
Formalizing Architectural Connection�

16th International Conference on Software Engineering, Sorrento, Italy, May, 1994

Robert Allen David Garlan

Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract

As software systems become more complex the over-

all system structure { or software architecture { be-

comes a central design problem. An important step

towards an engineering discipline of software is a for-

mal basis for describing and analyzing these designs.

In this paper we present a theory for one aspect of ar-

chitectural description: the interactions between com-

ponents. The key idea is to de�ne architectural con-

nectors as explicit semantic entities. These are speci-

�ed as a collection of protocols that characterize each

of the participant roles in an interaction and how these

roles interact. We illustrate how this scheme can be

used to de�ne a variety of common architectural con-

nectors. We provide a formal semantics and show how

this leads to a sound deductive system in which archi-

tectural compatibility can be checked in a way analo-

gous to type checking in programming languages.

1 Introduction

As software systems become more complex the
overall system structure { or software architecture
{ becomes a central design problem. Design issues
at this level include gross organization and control
structure, assignment of functionality to computa-
tional units, and high-level interactions between these

�This research was sponsored by the National Science Foun-
dation under Grant Number CCR-9357792, by the Wright Lab-
oratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency
(ARPA) under grant number F33615-93-1-1330, and by Siemens
Corporate Research. The views and conclusions contained in
this document are those of the authors and should not be in-
terpreted as representing the o�cial policies, either expressed
or implied, of Wright Laboratory, the U.S. Government, or
Siemens Corporation. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

units. While the design of a good software architec-
ture has always been a signi�cant factor in the suc-
cess of any large software system, it is only recently
that the speci�c topic of software architecture has
been identi�ed as a focus for research and development
in workshops [?DesignWorkshop93, ?Dagstuhl93], govern-
ment funding and industrial development [?Mettala92].

The importance of software architecture for practic-
ing software engineers is highlighted by the ubiquitous
use of architectural descriptions in system documen-
tation. Most software systems contain a description
of the system in terms such as \client-server organi-
zation," \layered system," \blackboard architecture,"
etc. These descriptions are typically expressed infor-
mally and accompanied by box and line drawings in-
dicating the global organization of computational en-
tities and the interactions between them.

While these descriptions may provide useful docu-
mentation, the current level of informality limits their
usefulness. It is generally not clear precisely what is
meant by such an architectural description. Hence it
may be impossible to analyze the architecture for con-
sistency or infer non-trivial properties about it. More-
over, there is virtually no way to check that a system
implementation is faithful to its architectural design.

Evidently, what is needed is a more rigorous basis
for describing software architectures. At the very least
we should be able to say precisely what is the intended
meaning of a box and line description of some system.
More ambitiously, we should be able to check that
the overall description is consistent in the sense that
the parts �t together appropriately. More ambitiously
still, we would like a complete theory of architectural
description that allows us to reason about the behavior
of the system as a whole.

In this paper we describe a �rst step towards these
goals by providing a formal basis for specifying the
interactions between architectural components. The
essence of our approach is to provide a notation and

1

underlying theory that gives architectural connection
explicit semantic status. Speci�cally, we provide a
formal system for specifying architectural connector
types. The description of these connector types is
based on the idea of adapting communications pro-
tocols to the description of component interactions in
a software architecture.

Of course the use of protocols as a mechanism for
describing interactions between parts of a system is
not new. However, as we will show, there are three im-
portant innovations in our application of this general
idea to architectural description. First, we show how
the ideas that have traditionally been used to charac-
terize message communication over a network can be
applied to description of software interactions. Sec-
ond, unlike typical applications of protocols we distin-
guish connector types from connector instances. This
allows us to de�ne and analyze architectural connec-
tors independent of their actual use, and then later
\instantiate" them to describe a particular system,
thereby supporting reuse. Third, we show how a con-
nector speci�cation can be decomposed into parts that
simplify its description and analysis. This allows us to
localize and automate the reasoning about whether a
connector instance is used in a consistent manner in a
given system description.

We begin by describing a general framework for ar-
chitectural description and then briey characterize
the hard problems in developing a theory of architec-
tural connection. Next we outline our notation and il-
lustrate through examples how it is used to solve these
problems. Having motivated the approach we provide
a formal semantics and show how this leads to a sound
deductive system in which architectural compatibility
can be checked in a way analogous to type checking
in programming languages. Finally, we show how this
work is related to other approaches to architectural
description.

2 Requirements for a theory of
architectural connection

We take as our starting point a view of archi-
tectural description as a collection of computational
components together with a collection of connectors,
which describe the interactions between the compo-
nents. While this abstraction ignores some important
aspects of architectural description (such as hierarchi-
cal decomposition, assignment of computations to pro-
cessors, and global synchronization and scheduling), it
provides a convenient starting point for discussing ar-

chitectural description.

As a simple example, consider a system organized
in a client-server relationship. The components consist
of a server and a set of clients. The connectors deter-
mine the interactions that can take place between the
clients and the servers. In particular, they specify how
each client accesses the server. To give a more precise
de�nition of the system we must specify the behav-
ior of the components and show how the connectors
de�ne the inter-component interactions.

In this paper we are concerned with providing a
formal notation and theory for such architectural con-
nection. Before presenting our solution, however, it
is worth highlighting the properties of expressiveness
and analytic capability that an appropriate theory and
notation should have.

An expressive notation for connectors should have
three properties. First, it should allow us to spec-
ify common cases of architectural interaction, such
as procedure call, pipes, event broadcast, and shared
variables. Second, it should allow us to describe com-
plex dynamic interactions between components. For
example, in describing a client-server connection we
might want to say that the server must be initialized
by the client before a service request can be made.
Third, it should allow us to make �ne-grained distinc-
tions between variations of a connector. For instance,
consider interactions de�ned by shared variable access.
We would like to be able to distinguish at least the fol-
lowing variants: (a) the shared variable need not be
initialized before it is accessed; (b) the shared variable
must be initialized by a designated \owner" compo-
nent before it can be accessed; (c) the shared variable
must be initialized by at least one component, but it
doesn't matter which.

Descriptive power alone is not su�cient: the under-
lying theory should also make it possible to analyze

architectural descriptions. First, we should be able
to understand the behavior of a connector indepen-
dent of the speci�c context in which it will be used.
For example, we should be able to understand the ab-
stract behavior of a pipe without knowing what �lters
it connects, or even if the components that it con-
nects are in fact �lters. Second, we need to be able
to reason about compositions of components and con-
nectors. Speci�cally, our theory should permit us to
check that an architectural description is well-formed
in the sense that the uses of its connectors are com-
patible with their de�nitions. For example, we should
be able to detect a mismatch if we attempt to con-
nect a non-initializing client to a server that expects
to be initialized. Moreover, we would like these kinds

2

System SimpleExample
Component Server

Port provide [provide protocol]
Spec [Server speci�cation]

Component Client
Port request [request protocol]
Spec [Client speci�cation]

Connector C-S-connector
Role client [client protocol]
Role server [server protocol]
Glue [glue protocol]

Instances

s: Server
c: Client
cs: C-S-connector

Attachments

s.provide as cs.server;
c.request as cs.client

end SimpleExample.

Figure 1: A Simple Client-Server System

of checks to be automatable. Third, while mismatches
should be detectable, we would also like to allow ex-
ibility. For example, (as in Unix) we might want to
connect a �le to a �lter through a pipe, even though
the pipe expects a �lter on both ends. Hence, indepen-
dent speci�cation is analogous to type de�nitions for
programming languages; checking for well-formedness
is analogous to the use of type checking to guarantee
that all uses of procedures are consistent with their
de�nitions; requirements of exibility are analogous
to subtyping. In the remainder of this paper we show
how these goals can be realized.

3 Architectural description

We begin by describing our general approach to ar-
chitectural description. In the next section we return
to the issue of specifying connectors.

Figure ?? shows how a simple client-server system
would be described in the Wright architectural de-
scription language. The architecture of a system is de-
scribed in three parts. The �rst part of the description
de�nes the component and connector types. A compo-
nent type is described (for the purposes of this paper)
as a set of ports and a component-spec that speci�es
its function. Each port de�nes a logical point of inter-
action between the component and its environment.1

In this simple example Server and Client components

1Ports are logical entities: there is no implication that a port
must be realized as a port of a task in an operating system.

both have a single port, but in general a component
might might have more.

A connector type is de�ned by a set of roles and
a glue speci�cation. The roles describe the expected
local behavior of each of the interacting parties. For
example, the client-server connector illustrated above
has a client role and a server role. Although not shown
in the �gure, the client role might describe the client's
behavior as a sequence of alternating requests for ser-
vice and receipts of the results. The server role might
describe the server's behavior as the alternate han-
dling of requests and return of results. The glue spec-
i�cation describes how the activities of the client and
server roles are coordinated. It would say that the ac-
tivities must be sequenced in the order: client requests
service, server handles request, server provides result,
client gets result.

The second part of the system de�nition is a set of
component and connector instances. These specify the
actual entities that will appear in the con�guration. In
the example, there is a single server (s), a single client
(c), and a single C-S-connector instance (cs).

In the third part of the system de�nition, compo-
nent and connector instances are combined by pre-
scribing which component ports are attached as (or
instantiate) which connector roles. In the example,
the client request and server provide ports are \attached
as" the client and server roles respectively. This means
that the connector cs coordinates the behavior of the
ports c.request and s.provide. In a larger system, there
might be other instances of C-S-connector that de�ne
interactions between other ports.

4 Connector speci�cation

The preceding discussion raises a number of ques-
tions. How are ports, roles, and glue de�ned? What
does port instantiation mean? Are there checkable
constraints on which ports can be instantiated in
which roles? What kinds of analysis can be applied
to system con�gurations? We now provide answers to
these questions.

4.1 Process notation

As outlined above, the roles of a connector describe
the possible behaviors of each participant in an inter-
action, while the glue describes how these behaviors
are combined to form a communication. But how do
we characterize a \behavior," and how do we describe
the range of \behaviors" that can occur?

3

Our approach is to describe these behaviors as in-
teracting protocols. We use a process algebra to model
traces of communication events. Speci�cally, we use a
subset of CSP [?CSPBook] to de�ne the protocols of the
roles, ports and glue. (In what follows, we will assume
that the reader has some familiarity with CSP.)

While CSP has a rich set of concepts for describing
communicating entities, we will use only a small subset
of these, including:

� Processes and Events: A process describes an
entity that can engage in communication events.2

Events may be primitive or they can have asso-
ciated data (as in e?x and e!x, representing input
and output of data, respectively). The simplest
process, STOP, is one that engages in no events.
The event

p
is used represent the \success" event.

The set of events that a process, P, understands
is termed the \alphabet of P," or �P .

� Pre�xing: A process that engages in event e and
then becomes process P is denoted e ! P .

� Alternative: (\deterministic choice") A process
that can behave like P or Q, where the choice is
made by the environment, is denoted P Q . (
\Environment" refers to the other processes that
interact with the process.)

� Decision: (\non-deterministic choice") A pro-
cess that can behave like P or Q, where the choice
is made (non-deterministically) by the process it-
self, is denoted P uQ.

� Named Processes: Process names can be asso-
ciated with a (possibly recursive) process expres-
sion. Unlike CSP, however, we restrict the syntax
so that only a �nite number of process names can
be introduced. We do not permit, for example,
names of the form Namei , where i can range over
the positive numbers.

In process expressions ! associates to the right and
binds tighter than either or u. So e ! f ! P g !
Q is equivalent to (e ! (f ! P)) (g ! Q).

In addition to this standard notation from CSP we
introduce three notational conventions. First, we use
the symbol

p
to represent a successfully terminating

process. This is the process that engages in the success

2It should be clear that by using the term \process" we do
not mean that the implementation of the protocol would ac-
tually be carried out by a separate operating system process.
That is to say, processes are logical entities used to specify the
components and connectors of a software architecture.

event,
p
, and then stops. (In CSP, this process is

called SKIP.) Formally,
p def

=
p! STOP.

Second, we allow the introduction of scoped process
names, as follows: let Q = expr1 in R.

Third, as in CSP, we allow events and processes to
be labeled. The event e labeled with l is denoted l :e.
The operator \:" allows us to label all of the events
in a process, so that l : P is the same process as P ,
but with each of its events labeled. For our purposes
we use the variant of this operator that does not labelp
. We use the symbol � to represent the set of all

unlabeled events.
This subset of CSP de�nes processes that are essen-

tially �nite state. It provides sequencing, alternation,
and repetition, together with deterministic and non-
deterministic event transitions.

4.2 Connector description

To describe a connector type we simply provide pro-
cess descriptions for each of its roles and its glue. As
a very simple example, consider the client-server con-
nector introduced earlier.3 This is how it might be
written using the notation just outlined.

connector Service =
role Client = request!x! result?y ! Client u p
role Server = invoke?x! return!y ! Server

p

glue = Client.request?x! Service.invoke!x
!Service.return?y!Client.result!y!gluep

The Server role describes the communication behav-
ior of the server. It is de�ned as a process that repeat-
edly accepts an invocation and then returns; or it can
terminate with success instead of being invoked. Be-
cause we use the alternative operator (), the choice
of invoke or

p
is determined by the environment of

that role (which, as we will see, consists of the other
roles and the glue).

The Client role describes the communication behav-
ior of the user of the service. Similar to Server, it is a
process that can call the service and then receive the
result repeatedly, or terminate. However, because we
use the decision operator (u) in this case, the choice
of whether to call the service or to terminate is de-
termined by the role process itself. Comparing the
two roles, note that the two choice operators allow us

3We use simple examples in order to expose the central ideas.
The reader should not assume that this indicates an inability
to scale to realistic inter-component protocols. For example,
see [?Jifeng90] for a representative larger application of CSP to
protocol de�nition.

4

to distinguish formally between situations in which a
given role is obliged to provide some services { the case
of Server { and the situation where it may take advan-
tage of some services if it chooses to do so { the case
of Client.

The glue process coordinates the behavior of the
two roles by indicating how the events of the roles work
together. Here glue allows the Client role to decide
whether to call or terminate and then sequences the
remaining three events and their data.

The example above illustrates that the connector
description language is capable of expressing the tra-
ditional notion of providing and using a set of services
{ the kind of connection supported by import/export
clauses of module interconnection. To take a more
interesting example { one in which the power of the
approach becomes evident { consider the problem of
specifying a \shared variable" connector in such a way
that requirements of initialization are made explicit.

Figure ?? illustrates four possible speci�cations.4

The �rst, Shared Data1, indicates that the data does not
require an explicit initialization value. The second,
Shared Data2, indicates that there is a distinguished
role Initializer that must supply the initial value. The
third alternative, Shared Data3 is similar to the second
in that it has an explicit Initializer role, but it does
not require that the other participant wait for that
initialization to proceed. The �nal alternative, Bo-

gus, seems reasonable { the connector requires that
one of the participants initialize the variable, but does
not specify which one. However, if each participant
proceeds, legally, to perform an initial get, then the
connector will deadlock. We will return to the impor-
tant problem of detecting such anomalous behavior in
Section ??.

As a more complex example, consider the pipe con-
nector type. It might appear to be a simple matter to
de�ne a pipe: both the writer and the reader decide
when and how many times they will write or read, af-
ter which they will each close their side of the pipe.
In fact, the writer role is just that simple. The reader,
on the other hand, must take other considerations into
account. There must be a way to inform the reader
that there will be no more data. A pipe connector
that describes this behavior is shown in Figure ??.

4In these examples, for simplicity we ignore the data behav-
ior of the connector. In a fuller shared data connector descrip-
tion, each event would have a data parameter.

connector Shared Data1 =
role User1 = set!User1 u get!User1 u p
role User2 = set!User2 u get!User2 u p
glue = User1.set!glue User2.set!glue

User1.get!glue User2.get!glue
p

connector Shared Data2 =
role Initializer =
let A = set!A u get!A u p
in set!A

role User = set!User u get!User u p
glue = let Continue = Initializer.set!Continue

User.set!Continue
Initializer.get!Continue
User.get!Continue

p

in Initializer.set!Continue
p

connector Shared Data3 =
role Initializer =
let A = set!A u get!A u p
in set!A

role User = set!User u get!User u p
glue = let Continue = Initializer.set!Continue

User.set!Continue
Initializer.get!Continue
User.get!Continue

p

in Initializer.set!Continue
User.set!Continue

p

connector Bogus =
role User1 = set!User1 u get!User1 u p
role User2 = set!User2 u get!User2 u p
glue = let Continue = User1.set!Continue

User2.set!Continue
User1.get!Continue
User2.get!Continue

p

in User1.set!Continue
User2.set!Continue

p

Figure 2: Several Shared Data Connectors

5

connector Pipe =
roleWriter = write!Writer u close!p
role Reader =
let ExitOnly = close!p
in let DoRead = (read!Reader

read-eof!ExitOnly)
in DoRead u ExitOnly

glue = let ReadOnly = Reader.read!ReadOnly
Reader.read-eof
!Reader.close !p
Reader.close!p

in letWriteOnly = Writer.write!WriteOnly
Writer.close!p

in Writer.write!glue

Reader.read!glue

Writer.close!ReadOnly
Reader.close!WriteOnly

Figure 3: A Pipe Connector

5 Connector semantics

Informally, the meaning of a connector description
is that the roles are treated as independent processes,
constrained only by the glue, which serves to coordi-
nate and interleave the events.

To make this idea precise we use the CSP paral-
lel composition operator, k, for interacting processes.
The process P1kP2 is one whose behavior is permitted
by both P1 and P2. That is, for the events in the in-
tersection of the processes' alphabets, both processes
must agree to engage in the event. We can then take
the meaning of a connector description to be the par-
allel interaction of the glue and the roles, where the
alphabets of the roles and glue are arranged so that
the desired coordination occurs.

De�nition 1 Themeaning of a connector description

with roles R1, R2, : : :, Rn , and glue Glue is the pro-
cess:

Glue k (R1:R1 k R2:R2 k : : :k Rn :Rn)

where Ri is the (distinct) name of role Ri , and

�Glue = R1:� [R2:� [: : :[Rn :� [f
pg:

In this de�nition we arrange for the glue's alpha-
bet to be the union of all possible events labeled by
the respective role names (e.g. Client, Server), together
with the

p
event. This allows the glue to interact

with each role. In contrast, (except for
p
) the role al-

phabets are disjoint and so each role can only interact
with the glue. Because

p
is not relabeled, all of the

roles and glue can (and must) agree on
p

for it to oc-
cur. In this way we ensure that successful termination
of a connector becomes the joint responsibility of all
the parties involved.

6 Ports and connector instantiation

Thus far we have concerned ourselves with the de�-
nition of connector types. To complete the picture we
must also describe the ports of components and how
those ports are attached as speci�c connector roles in
the complete software architecture. (See Figure ??.)

In Wright, component ports are also speci�ed by
processes: The port process de�nes the expected be-
havior of the component at that particular point of
interaction. For example, a component that uses a
shared data item only for reading might be partially
speci�ed as follows:

component DataUser =
port DataRead = get!DataRead u p
other ports...

Since the port protocols de�ne the actual behav-
ior of the components when those ports are associated
with the roles, the port protocol takes the place of the
role protocol in the actual system. Thus, an attached
connector is de�ned by the protocol that results from
the replacement of the role processes with the associ-
ated port processes. More formally,

De�nition 2 The meaning of attaching ports
P1 : : :Pn as roles R1 : : :Rn of a connector with glue
Glue is the process:

Glue k (R1:P1 k R2:P2 k : : :k Rn :Pn):

Note that implicit in this de�nition of attachment
is the idea that port protocols need not be identical to
the role protocols that they replace. This is a reason-
able decision because it allows greater opportunities
for reuse. In the above example, the DataUser com-
ponent should be able to interact with another com-
ponent (via a shared data connector) even though it
never needs to set. As another example, we would ex-
pect to be able to attach a File port as the Reader role
of a pipe (as is commonly done in Unix when directing
the output of a pipe to a �le).

But this raises an important question: when is a
port \compatible" with a role? For example, it would

6

be reasonable to forbid DataRead to be used as the
Initializer role for Shared Data2 and Shared Data3 connec-
tors, since these require an initial set; clearly DataRead

will never provide this event. We consider this issue
in the next section.

7 Analyzing architectural descriptions

We now consider the kinds of analysis and check-
ing that are made possible by our connector notation
and formalism. Because of space considerations we
will limit ourselves to summarizing the main results:
details can be found elsewhere [?ConnectorsTR].

7.1 Compatibility (of a port with a role)

An important reason to provide speci�c de�nitions
of role protocols is to answer the question \what ports
may be used in this role?" At �rst glance it might
seem that the answer is obvious: simply check that
the port and role protocols are equivalent. But as
illustrated earlier, it is important to be able to attach
a port that is not identical to the role. On the other
hand, we would like to make sure that the port ful�lls
its obligations to the interaction. For example, if a
role requires an initialization as the �rst operation (cf.,
Figure ??), we would like to guarantee that any port
actually performs it.

Informally, we would like to be able to guarantee
that an attached port process always acts in a way
that the corresponding role process is capable of act-
ing. This can be recast as follows: When in a situation
predicted by the protocol, the port must always con-
tinue the protocol in a way that the role could have.

In CSP this intuitive notion is captured by the con-
cept of re�nement. Roughly, process P2 re�nes P1

(written P1 v P2) if the behaviors of P1 include those
of P2. Technically, the de�nition is given in terms
of the failures/divergences model of CSP [?CSPBook ,
Chapter 3].

However, it is not possible to use CSP's de�nition
of re�nement directly to de�ne port-role compatibil-
ity for two reasons. The �rst is the technicality that
CSP's v relation assumes that the alphabets of the
compared processes are the same. We can handle this
problem simply by augmenting the alphabets of the
port and role processes so that they are identical. This
is easily accomplished using the CSP operator for ex-
tending alphabets of processes: P+B extends the al-
phabet of process P by the set B .5

5Formally, P+B = (PkSTOPB).

The second reason is that even if the port and role
have the same alphabet it may be that the port process
is de�ned so that incompatible behavior is possible in
general, but would never arise in the context of the
connector to which it is attached. For example, sup-
pose a component port has the property that it must
be initialized before use, but that it will crash if it is
initialized twice. If we put this in the context of a con-
nector that guarantees that at most one initialization
will occur (e.g., see Figure ??), then the anomalous
situation will not arise. Although we would not con-
done such a component de�nition, we would expect
that formally the port is compatible with the role.

Thus to evaluate compatibility we need to concern
ourselves only with the behavior of the port restricted
to the contexts in which it might �nd itself. Techni-
cally we can achieve this result by considering the new
process formed by placing the port process in parallel
with the deterministic process obtained from the role.
For a role R, we denote this latter process det(R).
(For details, see [?ConnectorsTR].)

Thus (using \n" as set di�erence) we are led to the
following de�nition of compatibility:

De�nition 3 P compatR (\P is compatible with
R") if R+(�Pn�R) v P+(�Rn�P) k det(R):

Using these de�nitions, we see that port
DataRead = get! DataRead u p is compatible
with role User = set! User u get! User up be-
cause the role could always decide to engage in get. On
the other hand, DataRead is not compatible with role
Initializer = let Continue = : : : in set! Continue

because this latter role indicates that at least initially,
set must be o�ered to the connector.

7.2 Deadlock freedom

While intuitively motivated, our de�nition of com-
patibility might at �rst glance appear obscure, and
the skeptical reader may well ask \What good is it
anyway?" Like type correctness for programming lan-
guages, compatibility for architectural description is
intended to provide certain guarantees that the sys-
tem is well formed. By that standard, the proof of
utility for compatibility must be that it does, in fact,
guarantee that important properties hold in a \com-
patible" system and that, moreover, it is possible to
provide practical tools for compatibility checking. In
the remainder of this section and the next section we
demonstrate these results.

An important property of any system of interact-
ing parts is that it is free from deadlock. Informally,

7

in terms of connectors this means that two compo-
nents do not get \stuck" in the middle of an inter-
action, each port expecting the other to take some
action that can never happen. On the other hand, we
do want to allow terminating behaviors in which all of
the ports (and the glue) agree on success. For exam-
ple, in a client-server connection it should be possible
for a client to terminate the interaction, provided it
does so at a point expected by the server.

We can make this precise by saying that a connector
process C is free from deadlock if whenever it is in a
situation where it cannot make progress (formally, its
refusal set is its entire alphabet), then the last event
to have taken place must have been the success event.
Thus we have:

De�nition 4 A connector C is deadlock-free if for
all (t ; ref) 2 failures(C) such that ref = �C , then
last(t) =

p
.

By de�nition of port instantiation, a deadlock-free
connector will remain deadlock-free when its roles are
instantiated with ports that exactly match the roles.
However, we would like to be able to make a stronger
claim: namely, that consistency of a connector with
its roles implies consistency with any compatible ports.
To achieve this we need to de�ne another property of
connectors that guarantees the glue process does not
engage in behavior outside the union of the behaviors
of its roles. This will restrict the behavior of an instan-
tiated connector to those behaviors that are covered
by port-role compatibility. We need only restrict the
traces for two reasons. First, CSP guarantees that the
glue must refuse any event in its alphabet that does
not continue a valid trace, and second, de�nition ??

ensures that all possible events are indeed in the glue's
alphabet.

De�nition 5 A connector C =
Glue k (R1:r1 k R2:r2 k : : :k Rn :rn) is conservative if
traces(Glue) � traces(R1:r1kR2:r2k : : :kRn :rn).

We can now state the theorem that ties all of these
ideas together. It states that compatibility ensures
the deadlock freedom of any instantiated well-formed
connector (i.e., one that is deadlock free and conser-
vative).

Theorem 1 If a connector

C = Glue k (R1:R1 k R2:R2 k : : :k Rn:Rn) is con-

servative and

deadlock-free, and if for i 2 f1::ng, Pi compat Ri ,

then C 0 = Glue k (R1:P1 k R2:P2 k : : :k Rn :Pn) is
deadlock-free.

The proof of this theorem relies on the monotonicity
properties of v and on the context providing proper-
ties of making the glue conservative.

The signi�cance of this theorem is twofold. First,
it tells us that local compatibility checking is su�-
cient to maintain deadlock freedom for any instantia-
tion. Second, it provides a kind of soundness check for
our de�nition of compatibility: under any execution,
a compatibly instantiated architectural description re-
tains certain properties.

8 Automating compatibility checking

As we have indicated, an important motivation for
this work is the potential for automating compatibil-
ity checks. To achieve this, we have constrained our
use of the CSP notation in two ways. First, we have
restricted the notation such that our processes will
always be �nite. (Of course, in�nite traces are still
possible even though we can't create an in�nite num-
ber of processes.) This means that we can use Model
Checking technology [?Burch90] to verify properties of
the processes and to check relationships between pro-
cesses. Second, we have expressed our checks as re�ne-
ment tests on simple functions of the described pro-
cesses. In other words, we can express our tests as
checks of the predicate P v Q for appropriately con-
structed �nite processes P and Q . This permits us to
apply the emerging technology of automated veri�ca-
tion tools to make these checks.

To illustrate, we show how we would check the
compatibility of DataRead with the role User using
FDR [?FDR92], a commercial tool designed to check
re�nement conditions for �nite CSP processes. First,
to use FDR we must translate our notation to �t the
variant of CSP used in this tool. Recall that in our
notation the processes are:

DataRead = get! DataRead u p
User = set! User u get! User u p

These are encoded in FDR6 as:

DATAREAD = (get -> DATAREAD) |~| TICK

USER = (seta -> USER)

|~| (get -> USER)

|~| TICK

To test the compatibility of DataRead with User ,
we must determine whether

User+(�DataReadn�User) v
DataRead+(�Usern�DataRead) k det(User)

6We use the event name seta instead of set to avoid a name
clash with a reserved keyword of FDR.

8

Because �DataRead � �User , it follows that
User+(�DataReadn�User) is trivial:

USERplus = USER

To encode DataRead+(�Usern�DataRead), we must
encode the interaction with STOPfsetg:

DATAREADplus = DATAREAD [jfsetagj]STOP

Next we encode det(User). To do this, we change
the nondeterministic u to the deterministic :

detUSER = (seta -> detUSER)

[] (get -> detUSER)

[] TICK

This leaves only the encoding of the interaction
DataRead+(�Usern�DataRead) k det(User)

DATAREADpD = DATAREADplus

[jfseta,get,tickgj]
detUSER

These processes can then be checked for compati-
bility by giving FDR the command:

Check "USERplus" "DATAREADpD"

As with compatibility checking, conservatism and
deadlock-freedom can be checked by tools such as
FDR. The test for conservatism is a straightforward
use of trace re�nement, for which FDR provides
CheckTrace. Similarly, deadlock-freedom can be ex-
pressed as a re�nement check of the most nondeter-
ministic deadlock-free process.

Applying these checks to the examples in this pa-
per, we easily con�rmed that only the connector
Bogus (Figure ??) can deadlock. However, we also
discovered that unexpectedly both Shared Data2 and
Shared Data3 are not conservative. Until we ran the
checks we had failed to notice that the glue of these
connectors permits an immediate

p
, whereas the role

Initializer prevents this. This dramatically illustrated
for us the bene�ts of automated checking, even for
such relatively simple examples.

9 Comparisons to other approaches

Description of software architecture:

One approach to architectural description is to use
the facilities of a modular programming language. Ar-
chitectural components are represented by modules
(or, in some cases, objects) for which interfaces de-
�ne the functionality of the component in terms of the

operations it provides to the system. \Interactions"
between modules are determined by name matching
and the use of \imports" clauses. While the mod-
ularization facilities of programming languages may
be adequate for structuring the code of a system, we
believe they are not a general solution to the prob-
lem of describing software architectures. The main
problem is that they provide only a limited number
of interaction mechanisms { typically, procedure calls
and data sharing. As a result, the designer is forced
to encode abstract interactions between architectural
components in terms of these facilities [?AllenIDL94].

Recent research on module interconnection has in-
troduced a number of new mechanisms and richer no-
tions of module interconnection [?Perry87, ?Purtilo90,
?Reiss90Field]. These primarily serve to extend the ba-
sic vocabulary of connection, rather than to give ways
to de�ne new kinds of connection (as does our work).

A number of other architectural representation lan-
guages have been proposed. Rapide [?Luckham92a]
uses Posets as a formal basis for architectural de-
scription, and supports certain static interface checks,
as well as dynamic checks for satisfaction of pred-
icates over system traces. Other domain-speci�c
architectural description languages have been pro-
posed [?Mettala92, ?DSSAworkshop]. These latter lan-
guages increase their analytic and expressive leverage
by specializing to a particular family of systems.

Other formal models:

Other models of concurrency could have been used
to de�ne the semantics of connectors, including state
machines, pre- and post-conditions, and Petri nets.
We investigated several state machine approaches such
as I/O Automata [?Lynch88], StateCharts [?Harel87],
SMV [?Clarke86], and SDL [?Holzmann91]. While these
systems have been used to model protocols and have
well-de�ned mechanisms for composition, we favored
the use of CSP for three reasons. First, it has a seman-
tic basis (in terms of traces, divergences, and refusals)
that makes it ideal for characterizing problems of con-
nector deadlock and for expressing port-role compat-
ibility as a kind of re�nement. Second, it provides
a powerful calculus for composing systems in terms
of parallel composition. Finally, it has industrial-
strength tools (such as FDR) for automated analysis.

Our choice of a \�nite" subset of CSP allows us to
automate checking of certain properties of architec-
ture, but it also limits the expressiveness of the nota-
tion. It is possible to augment our notation with other
kinds of formal description. Indeed, the full version
of Wright [?ConnectorsTR] allows the use of auxiliary
trace speci�cations to characterize non-�nite proper-

9

ties. For example, a pipe connector might have a trace
speci�cation that asserts that data transmission fol-
lows a FIFO discipline, even though this is not di-
rectly expressible in our subset of CSP. Of course, the
auxiliary speci�cations are not automatically check-
able. There are other properties, however, (such as
timing behavior of interactions) that we cannot han-
dle because CSP's semantic model is not rich enough.
To address such properties, one can imagine retain-
ing the general descriptive framework (of ports, roles,
and glue) for connectors, but replacing CSP with an
alternative formalism.

Re�nement of protocols:

Traditionally, research on protocols has been con-
cerned with developing algorithms to achieve certain
communication properities { such as reliable commu-
nication over a faulty link. Having developed such an
algorithm, the protocol designer assumes that the par-
ticipants will precisely follow the algorithm speci�ed
by the protocol.

Our use of protocols di�ers in two signi�cant ways.
First, our connector protocols specify a set of obliga-
tions, rather than a speci�c algorithm that must be
followed by the participants. This allows us to admit
situations in which the actual users of the protocol
(i.e., the ports) can have quite di�erent behavior than
that speci�ed by the connector class (via its roles).
This approach allows us to adopt a building-block ap-
proach, in which connectors are reused, the context of
reuse determining the actual behavior that occurs.

The second major di�erence is that our approach
provides a speci�c way of structuring the description
of connector protocols { namely, separation into roles
and glue. The bene�t of adopting this structured ap-
proach is that it allows us to localize the checking of
compatibility when we use a connector in a particular
context.

There has been some work that, like ours, exploits
the fact that in a constrained situation, the criteria
of re�nement can be weakened without compromising
substitutability (e.g., [?Jacob87]). However, that work
uses re�nement to indicate substitution of one process
for another, in contrast to our work, in which the role
serves as a speci�cation for the properties of the port
(and hence it de�nes the context in which it may be
used as well as the properties that the port must have).

A �nal example of a use of protocols which relates
to ours is work by Nierstrasz on extending object-
oriented notations to permit speci�cation of object
types in terms of protocols over the services that they
provide [?Nierstrasz93]. Nierstrasz extends the object
class de�nitions to include a �nite-state process over

the methods of the object, and de�nes a subtyping re-
lation and instantiation rules that are similar to our
ideas of compatibility. While the motivation is similar
to ours, Nierstrasz considers only one kind of compo-
nent interaction: method invocation. Moreover, the
re�nement relations that de�ne subtyping and instan-
tiation di�er from our tests in that they are speci�c
to a single class of interaction.

10 Conclusions

A signi�cant challenge for software engineering re-
search is to develop a discipline of software architec-
ture. This paper takes a step towards that goal by
providing a formal basis for describing and reasoning
about architectural connection. The novel contribu-
tions of our approach are:

� The treatment of connectors as types that have
separable semantic de�nitions (independent of
component interfaces), together with the notion
of connector instantiation.

� The partitioning of connector descriptions into
roles (which de�ne the behavior of participants)
and glue (which coordinates and constrains the
interactions between roles).

� The development of formal machinery for au-
tomatable compatibility checking of architectural
descriptions, thereby makingmany of the bene�ts
of module interface checking available to design-
ers of software architectures.

In developing this basis for connectors we have
adapted the more general theory of process algebras
and shown how it can be specialized to the speci�c
problem of connector speci�cation. While this ap-
proach limits the generality of that theory we argue
that it makes the techniques both accessible and prac-
tical. It is accessible because semantic descriptions are
syntactically constrained to match the problem. It is
practical because by limiting the power of expression,
we permit automated checking. Moreover, although
we have focused only on simple examples in this pa-
per, the notation can be used to de�ne a wide variety
of rich architectural interactions.

There remain many problems of architectural de-
sign that this paper does not directly address. In
particular, our work on connectors does not explicitly
deal with issues associated with global architectural
constraints such as global synchronization, scheduling,
global analysis of deadlock. However, the work does

10

open the door to a number of direct extensions that
will broaden its applicability even further. These in-
clude: operators for building complex connectors out
of simpler ones, a theory of connector re�nement, and
augmentation of protocol de�nition with trace speci-
�cations.

Acknowledgements

We would like to thank Gregory Abowd, Stephen
Brookes, Jose Galmes, Daniel Jackson, Elliot Moss,
John Ockerbloom, Mary Shaw, Scott Vorthmann,
Jeannette Wing, and the ICSE reviewers for their con-
structive comments on this research.

11

