
THE VILLAGE TELEPHONE SYSTEM�

A Case Study in Formal Software Engineering

Karthikeyan Bhargavan�� Carl A� Gunter�� Elsa L� Gunter�� Michael Jackson��
Davor Obradovic�� and Pamela Zave ��

� University of Pennsylvania
� Bell Labs� Lucent Technologies

� AT�T Laboratories

Abstract� In this paper we illustrate the use of formal methods in the
development of a benchmark application we call the Village Telephone

System which is characteristic of a class of network and telecommunica�
tion protocols� The aim is to show an e�ective integration of methodology
and tools in a software engineering task that proceeds from user�level re�
quirements to an implementation� In particular� we employ a general
methodology which we advocate for requirements capture and re�ne�
ment based on a treatment of designated terminology� domain knowl�
edge� requirements� speci�cations� and implementation� We show how a
general�purpose theorem prover �HOL� can provide formal support for
all of these components and how a model checker �Mocha� can provide
formal support for the speci�cations and implementation� We develop a
new HOL theory of inductive sequences that is suited to modelling reac�
tive systems and provides a common basis for interoperability between
HOL and Mocha�

� Introduction

One of the key problems in the practical adoption of formal methods is that
many are usable only at certain stages of the software engineering process and
must work with a speci�c form of data� At AT�T and Bell Labs we have seen a
number of instances where formal tools might have been useful in a project if the
kinds of speci�cations on which such tools work were available� Unfortunately
projects do not typically use formal methods in the development of speci�cations�
so the information on which a formal method might be employed is unavailable�
or would be very expensive to obtain� Indeed� once a project has chosen not to
use formal language early in the development of requirements and speci�cations
for software� it is di�cult �or often impossible for all practical purposes� to
introduce such formality at a later stage� This suggests that it is essential to �nd
ways in which formal language can be introduced at early stages of requirements

� Email addresses� bkarthik�gradient�cis�upenn�edu� gunter�cis�upenn�edu�
elsa�research�bell�labs�com� jacksonma�acm�org� davor�saul�cis�upenn�edu�
pamela�research�att�com

In Proc TPHOLS'98, LNCS 1479, pp49-66



capture� and there must be e�ective re�nement principles for moving from user�
level requirements to an implementation�

Several approaches must be brought together to address this problem e�ec�
tively� In this paper we explore the problems of modelling and tool integration on
an illustrative problem we call the Village Telephone System �VTS�� The VTS
provides an accessible but non�trivial application similar to many others in the
telecommunications and networking domains� We analyze it using a methodol�
ogy we have developed in 	
��� � with formal support provided by the HOL��
general�purpose theorem prover and the Mocha model checker� First we provide
a brief overview of the methodology� referring the reader to the cited work for
more details� The main body of the paper is devoted to the treatment of the
VTS using this methodology�

Principles of good requirements engineering 	�� demand that we identify the
primitive vocabulary that is available to describe the application domain� and
that we provide a precise �albeit informal� explanation of the real�world meaning
of each primitive term� The principles also demand that we separate logical asser�
tions into two distinct moods� Assertions made in the indicative mood describe
the environment as it would be regardless of the system�they represent domain
knowledge� Assertions made in the optative mood describe the environment as
we would like it to be because of the system�they represent requirements� A
requirement is not necessarily directly implementable by a computer system 	���
it may involve concepts that are not directly visible to the implementor� If it is
not� then it must be re�ned into an implementable speci�cation� using domain
knowledge as a resource� Formal requirements engineering culminates in an ar�
gument that the speci�cations and the domain knowledge are consistent� and
in a proof that the domain knowledge and the speci�cations together entail the
satisfaction of all the requirements� Similarly� on the development side� the aim
is to ensure that the programming of the machine satis�es the speci�cations�

Our treatment of the Village Telephone System is accordingly organized into
a collection of parts� each having a di�erent signi�cance�

Mathematical Foundations provide concepts not already available in exist�
ing libraries that are needed for the VTS�

Designated Terminology provides terms to describe the application domain
�environment� world�� and an informal explanation of their meaning in the
real world�

Requirements indicate what the villagers need from their telephone system�
described in terms of the designations�

Domain Knowledge provides presumed facts about the environment�
Speci�cations provide enough information for a programmer to build a system

to satisfy the requirements�
Program implements the speci�cation on the programming platform�
Programming Platform provides the basis for programming a machine to

satisfy the requirements and speci�cations�

If we got the speci�cations right� then it will be possible to combine our �presum�
ably correct� domain knowledge about the environment with the speci�cations



of our system and show that the villagers will have the kind of telephone service
they require�

The last �ve parts in the list above can be grouped into categories of en�
vironment and system to emphasize their roles� with the speci�cations acting
as an intermediary between the system and its environment� The �Five Theory
Model� can be illustrated as follows�

W R S P MEnvironment System

Generally speaking� the proof obligations are to show that the theories in ques�
tion are consistent and that� under appropriate assumptions�

� the domain knowledgeW � supplemented by the speci�cations S� satis�es the
requirements R� and

� the programming platform M � with its programming P � implements the
speci�cations�

The precise statement of these obligations in Higher�Order Logic is given in
the section on designations below �Table �� because it depends crucially on
distinguishing variables �representing events and state� that are controlled by
the environment �like a person taking a telephone o��hook� from those that are
controlled by the system �like causing a telephone to ring�� Details about our
re�nement principles can be found in 	��

Turning now to our benchmark problem� we shall illustrate our approach for
a simple telephone service suited to the needs of a very friendly village� The
telephones are fairly conventional� they have a microphone �or mouthpiece� and
a speaker �or earpiece� and they ring to alert an incoming call� Taking the phone
o��hook when it is ringing answers the incoming call� Putting it back on�hook
terminates calls� Taking it o��hook when it is not ringing indicates a desire to
make a call� They are less conventional in two respects� First� they have no
dialing device� nor is there an operator in the telephone exchange� the exchange
is entirely automatic� The maker of a call cannot therefore choose which number
to call� The system makes the choice� This is acceptable because the villagers
know each other and each other�s business so well that a villager wanting to
make a call is equally happy to talk to any fellow villager� The second di�erence
is that a villager whose partner in a call has just hung up need only wait�
keeping his own phone o��hook� and the system will immediately try to �nd him
another conversation partner� A variant of this system we have investigated� but
will not consider in this paper� has such phones enter a �drooping� state where
they cannot be connected until they go back on�hook� There can� of course� be
no guarantee that the system will always �nd a partner for every villager who
wants to talk� because a ringing phone may be left unanswered inde�nitely� and
there may be no�one left available to be rung� However� we are guaranteed that
the system will ring someone if this is possible�

Although VTS is not in itself a product of any telephone company� it is
a fairly typical protocol resembling communication services such as anycast or



chat lines� There is a variety of possible implementations representing trade�o�s
such as the likelihood of �nding a partner and other factors� At one extreme
�broadcast� an o��hook event could cause all on�hook telephones to alert and� at
another extreme �hotlines�� each telephone t could have its own pre�determined
unique partner which alerts in response to an o��hook event of t� An intermedi�
ate solution �anycast� could cause an undetermined on�hook telephone to alert
in response to an o��hook event� Each of these approaches has various re�ne�
ments� such as allowing any o��hook event to make a connection to an existing
o��hook telephone that has not yet received a connection� The VTS is there�
fore more interesting than its cousin� Plain Old Telephone Service �POTS�� in
which a uniquely designated telephone is alerted as a result of dialing an o��
hook telephone� Between the two lie a range of interesting services in which an
o��hook telephone seeks a connection with any of a speci�ed collection of on�
hook telephones� VTS represents the extreme in which every such telephone is a
candidate for connection� while POTS represents the extreme in which only one
other telephone is a candidate� In this middle ground fall services such as ���
numbers in the North American system where an incoming call is assigned to
one of a group of operators� possibly with queueing if all operators are engaged�

We have used several systems in the development of the VTS� the HOL��
theorem prover� the Mocha model checker� and the SML programming language�
This diversity was intended to help us explore the parts of the task best treated
by each tool� We have allowed some overlap in order to carry out comparisons�
but have also used the tools in exploring distinct solutions and in di�erent parts
of the development� In particular� HOL has been used for all phases of the
development except the programming� whereas SML is used only for the pro�
gramming� Mocha is used to provide a speci�cation and also programming� Our
SML implementation uses an anycast solution together with what we call the
�greedy� connection rule while we considered a broadcast solution in the Mocha
speci�cation and implementation�

The paper is divided into sections representing each of the parts we dis�
cussed earlier for our methodology �the program and programming platform are
combined in a single implementation section�� Each section emphasizes what we
view as the most interesting themes� For instance� the mathematical foundations
section describes an HOL model that we have tuned for use on reactive systems
like the VTS� and the implementation section considers the challenge of bridging
between formal speci�cation language and executable programs� Another issue
is the set of tradeo�s involved in using a general�purpose system �HOL��� versus
a special�purpose one �Mocha�� The �nal section provides some conclusions�

� Mathematical Foundations

As is usual with projects in HOL� we found it desirable to build up a body
of fairly general purpose mathematics as a foundation of the requirements and
speci�cation of the village telephone system in HOL� This background should be
useful for the description of reactive systems in general� There is a basic temporal



theory given by inductive sequences� and a theory of �nite state machines with
a specialization to toggles�

��� Inductive Sequences

The formalization of reactive systems has typically been founded on some notion
of sequences of events� The paper 	�� discusses di�erences in four theorem prover
formalizations of possibly in�nite sequences� We have chosen to treat sequences
in a way that di�ers from these in two fundamental ways� The approaches taken
so far have been explicit in that they build a speci�c model for sequences and then
derive properties� Here� we shall be taking an implicit � or axiomatic approach�
The de�nition of a sequence is given by�

�order domain � inductive sequence �order � domain� �
transitive �order � domain� � irre�exive �order � domain� �
nondense �order � domain� � �� f� least �order � domain� f� �
��Inv � ���f� �rst �order � domain� f � Inv�f�� �

��i j� successor�order � domain� �i� j� � Inv�i� � Inv�j��� �
�i� domain�i� � Inv�i��

An ordering is non�dense if every element that is not the �rst has an immediate
predecessor� and if it has anything greater than it� then it has an immediate suc�
cessor� The last part is the principle of induction� Any set and ordering that is an
inductive sequence is isomorphic to an initial segment of the natural numbers�
Still� by not restricting ourselves to that particular model� we get certain proper�
ties practically for free� For example� we automatically get that any non�empty
subset of an inductive sequence is again an inductive sequence�

Using inductive sequences� we can now develop a rich temporal theory ap�
propriate for reasoning about reactive systems� For example� given a predicate
P on events of an inductive sequence� we can de�ne predicates like previously�P ��
which says that P holds of the previous event� and throughout�P � which says
that P holds continuously throughout some interval� We have one�step induction
�which is more conveniently used in conjunction with previously� and general in�
duction� Thus� the same machinery that is available to the explicit versions of
sequences is available for the implicit one�

The previous approaches also are based� directly or indirectly� on mappings
from some ordered set to actions� telling what action occurred at a given time�
We have taken the dual approach� Actions are represented as predicates stating
at which events they occur� Thus on�t� is a predicate on events that indicates
all those times when the telephone t went on�hook� If we �x the set of action
predicates� then we can recreate the inverse mapping from events to actions�
However� by doing the mapping this way around� we can more easily extend our
system to include more actions and readily compose two systems in parallel� Also�
to express a system with true concurrency requires no extra e�ort� while if the
mapping is done the reverse of our way� then true concurrency requires switching
from sequences of actions to sequences of sets of actions� On the whole� we believe



this formalization of sequences of actions will prove to carry less overhead for
many applications than previous methods�

��� Finite state machines

Finite state machines �FSM�s� are one of the most commonly used speci�cation
formalisms� A variety of descriptive techniques are based on FSM�s� di�erent
techniques incorporating them in di�erent ways� For example� we could be in�
terested only in the sequence of states traversed� or only in the sequence of
transitions taken� Our objective is to develop a reasonably general HOL model
for FSM�s that could handle di�erent variations as special cases�

Finite state machines recognize inductive sequences� Formally� fsm is a predi�
cate de�ned over the 
�tupples �v� q� q�� f� r�� where v is a predicate that provides
a vocabulary of actions�

v � �event� bool�� bool the set of transition labels

q � state� bool the set of states
q� � state� bool the set of initial states
f � state� bool the set of �nal states
r � state� �event� bool�� state� bool the set of transitions�

Notice that transitions are labeled with predicates whose role is to determine
the availability of the transition at any given moment�

fsm �v� q� q�� f � r� � ��nite q� � �q� � q� � �f � q� �
�� l s� s�� ��s�� l� s�� � r� � �s� � q � s� � q � l � v�� �
�pairwise disjoint fl j � s� s�� �s�� l� s�� � rg�

This models nondeterministic FSM�s� We need to de�ne the way in which an
FSM interprets an inductive sequence� For that purpose� we de�ne the relation
pstates e s that says when a state s can be entered after an event e� The relation
is de�ned by rule induction�

least e s � q�

pstates e s
�Init�

pstates e� s successor �e�� e�� �s� l� t� � r e� � l

pstates e� t
�Step�

pstates e� s successor �e�� e�� �l � v� e� �� l

pstates e� s
�Stay��

The Stay rule says that all the events which the machine does not mention at
all are ignored ��ltered out��

An inductive sequence is accepted by an FSM if� at every point� it is guar�
anteed the ability to reach a �nal state� Formally�

accept �v� q� q�� f � r� �order � domain� �
� e�� �e� � domain �
� e� s� �s � f� � ��e� � e�� 	 order �e�� e��� � pstates e� s��



This de�nition takes care of both �nite and in�nite inductive sequences� In the
�nite case it coincides with the classical de�nition of acceptance by ending up in
a �nal state� In the in�nite case it coincides with acceptance by Buchi automata�

We also de�ned deterministic FSM�s as a special case and proved some basic
results about them� An interesting class of deterministic FSM�s are toggle FSM�s�
A toggle FSM is an FSM with exactly two states and two disjointly labeled tran�
sitions between them� Given two sets of events go on and go o� they determine
a toggle FSM i��

toggle �go on� go o� � � fsm �toggle fsm�go on � go o� � �
accept �toggle fsm�go on � go o� �� �order � domain�

where
toggle fsm�go on � go o� � �
�fgo on � go o� g� f�� �g� f�g� f�� �g� f��� go on� ��� ��� go o�� ��

� Designated Terminology

This part of the VTS description presents the primitive vocabulary that is avail�
able for use to describe the application domain �environment� world�� It also
explains the real�world meaning of each primitive term� Obviously these expla�
nations are informal� if they were formal� then the terms would not be primi�
tive� In general� designated terminology must be classi�ed into one of four cate�
gories according to control and visibility� environment�controlled� system�hidden�
environment�controlled� system�visible� system�controlled� environment�visible�
and system�controlled� environment�hidden� When we need to represent these
variables in mathematical formulae� we shall write them as eh� ev� sv� and sh�
where each of these is to be viewed as a list of variables� The system�controlled
and environment�hidden variables sh� only arise within the implementation and
will not be covered here� The purpose of the designations is to clarify the role
these terms may play in the formation of the domain knowledge� speci�cation
and requirements� It also is critical in formulating the basic theorems that need
to relate these components� Using the variable classi�cation� we can represent the
domain knowledge by W�eh� ev� sv�� represent the requirements by R�eh� ev� sv��
represent the speci�cation by S�ev� sv�� represent �as an input�output relation� a
program implementing the speci�cation by P�ev� sv� sh� and represent knowledge
of the programming platform �machine� on which the program will be run by
M�ev� sv� sh�� Notice that the domain knowledge and the requirements cannot
reference those variables controlled by the system and hidden from the envi�
ronment� and that the speci�cation can only reference those variables visible to
both the system and the environment� Suppressing the arguments� the ultimate
theorems we wish to hold are given in Table �� Formulas ��� and ��� are con�
sistency properties and ��� is the correctness of the implementation relative to
the domain knowledge and requirements� From ��� and ���� we can prove the
consistency of the requirements relative to the domain knowledge� To prove ���
and ���� we will factor through the speci�cation� If we prove ��� �
� and ���
then we can derive both ��� and ��� from them� A major part of the point of



Table �� Proof Obligations for Re�nements

� eh ev sv�W �	�

�eh ev��� sv�W�� �� sv�W �M � P� �
�

�eh ev sv�W �M � P� R ���

�eh ev sv�W � S� R ���

�eh ev��� sv�W�� �� sv�S� � ��sv�S�W� ��

�ev��� sv�S�� �� sv sh�M � P� � ��sv sh��M � P�� S� ���

this factorization is that on the one hand� the person writing the speci�cation
need only worry about satisfying ���� �� and �
� without any concern for the
particulars of any program that might implement it� while the person writing
the program need only worry about satisfying �
� without any knowledge of the
domian knowledge or the original requirements� Formula �
� for the speci�ca�
tion is a bit stronger than the corresponding formula ��� for the program and
programming platform� Formula �
� asserts that for all values from the envi�
ronment that do not contradict the domain knowledge� the speci�cation relates
some value from the system� and all such values from the system must satisfy
the domain knowledge� It turns out that the correspondingly stronger version of
formula ��� also follows from ��� �
�� and ����

The designated terminology describing time� people� telephones� sounds� their
actions and interactions is as follows�

� Environment�controlled� system�visible�

 event�E�� E is an atomic event�

 earlier�E�� E��� event E� is earlier than event E�� and

 tel�t� � t is a telephone in the village�

 on�t��E� � E is an event where telephone t goes onhook�

 o��t��E� � E is an event in which telephone t goes o�hook�

� Environment�controlled� system�hidden�

 person�p� � p is person in the village�

 sound�s� � s is a unit instance �or packet� of sound�

 go near phone�p� t��E� � a person p goes near �enough to be heard over�
a telephone t at an event E�


 go away from phone�p� t��E� � a person p goes away �enough not to be
heard over� a telephone t at an event E�


 make sound�p� s��E� � a person p makes a sound s at an event E�

 hear sound�p� s��E� � a person p hears the sound s at an event E�

 transmit�t�� t�� s��E� � the sound s is transmitted from telephone t� to
telephone t� at an event E�

� System�controlled� environment�visible�

 then alerting�t��E� � Immediately after event E� telephone t is in an alert�
ing state �that is� the telephone is �ringing���




 then connected�t�� t���E� � Immediately after event E� telephones t� and
t� have a talking connection�

The predicates tel� person� and sound are �timeless� facts treated as constants�
The other predicates above are partially curried on events to facilitate their use
with the general temporal theory� Most of the predicates are just what would
be expected� The treatment of sound is a little unusual� Since we are assuming
that time is discrete� we assume that sound comes in discrete units as well� We
also associate with a sound its origin so that sounds made by di�erent people
are di�erent sounds�

The temporal theory assumes that events are instantaneous� the actions of
the system �telephone system� are su�ciently fast that users perceive them as
happening in no time� for all practical purposes� The state of the telephone
system changes only at events� so state predicates are often de�ned using event
boundaries� For instance� a telephone t that satis�es then alerting�t��E� is one
that began to alert at event E or was alerting prior to E and continued to alert
after E� State is often viewed in terms of immediately before E �alerting then�
and immediately after E �then alerting�� The alerting state immediately before
E is a de�ned predicate�

�E t� alerting then t E � previously�then alerting t� E�

Using the designated terminolgy� we have built up a considerable vocabulary
of de�ned terminolgy� One such example is alerting then� We omit the de�nitions
here� but assume that the names are adequately suggestive to allow the reader
to determine what the de�nitions are�

� Requirements

Because this is a very friendly village we require the system to make it as easy
as possible for villagers to talk to each other� Intuitively� the requirement is that
if a villager wants to talk to somebody the system will make an e�ort to �nd
a suitable partner�that is� another villager who is o�hook and not engaged in
another conversation� and therefore free to talk� This e�ort may include alerting
one or more villagers whose phones are onhoook in the hope that a phone will
then go o�hook and can be connected� There are many possible versions of
these informal requirements� In all versions we assume that time is discrete �this
is stipulated by the temporal theory� and that the system is fast enough to
complete its response to each event before the next environment event occurs
�this is sometimes called the �reactive system hypothesis��� In our case this
means that then connected and then alerting can be viewed as instantaneous
state changes�

The �rst thing that anybody would want out of a telephone system is that
communication can happen�

PR��near phone then� is o�hook then� connected then�make sound�

hear sound� �



�E p� p� t� t� s� �near phone then�p�� t�� E � is o�hook then t� E �
near phone then�p�� t�� E � is o�hook then t� E �
connected then�t�� t�� E � make sound�p�� s� E� � hear sound�p�� s� E

In what remains� we will leave the arguments to PRn implicit� Another thing
people expect from their phone is a degree of privacy�

PR� � �E p s t� t���make sound�p� s� E � is onhook then t� E� �
��transmit sound�t�� t�� E � �transmit sound�t�� t�� E�

A bit of politeness is that an o�hook telephone should not be alerting�

PR� � �E t� then o�hook t E � �then alerting t E

Connections are reliable in the sense that a connection is not broken �or even
replaced by another connection� until one of its participants goes onhook�

PR� � �E t� t��
�connected then �t�� t�� E � �then connected �t�� t�� E�

� �on t� E 	 on t� E�

Alerting is also reliable in the sense that an answered phone �one that goes
o�hook while it is alerting� immediately enters the talking state �that is� it is
connected to some other phone�� That other phone may of course go onhook in
the very next event� but between the two events the answered phone is in the
talking state�

PR� � �E t� answer t E � then talking t E

When somebody is requesting a connection �by having taken their phone o�hook
when it was not alerting and not having been connected or having hung up yet�
and there is an onhook phone� then some phone is alerting�

PR� � �E t�� then requesting t� E � �� t�� then onhook t� E��
�� t�� then alerting t� E�

The partial requirements PR� through PR� are basic to any version of this
telephone service� and we have included them in each of the speculative set of
requirements we investigated� Let us therefore refer to the following formula as
partial requirement B�

B � PR� � PR� � PR� � PR� � PR� � PR�

In addition to the basic requirements� there are two alternative ways of han�
dling phones that loose a connection� A telephone is said to droop if it was
connected to another phone which hangs up� and remains drooping until it ei�
ther hangs up or is connected to another phone� There are two evident options
for how to handle a drooping phone� One option is to treat a drooping phone the
same as a requesting phone� In which case we have a requirement for drooping
phones that is the same as PR� for requesting phones�



PR	 � �E t�� then drooping t� E � �� t�� then onhook t� E��
�� t�� then alerting t� E�

The other option �which is the one used by POTS� is to treat it as unavailable
until it goes onhook� In this case we would have the requirement�

PR	
 � �E t� �droop t E 	 drooping then t E� � �then talking t E

To cover the option where drooping phones are treated the same as requesting
phones� we will say that a phone is asking if it is either requesting or drooping�
There is one last requirement that we have for the system� namely that it be
fair to the callers by treating them on a �rst come� �rst served basis� Assuming
drooping telephones are handled the same as requesting phones� this yields�

PR� � �E� t� t���asking then t� F� �
�ask t� F� 	
�asking then t� F� �
�E�� throughout �asking then t�� E� F� �

�throughout �asking then t�� E� F���� �
�then talking t� F� � then talking t� F��

For the case where drooping telephones are treated as unavailable� PR�
 is de�
rived from PR� by replacing all occurrences of asking then by requesting then� In
the speci�cations given later in this paper we have focused on the case where
drooping phones are treated the same as requesting phones� Therefore our re�
quirements are

R � B � PR	 � PR�

We see no inherent di�culty with deriving speci�cations for the alternate system
which treats drooping phones as unavailable�

Note that there is a great deal of non�determinism in our requirements� For
example� none of our requirements directly stipulates a choice of caller�callee
pairings� Nor do we stipulate that there should� or should not� ever be more
than one phone alerting� Some of this non�determism will be restricted by the
choice of speci�cation� but much will be passed on for the program to decide�

� Domain Knowledge

Our domain knowledge for the VTS is a collection of facts about the environment
as we choose to model it for the purposes of our system� First of all� we assert
that types of arguments in some of our predicates are as expected�

K� � ��E� E�� earlier�E�� E�� � event E� � event E�� �
��t E� on t E � tel t � event E� � � � � �
��t� t� E� then connected �t�� t�� E �

tel t� � tel t� � event E�



More signi�cantly� the designated relation earlier is a nondense total order over
�events�� there is an initial event� and an induction principle� Using the mathe�
matical foundations we can state this as

K� � inductive sequence�earlier� event�

Additionally� o� and on events are in disjoint classes and are not initial events�
At any telephone� o� and on events alternate strictly� beginning with an o� event
so we wish to model telephones as toggles�

K� � � t� tel t � toggle�o� t� on t�

�The constant toggle actually takes �earlier� event� as an additional argument�
but we have omitted it here for the sake of conciseness��

At most one telephone is going o�hook or onhook at any given time�

K� � �E t� t�� �o� t� E 	 on t� E� � �o� t� E 	 on t� E��
�t� � t��

Another expectation is that then connected is an irre�exive relation� that is� no
telephone is ever connected to itself� and connections are symmetric �perhaps
because of the hardware that has been previously agreed upon��

K� � �E t� �then connected �t� t� E

K� � �E t� t�� then connected�t�� t�� E � then connected�t�� t�� E

Moreover� connections are in pairs�

K	 � �E t� t� t�� then connected�t�� t�� E �
then connected�t�� t�� E � �t� � t��

Some telephone services have connections called �conference bridges� that allow
three or more parties to be connected� but the village doesn�t have this�

The rest of the domain knowledge is about people� sounds and their relation
to telephones� First� people are toggles with respect to going near and going
away from telephones�

K� � �p t� person p � toggle�go near phone t� go away from phone t�

If a person is near a phone p� which is o�hook and connected to a phone p� which
is also o�hook� and the person makes a sound� then that sound is transmitted
from p� to p��

K� � �E p t� t� s� near phone then �p� t�� E � is o�hook then t� E �
connected then �t�� t�� E � is o�hook then t� E �
make sound �p� s� E � transmit sound �t�� t�� s� E

If a person is near a phone and a sound is transmitted to that phone� then it is
conveyed to that person��

� This can be considered analogous to conveying a packet to an application�level pro�
gram by placing it in a bu�er that is accessible by the application� There may be no
guarantee that the application will �make use� of the packet� just as VTS makes no
guarantee that a person will listen to a sound�



K � �E p t s� near phone then �p� t� E �
�� t�� transmit sound �t�� t� s� E� � hear sound �p� t� E

Lastly� we assert that if a sound is transmitted from one phone to another� they
must be connected�

K�� � �E t� t� s� transmit sound �t�� t�� s� E �
connected then�t�� t�� E

Note that K� and K are su�cient to prove the requirement PR�� It is not
true that all the requirements follow from the domain knowledge �PR� does not�
for example�� but it is not unreasonable to expect it to happen some of the time�

� Speci�cations

The principle attribute of a speci�cation is that it lies in the common vocabulary
of the environment and system but still has enough information to entail the
requirement� given the domain knowledge� Viewed as a progression from user�
level requirements to the development of a machine to satisfy those requirements�
it can be viewed as a reduction of the requirements to observable properties of
the machine� In the VTS this entails the reduction of requirements that speak of
people and sounds to ones that speak of o��hook and on�hook events �which the
machine detects but does not control� and telephones in alerting and connected
states �which the machine can control�� It also may entail reductions in the
range of available solutions as it narrows possibilities by stipulating particular
approaches� We describe two speci�cations� the �rst is done with HOL and uses
an anycast solution� while the second is done in Mocha and uses a broadcast
solution�

Up to this point� HOL has been our sole platform for formalizing aspects
of the VTS� At this point� we are expanding to make use of a second system�
Mocha� The question arises� what is the relation between a specicifation given
in Mocha and one given in HOL� The answer is that the Mocha speci�cation
is directly translatable into HOL because the underlying semantics of time in
Mocha� that of a round� coincides with that of an event in an inductive sequence
in HOL� and the module variables map directly to the designated terminology�
We actually studied di�erent speci�cations with the two di�erent systems� but
the Mocha speci�cation is readily expressible in HOL�

��� Speci�cations in HOL

There are essentially two cases because a phone can only do two things� go
o�hook and go onhook� Within each of these� there are essentially two cases
again� Going o�hook can happen when the phone is alerting �in which case it
is a answer event� or it can happen when phone is not alerting �in which case
it is a request event�� Going onhook can happen when the phone is connected
�a disconnect event�� or when it is not �a withdraw event�� We therefore orga�
nize the speci�cation into �ve formulas� Initial� Answer� Request� Disconnect� and



Withdraw� For each of these we provide an abbreviated English explanation that
relies on certain invariants the system satis�es� In developing the speci�cation in
HOL� we gave two versions� a �fat� version that included clauses for many cases
which �one can prove in retrospect� cannot occur� and the other being a �lean�
version which we describe below� We were able to prove that in the presence of
domain knowledge the two speci�cations are the logically equivalent�

The Initial Event� Immediately after the inital event no telephones are alert�
ing or connected�

Answer Events� Assume telephone t� answers at event E� Then there is a
phone t� which is asking and which is the unique phone connected to t� after
E� and any other pair of phones is connected after E i� it was connected
before E� That is� t� connects to some asking phone t�� and all standing
connections are una�ected� After E the phone t� is no longer alerting and�
except for t�� a phone is alerting after E i� it was alerting before E�

The �fat� formula for answer events is more complicated because it covers all
cases� such as what happens when a phone other than t� is also asking� �if there
is another phone besides t� that is asking and t� was the only phone alerting
before E� then there is a phone t� that was onhook before E and starts to alert
after E�� However� the �fat� set of speci�cation formulae can be used to show
that at most one phone can be asking at any one time� the greedy connection
rule would connect any pair of simultaneously asking phones� Another point of
interest� the �fat� speci�cation implies that there is at most one alerting phone�
so� in fact� after E there are no alerting phones�

Request Events� Suppose t� is a phone that was not alerting when it goes
o�hook at E� that is� t� requests a connection at E� If there is another phone
t� that is asking� then t� is connected to t�� all other standing connections
are una�ected� and there are no alerting phones after E� If no other phone
is asking� then the standing connections are the same as before E� and some
phone that is onhook at E begins to alert� if there is any onhook phone�

Again� this phrasing is based on a variety of invariants like the fact that at most
one phone can be alerting at any time and the fact that if no phone is asking
then no phone is alerting�

Disconnect Events� Suppose t� goes onhook at event E� where t� was con�
nected to t� immediately before E� Then� after E the connection between t�
and t� ends and there are two possibilities for what happens to t�� Either an�
other phone was asking and then t� is connected to it and all alerting phones
stop alerting� or no other phone was asking� so no new connection is made�
and an onhook phone begins to alert� In either case all other connections are
una�ected�

Withdraw� Suppose t� goes onhook at event E� but where t� was not con�
nected immediately before E� Then� the set of standing connections is left
una�ected� and all phones stop alerting�



In HOL� we have proved a collection of invariants of this speci�cation� such as
those mentioned above� and we have proved the equivalence of the two speci�ca�
tions� We have also proved that the speci�cation which covers all cases� including
those that cannot arise� satisies the reduction theorem given by formulae �� and
�
� in Table �� Using the equivalence of the speci�cation under domain knowl�
edge� we then showed the simpli�ed speci�cation also sati�ed formulae �� and
�
�� Therefore� either of the speci�cations may be passed on to developers to
build a program to satify it� The developers need not know anything about the
original requirements or the domain knowledge� if a program is supplied that
sati�es formula ���� then we are guaranteed �from a theorem in HOL� that the
desired formula ��� will hold�

��� Speci�cation in Mocha

Mocha 	�� is a model�checking veri�cation system� which uses reactive modules 	��
as a modelling language and state invariants for speci�cations� We specify the
VTS using reactive modules�

Reactive Modules A reactive module is a collection of synchronously updated
variables� A key concept is that of a round� which is the time�step at which
a variable may be updated� There is an initial round when the variables are
initialized� Subsequent rounds are called update rounds� The sematics of rounds
is the same as the semantics of events in an inductive sequence� Therefore� it is
legitimate to identify these two notions� and we shall refer to rounds and events
interchangeably from here on�

Formally� a module consists of external variables �ev�� which are inputs to
the module� private variables �sh�� which are updated locally but are invisible
outside the module� interface variables �sv�� which are updated locally and are
visible outside the module� Updated variable values can depend on the current
and previous values of any of the variables in the module as long as there are no
circular dependencies� Thus each variable is actually a function from rounds to
values� The module expresses a set of predicates on the values of the variables
in any round�

A speci�cation for the variables in a module can be expressed by writing an
invariant for it� An invariant is a condition on the variable values that is expected
to hold in all rounds� Very often� the invariant mechanism is not expressive
enough for temporal speci�cations for the module because it does not allow
predicates over rounds� In such cases� we use another module to monitor the
relevant variables� The monitor module sets a �ag whenever any condition is
violated� Then the speci�cation can be expressed as an invariant of the �ag
value�

Specifying the VTS In the VTS� the system and the environment are reac�
tive systems which respond to conditions at each event� All the variables are
predicated over events� Consequently� we can naturally model the VTS and its
speci�cation using reactive modules�



The speci�cation for the VTS is expressed by de�ning a monitor module with
a �ag variable which is initially true and goes false if any of the following rules
are violated in a round�

Consistency� At any round� no phone is connected to itself� connections are
symmetric� and no phone is connected to two phones�

Initial� After the initial round� no telephones are alerting or connected
Answer� At any update round� if a phone is answered� then it stops alerting�

there is exactly one asking phone� it is connected to every asking phone� and
no standing connections are a�ected�

Request� At any update round� if a phone requests� then no other phone is
asking� and all on�hook phones start alerting�

On�Hook� At any update round� if a talking phone goes on�hook� all its con�
nections are broken� if a talking phone goes on�hook when another phone
was asking� the phone�s partner gets connected to the asking phone� if a
talking phone goes on�hook� all non�alerting phones start alerting� and if a
non�talking phone goes on�hook� all alerting phones stop alerting�

The speci�cation is then expressed as an invariant that the �ag is always �in
all rounds� true�

This speci�cation di�ers from the HOL speci�cation in exactly one aspect�
Here the system is expected to alert all on�hook phones �broadcast� when a
connection is requested� as opposed to exactly one on�hook phone �anycast� in
the HOL case� We assert that this assumption does not violate the requirements�
We have not formally proved that �� and �
� hold for this speci�cation� but in
light of the proof of �� and �
� for the HOL speci�cation and the close relation
between the two speci�cations� we believe that it can be proved for the reactive
module speci�cation as well�

� Implementations

As was with the case with the speci�cations� we have given two implementations�
one in SML satisfying the simpli�ed HOL speci�cation� and one in Mocha� sat�
isfying the Mocha speci�cation�

	�� Implementation in SML

The HOL speci�cation reads as a large case statement relating an onhook or
o�hook event �or initial event� to the set of connections and the set of alert�
ing telephones after the event� given enough history to know which phones are
already onhook� o�hook� alerting� or connected �and to whom�� The SML imple�
mentation consists of a state variable containing the current set of connections�
a state variable containing the current set of alerting phones� and a recursive
program over a stream of onhook and o�hook events� yielding state changes to
the set of connections and the set of alerting phones� The loop of the recursive



program takes as arguments the current set of onhook phones as well the cur�
rent event� It generates the changes to the state of the connections and alerting
phones� and returns the new set of onhook phones� This internal record of the
the set of phones onhook is a machine�controlled� world�hidden variable that
mirrors the the de�ned term onhook then� The loop mirrors the case statement
of the simpli�ed speci�cation very closely� We did not perform a formal proof
that the program satisi�ed the speci�cation �i�e� formula ����� but we did do an
informal proof� A formal proof should be possible� given the semantics of SML
encoded in HOL� but since the similarity of the program and the speci�cation
was so great� there seemed diminished value in doing so�

	�� Implementation in Mocha

In Mocha we implemented VTS as a reactive module with environment con�
trolled variables on�t�� o��t� as external �input� variables and then alerting�t��
then connected�t�� t�� as interface �output� variables� These variables are im�
plicitly predicated over rounds �events� so they are just expressed as predicates
over telephones� The implementation makes use of the fact that there can be
at most one asking phone� Also� whenever any connection is requested� all on�
hook phones need to be alerted� So the system module just keeps track of the
connections and the identity of the asking phone� Modeling the updates of these
variables presents no challenges and is directly derivable from the speci�cation�
The value of then connected�t�� t�� follows simply from the connections for t�� t�
and then alerting�t� is true for any on�hook phone t whenever there is an asking
phone�

To verify the implementation we need to prove ��� from Table � for our
system �M�P� and speci�cation �S�� In reactive modules� every module variable
must have a value in each round� regardless of input� So the consistency of the
system

� sv sh� M � P

is implicitly guaranteed by the programming platform� What remains is to prove
that for all values of ev that do not falsify S� the following holds true�

��sv sh��M � P�� S�

We write an module that generates a superset of the values of ev that do not
falsify S and supply the generated ev as input to the system module� Then we
prove the above property by composing the system module in parallel with the
speci�cation and checking that the invariant holds for all possible states�

We use the enumerative model�checker in the Mocha system for the proof�
Since the model checker will only work for a �nite state space� we need to �x
the number of telephones� Most of the non�trivial conditions of the VTS become
visible when we have more than four telephones� We verify the system for a
village with up to � telephones�

We ran the enumerative model�checker in Mocha���� on a ���MHz Sun Ul�
traSPARC with ��MB memory� running SunOS 
�
��� For a village with � tele�
phones� the system has ��� reachable states and is veri�ed in �� seconds� At �



telephones� it has ��� reachable states and the veri�cation takes ��� minutes�
The model�checking breaks at �� telephones for lack of memory� This suggests
that Mocha is probably useful as a debugging aid� allowing non�trivial tests� but
cannot handle the number of states involved in checking any but the smallest
villages� Clearly it would be of interest to �nd �saturation� principles that al�
low us to conclude properties of villages of all sizes from those of a �xed size�
or techniques for allowing the checker to be used in conjunction with in�nitary
proof techniques like induction�

� Conclusions and Acknowledgements

We have shown how to carry out an �end�to�end� formal development of an
illustrative software system� This process included modelling parts of the process
that are not usually treated formally� such as the user�level requirements� By a
systematic approach to re�nement we have shown how these requirements can
be reduced to a speci�cation that a programmer can implement� Formal proofs
were developed for each of the re�nements involved except for a gap between our
SML implementation and its �extremely similar� HOL speci�cation� and a gap
between our Mocha speci�cation and a corresponding HOL speci�cation� The
bene�t of closing the �rst gap is probably not worth the trouble in this case� but
better integration between Mocha and HOL could yield interesting bene�ts�

We would like to express thanks to Rajeev Alur� Trevor Jim� and Insup Lee
for their input to this work�

References

	� R� Alur and T�A� Henzinger� Reactive modules� In Proceedings of the ��th IEEE

Symposium on Logic in Computer Science� pages 
���
	�� 	����

� R� Alur� T�A� Henzinger� F� Mang� S� Qadeer� S� Rajamani� and S� Tasiran� Mocha�

Modularity in Model Checking� To appear in the Conference on Computer Aided
Veri�cation� 	����

�� Marco De�llers� David Gri�oen� and Olaf M�uller� Possibly in�nite sequences in
theorem provers� A comparative study� In Lecture Notes in Computer Science �����

Proceedings of the ��th International Conference� TPHOLs ���� Springer� 	����
�� Carl A� Gunter� Elsa L� Gunter� Michael Jackson� and Pamela Zave� A reference

model for requirements and speci�cations� Available by request� 	����
� Michael Jackson and Pamela Zave� Domain descriptions� In Proceedings of the

IEEE International Symposium on Requirements Engineering� pages ����� IEEE
Computer Society Press� 	��
�

�� Michael Jackson and Pamela Zave� Deriving speci�cations from requirements� An
example� In Proceedings of the Seventeenth International Conference on Software

Engineering� pages 	�
�� IEEE Computer Society Press� 	���
�� Pamela Zave and Michael Jackson� Four dark corners of requirements engineering�

Transactions on Software Engineering and Methodology� 	���� To appear�


