
240240

Tom DeMarco
Principal of the Atlantic Systems Guild
New York

M.S., Columbia, Diplome,
University of Paris

Bell Labs: ESS-1 project

Manager of real-time projects,
distributed online banking systems

J.D. Warnier Prize, Stevens Prize

Fellow of IEEE

Major contributions:
Structured Analysis, Peopleware

Current interests: project management,
change facilitation, litigation
of software-intensive contracts

Structured Analysis

241241

Tom DeMarco

Structured Analysis:
Beginnings of a New Discipline

How it happened

When I arrived at Bell Telephone Laboratories in the fall of 1963, I was
immediately assigned to the ESS-1 project. This was a hardware/software
endeavor to develop the world’s first commercial stored program telephone
switch (now installed in telephone offices all over the world). At the time,
the project was made up of some 600 persons, divided about half-and-half
between hardware and software. There was also a small simulation group
(a dozen people?) working to create an early prediction of system perfor-
mance and robustness.

I was at first assigned to the hardware group. My assignment was to de-
velop certain circuits that enabled Emergency Action, the reconfiguration
of processors when one was judged to have failed. This was an intriguing
assignment since each of the two processors would diagnose the other and
then try to decide together and agree on which one was incapable of furt-
her processing – but somehow still capable to judge its own sanity.

sd&m Conference 2001, Software Pioneers
Eds.: M. Broy, E. Denert, Springer 2002

242242 Tom DeMarco

To all of our surprise, the software for the project turned out to require a
lot more effort than the hardware. By early 1964 an increasing number of
hardware engineers were being switched into software to help that effort
along. I was among them. By the end of that year I considered myself an
experienced software engineer. I was twenty four years old.

The simulation team under the management of Erna Hoover had by this
time completed the bulk of its work. The findings were released in the form
of a report and some internal documentation. The report (analysis of
system performance and expected downtimes) was the major deliverable,
but it was one aspect of the internal documentation that ended up getting
more attention. Among the documents describing the simulation was a
giant diagram that Ms. Hoover called a Petri Net. It was the first time I had
ever seen such a diagram. It portrayed the system being simulated as a
network of sub-component nodes with information flows connecting the
nodes. In a rather elegant trick, some of the more complicated nodes were
themselves portrayed as Petri Nets, sub-sub-component nodes with inter-
connecting information flows.

By now I was in full software construction mode, writing and testing pro-
grams to fulfill subsystem specifications handed down by the system archi-
tect. While these specifications were probably as good as any in the indu-
stry at the time, I found them almost incomprehensible. Each one was a
lengthy narrative text describing what the subsystem had to do. I was not
the only one having trouble with the specs. Among my fellow software
craftsmen (out of deference to Dave Parnas, I shall henceforth not use the
term ‘software engineer’ to describe myself or any of my 1960s collea-
gues), there was a general sense that the specs were probably correct but
almost impossible to work from. The one document that we found our-
selves using most was Erna’s PetriNet. It showed how all the pieces of the
puzzle were related and how they were obliged to interact. The lower level
networks gave us a useful pigeon-holing scheme for information from the
subsystem specs. When all the elemental requirements from the spec
had been slotted by node, it was relatively easy to begin implementation.
One of my colleagues, Jut Kodner, observed that the diagram was a better
spec than the spec.

When I left the Labs, I went to work for what today would be called a
system integrator. I was assigned on contract to build first one and then
another time-shared operating system for the then new IBM 360. On both
of these projects I created my own network diagrams. In place of a normal
specification, I wrote one “mini-specification” per node. I used the same
trick when I went to work for La CEGOS Informatique, a French consulting
firm that had a contract to build a computerized conveyor system for the
new merchandise mart at La Villette in Paris. (La Villette was the successor
to the ancient market at Les Halles.) And I used the same trick again on a
new telephone switch implemented for GTE. Note that all of these projects
(two telephone switches, two time shared executives, and a conveyor con-
trol system) were real time control systems, required to meet stringent time
constraints on the order of a few milliseconds. All of my work up to this

point was in the domain that I now call engineering systems. I had never
participated in a single commercial data processing project.

By 1971 I was went to work for the first time in my life outside the
engineering sector. I was involved for the next four years building banking
systems in Sweden, Holland, France and finally New York. Here again I
used my networking methods, though with a bit less success. What was dif-
ferent in financial applications was the presence of a database in the mid-
dle of my network. At first it could be treated as a simple file or repository
of information. But over time these databases were to become more and
more complex and my method gave me no particularly elegant way to deal
with them. The truth is that the networks were an elegant and useful
description of control systems, where data flow provides the best represen-
tation of overall system function, but a less useful tool for database sys-
tems where the structure of the repository itself is a better representation.

Though I have now come to believe that dataflow methods are ill-suited
to business applications – at least compared to data modeling methods –
the networks were as big a hit with my banking customers as they were
with my engineering customers. Remember that in the early seventies, the
breakthroughs of data modeling including E-R diagrams and relational
database had yet to happen or were happening only in academia. For my
customers, the network specifications that I was showing them were the
only alternative to dreary and endless narrative specifications.

How it became a commercial success

It was in 1974 that I first came across the work of Doug Ross and John
Brackett of SofTech. Their tool, called SADT, was a much advanced and in
some ways much more elegant variation on my network specifications.
It also was the first time that I had seen the adjective ‘structured’ applied
to leveled diagrams. Since all things structured were hot in 1974, this was
good news to me. Imagine, something that I’d been doing for years now
turned out to be ‘structured’!

In 1975 I sought out my old friend Ed Yourdon and proposed to him to
develop my network specification concept (much improved by my exposure
to SADT) into a two-day training seminar for his new seminar company.
Ed’s little company had already dabbled in something called Structured
Analysis, and though my concept and theirs were only marginally similar,
he allowed me to use the term as if we’d really been talking about the
same thing all along. Within a year, the original sense of what would con-
stitute Structured Analysis was completely replaced by my concept of writ-
ing specifications in the form of leveled dataflow diagrams with comple-
mentary data dictionary and mini-specifications.

The course and its successor courses on Structured Analysis were a huge
success. By the end of 1975, Ed had assigned a dozen instructors to
teaching my courses, and with all the royalty income thus produced, I stole

243243Structured Analysis

away for two months to write a book [Structured Analysis and System
Specification, Prentice Hall, 1975] and a video training sequence which
both subsequently became excellent royalty properties. A friend later
observed – rather nastily, I thought – that if I had spent all my months as
productively as those two months working on the video and the book, my
present income would be several million dollars per month.

Over the next twenty years, the method prospered. It was implemented
in virtually every CASE system ever produced. When CASE went away, the
method persisted. Today dataflow representation is a component of vir-
tually every current process, though few organizations are still using my
1975 prescription in its original form.

How my own perspective has changed since 1975

While the market embraced the method called Structured Analysis, I myself
have come to have some doubts about the whole approach. Remember
that my own early experience applying the method had been in control
systems, not commercial systems. When I first started advocating the
method it was only to those who were building control systems. It was a
great surprise to me that the commercial sector liked the method. In retro-
spect I believe that the whole dataflow approach is vastly more useful
for control systems than typical commercial applications, and the appeal to
the commercial users was mostly due to a complete lack of well thought
out alternatives. Commercial IT ended up using a control system method
because there were as yet no attractive commercial IT methods available.

When good alternatives did become available, many commercial organiza-
tions stuck loyally to my approach. I found myself regularly visiting clients
who announced themselves to be 100% ‘DeMarcofied,” though I myself
would never have used my method on the projects they were doing. I came
to the conclusion that these companies were using a method that was
poorly suited to their real needs and the reason had little to do with any-
thing purely technological. They were stuck on the method because it gave
a comforting sense of completeness, it appeared to them to be The Answer
to all of their problems. When it didn’t solve their problems they blamed
themselves and tried harder.

I now believe that my 1975 book was overly persuasive and that many in
our industry were simply seduced by it. This is partly the result of my
unconstrained enthusiasm for a method that had worked superbly for me
(in a limited domain), and partly the result of the dismal state of the art
of IT books at the time. Many people have told me that mine was the only
IT book they ever got through awake, and the only one they ever enjoyed.
I think they adopted its prescriptions thinking, “this guy may be dead
wrong, but at least I understand what he’s saying.

244244 Tom DeMarco

Bill of particulars, then and now

Important parts of the Structured Analysis method were and are useful and
practical, as much so today as ever. Other parts are too domain-specific
to be generally applicable. And still other parts were simply wrong. In order
to call attention to these different categories, I offer the following com-
mented summary tables, the first showing what I thought I knew in 1975
and the second showing what I still believe to be true. As you will see, there
are some substantial differences:

What I Thought I Knew in 1975

There were other things that made up the discipline, but these ten were
its essence. I felt strongly about all of these but at the time it was the
top-down characteristic of the approach that most charmed me. After all,
without the notion of top-down, the method could hardly be characterized
as ‘structured,’ and that was an appellation that I coveted. (Remember
that the structured disciplines were at their peak in 1975.)

I am writing this in the fall of 2001, and obviously much has changed. Not
the least of what has changed is my own perception of the business of
systems analysis and specification. In the next table I reproduce the ten
principles showing in dark letters those that I think still apply in whole or
in part. The gray shaded “ghosts” are just to remind you of the sense of
those principles that didn’t in my opinion survive the test of time:

245245Structured Analysis

Principle Commentary

1. Narrative specs are dumb These “Victorian Novel” specifications neither specify

nor inform

2. Four-stage modeling A dataflow representation of a system is a model and the

analysis life-cycle consists of building a sequence of these

models showing four different stages

3. Dataflow is the essential view The point of view of the data as it passes through the

system is the most useful

4. Top-down partitioning Top-down is good; bottom-up is evil

5. Loose connection criterion The validity of any partitioning is a function of how thin

the interfaces are

6. Defined process of analysis System analysis always has the same well-defined steps

7. Pseudo-coded minispecs The lowest level is defined in a formal way

8. Work at the user’s desk Analysts shouldn’t hide in their own offices; the real work of

analysis is at the user’s desk

9. Philosophy of iteration You can never get it right on the first try; success comes

from numerous iterations, each one better than the last

10. The customer is king The customer knows what the system has to be;

the analyst’s job is to listen and learn

246246

What I Still Believe

If I’m right that the specification-by-network approach does not require
and never did really benefit from being top-down, then the entire method
never did justify the name ‘structured.’ That is what I believe today. We all
profited by calling it structured, but it wasn’t. To make matters worse, the
attempt to achieve top-down representation sent projects off on a mea-
ningless wild goose chase. These days I often encounter project teams work-
ing with enormous diagrams of connected software pieces. These diagrams
take up a whole wall of a war room or are laid out on the floor with develo-
pers on their hands and knees crawling over them. Of course they are a
pain to update, often hand-annotated, not reproducible, don’t fit into any-
body’s documentation standard. And yet they are useful, that’s why people
use them. This use seems much more consistent with the early value I per-
ceived in dataflow networks.

Tom DeMarco

Principle Revised Commentary (as of 2001)

1. Narrative specs are dumb Narrative specs are not the problem; a suitably

partitioned spec with narrative text used at the bottom

level makes a fine statement of work

2. Four-stage modeling The four stages I proposed in 1975 were far too

time consuming

3. Dataflow is the essential view Dataflow is one of the essential views, not the only one

4. Top-down partitioning Partitioning is essential in dealing with anything

complex, but top-down partitioning is often far too

difficult to achieve and not at all the great advantage

it was touted to be

5. Loose connection criterion This is an important truth: when you’re attacking

complexity by partitioning, the thinner the interface, the

better the partitioning – if the interfaces are still thick,

go back and partition again, searching for the natural

seams of the domain

6. Defined process of analysis Defined process is a holy grail that has never yet been

found and probably never will be

7. Pseudo-coded minispecs It’s useful to partition the whole and then specify the

pieces, but pseudo-code was an awful mistake (puts

analysts into coding mode when they should be busy

analyzing)

8. Work at the user’s desk Analysts have a tendency to hide at their own desks,

but much of the action is in the business area and they

need to venture out to find it

9. Philosophy of iteration We never get it right the first time; the best we can do is

improve from one iteration to the next; if we can continue

to do this at each iteration, we can get arbitrarily close

to a perfect product

10. The customer is king See below . . .

My final point (my loss of faith that “the customer is king”) is not just a
change in my own thinking, but a sign of the maturing of IT in specific and
of the business climate in general. In 1975, the typical commercial system
we built was a first time automation of what had before been done
manually. The customer, of course, was the only one who knew what this
was all about and his/her sense of what the automated version would
have to do was prime.

Today we are building third and fourth generation automated systems, and
IT personnel are often as well or better informed about how the existing
system works as their business partners. More important, the meaningful
successes of IT today are no longer to be achieved by simple automation or
re-automation of existing process. We have moved on to a new era: Our
challenge today is to combine improved information technology and mar-
ket opportunity in order to create product that is radically different from
what could have been achieved in a less connected world. This tells us that
the new king is neither client nor technologist, but their partnership: the
tightly merged amalgam of business and technological expertise. Com-
panies that achieve and maintain such a partnership are the ones who will
prosper.

247247Structured Analysis

248

249Original Historic Documents

Tom DeMarco

Structured Analysis
and System Specification

Yourdon, New York, 1978
pp. 1-7 and 37-44

Tom DeMarco250

Original Historic Documents 251

