version
of component c is contained only in
foo.1 (version 1 of product foo). PCTE
[Oquendo et al. 1989] is an example of
an SCM system using this organiza-
tion.

—Intertwined (Figure 7(c)) means that
AND and OR selections are performed
in alternating order. The intertwined
organization is used, for example, by
ClearCase [Leblang 1994], which ver-
sions both files and directories. Again,
this selection scheme supports struc-
tural versioning.

Thus, “version first” and “inter-
twined” both take into account that dif-
ferent versions of an object may vary
with respect to their relationships to
(versions of) other objects. This means
that in addition to objects, relationships
are versioned as well.

So far, we have applied versioning
only to the product graph organization
shown in Figure 1(b). In Figure 8, the
alternatives “intertwined” and “version
first” are illustrated for the product
graph of Figure 1(d) (To save space,
“product first” has been omitted). In
contrast to the previous figure, AND

2 Module versions are identified by numbers. For
the sake of simplicity, each module version is
represented by a single node (e.g., no distinction
between header files and bodies).
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edges represent dependencies instead of
composition relationships. Intertwined
selection is performed, for example, in
Adele [Estublier 1985], whereas “ver-
sion first” is realized, for example, in
POEM [Lin and Reiss 1995].

To illustrate the differences between
Figures 8(a) and (b), let us assume that
a bug is fixed in module c that does not
affect its interface. A new version c.2 is
created that is to be included in the new
release of our sample product foo.3 In
(a), a new configuration is constructed
in which c.2 is selected instead of c.1.
However, in (b) new versions of all mod-
ules above c have to be created (ver-

sions 29 of a, b, and main, respectively).
This effect is called version prolifera-
tion. Note that version proliferation
need not involve physical copying (e.g.,
multiple versions may share the same
source file through pointers). However,
this does not solve the problem at the
logical level (the user is confronted with
a combinatorially exploding number of
versions). To get rid of version prolifer-
ation at the logical level, we have to
distinguish between versions of modules
and versions of configurations (in (b),
the versions of main play both roles
simultaneously).

4.2 Granularity of Versioning

In the previous examples we considered
versioning only at the coarse-grained

3 The current release (the starting point for the
bug fix) is represented in Figure 8 by filled nodes.

Figure 7. Different kinds of AND/OR graphs and selection orders (I): (a) product first; (b) version first;
(c) intertwined.
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level. This means that we have applied
versioning to product graphs as intro-
duced in Section 2. As explained earlier,
product graphs detail the product struc-
ture only down to the level of software
objects such as interfaces and bodies of
modules; the fine-grained contents are
represented as long attributes.

However, in Section 3 we introduced
the term “item” in a more general way
to denote anything that can be ver-
sioned, including entities, relationships,
and attributes. In particular, versioning
can be applied at any level of granular-
ity.

To clarify this issue, let us further
elaborate the notion of granularity.
First, version granularity refers to the
size of a version and second, delta gran-
ularity refers to the size of those units
in terms of which deltas are recorded: in
RCS version and delta granularity are
at the level of text files and text lines,
respectively. In this case, the delta
granularity is much finer than the ver-
sion granularity.

With respect to version granularity,
we need to distinguish further between
external versioning and internal ver-

sioning. An SCM system provides an
external interface to the versioned ob-
ject base that offers versioned items as
well as identification and selection of
versions to its users. At the external
interface, software objects are the items
subject to version control. The internal
granularity may be much smaller (see
the following).

External versioning may be applied in
different ways to the composition hier-
archy of software objects. Component
versioning means that only atomic ob-
jects are put under version control.
Each object has its own version space,
modeled, for example, by a version
graph. Total versioning applies to all
levels of the composition hierarchy.
Product versioning differs from total
versioning by arranging versions of all
objects in a uniform, global version
space.

This classification is illustrated in
Figure 9, where externally versioned ob-
jects are surrounded by boxes. The
AND/OR graph in Figure 9(a) was taken
from Figure 7(a), and the graphs shown
in (b) and (c) were both copied from
Figure 7(b). Note that the topology of an

Figure 8. Different kinds of AND/OR graphs and selection orders (II): (a) intertwined; (b) version first.
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AND/OR graph shows which objects are
versioned, but externally and internally
versioned objects are not distinguished.
Thus a given AND/OR graph can be
accessed in different ways, depending
on the version model presented to the
user. In particular, in the case of prod-
uct versioning the user may select ver-
sions of nonroot objects, but this is done
in the version space attached to the
whole product.

Component Versioning. In compo-
nent versioning, the product structure
is selected first. Typically, versions of
components are organized into version
graphs (see, e.g., RCS [Tichy 1985]). A
configuration is constructed by assem-
bling versions of components; this is
called composition model in Feiler
[1991a]. Note that the granularity of
composition is an “atomic” software ob-
ject (rather than fine-grained units such
as statements or text lines).

Frequently, the version graphs of dif-
ferent components are related only
weakly to each other. To illustrate this,
Figure 10 shows a sample configuration
whose components are located at differ-
ent places in the respective version
graphs.4 The selection problem can be
alleviated by tagging all components of
some consistent configuration with the

same symbolic name (or more generally
through configuration rules referring to
revisions and variants). Thus a configu-
ration is represented implicitly through
an attribute value rather than as a
first-class entity.

Total Versioning. Total versioning
generalizes component versioning in
that all objects are versioned rather
than only the leaves of the composition
hierarchy. In contrast to component ver-
sioning, versions of composite objects
are represented explicitly as entities;
atomic and composite objects are ver-
sioned uniformly. Whereas component
versioning implies that the product
structure is selected first, total version-
ing may be combined with both the “ver-
sion first” and the “intertwined” selec-
tion order and can therefore express
structural versioning. For example,
PCTE [Oquendo et al. 1989] supports
extensional versioning of composite ob-
jects (“version first”). In contrast, in
ClearCase [Leblang 1994] AND/OR se-
lections are intertwined: a version of a
directory references a set of versioned
files (or directories) rather than specific
versions of these. A single-version view
on the versioned file system is provided
through dynamically evaluated configu-
ration rules (intensional versioning
with dynamic binding).

Product Versioning. Product ver-
sioning differs from total versioning by
arranging versions of all objects in a

4 AND nodes representing versions are placed in-
side the OR node representing the versioned com-
ponent. Furthermore, the AND/OR graph is aug-
mented with successor relationships.

Figure 9. External versioning: (a) component versioning; (b) total versioning.
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uniform, global version space. It may be
regarded as a layer that simplifies se-
lection against a versioned object base.
Product versioning sets up a transpar-
ent single-version view that hides inter-
nally maintained versions of objects and
relationships from users and tools.
Product space and version space are
orthogonal to each other: a given model
of the product space can be combined
with different models of the version
space and vice versa. The integration of
product space and version space in the
state-based SCM system VOODOO
[Reichenberger 1994] is illustrated in
Figure 11, where versioned objects, re-
visions, and variants are organized into
orthogonal dimensions.

All change-based systems (e.g., the
COV system [Gulla et al. 1991], Aide-
de-Camp [Software Maintenance and
Development Systems 1990], and DaSC
[MacKay 1995]) support product ver-
sioning to overcome the limitations of
component versioning. In general, a
change to a software product may affect
multiple components. Since the compo-
sition model falls short of recording
these cross-dependencies, it is difficult
to incorporate a change into a product
version by selecting the respective com-
ponent versions. Therefore in change-
based approaches product versions are
described in terms of global changes.
Note that combination of changes oper-
ates at a finer granularity (e.g., text
lines) than composition of components.

Product versioning has become more
and more popular because of its global
view on the software product. A poten-
tial problem consists of lacking modu-
larity of the version space. All changes,
revisions, and variants are global. For
example, if there are two implementa-
tion variants of a procedure Sort (e.g.,
QuickSort and HeapSort), we must intro-
duce an attribute at the global level in
order to enable choices between these
variants. An approach to structure the
version space (in the COV system) is
described in Munch [1996].

4.3 Deltas

To represent versions in the object base,
deltas are used both at the coarse-
grained and the fine-grained levels. The
selection of an appropriate delta repre-
sentation is driven by different require-
ments to be considered at the physical
and logical level, respectively. Storage
and run-time efficiency have to be
achieved at the physical level. At the
logical level, deltas are used to compare
versions in such a way that the user is
provided with a high-level description of
differences. Furthermore, intensional
versioning relies on deltas as well. By
processing the deltas, a version is con-
structed that must meet the require-
ments stated in its intensional descrip-
tion. Accordingly, we distinguish between
physical and logical deltas. Although
many SCM systems use a single delta

Figure 10. AND/OR graph augmented with successor relationships.
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representation for both purposes [Munch
1993], physical and logical deltas may
also be separated (e.g., syntactic merg-
ing of program modules stored as text
files [Buffenbarger 1995]).

The distinction between directed and
symmetric deltas, as illustrated in Fig-
ure 2, can be transferred directly to the
implementation level. Using directed
deltas [Tichy 1982b], a version is con-
structed by applying a sequence of
changes to some base version. In the
case of embedded deltas, all versions are
stored in an overlapping manner so that
common fragments are shared. Either
each version points to its fragments
[Fraser and Myers 1986], or the frag-
ments are decorated with control expres-
sions for determining the versions in
which they are visible (interleaved del-
tas [Rochkind 1975; Leblang and
McLean 1985]).

Please note that the internal delta
representation is orthogonal to the ex-
ternal version model. For example, in-
terleaved deltas may be used to realize
both extensional and intensional ver-
sioning as well as both state- and
change-based versioning. In the follow-
ing, the different types of delta repre-
sentations are discussed in turn.

RCS [Tichy 1985], which is based on
directed deltas, reconstructs versions of
text files from the most recent version
on the main trunk of the version graph

by applying backward deltas on the
main trunk and forward deltas on the
branches. RCS deltas are fine-grained,
whereas change-based SCM systems
such as PIE [Goldstein and Bobrow
1980] and DaSC [MacKay 1995] employ
directed deltas at both the coarse-
grained and the fine-grained level. In
both systems, the modifications per-
formed in a change are stored in a layer.
A product version is composed of a se-
quence of layers that are stacked on top
of each other. (For further details, see
the description of PIE in Section 6, in
particular, Figure 21.)

Since versions are stored in an over-
lapping manner, AND/OR graphs can be
classified as embedded deltas. As de-
scribed so far, versions can be combined
freely to derive bound configurations
from some generic configuration. This
“combinability” can be constrained by
control expressions (configuration rules)
stating, for instance, that a certain ver-
sion can be selected only when configur-
ing a Unix variant.

Adding control expressions results in
an interleaved delta scheme that is real-
ized in SCCS [Rochkind 1975] and
DSEE [Leblang and McLean 1985]
among others. Note that both systems
implement a version model similar to
RCS, which is based on directed deltas.
In SCCS and DSEE, fragments of text

Figure 11. Product versioning.
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lines are tagged with the set of versions
in which they are included.

SCCS and DSEE support extensional
versioning (of text files) but conditional
compilation employs interleaved deltas
for intensional versioning. For example,
Figure 12(a) illustrates conditional com-
pilation in a source file varying with
respect to the operating system. Figure
12(b) demonstrates that conditional
compilation can be applied at the
coarse-grained level as well. The figure
contains a cutout of a product descrip-
tion written in the Proteus Configura-
tion Language (PCL [Tryggeseth et al.
1995]). The selected version of the files
component depends on the value of the
os attribute, which refers to the operat-
ing system. In contrast to conditional
compilation (single-source versioning),
different versions of this component are
stored in separate files (version segrega-
tion) [Mahler 1994].

Version segregation is vulnerable to
the multiple maintenance problem
[Babich 1986]: a change to a common
fragment must be applied to all versions
in turn. This is even the case when the
fragment is shared at the physical level
(e.g., interleaved deltas in SCCS).
Merge tools may reduce the multiple
maintenance problem by partly auto-
mating change propagation. However,
single-source versioning is a more ele-
gant solution since the change needs to
be performed only once for all versions,

although it may still have to be tested
in multiple versions.

On the other hand, editing of source
files cluttered with control expressions
may confuse the user. Multiversion edi-
tors overcome this problem by hiding
control expressions (see, e.g., P-Edit
[Kruskal 1984], MVPE [Sarnak et al.
1988], and COV [Gulla et al. 1991]). A
read filter selects a single version, re-
moving all control expressions; a write
filter constrains the set of versions to
which the change is applied. For exam-
ple, a general change in common parts
of the source file may be performed by
setting up a universal write filter and
selecting some arbitrary version by the
read filter (e.g., the Unix version). If
Unix is also selected for writing, the
control expressions of all changed parts
are set up so that all changes are spe-
cific to the Unix version.

4.4 Relations Between Version Model and
Data Model

To conclude this section, we discuss the
interplay between product space and
version space in terms of its implica-
tions for database management. When
designing a database management sys-
tem for software engineering, the de-
signer must decide how to support ver-
sioning. In particular, there are several
alternatives concerning the relations

Figure 12. Interleaved deltas: (a) fine-grained level; (b) coarse-grained level.
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between the data model and the version
model.

Version Model on Top of the Data
Model. In this case, version manage-
ment is seen as an ordinary database
application. Thus the version model is
represented by a schema whose under-
lying data model is not aware of ver-
sioning. This solution has been adopted,
for example, by PCTE [Oquendo et al.
1989] and CoMa [Westfechtel 1996],
which are based on an EER and a graph
data model, respectively. Its main ad-
vantage is that the data model is kept
simple and potentially application-spe-
cific extensions are avoided (a widely
accepted uniform version model does
not yet exist).

However, implementing version man-
agement completely on top of a data-
base management system has a number
of limitations. For example, there is no
support for storing versions efficiently,
the transaction manager does not take
versioning into account, and so on.
Therefore several database manage-
ment systems provide predefined classes
for version management (e.g., O2
[GOODSTEP 1995]). In this case, the
data model is still not aware of version-
ing, but components of the database
management system such as storage
and transaction manager are modified
to support version management effi-
ciently.

Version Model Built into the Data
Model. If the data model is extended
with versioning, applications can be
supported through a data-definition

language that provides customized con-
structs for defining versioned object
types. In addition, the query language
is modified so that queries against
a versioned database can be written
in a convenient and natural way.
DAMOKLES [Dittrich et al. 1986], EX-
TRA-V [Sciore 1994], and Adele [Estub-
lier and Casallas 1994] follow this ap-
proach.

If the version model is defined on top
of the data model, different types are
required for versioned objects and their
versions. As argued in Estublier and
Casallas [1994] and Sciore [1994], this
distinction is awkward and complicates
both schemata and queries. Figure 13
illustrates how this problem is solved in
Adele. In this example, only one object
type is defined for a versioned interface.
Adele distinguishes between common
attributes shared by all revisions, modi-
fiable attributes whose values are revi-
sion-specific, and immutable attributes,
where each update triggers the creation
of a new revision. Furthermore, the at-
tribute realization is declared as ver-
sioned, meaning that an interface revi-
sion may have multiple realization
variants.

Data Model on Top of the Version
Model. So far, the version model de-
pends heavily on the data model, being
either defined on top of or built into the
data model. In a few SCM systems, such
as ICE [Zeller and Snelting 1995] and
COV [Munch 1996], the version model is
completely orthogonal to the data
model. This may be achieved through an

Figure 13. Definition of a versioned object type.
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instrumentable version engine that pro-
vides a basic delta storage and configu-
ration rules by means of which specific
version models may be expressed [Con-
radi and Westfechtel 1997]. The version
engine is not aware of the data model
and can thus be combined with any data
model (e.g., EER, object-oriented, or
simply files).

Both ICE and COV are based on in-
terleaved deltas, but use different logics
for control expressions. In ICE, version-
ing is applied to file-based data. The
COV system applies versioning to an
EER data model. To this end, a layer
that takes care of the consistency con-
straints inherent in the data model is
placed on top of the version engine (e.g.,
a relationship is visible only when both
ends belong to the currently selected
version). Thus this architecture differs
considerably from the architecture of
conventional database management sys-
tems where version model and data
model are rather entangled.

5. INTENSIONAL VERSIONING

In Section 3.2 we distinguished between
extensional and intensional versioning.
Extensional versioning is concerned
with the reconstruction of previously
created versions and requires version
identification, immutability, and effi-
cient storage. On the other hand, inten-
sional versioning deals with the construc-
tion of new versions from property-based
descriptions. Intensional versioning is
very important for large version spaces,
where a software product evolves into
many revisions and variants and many
changes have to be combined.

In order to support intensional ver-
sioning, an SCM system must provide
for both combinability—any version has
to be constructed on demand—and con-
sistency control—a constructed version
must meet certain constraints. The con-
struction of a version may be viewed as
a selection against a versioned object
base. The selection is directed by config-
uration rules, which constitute an es-
sential part of a version model, and is

performed both in the product space
and the version space. Having discussed
the interplay between product space
and version space in Section 4, we are
now ready to elaborate on rule-based
version construction, a topic that could
have been addressed only partially in
Section 3.

5.1 Problem: Combinability Versus
Consistency Control and Manageability

Configuration rules are used to config-
ure consistent versions from a versioned
object base. Rules are required to ad-
dress the combinability problem. The
number of potential versions explodes
combinatorially; only a few are actually
consistent or relevant. The combinabil-
ity problem has to be solved in any
version model.

For example, the (state-based) compo-
sition model [Feiler 1991a] applies ex-
tensional versioning at the component
level; that is, previously constructed
component versions are reused. Rule-
based construction of configurations
realizes intensional versioning at the
configuration level; that is, new combi-
nations of component versions are as-
sembled into configurations. Without
any constraints, the number of potential
configurations is very large. For a prod-
uct consisting of m modules existing in
v versions, there exist vm potential con-
figurations (i.e., the number of potential
configurations grows polynomially in v).

On the one hand, change-based ver-
sioning reduces the combinability prob-
lem by grouping logically related modi-
fications of multiple components. Thus
we do not have to worry about which
versions of components actually fit to-
gether. However, the selection problem
has not disappeared. Rather, it has
been moved from the product space to
the version space [Munch 1996]. In the
case of unconstrained combination of
changes (each change may either be ap-
plied or skipped), there are 2c potential
configurations for c changes; that is, the
number of potential configurations
grows exponentially in c.
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The challenge of intensional version-
ing consists of providing for consistency
control while still supporting combin-
ability. The space of all potential ver-
sions is much larger than the space of
consistent ones. The problem of consis-
tency control can be addressed both in
the version space and in the product
space. In the version space, configura-
tion rules are used to eliminate incon-
sistent combinations; in the product
space, the knowledge about software ob-
jects, their contents, and their relation-
ships is enriched in order to check and
ensure product constraints. SCM sys-
tems tend to solve the problem in the
version space because they frequently
only have limited knowledge of the
product space (typically, software ob-
jects are represented as text files).

Even if a sophisticated tool for con-
structing a version is employed, the
user must be warned if a new version is
created that has never before been con-
figured. Although old versions can be
assigned levels of “confidentiality” (e.g.,
tested or released), a new version can-
not be trusted blindly. Therefore the
configured version is subject to quality
assurance (e.g., testing). Potentially,
changes to the constructed version need
to be performed (correction delta).

5.2 Conceptual Framework for Intensional
Versioning

Figure 14 illustrates our conceptual

framework for intensional versioning.
First let us define the central notion of
configuration rule: a configuration rule
guides or constrains version selection
for a certain part of a software product.
Thus a configuration rule consists of a
product part, which determines its
scope in the product space, and a ver-
sion part, which performs a selection in
the version space (see Section 5.3 for
further details).

A versioned object base combines
product space and version space and
stores all versions of a software product,
relying, for example, on interleaved del-
tas. The versioned object base is aug-
mented with a rule base of stored config-
uration rules (e.g., control expressions
as shown in Figure 12).

A query consists of a set of submitted
configuration rules, each composed of a
product part and a version part. A con-
figurator is a tool that constructs a ver-
sion by evaluating a query against a
versioned object base and a rule base.
The constructed version has to satisfy
both version constraints (e.g., consistent
selection of the Unix version) and prod-
uct constraints (e.g., syntactic or seman-
tic consistency). Configurators are dis-
cussed further in Sections 5.4 and 5.5.

The configuration process is con-
cerned with the binding of generic refer-
ences. Often, its result is a bound con-
figuration, but it may also deliver a
configuration that is partially generic.

Figure 14. Intensional versioning.
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The latter results in a multistage config-
uration process.

Binding can be performed at different
points in time. Static binding means
that the configurator resolves all un-
bound references before any component
is accessed. To this end, the configura-
tor constructs a table that maps each
component name to a specific version.
In dynamic binding, each reference is
evaluated on demand only (e.g., when a
source file is read by a compiler).

Binding may even be deferred until
runtime. In this case, a program is con-
figured dynamically without stopping
its execution. A popular example is Java
applets, which are loaded dynamically
when they are activated through a Web
browser. Dynamic configuration has
been studied in the context of distrib-
uted systems (see Kramer [1993] for an
overview). Up to now, the relations to
SCM have not been investigated thor-
oughly. Only recently have a few ap-
proaches been proposed that apply ver-
sion-selection techniques from SCM to
dynamic configuration [Warren and
Sommerville 1995; Schmerl and Marlin
1995]. However, elaborating on this
topic goes beyond the scope of this arti-
cle.

To sharpen the focus, we also refrain
from discussing system building [Bori-
son 1989]. Although the conceptual
framework illustrated in Figure 14 can
be applied to both source and derived
objects, the problems to be considered
are different in the following respects.

—In source version construction, we
have a selection problem in both prod-
uct and version space. The selection
must be performed so that the out-
come of the configuration process
obeys all configuration rules and
product constraints. Here nondeter-
minism may have to be taken into
account and the configurator may
have to backtrack from wrong selec-
tions.

—When constructing derived versions,
we primarily have to consider the effi-
ciency and accuracy of the build.

Mostly, build rules are deterministic
with respect to the result of building.
Nondeterminism deals only with the
order in which build steps are exe-
cuted (the build plan imposes only a
partial order on the build steps).
Some authors advertise the advan-
tages of nondeterministic build rules
(e.g., “build some sort program no
matter what algorithm and which
compiler is used” [Rich and Solomon
1991]). However in many situations it
is crucial to control the details of a
build without leaving the freedom for
nondeterministic choices (e.g., even
the functional behavior of a program
may depend on whether it is compiled
with or without optimization).

Finally, Figure 14 suggests that the
rule base is not put under version con-
trol. On the other hand, versioning of
the rule base is desirable as well be-
cause the configuration rules may
evolve along with the software product.
In the case of our sample software prod-
uct foo the set of supported operating
systems, window systems, and database
systems may evolve, as may the con-
straints on combining these dimensions
of variation. Currently, versioning of
the rule base is handled at best in a
rudimentary way, such as by storing
configuration rules in text files that are
subject to version control. As argued in
Conradi and Westfechtel [1997], simple
time-stamped revisions of the rule base
may suffice to reconstruct not only old
product versions, but also the configura-
tion rules valid at that time. Some fur-
ther remarks on this topic follow in
Section 7.2.

5.3 Configuration Rules

Intensional versioning is driven by con-
figuration rules that are classified in
the following. First, built-in rules are
hardwired into the respective SCM sys-
tem and cannot be changed by the user.
For example, a built-in rule may enforce
that at most one version of a software
object is contained in any constructed
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configuration. User-defined rules are
supplied by the user (e.g., “select the
latest version before May 22nd”).

Version Parts of Configuration Rules.
Configuration rules take on different
forms depending on how the version
space is structured. Figure 15 provides
some typical examples that refer to the
revision, variant, and change space, re-
spectively. Configuration rules are
stated as logical formulas, abstracting
from the actual syntax as implemented
in different SCM systems.

In the revision-space category, config-
uration rules refer to the time dimen-
sion. Rule (1) selects the latest revision
by the maximal time stamp. Rule (2)
refers to a revision by its number.

In the variant space, configuration
rules refer to values of variant at-
tributes. Rule (3) identifies a variant by
specifying operating system, window
system, and database system. Rule (4)
expresses a constraint on the combina-
tion of attribute values: the X11 window
system is not available under the DOS
operating system.

In the change space, Rule (5) specifies
a version in terms of the changes to be
applied. Rules (6) and (7) specify further
relationships that describe consistent
change combinations. Rule (6) states
that inclusion of change c2 implies that
c1 is included as well (c2 is based on
c1). Rule (7) states that changes c1, c2,
and c3 are mutually exclusive (operator
V) (i.e., at most one of these changes
may be applied).

Product Parts of Configuration
Rules. So far we have discussed only
the version parts of configuration rules.
The product part describes the scope of
a configuration rule in the product
space. In Figure 16, a configuration rule
is written in the form p : v, where p and
v denote product part and version part,
respectively. Rule (1) applies to a single
module a (local rule) and selects the
version checked out by the current user.
The star in Rule (2) indicates global
application to all modules so that the
same variant is selected throughout the
whole product. The product part of Rule
(3) denotes all modules reachable from
b by a reflective and transitive closure
over relationships of type DependsOn;
that is, the rule applies to b and to all
modules on which b depends transi-
tively.

Ordering of Configuration Rules.
Configuration rules can be ordered in
strictness classes. A constraint is a man-
datory rule that must be satisfied. Any
violation of a constraint indicates an
inconsistency. For example, Rule (1) in
Figure 17 ensures that all selected ver-
sions belong to a given variant. A pref-
erence is an optional rule that is applied
only when it can be satisfied. For exam-
ple, Rule (2) states that a checked-out
version is selected provided it is avail-
able. Finally, a default is also an op-
tional rule, but is weaker than a prefer-
ence: a default rule is applied only when
no unique selection could be performed
otherwise. For example, Rule (3) selects
the most recent version as the default.

Strictness classes determine the order
in which configuration rules are evalu-
ated (constraints 3 preferences 3 de-
faults). In addition, rules may be given
priorities. Rules with high priorities are
considered before low-priority rules. A
priority may be assigned explicitly or

Figure 15. Version parts of configuration rules.

Figure 16. Scoping of configuration rules.
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may be defined implicitly by textual or-
dering. Priorities may be combined with
strictness classes such as by assigning
priorities to preferences [Lavency and
Vanhoedenaghe 1988]. However they
can also be used without strictness
classes. For example, in ClearCase
[Leblang 1994] rules are evaluated ac-
cording to their textual order until a
(unique) match is found.

Finally, we may distinguish between
stored and submitted configuration
rules. The rules given in Figure 17
would typically be submitted in a query
in order to specify properties requested
by the user. Rule (4) in Figure 15 is an
example of a stored configuration rule
expressing a constraint that must be
fulfilled by all configured versions.

Relations Between Version Graphs
and Configuration Rules. To conclude
this section, we discuss briefly how ver-
sion graphs and configuration rules are
related in different SCM systems:

—Configuration rules on top of version
graphs. This is the classical solution,
called composition model in Feiler
[1991a]. Version graphs are main-
tained for components (extensional
versioning); configurations are con-
structed by selecting component ver-
sions with the help of configuration
rules (intensional versioning). The
composition model is realized, for ex-
ample, in DSEE [Leblang and
McLean 1985] and ClearCase [Leb-
lang 1994].

—Version graphs on top of configuration
rules. This inverted approach is fol-
lowed by a few research prototypes
such as ICE [Zeller 1995] and COV
[Munch 1996]. Both systems rely on a

flexible and powerful base layer pro-
viding for delta storage (interleaved
deltas) and configuration rules. Any
desired version model may be realized
on top of configuration rules. In the
case of version graphs, revision
chains and branches may be ex-
pressed by implication and mutual ex-
clusion, respectively (see Rules (6)
and (7) in Figure 15).

5.4 Configurators: Tools for Evaluating
Configuration Rules

A configurator constructs a version by
evaluating configuration rules against a
versioned object base. Construction can
be performed in different computational
frameworks. In a functional framework,
intensional versioning is modeled by ap-
plying a (potentially partial) function q
(query) to its arguments a1 . . . an; that
is, a version v is constructed by evaluat-
ing the expression q(a1, . . . , an). This
approach assumes that version con-
struction delivers a deterministic result
(i.e., version selection is unique).

In a rule-based framework, version
construction is modeled as the evalua-
tion of a query against a deductive data-
base [Ramamohanarao and Harland
1994; Ramakrishnan and Ullman 1995].
The deductive database consists of a
versioned object base and a rule base
containing stored configuration rules.
Since a query may not specify the ver-
sion to be constructed in a unique way,
a rule-based configurator has to cope
with nondeterminism. Ambiguous choices
can be resolved either automatically or
interactively. In any case, the configu-
rator needs to explore a search space of
potential solutions. To this end, it may
use different search strategies such as
“depth-first” or “breadth-first.”

Configurators may be classified not
only with respect to the computational
paradigm (functional, rule-based) but
also with respect to the underlying ver-
sion model (state- or change-based).
This results in four combinations, as
described in the following.

Figure 17. Strictness classes.

Version Models • 257

ACM Computing Surveys, Vol. 30, No. 2, June 1998



State-Based Functional Configura-
tors. A state-based functional configu-
rator operates on a versioned object
base typically represented by inter-
leaved deltas. Conditional compilation
in C [Kernighan and Ritchie 1978] and
configuration construction at the
coarse-grained level in PCL [Tryggeseth
et al. 1995] may be cited as examples.5

The versioned object base is usually tra-
versed in a “context-free” manner (e.g.,
sequences of text lines in conditional
compilation and trees of components in
PCL). Configuration rules take the form
of control expressions as shown, for ex-
ample, in Figure 12. The configurator is
supplied with a tuple of attribute values
(a1, . . . , an) and constructs some ver-
sion v. Control expressions are evalu-
ated against this tuple to select the
relevant components of v. When applied
to a composite object co, expressions
may also be used to transform (a1, . . . ,
an) into a new tuple (a91, . . . , a9m),
which is then employed recursively to
configure co. This means that attribute
values are transformed and propagated
through the composition hierarchy. In
this way, it is possible to enforce certain
constraints (e.g., selection of the same
variant throughout the whole configura-
tion process). However rule-based con-
figurators are in general more powerful
in enforcing constraints or detecting in-
consistencies.

State- and Rule-Based Configura-
tors. A state- and rule-based configu-
rator supports nondeterminism through
an appropriate search strategy (e.g.,
depth-first search with backtracking). It
typically operates on some AND/OR
graph that is traversed along “context-
sensitive” relationships (e.g., dependen-
cies between modules in Adele [Estub-
lier 1985]; see also Figure 8). For each
OR node reached in the course of the
configuration process, a successor is se-
lected with the help of configuration

rules. As version selections are per-
formed, constraints are added that nar-
row down further choices. For example,
if version uniqueness is required, we
may not select a different successor
each time a certain OR node is visited.
Variant selection serves as another ex-
ample: after having selected a certain
variant of an operating system, we must
ensure that this selection is performed
consistently for all further nodes
reached in the course of the configura-
tion process. If this turns out to be
impossible, the configurator has to
backtrack from the wrong selection.

A simple example is given in Figure
18(a) which shows an AND/OR graph
whose AND nodes (versions) are anno-
tated with configuration rules.6 For
each version, a triple of attribute values
denotes the variants to which it belongs;
p stands for any value. a depends on the
window system, b on the database sys-
tem, and c on the file system; main can
be used with any variant. Figure 18(b)
shows a query that leaves all attribute
values unspecified. Below, a sample
trace of the configuration process is
given. After selection of a.1, the os at-
tribute is bound to Unix. Thus the Unix
version of c is selected. However, selec-
tion of b fails and triggers backtracking.

Change-Based Functional Configura-
tors. A change-based functional con-
figurator is supplied with a sequence of
changes. Internally, the object base may
be stored using either interleaved or
directed deltas (e.g., Aide-de-Camp
[Software Maintenance and Develop-
ment Systems 1990] and PIE [Goldstein
and Bobrow 1980], respectively). Con-
ceptually, the changes are applied in
order to some baseline. Inconsistencies
are detected when a change operation
fails, for example, insertion of a text
line at an undefined location.

Change- and Rule-based Configura-
tors. A change- and rule-based con-

5 Please recall that conditional compilation can be
used for change-based versioning as well (see Sec-
tion 3.5).

6 Note that only variants are considered in this
example (no revisions).
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figurator differs from its functional
counterpart by considering stored con-
figuration rules constraining change
combinations. Configuration rules can
be used to detect inconsistent change
combinations; furthermore, they can be
employed in a constructive manner to
complete a partial specification. This is
done, for example, in the COV system
[Munch 1996]. Consider the mutual ex-
clusion rule (7) in Figure 15. If the user
insists on applying both c1 and c2, the
configurator reports an inconsistency.
Alternatively, the configurator may au-
tomatically disable change c2 (and c3)
after c1 has been selected.

5.5 Merge Tools

So far, we have distinguished between
state-based and change-based configu-
rators. Although state- and change-
based SCM systems may differ consider-
ably at first glance, the borderline is in

fact rather fuzzy.7 In particular, state-
based SCM systems often offer merge
tools [Buffenbarger 1995] to combine
versions/changes. Although mostly used
in state-based systems, they have been
applied in change-based systems as
well.

Merge tools combine versions or
changes. They may be classified as fol-
lows (Figure 19).

—Raw merging simply applies a change
in a different context. For example, in
Figure 19(a) change c2 was originally
performed independently of change c1
and is later combined with c1 to pro-
duce version v4. Raw merging is sup-
ported by SCCS [Rochkind 1975]
among others. It was later general-
ized in change-based SCM systems
such as Aide-de-Camp [Software
Maintenance and Development Sys-

7 This was already demonstrated in the discussion
of the relationships between version graphs and
change-based versioning (Section 3; see Figure 6).

Figure 18. Rule-based construction of a configuration: (a) AND/OR graph with configuration rules; (b)
construction of a configuration.
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tems 1990] and the COV system
[Munch et al. 1993].

—A two-way merge tool (Figure 19(b))
compares two alternative versions a1
and a2 and merges them into a single
version m. To this end, it displays the
differences to the user who has to
select the appropriate alternative. A
two-way merge tool can merely detect
differences, and cannot resolve them
automatically.

—To reduce the number of decisions to
be performed by the user, a three-way
merge tool (Figure 19(c)) consults a
common baseline b if a difference is
detected. If a change has been applied
in only one version, this change is
incorporated automatically. Other-
wise, a conflict is detected that can be
resolved either manually or automat-
ically (the latter is not recommended).
Notably, the change-based system
Aide-de-Camp offers a three-way
merge tool in addition to raw merg-
ing.

In comparing raw merging and three-
way merging, we have to distinguish
between inconsistencies and conflicts:

—In raw merging, a change c is applied
in a different context. A change is a
sequence of change operations, say
op1 . . . opm. If any opi fails (e.g.,
because it is applied to a nonexistent
object), there is an inconsistency.

—In addition to inconsistencies, three-
way merging can detect conflicts, that
is contradictory changes. Three-way
merging attempts to combine two se-

quences of change operations. A con-
flict arises if two operations do not
commute (e.g., contradictory changes
to the name of a procedure). In raw
merging, one change wins and the
other is overridden.

Merge tools can be characterized by
the semantic level at which merging is
performed (i.e., their knowledge about
the product space):

—Textual merging is applied to text
files [Adams et al. 1986]. Almost all
commercial SCM systems support tex-
tual merging [Rigg et al. 1995]. Al-
though we can expect only an arbi-
trary text file as the result of the
merge (and, e.g., not a legal C pro-
gram) and only physical conflicts can
be detected, textual merging seems to
yield good results in practice [Leblang
1994]. In particular, it works well
when small, local changes to large
well-structured programs are com-
bined and changes have been coordi-
nated beforehand so that semantic
conflicts are unlikely to occur.

—Syntactic merging exploits the con-
text-free (or even context-sensitive)
syntax of the versions to be merged.
Therefore, it can guarantee a syntac-
tically correct result and can perform
more intelligent merge decisions.
However, syntactic merging has been
realized only in a few research proto-
types [Buffenbarger 1995; Westfech-
tel 1991].

Figure 19. Types of merging: (a) raw merging; (b) two-way merging; (c) three-way merging.
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—Semantic merging takes the seman-
tics of programs into account [Berzins
1994, 1995; Binkley et al. 1995; Hor-
witz et al. 1989]. Semantic merge
tools perform sophisticated analyses
in order to detect conflicts between
changes. However, it is a hard prob-
lem to come up with a definition of
semantic conflict that is neither too
strong nor too weak (and is decid-
able). Furthermore, the merge algo-
rithms developed so far are applicable
only to simple programming lan-
guages (not C or C11). For these
reasons, semantic merge tools have
not (yet?) made their way into prac-
tice.

Finally, operation-based merging
[Lippe and van Oosterom 1992] comes
up with a general algorithm that makes
no assumptions about the product
space. The algorithm takes two se-
quences of change operations and com-
bines them into a single sequence, de-
tecting both inconsistencies and conflicts.
However, the application of this algo-
rithm is complex because a huge search
space of potential merged operation se-
quences must be considered. Because of
its generality, the merge tool cannot
rely on any hints as to which operation
should be appended next and where
conflicting operations are positioned in
the input sequences.

Note that merge tools try to detect
conflicts in the product space (by detect-
ing noncommuting operations). Alterna-
tively, conflict detection can be per-
formed in the version space to some
extent. This approach is followed in
the COV system [Munch 1996], where
configuration rules are used to con-
strain change combinations. Conflicting
merges can be excluded by constraints
of the form c1 V c2 (mutual exclusion of
c1 and c2). Once such a constraint has
been set up, attempts to combine c1 and
c2 can be detected as erroneous before
performing the actual merge. However,
before c1 and c2 are known to conflict, it
is frequently necessary to combine them
(by raw merging) and test the result.

6. VERSION MODELS IN SCM SYSTEMS

After having characterized version mod-
els in general, we now take a look at
concrete systems. We draw a picture of
the SCM landscape by describing the
contributions of a representative selec-
tion of influential SCM systems. These
descriptions are based primarily on the
published scientific literature. Although
the following survey includes commer-
cial systems in addition to research pro-
totypes, we do not provide a comprehen-
sive overview of SCM systems available
in the commercial marketplace (see
Rigg et al. [1995] for such an overview).
Furthermore, our main goal is to illus-
trate different version models rather
than to evaluate the functionalities pro-
vided by SCM systems.

The survey focuses on the core issues
of versioning discussed in Sections 2
through 5. Further topics such as sys-
tem building, cooperation support,
workspace management, and distribu-
tion are mentioned briefly at best. As a
consequence, influential systems whose
main merits lie in these fields are not
included. For example, Make [Feldman
1979], Odin [Clemm 1995], and CAPITL
[Adams and Solomon 1995] are con-
cerned with system building, and NSE
[Adams et al. 1989] has contributed to
workspace management (hierarchy of
workspaces) and cooperation support
(optimistic concurrency control).

6.1 Overview

We have selected more than 20 SCM
systems that vary widely in their under-
lying version models. The evolution
graph in Figure 20 illustrates the evolu-
tion of SCM since the early ’70s. Each
node corresponds to a specific system
and briefly describes its original contri-
bution(s). Incoming edges express the
most important influences of previous
systems.

Before delving into the details, let us
make some global remarks.

—Initially, SCM was supported through
isolated tools covering specific aspects
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(e.g., SCCS [Rochkind 1975] for ver-
sioning of source objects). Later on,
integrated systems were developed
that combined the functionalities of
individual tools into a coherent envi-
ronment (e.g., DSEE [Leblang and
McLean 1985] or ClearCase [Leblang
1994]).

—The pioneers addressed many prob-
lems in an ad hoc manner. Subse-
quent systems addressed topics such
as intensional versioning in a more
systematic and general way (e.g.,
compare version selection by check-
out options to full-fledged logic-based
approaches such as ICE [Zeller
1995]).

—Many fundamental ideas are rather
old. For example, although change-
based versioning has been attracting
significant attention only recently,
the idea can be traced back at least to
the PIE system (change-based ver-
sioning of Smalltalk programs [Gold-
stein and Bobrow 1980]), which was
already developed in the late ’70s.

—Although early systems/tools were im-
plemented on top of the file system,

more recent systems increasingly use
database technology. This is demon-
strated by the Adele system, for ex-
ample, which evolved from a file-
based system with an ad hoc hard-
wired data model [Estublier 1985]
into an active object-oriented data-
base system supporting historical,
logical, and cooperative versioning
(revisions, variants, and workspaces,
respectively) [Estublier and Casallas
1994].

The evolution graph is traversed in
chronological order in Section 6.3. In-
stead of reading all system descriptions
sequentially, the reader may focus on
specific systems. Furthermore, the
edges of the evolution graph may serve
as “hypertext links.”

To ease orientation, we have clustered
SCM systems into families such as “ver-
sion graphs,” “conditional compilation,”
“change-based versioning,” and “pro-
gramming-in-the-large” (systems for
configuring modular programs). These
families should be viewed just as exam-
ples. They are neither disjoint (e.g., As-
gard supports change-based versioning

Figure 20. Evolution graph of SCM systems.
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on top of version graphs), nor do they
cover all SCM systems.

6.2 Taxonomy-Based Classification

In this section, we classify SCM systems
according to a taxonomy derived from
Sections 2 through 5. This taxonomy
provides a much more detailed and sys-
tematic classification than the catego-
ries introduced in the previous section.
Furthermore, we claim that this classi-
fication is orthogonal. Indeed, an impor-
tant contribution of this article is to
distinguish among different aspects
that used to be mingled together.

For example, according to our defini-
tion, change-based versioning just means
that versions are described in terms of
changes relative to some baseline. On
the other hand, the term has other con-
notations, resulting from the models ac-
tually realized in change-based systems:

—Intensional versioning: as explained
in Section 3.5, change-based version-
ing is not necessarily intensional (see
the discussion of change packages).
The converse is also not true (see,
e.g., the classical composition model,
which is state-based).

—Product versioning: although all
change-based systems happen to sup-
port global changes, there is no inher-
ent reason why change-based version-
ing could not be applied at the
component level. Conversely, there
are state-based systems (e.g., VOO-
DOO [Reichenberger 1994]) that
maintain versions at the product
level.

SCM systems are classified in Tables
I and II. These tables may be crossrefer-
enced while reading the system descrip-
tions in the next section. For each sys-
tem, there is a corresponding row in the
table. The columns are organized in a
three-level hierarchy. The first level de-
fines categories (“general,” “product
space,” etc.). Each category serves to
group multiple features each of which
corresponds to one dimension of the
classification scheme (“environment,”
“object management,” etc.).

A feature may have values from some
enumeration type (e.g., “tool-kit,” “lan-
guage-based,” “structure-oriented”). Each
feature is either single- or multivalued.
In the first case, the feature is anno-
tated with V and its value is indicated

Table I. Classification of SCM Systems (I)

Version Models • 263

ACM Computing Surveys, Vol. 30, No. 2, June 1998



by an x sign in the respective column. In
the second case, we use * to annotate
the feature and a 1 for each of its
values.

Some features are defined only par-
tially; they are not applicable to all
SCM systems. For example, “selection
order” is only meaningful for systems
based on AND/OR graphs, and not all
systems support intensional versioning.
Undefined values are indicated by
hatched entries.

The tables are explained briefly in the
following, ordered by categories.

General. Following Dart et al.
[1987], we distinguish among tool-kit,
language-based, and structure-oriented
environments; most SCM systems be-
long to the first class. For object man-
agement of the versioned object base, a
file system or a database system may be
used.

Product Space. The domain is spe-
cific if the SCM system deals with spe-
cific types of software objects; other-
wise, it is general. All systems classified
as specific deal with certain kinds of
programs; however the underlying con-
cepts may still be fairly general (e.g.,
conditional compilation). Concerning
granularity, there are some systems

that do not deal with the fine-grained
level (e.g., PCTE), and a few that do not
consider the coarse-grained level (e.g.,
the multiversion text editor MVPE).
The latter have undefined entries for
coarse-grained relationships. All other
systems support composition relation-
ships, but some of them do not take
dependencies into account.

Version Space. The structure feature
refers to the way the version space is
modeled. In some cases (e.g., Gandalf),
both version graphs and grids are suit-
able for representing the version space.
Similarly, extensional and intensional
versioning are nonexclusive (version
set). Virtually all systems support ex-
tensional versioning (i.e., reconstruction
of old versions, conditional compilation
being a remarkable exception), but
some do not consider intensional ver-
sioning. Finally, most SCM systems are
state- rather than change-based (ver-
sion specification). A few systems pro-
vide base mechanisms for both para-
digms (e.g., ICE and COV).

Interplay of Product and Version
Space. The selection order (during the
configuration process) can be applied
only to SCM systems based on AND/OR
graphs; in particular, it is not applied to

Table II. Classification of SCM Systems (II)
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systems derived from conditional compi-
lation. Note that the selection order fol-
lows from the topology of AND/OR
graphs, which can be defined freely in
some systems (e.g., DAMOKLES). The
external granularity is classified into
product, component, and total version-
ing. Finally, the deltas feature refers to
the efficient representation of atomic
software objects only, that is, sharing at
the coarse-grained level is not consid-
ered.

Intensional Versioning.8 With re-
spect to the underlying computational
paradigm, we distinguish between func-
tional configurators (e.g., conditional
compilation) and rule-based configura-
tors (e.g., DSEE or ClearCase). Classes
of configuration rules refer to the strict-
ness classes constraints, preferences,
and defaults and are applied only if the
SCM system distinguishes among dif-
ferent strictness classes. Finally, all
SCM systems supporting intensional
versioning (must) provide automatic
configurators. In some systems, the con-
figurator may also be used in interactive
mode (e.g., ICE or Adele).

6.3 Descriptions of SCM Systems

In the following, each system is de-
scribed briefly in turn. The system de-
scriptions are not organized according
to the tables presented in the previous
section (proceeding through the table
entries would be rather boring). In-
stead, we focus on the specific contribu-
tions of each system and its relations to
other systems.

6.3.1 Conditional Compilation. Con-
ditional compilation supports inten-
sional versioning at the fine-grained
level and has become popular particu-
larly in conjunction with the C program-
ming language [Kernighan and Ritchie
1978]. Although it was originally devel-
oped for a specific domain, the underly-
ing idea is fairly general. The source

text is interspersed with preprocessor
directives that refer to the values of
preprocessor variables (see Figure 12).
Thus conditional compilation uses inter-
leaved deltas with visible control ex-
pressions. A specific source version is
constructed by the preprocessor by fil-
tering out all fragments whose control
expressions evaluate to false. Source
version construction follows a functional
paradigm (no nondeterminism/back-
tracking). Note that conditional compi-
lation is a low-level and general mecha-
nism on top of which different version
models can be implemented (both state-
and change-based ones).

6.3.2 SCCS. SCCS [Rochkind 1975]
manages versions of text files. (Binaries
can also be stored, but delta storage is
not supported.) Versions are arranged
in a tree. To work on a version, it is
physically copied into a workspace (di-
rectory). When the user is done with his
or her changes, the modified version is
checked back into the SCCS repository.
SCCS uses interleaved deltas to store
versions in a space-efficient manner.
However, in contrast to conditional com-
pilation, this data structure is hidden.
Thus there are interleaved deltas at two
levels when a C file with preprocessor
directives is stored under SCCS control.
Although SCCS primarily supports
state-based versioning, it does provide
some low-level commands for control-
ling delta applications (and even fixing
deltas) in a change-based fashion.

6.3.3 PIE. An early approach to
change-based versioning has been de-
veloped at XEROX PARC [Goldstein
and Bobrow 1980]. PIE manages config-
urations of Smalltalk programs that are
internally represented by graph-like
data structures. Changes are considered
global and may affect multiple compo-
nents of a software product (product
versioning). Each change is placed in a
layer, and layers are aggregated into
contexts that act as search paths
through the layers. (DaSC [MacKay
1995] is based on a similar approach.)

8 Note that merge tools (Section 5.5) were not
taken into account here.
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This is illustrated in Figure 21, where
layers contain different implementa-
tions of methods m1, m2, m3 exported
by some class c.

When constructing a context, there
are two degrees of freedom: each layer
may either be included or omitted; and
the included layers can be arranged in
any sequential order. PIE provides rela-
tionships to document conditions for the
combination of layers. For example, A
depends_on B implies that each context
containing A should include B as well.
However PIE does not enforce any con-
straints. Rather, the documented rela-
tionships are merely used to warn the
user of possible inconsistencies.

6.3.4 RCS. RCS [Tichy 1982b, 1985]
differs from its predecessor SCCS in
several ways. RCS stores versions of
text files using directed deltas. The lat-
est revision on the main trunk can be
accessed directly (and therefore effi-
ciently), whereas all other revisions are
reconstructed by applying backward
and forward deltas. Furthermore, RCS
provides a set of built-in attributes such
as version status and symbolic name. In
particular, symbolic names may be at-
tached to all components belonging to a
consistent configuration. In this way,
symbolic names define threads through
the version graphs and make recon-
struction of configurations easier (see
Figure 10). However, support for inten-
sional versioning is rather limited (op-
tions of checkout commands referring to

version attributes); in particular, the
product structure is selected first so
that structural versioning cannot be
modeled.

6.3.5 Gandalf. The Gandalf project
[Habermann and Notkin 1986] was ded-
icated to the generation of structure-
oriented software development environ-
ments based on abstract syntax trees.
Gandalf C is an environment instance
that supports C at the programming-in-
the-small level. Programming-in-the-
large and version control are handled by
the SVCE subsystem [Kaiser and
Habermann 1983], which is based on
the Intercol module interconnection lan-
guage [Tichy 1979]. Each module has a
unique and immutable interface and po-
tentially multiple realization variants,
each of which evolves into a sequence of
revisions. Thus revisions and variants
are separated rather than intermixed
(SCCS, RCS). A realization of an inter-
face can be provided either by writing C
code, or can be composed of other mod-
ules that jointly provide the resources
listed in the export interface (composi-
tions). Gandalf enforces syntactic con-
sistency of all interfaces and realiza-
tions deposited into the public database.
Therefore it can guarantee syntactic
consistency of all constructed configura-
tions.

Gandalf supports intensional con-
struction of source configurations
through a configurator that performs
intertwined AND/OR selections. The

Figure 21. Layers and contexts in PIE.
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configurator is driven by simple config-
uration rules that are classified into
constraints, preferences, and defaults.
Constraints and preferences are at-
tached to imports or compositions and
select specific variants/revisions. If no
selection rules are given, the standard
variant/revision is selected by default.

6.3.6 DSEE. DSEE [Leblang and
McLean 1985; Leblang and Chase 1984;
Leblang et al. 1988] integrates func-
tions that were previously provided in-
dependently by tools such as Make and
SCCS/RCS. Furthermore, DSEE sup-
ports rule-based construction of source
configurations and improves system
building by maintaining a cache of de-
rived objects, using more accurate dif-
ference predicates than Make and par-
allelizing builds over a network of
workstations.

Source code versions are arranged in
version graphs as shown in Figure 4. A
configuration is specified by a system
model and a thread through the version
graphs of components (Figure 22). The
system model describes a software sys-
tem in terms of source objects and their
relationships; furthermore, it also con-
tains build rules. Versions are not refer-
enced in the system model. Rather, they
are selected by configuration rules in
the configuration thread. Rules are or-
dered sequentially according to their
priorities. The DSEE configurator se-

lects the product structure first,9 which
is described in the system model, and
adds version bindings, resulting in a
bound configuration thread that is used
for system building.

6.3.7 P-Edit/MVPE. P-Edit [Kruskal
1984] and its successor MVPE [Sarnak
et al. 1988] support simultaneous edit-
ing of multiple versions of a text file. A
text file is composed of fragments (se-
quences of words). As in conditional
compilation, control expressions are
used to determine the visibilities of
fragments. Unlike conditional compila-
tion, P-Edit and MVPE hide these con-
trol expressions when the text file is
displayed. Furthermore, control expres-
sions are maintained automatically. A
write filter (edit set) controls which ver-
sions will be affected by a change, a
read filter (view) selects a single version
to be displayed to the user. The version
space is modeled as a grid.

In Figure 23, the table on the left-
hand side lists all versions determined
by the attributes os, ws, and db. A view
corresponds to a single row of the table,
and an edit set is specified in a query-
by-example style with the help of regu-
lar expressions (e.g., the edit set in Fig-

9 However, it should be noted that the system
model itself is version-controlled: thus, a version
of the system model is selected in an initial step
not shown in Figure 22.

Figure 22. DSEE.
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ure 23 denotes all Unix versions). When
displaying a view, the editor highlights
fragments belonging to all versions in
the edit set (a change should be con-
fined to these fragments).

6.3.8 Cedar. The Cedar environment
[Teitelman 1984] supports program-
ming in Cedar, a modular language de-
veloped at XEROX PARC. Modules of
Cedar programs contain generic refer-
ences to other modules. Notably, a cli-
ent module may use multiple realiza-
tion versions of an imported interface
simultaneously. The Cedar System
Modeler [Lampson and Schmidt 1983b,
1983a] takes care of compiling and link-
ing Cedar programs. A system model in
Cedar differs considerably from what is
also called system model in DSEE. In
particular, a Cedar system model binds
generic references to specific versions.
System models describe configuration
versions in terms of immutable source
files and therefore roughly correspond
to bound configuration threads in DSEE
(extensional versioning, “version-first”
selection).

6.3.9 Adele I. In contrast to Gandalf,
Adele I [Estublier 1985; Belkhatir and
Estublier 1986] was developed in the
mid-’80s for tool-kit environments (a
posteriori integration of file-based
tools). Adele generalizes Gandalf’s ap-
proach to configuring modular programs
in several ways. Whereas each Gandalf
module has a unique interface, an Adele
family may have multiple versions of its
interface. Each interface version and its
realization variants and revisions corre-
spond to a module in Gandalf. Like

Gandalf, Adele explicitly distinguishes
three different classes of rules, namely,
constraints, preferences, and defaults.
However, the configuration rules are
more sophisticated and allow attribute-
based version selection. Using these
rules, short intensional descriptions can
be given for large and complex configu-
rations.

6.3.10 DAMOKLES. DAMOKLES
[Dittrich et al. 1986; Gotthard 1988] was
among the first systems applying data-
base technology to SCM. DAMOKLES is
based on an EER data model featuring
composite objects, structural inheri-
tance at both type and instance level,
versioning, and database hierarchies.
Composite objects may overlap at the
instance level (acyclic graphs), and they
may be defined recursively at the type
level. Objects may carry both short and
long attributes, and the smallest granu-
larity (leaves of the composition hierar-
chy) may be chosen as desired (e.g.,
coarse-grained objects such as modules
or fine-grained objects such as state-
ments).

The version model, which is built into
the data model rather than defined on
top of it, is partly influenced by SCCS/
RCS. Versions of one object are ar-
ranged in a version graph, which may
be defined as a sequence, tree, or DAG
in the database schema (see also Figure
3). Any object type may be defined as
versioned (i.e., total versioning of ob-
jects at all levels of the composition
hierarchy). Versions may even have ver-
sions themselves (recursive versioning).
Any structure of an AND/OR graph may

Figure 23. MVPE.
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be represented (product first, version
first, intertwined). A version inherits
from its generic object all attributes and
components (delegation).

6.3.11 PCTE. PCTE [Wakeman and
Jowett 1993] is a standard for open
repositories that provides an interface
for implementing software engineering
tools. PCTE is based on a data model
combining concepts from the EER model
and the UNIX file system. Each object
may have at most one long attribute for
which UNIX-like file operations are pro-
vided. Links between objects are classi-
fied into predefined categories, includ-
ing composition links for representing
composite objects.

PCTE offers basic versioning facili-
ties [Oquendo et al. 1989]. Unlike
DAMOKLES, the version model is de-
fined on top of the data model. Versions
of composite objects represent bound
configurations (“version-first” selection).
A new version is created by recursively
copying the whole composition hierar-
chy and establishing successor relation-
ships between all components. Incoming
and outgoing links are copied selectively
(depending on link categories and cardi-
nalities).

6.3.12 Shape. Shape [Lampen and
Mahler 1988; Mahler and Lampen 1988]
is an SCM system that combines ideas
drawn from Make, DSEE, and RCS. An
attributed file system stores versioned
files using directed deltas [Obst 1987].
A Shape file consists of both version
selection rules and build rules and
roughly corresponds to a Make file plus
a DSEE configuration thread. Derived
objects are stored in a cache.

The original contribution of Shape
lies in its integrated variant manage-
ment [Mahler 1994]. Variant attributes
are used in version selection rules. Fur-
thermore, a set of bindings is attached
to each variant. Each binding associates
the name of an attribute with a value.
Bindings control in which order directo-
ries are searched for source objects
(variant segregation), which set of files

is passed to a compiler or linker (struc-
tural variation), which options are
passed to a preprocessor (single-source
variation, conditional compilation), and
which flags are passed to a compiler or
linker (derivation variations). In this
way, Shape integrates a blend of heter-
ogeneous mechanisms previously han-
dled separately from each other.

6.3.13 Aide-de-Camp. Aide-de-Camp
[Cronk 1992; Software Maintenance
and Development Systems 1990] de-
scribes versions of products in terms of
change sets relative to a baseline. A
change set describes logically related,
global changes that may affect multiple
files. The finest grain of change is a text
line. In contrast to layers in PIE,
change sets are totally ordered accord-
ing to their creation times. If change set
c1 was created before c2, c1 will be
applied before c2 when both change sets
are included in some product version. In
the case of overlaps, c2 overrides the
changes in c1.

Each change set may be viewed as a
switch that can be turned either on or
off (see Figure 6). Aide-de-Camp detects
inconsistencies when reconstructing a
product version from a baseline and a
sequence of change sets (e.g., modifica-
tions to nonexisting text lines). Further-
more, Aide-de-Camp provides a three-
way merge tool for conflict detection.
Unlike PIE, Aide-de-Camp does not
support relationships that can be used
to detect inconsistent combinations of
change sets.

6.3.14 COV. COV [Lie et al. 1989;
Munch et al. 1993] denotes the version
model underlying the SCM subsystem of
the EPOS software engineering environ-
ment [Conradi et al. 1994]. EPOS is
based on an EER data model, where
files are represented by entities with
long attributes. A versioned database
consists of fragments corresponding, for
example, to groups of attributes or se-
quences of text lines. Similarly to condi-
tional compilation, each fragment is an-
notated with a control expression called
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visibility. Visibilities refer to global
Boolean options that constitute an n-
dimensional version grid. Like MVPE,
COV distinguishes between read and
write filters, called ambition and choice,
respectively. A choice is a complete set
of option bindings (single version). An
ambition contains a subset of the option
bindings of the choice and corresponds
to some region of the version space. The
ambition defines the versions to be af-
fected by a change, and the choice deter-
mines the version presented to the user.

COV stands for change-oriented ver-
sioning, which suggests a specific inter-
pretation of options: each option corre-
sponds to a global change that can be
either included or omitted when config-
uring a product version. In fact, both
state- and change-based version models
can be expressed with options [Conradi
and Westfechtel 1997]. For example,
version graphs may be represented with
the help of configuration rules [Gulla et
al. 1991] that constrain delta applica-
tion (e.g., implication for revision chains
and mutual exclusion for branches). In
particular, these configuration rules
distinguish COV from change-based
systems, such as Aide-de-Camp or PIE,
which provide little support for exclud-
ing inconsistent change combinations
[Conradi and Westfechtel 1996].

In COV, configuration rules are not
only used passively for detecting incon-
sistent selections. In Munch [1996], a
version-selection tool is presented that
actively supports the user in setting up
consistent ambitions and choices by au-
tomatically deducing option bindings
from configuration rules.

6.3.15 SIO. SIO [Bernard et al.
1987; Lavency and Vanhoedenaghe
1988] extends relational database tech-
nology with deductive rules for version
selection. In SIO, a software product
consists of a set of modules each of
which is represented by a relation. Each
tuple of a relation corresponds to a sin-
gle version characterized by a set of
attributes used for version selection.

Configurations are described in an

SQL-like manner. Configuration rules
in queries are classified into constraints
and preferences, the latter of which can
be ordered sequentially. Preferences act
as filters that are applied only if the
resulting set of versions is not empty.

In addition, the rule base contains
constraints specified by compatibility
rules. A compatibility rule is an asser-
tion in a restricted first-order predicate
calculus. The conditions under which
two versions from different modules are
compatible are stated in terms of ver-
sion attributes. Due to the restricted
form of constraints, SIO can efficiently
check for contradictions between them.

6.3.16 Inscape. Inscape [Perry 1989]
goes beyond Gandalf and Adele in ad-
dressing semantic rather than syntactic
consistency. Operations exported by a
module are annotated with Hoare-like
pre- and postconditions. The Inscape en-
vironment assists the user in construct-
ing semantically consistent programs in
various ways (inference of pre- and
postconditions from the implementation
of an operation, detection of unsatisfied
preconditions at call sites of operations,
etc.).

Version control [Perry 1987] is per-
formed at a semantic level and ad-
dresses substitutability of operation ver-
sions. To this end, Inscape defines (and
checks) various compatibility predicates
(between versions v1 and v2) that en-
sure either global or local substitutabil-
ity. In the global case, v1 can be substi-
tuted for v2 without having to inspect
the call sites. In contrast, local substi-
tutability refers to specific call sites.

6.3.17 POEM. POEM [Lin and Reiss
1995, 1996] is an environment for pro-
gramming in C/C11 that strives to sim-
plify SCM at the user interface. To this
end, SCM is provided in terms of mod-
ules; that is, SCM matches the logical
abstractions made by programmers. All
components of a module (including
source code, object code, and documen-
tation) are aggregated into a single ob-
ject called a software unit. Software
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units are connected by relationships
that represent dependencies between
source objects (see Figure 1(d)).

For each software unit, a set of opera-
tions is provided for editing, building,
and version control. Versions of one
software unit are arranged in a version
tree. A version of a software unit
uniquely determines all versions of
units on which it depends (“version-
first” selection, see Figure 8(b)).

6.3.18 CoMa. CoMa [Westfechtel
1994, 1996] manages configurations of
engineering design documents and has
been applied to both software engineer-
ing and mechanical engineering. The
CoMa model integrates composition hi-
erarchies, dependencies, and versions
into a coherent framework based on a
small set of concepts. Configurations
are versioned objects whose components
are connected by dependencies. Version
graphs are maintained for both docu-
ments and configurations.

CoMa is based on attributed graphs.
The underlying model was defined by a
programmed graph rewriting system
using the PROGRES specification lan-
guage [Schürr et al. 1995]. At the imple-
mentation level, the database system
GRAS [Kiesel et al. 1995] is used, which
offers primitives for version control
(graph deltas) but does not introduce a
version model (this is done on top of the
data model).

Finally, for software engineering ap-
plications, a structure-oriented merge
tool [Westfechtel 1991] provides for
three-way merging of versions of soft-
ware documents (e.g., requirements def-
initions, software architectures, module
implementations) that are internally
represented as abstract syntax graphs.
The merge tool preserves context-free
correctness and detects certain kinds of
context-sensitive conflicts by analyzing
bindings of identifiers to their declara-
tions.

6.3.19 ClearCase. ClearCase [Leb-
lang 1994] differs from its predecessor
DSEE in several aspects. DSEE ver-

sions only files; however, ClearCase
manages versions of directories as well.
All kinds of versioned objects are uni-
formly denoted as elements. The ver-
sioned file system may be accessed
through a single-version view (configu-
ration thread) defined by a configura-
tion description. The view is a filter that
provides tools with the illusion of work-
ing in a single-version environment (vir-
tual file system).

In contrast to DSEE, generic refer-
ences to elements are bound dynami-
cally only when an element is accessed
(there is no precomputed version map).
Furthermore, in ClearCase the system
model is accessed in the same way as
any other element (whereas in DSEE it
is used for constructing a bound config-
uration thread; see also Figure 22).

Configuration rules are similar to
those offered by DSEE and are used to
establish workspaces for developers and
to control change propagation between
these workspaces. A stable work envi-
ronment may be set up by static rules
(referring to specific versions). Dynamic
rules are used to see recent changes
performed by other developers.

To support distributed SCM, ClearCase
assigns ownerships to branches in ver-
sion graphs [Allen et al. 1995]. Each site
appends revisions to its allocated branch.
After having imported new revisions from
another site, three-way merging is used
to combine local and remote changes.

6.3.20 PCL. PCL [Tryggeseth et al.
1995], the configuration language devel-
oped in the PROTEUS project, is influ-
enced by conditional compilation and
module interconnection languages (in
particular, SySL [Sommerville and
Thomson 1989]). PCL is designed to
manage different types of variants at
the coarse-grained level. Variation of
the logical structure refers to the de-
composition of a system into logical
components (an example was given in
part (b) of Figure 12). Variation of the
physical structure means that a logical
component may be mapped in different
ways into physical components (files re-
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siding in directories). Finally, variation
of system building occurs when a source
object is compiled in different ways with
different compilation switches.

All kinds of variations are controlled
with a single mechanism, namely, at-
tributes. In a configuration description,
some of these attributes are assigned
specific values. The configuration pro-
cess then proceeds top-down, resolving
logical and physical variation by means
of attributes (functional configurator).
When all physical components have
been determined, a Make file is gener-
ated as a final step.

6.3.21 VOODOO. VOODOO [Reichen-
berger 1994, 1995] is a file-based SCM
system that supports orthogonal version
management. Similarly to Gandalf and
Adele, revisions and variants are sepa-
rated from each other rather than inter-
mixed in version graphs. However,
VOODOO inverts the selection order
and selects the revision first. Further-
more, versioning is applied at the prod-
uct level rather than the component
level. Through a carefully designed user
interface, VOODOO tries to make ver-
sion management as simple as possible.

For a given revision, software objects
are organized hierarchically in a project
tree whose leaves represent versioned
components. A set of globally defined
variants is associated with each version.
Based on the three-dimensional model
shown in Figure 11, VOODOO provides
different views on a software product.
For example, when the user first selects
a product revision and then a variant, a
project tree is displayed that is purged
from all components not belonging to
this variant.

6.3.22 Adele II. Adele II, the current
version of Adele [Estublier and Casallas
1994, 1995; Estublier 1996], differs con-
siderably from the initial version de-
scribed earlier in this section. In partic-
ular, the data-modeling capabilities
have been improved and generalized.
Now Adele may be viewed as an active
object-oriented database system with

general facilities for composite objects,
versioning, workspaces, and process
management. On top of these, dedicated
SCM tools may be built (e.g., the Adele
configurator described earlier).

Adele distinguishes between three or-
thogonal dimensions of versioning [Es-
tublier and Casallas 1995]. Historical
versioning refers to the time dimension
and introduces temporal database sup-
port. A versioned object evolves linearly
along the time axis. Attributes are di-
vided into three classes: common at-
tributes shared by all versions, version-
specific mutable attributes, and version-
specific immutable attributes (see also
Figure 13). Updates to immutable at-
tributes result in creating a new ver-
sion. Logical versioning (variants) is
supported through set-valued attributes
(e.g., a module may have multiple real-
ization variants coexisting at a given
time). Cooperative versioning is realized
with the help of typed workspaces [Es-
tublier 1996]. A workspace type defines
the types of objects and relationships it
contains, as well as propagation policies
for exchange of versions between neigh-
bors (both vertically and horizontally).

6.3.23 Asgard. Asgard [Micallef and
Clemm 1996], which has been realized
on top of ClearCase, provides change-
based versioning on top of version
graphs. Thus it inverts the approach
followed by COV, where version graphs
may be introduced on top of change-
based versioning by defining constraints
on the combination of changes. In As-
gard, these constraints are derived from
the version graphs of components.

Each component version is tagged
with the name of the activity (Asgard’s
term for change) that created it. A
workspace is defined by a baseline and
a set of activities A, one of which is
designated as the current activity. If a
version was created by some activity
a [ A, all versions on the path from the
baseline must have been created by
some other activity a9 [ A (complete
selection). Furthermore, there must be
a unique maximal element (unique se-
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lection). In the case of a selection error,
the user must either add further activi-
ties to A or apply a merge tool to resolve
an ambiguity.

6.3.24 ICE. Like COV, ICE [Zeller
and Snelting 1995] is derived from con-
ditional compilation and represents a
versioned object base as a set of frag-
ments that are tagged with control ex-
pressions. COV and ICE differ with re-
spect to their underlying logic calculus.
ICE is based on feature logic: a feature
corresponds to an attribute whose value
is defined by a feature term. For exam-
ple, [ws : X11] means that the ws fea-
ture has the value X11. In general, a
feature term denotes a set of potential
values and may be composed by a wide
range of operators such as unification,
subsumption, negation, and the like
[Zeller 1996]. Probably the most impor-
tant of these is unification, which is
used to compose configurations (the fea-
ture terms of component versions are
unified). A configuration is inconsistent
if unification fails (empty intersection of
value sets as, e.g., in [ws : X11] u [ws :
Windows]).

Feature logic may be employed as a
base mechanism on top of which differ-
ent version models may be realized
(uniform version model). In Zeller
[1995] and Zeller and Snelting [1997],
feature logic is used to realize the
checkout/checkin model, the composi-
tion model, the long transaction model,
and the change set model as introduced
by Feiler [1991a] (see also Section 7.1).

Like COV, ICE supports multiversion
editing. However, there is no distinction
between read and write filters. Rather,
ICE presents all versions to be edited to
the user, using the syntax of conditional
compilation. To this end, feature terms
are mapped onto preprocessor directives
[Zeller 1996]. Partial evaluation is used
to remove all fragments whose feature
terms cannot be unified with the sub-
mitted query. Like ClearCase, ICE sup-
ports a virtual file system to enable
smooth tool integration.

7. RELATED WORK

We have given a comprehensive descrip-
tion of the current state of the art of
version models for SCM. We have fo-
cused mainly on the organization of the
version space and the flexible construc-
tion of consistent configurations from
intensional specifications. Furthermore,
we have described and classified a sig-
nificant number of representative SCM
systems. In Section 7.1, we discuss re-
lated surveys conducted earlier (1988
through 1991). Subsequently, we point
out how the work presented here is re-
lated to other disciplines.

7.1 Related Work on Version Models

Two overviews were presented in 1988
at the first SCM workshop [Winkler
1988], which has launched a (still ongo-
ing) series of follow-ups.10 Tichy’s
[1988] paper introduces basic notions
such as software object, source and de-
rived object, and the like, and discusses
version graphs, system building, and
version selection based on AND/OR
graphs. Furthermore, the paper at-
tempts to unify the terminology in the
SCM field by means of a glossary. Es-
tublier [1988] complements Tichy’s pre-
sentation by focusing on the construc-
tion of consistent configurations. In
combination, these papers reflect the
state of the art as of 1988.

The Software Engineering Institute
(SEI) has published several papers that
review and survey the state of the art in
SCM [Brown et al. 1991; Dart 1991,
1992b]. Perhaps the most influential of
these was written in 1991 by Feiler
[1991a], who classified the models un-
derlying SCM systems into four catego-
ries corresponding to different ways in
which a user interacts with an SCM
system. In the checkout/checkin model,
component versions are transferred in-
dividually between repository and work-
space. The composition model supports

10 Please see Tichy [1989], Feiler [1991b], Feld-
man [1993], Estublier [1995], Sommerville [1996],
and Conradi [1997].
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version selection through rules and as-
sists the user in selecting consistent
combinations of component versions
(“product first”). In the long transaction
model, a user connects to a long trans-
action and operates on a configuration
version (“version first”). Finally, in the
change set model a configuration is de-
scribed in terms of change sets each of
which aggregates all modifications per-
formed in response to some change re-
quest.

The classification proposed by Feiler
helps in understanding different para-
digms underlying SCM systems. Fur-
thermore, the models are evaluated by
discussing their merits and shortcom-
ings. Unfortunately, the classification is
not orthogonal. The composition model
and the checkout/checkin model are not
alternatives; rather, the former is built
on top of the latter. Furthermore, long
transactions can be used in combination
with any approach to specifying a con-
figuration.

In 1990, Katz [1990] surveyed version
models for engineering databases. Katz
primarily considers electrical engineer-
ing (CAD) and only mentions a few soft-
ware engineering approaches. Although
both domains have evolved almost inde-
pendently for a long time, many paral-
lels do exist [Dart 1992a]. Katz intro-
duces the following concepts: organizing
the version set (histories), dynamic con-
figuration mechanisms (binding of ge-
neric references), hierarchical composi-
tions (versions of composite objects),
version-grouping mechanisms (to repre-
sent variants), instances versus defini-
tions (instances of component versions
may have properties that depend on the
respective contexts in configurations),
change notification and propagation
(when and where to propagate changes),
and object sharing mechanisms (work-
spaces).

In several aspects, our view of version
models goes beyond the work presented
by Katz. His paper focuses on ap-
proaches based on version graphs and
restricted to extensional versioning at
the component level. Intensional ver-

sioning is provided only at the configu-
ration level, resulting in the composi-
tion model introduced by Feiler. As we
have shown, there are radically differ-
ent approaches such as conditional com-
pilation that are not based on version
graphs at all. Furthermore, Katz pri-
marily discusses state-based version-
ing. In contrast, this article covers
change-based versioning as well and
investigates the relations among these
complementary approaches. Finally, con-
figuration rules and the consistency
problems of intensional versioning are
discussed only briefly by Katz.

7.2 Related Disciplines

Version management is related to many
other disciplines of computer science. In
the following, these relations are de-
scribed briefly. A major challenge of fu-
ture research consists of clarifying the
relations to these disciplines.

Temporal databases [Tansel et al.
1993; Snodgrass 1992] record the evolu-
tion history of data such that previous
states can be retrieved in addition to
the current state. Temporal databases
focus solely on the time dimension and
cover neither variants nor change-based
versioning. Furthermore, they often dis-
tinguish between valid time (time in the
real world) and transaction time (time
of recording a fact in the database). This
distinction is not relevant for SCM be-
cause software objects do not represent
real-world objects existing indepen-
dently of the database.

Different approaches have been devel-
oped to accommodate changes to the
database schema. In the case of schema
evolution, only the current version of
the schema is valid, and all data must
be converted (in lazy or eager mode) in
order to maintain the consistency of the
database. In contrast, schema version-
ing [Roddick 1995] makes it possible to
view the data under different versions
of the schema. In SCM systems, ver-
sioning of the schema (and other meta-
data such as configuration rules) is
rarely considered seriously. On the

274 • R. Conradi and B. Westfechtel

ACM Computing Surveys, Vol. 30, No. 2, June 1998



other hand, schema versioning often
does not take the versioning of instance
data into account.

Deductive databases [Das 1992; Ra-
mamohanarao and Harland 1994; Ra-
makrishnan and Ullman 1995] provide
for persistent storage of facts and rules
and are usually based on a Prolog-like
data model. Deductive capabilities are
urgently needed for intensional version-
ing. On the other hand, deductive data-
bases have been employed only rarely in
SCM [Zeller 1995; Bernard et al. 1987;
Lavency and Vanhoedenaghe 1988].
Rather, many SCM systems incorporate
home-grown deductive components that
have been developed in an ad hoc man-
ner.

It has been recognized for a long time
that the ACID principle cannot be
transferred from short to long transac-
tions [Barghouti and Kaiser 1991; Kai-
ser 1995; Feiler 1991a]. Rather, precom-
mit cooperation is required in order to
coordinate long-lasting development
and maintenance tasks. Customizable
policies have been developed to control
cooperation. Many approaches to long
transactions do not take versioning into
account [Barghouti and Kaiser 1991].
This is a severe restriction since ver-
sions play a crucial role in cooperation
control [Estublier and Casallas 1995].
So far, only a few SCM systems support
long transactions [Conradi and Malm
1991; Godart et al. 1995]. Many others
merely provide workspaces and mecha-
nisms for controlling change propaga-
tion between them [Estublier 1996].

Software process modeling [Finkel-
stein et al. 1994; Curtis et al. 1992;
Rombach and Verlage 1995] is con-
cerned with the definition, analysis, and
enactment of models of real-world soft-
ware processes. Many different para-
digms have been applied to process
modeling [Conradi et al. 1991], includ-
ing active databases [Estublier and Ca-
sallas 1994], rules [Kaiser et al. 1988;
Peuschel and Schäfer 1992], nets [Deit-
ers and Gruhn 1990; Bandinelli et al.
1993; Jaccheri and Conradi 1993;
Heimann et al. 1996], imperative pro-

gramming [Sutton et al. 1995], and hy-
brids of these. In order to integrate
SCM and process modeling, functional
overlap has to be considered (e.g., be-
tween build tools and rule-based process
engines such as Marvel [Kaiser et al.
1988]). Furthermore, the definition of
“product space” must be widened and
must cover process models as well. Fi-
nally, dynamic interactions between
product and process need to be taken
into account (e.g., replanning of task
nets after changes to the product struc-
ture [Liu and Conradi 1993]).

Tool integration [Wasserman 1990] is
provided by SCM systems through
workspaces that hide versioning from
the tools. Workspaces can be separated
physically from the versioned database
[Rochkind 1975], or be realized as up-
datable database views (virtual work-
spaces, e.g., virtual file systems [Leb-
lang 1994; Fowler et al. 1994]). Current
SCM systems focus on integration of
file-based tools and offer poor support
for integrating tools operating on data-
bases (e.g., CASE tools [Wallnau 1992]).
The problem of integrating heteroge-
neous database systems without sacri-
ficing their autonomy is addressed by
federated database systems [Sheth and
Larson 1990] and data warehouses
[Hammer et al. 1995]. Furthermore, dif-
ferent kinds of platforms or frameworks
offer plug-in interfaces for tool integra-
tion, for example, broadcast message
servers [Reiss 1990] and object request
brokers [Soley and Kent 1995]. Future
generations of SCM systems need to
interface with these frameworks.

Current SCM systems are severely
limited with respect to managing depen-
dencies between software objects. First,
they are mainly concerned with depen-
dencies between source code modules
rather than with dependencies among
any kinds of software objects produced
in the software lifecycle. Second, they
are not capable of representing fine-
grained dependencies, which is crucial
to provide for detailed traceability
throughout the whole lifecycle. These
problems can partly be addressed by
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applying the concepts of hypertext sys-
tems [Conklin 1987] to the software en-
gineering domain.

The emerging discipline of software
architectures [Shaw and Garlan 1996]
stresses the importance of a high-level
description of software products above
the source code level. The software ar-
chitecture acts as a central document
for impact analysis, planning of devel-
opment and maintenance activities, di-
vision of labor, understanding the inter-
faces between different components,
and so on [Nagl 1990]. SCM may benefit
from software architectures in some
ways. First, SCM systems focus primar-
ily on source code and represent the
product structure by rather low-level
system models that are mainly used to
drive system building. Architecture-ori-
ented SCM will improve the software
process through a high-level product de-
scription. Second, the architecture of
the SCM system is a major research
challenge as well. In order to design an
appropriate architecture, a clear under-
standing of the relations among an SCM
system and other software components
(e.g., process management systems,
broadcast message servers, object re-
quest brokers) needs to be developed.

8. CONCLUSION

Over the past 20 years, many ap-
proaches to versioning have been devel-
oped. Now we have gained a sufficient
level of understanding to classify these
approaches. Initial attempts to develop
a uniform model have been undertaken
[Zeller 1995; Zeller and Snelting 1997].
Furthermore, the recent evolution of
SCM systems shows that their underly-
ing version models are converging to an
increasing extent. For example, change-
based versioning has been realized on
top of version graphs and vice versa.

Based on the material presented in
this article, we believe that a version
model can be developed that integrates
extensional and intensional versioning,
state-based and change-based version-
ing, revisions and variants, construction

of source and derived versions, as well
as workspaces and long transactions
into a coherent framework [Conradi and
Westfechtel 1997]. This framework is
not expected to provide “the” model;
rather, it must be customizable to suit
the needs of a specific application.

In the future, we expect that more
and more SCM systems will be built
with the help of database technology.
Having gained a better understanding
of version models, versioning can be
pulled out of SCM systems and moved
into database systems. In particular, in-
tensional versioning will benefit from
the powerful facilities of an underlying
deductive database system.
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