
Page 1 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

UML and Function-Class 

Decomposition for 

Embedded Software Design 
 

 

 

 

 

Abstract: 

This class introduces a practical application of the UML diagrams and function-class 

decomposition (FCD) concept to requirements analysis, software architecture analysis 

and design, and software design and implementation for a complex embedded system. 

Based on the function-class decomposition concept, the UML diagrams for requirement 

analysis, and software architecture analysis and design are shown in detail. This is 

followed by decomposing the complex software architecture into UML class and state 

diagrams. Two detailed software implementation examples (including a application 

manager and a device driver) that include UML diagrams and C++ code are shown. 

 

 

By Chai Kok-Soon, PhD 

Koksoon58@yahoo.com 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ESC-305] UML and Function-Class Decomposition for Embedded Software Design, 

San Jose, 2006. 



Page 2 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

1) Introduction 
The complexity and the application of the embedded systems are increasing significantly. 

Companies developing embedded systems are facing new challenges, ranging from 

security to software change requirements management. In particular, a significant number 

of the embedded products are real time systems, and many them find applications in 

safety critical systems that have be designed in very high quality. The intrinsic quality of 

embedded products can be attributed to the embedded software that powers and controls 

the functionalities of the products. Therefore, there must be a stringent software quality 

process utilized in order to design a high quality embedded product. Designing high 

quality software while meeting product life cycle requirements is certainly one of the 

most important challenges in embedded software design.  

 

High quality embedded software cannot be designed by concentrating on satisfying the 

software requirements alone. The quality of embedded software shall include, but not 

limited to these two criteria, I) how well the embedded software satisfies the user 

requirements, II) how well the tools and process are deployed to design embedded 

software. Except for the simplest academic or commercial software products, the 

majority of the embedded software products are complicated in terms of the effort spent 

to develop them, and the software artifacts, including but not limited to requirements and 

design documents, source code or software models, and test plans that are used to design 

the software product. With the increased complexity of embedded software in terms of 

lines of code, and challenges faced by change requirements management and portability 

and reusability of the embedded software, it will continue to become more and more 

difficult to write embedded software that achieves the type of quality and speed of change 

demanded in the commercial environment.  

 

Section 2 in this paper surveys some of the work done in the Unified Modeling Language 

(UML), object-oriented analysis and design, and function class decomposition. This 

section suggests in a practical perspective how to combine these three techniques 

specifically for large scale embedded software systems development. Section 3 suggests 

the application of functional decomposition, use case, collaboration and sequence 

diagram for system and software architecture specification. Section 4 describes how to 

map and decompose the software architecture into class, state and sequence diagrams. 

Section 5 describes three software implementation examples that include UML class 

diagrams and a C++ example. Section 6 concludes the application of these three 

techniques for large scale embedded software system design, and suggests further work 

for system and integration test. 

 

2) Overviews of the OO and FCD, and UML 
Object-oriented concepts were first introduced from object-oriented programming with 

the introduction of Simula and later the Smalltalk programming language [1]. It is termed 

for writing objects that combine attributes for representing and storing the states of the 

objects with operations to manipulate the attributes. Booch [2] started to advocate the use 

of objects during the entire software development cycle. The application of object-



Page 3 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

oriented analysis to real time system has become very popular. For example, 

Veeraraghavan [3] shows an example of applying the OOA method to the analysis of 

signaling and control in broadband networks. The method starts by focusing on objects in 

the problem, rather than functions. In general, these methods identify objects in the 

embedded systems, such as printers, servers etc. and decomposing the large scale 

embedded software in embedded devices into software architecture.  

 

In practice, it is difficult to design and manage the complexity of large-scale software 

systems using pure OO techniques. This is because pure OO techniques tend to design a 

software system from bottom-up [6], and has little guidance on the design of software 

architecture. The software architecture contains the functionalities and structure of 

software modules, and the relationship between these software modules [5]. For large 

software systems, the overall system structure becomes a central design problem [4].  

Object-orientation only provides partial support for the analysis and design of layers, 

components, connectors, relationships between components, interfaces etc. that are 

important for the representation of software architecture.  OO techniques also identify 

large number of objects at the initial stage of large scale software development project, 

which are not easily manageable. Chang proposes the application of the function class 

decomposition method that takes a functional view into account on the object-oriented 

basis [7]. This method concentrates on structured way to functionally group classes into 

software modules that are based on proven software architecture techniques, and engages 

the concepts of class decomposition in the object-oriented paradigms to derive 

decomposed classes from these software modules.  

 

The following sections will explore the application of UML diagrams to analyze, design 

and represent embedded software, including device drivers and application modules. The 

requirements design product symbolizes a large scale and distributed embedded software.  

In practice, these types of systems are developed by multiple teams, including internal 

and external development teams and component-based development that involve 

complex coordination and change management. The UML and function-class 

decomposition technique examines this situation where is it getting more difficult to 

design highly competitive complex embedded software without the support of an 

advanced design process and technique. 

 

3) Functional Decomposition for System and Software 
Architecture Design 

This section applies the functional decomposition method to the system and software 

architecture to ultimately create modules in UML. The functions based on software 

modules are different from the pure OO method where objects are identified at this stage 

of software design. 

  



Page 4 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

3.1) Designing Complex Embedded System and Software 

Most of the embedded systems interact with external I/O such as sensors, actuators and 

networks. Advanced distributed embedded system design starts with the system 

architecture and protocol design. The layering in the OSI model supports a systematic 

approach to decomposing complex embedded software to a number of independent but 

structured computations (such as processes, tasks or threads in embedded software) that 

interact with the external I/Os and networks.  

 

Based partially on a structured approach to decomposing large embedded software, the 

design example demonstrates how to design a complex embedded software system for a  

product called Device Programmer. This section covers simple protocol design for 

embedded system that is mapped and decomposed to embedded software in the Device 

Programmer. This example does not intend to cover all the functionality of the Device 

Programmer but shows sufficient detail to decompose distributed embedded system 

intosoftware architecture, and then to allow detailed design bases in UML and functional-

class decomposition. This example could be applied to other embedded applications such 

as distributed boot-loader, proprietary wireless devices, network gears design etc.  

 

3.2) System Requirements Analysis 

The first design activity is to derive the requirements for the Device Programmer. A 

software requirements specification can combine text-based descriptions with  use case 

diagrams to help analyze the product requirements of the Device Programmer. Figure 1 

shows the use case diagram for the Device Programmer. The  diagram shows the high 

level requirements  that can be  communicated to  customers or the end users. The use 

case diagram shows that the Device Programmer has four major functions. The user calls 

the GetRemoteData use case in the Device Programmer to connect  to a remote server. 

The ConnectServer use case establishes the connection between the Device Programmer 

and the Server. The DownloadData use case downloads configuration data from the 

Server to the Device Programmer. The ProgramDevices use case programs the devices 

connected to the Device Programmer with the configuration data. The use case diagram 

effectively shows that the Device Programmer is a networked device that programs 

devices by retrieving data from a remote server. 

User
GetRemoteData ConnectServer

LCD

Prog ra mDevices
Devices

DownloadData

Server

 
Figure 1: Use case diagram for the Device Program 



Page 5 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

The use case diagram shows what are the functionalities of the Device Programmer.  

Figure 2 shows that the Device Program uses the Ethernet and TCP/IP protocol to 

implement the GetRemoteData use case. The User presses power up button on the Device 

Programmer and the Device Programmer starts initialization, including the Ethernet 

connection. The Device Programmer goes into the CONNECTED state once it is 

successfully connected to the Server. The User initiates GetRemoteData function in the 

Device Programmer sending the GET_PROD_DATA command to the Server. The 

Server replies with a range of configuration data by replying the PRODUCT_DATA 

command to the Device Programmer. The Server issues a 

PRODUCT_DATA_COMPLETED command to the Device Programmer once the data 

transfer of the configuration data is completed.  

 

 
Figure 2: Sequence diagram showing the TCP/IP protocol 

 

3.3) Software Archiitecture Design 

The software architecture design following the concept of functional decomposition is 

commenced after the completion of the system requirements requirements analysis. This 

is an important phase to decompose the Device Programmer into a number of 

interconnecting high-level functions with structure. These functions should be connected 

with  robust structure, typically a layering structure for the high-level functional 

decomposition of the Device Programmer. The arrangement of the functions in the layers 

may influence  the software portability, reusability and maintainability of the embedded 

software. In order to design the embedded software to be portable to different hardware 

platforms, a hardware abstraction layer is introduced. The hardware abstraction layer 

should  contain hardware driver functions that  can be easily modified when porting to a 

new hardware platform. As the result, hardware related type defines (such as typedef 

unsigned long uint32_t) are normally located in a specific header  file. More examples on 

this concept will be presented later on in this document.  

 



Page 6 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

The concept of portability also covers software platforms, particularly real-time operating 

systems (RTOS), which may differ on different projects. For companies that practice 

software reuse and aproduct line concept, the embedded software is designed to be shared 

across many different and generation of products. So an RTOS abstraction layer 

(ROSAL) containing the OS related functions from the embedded software is introduced. 

The communication layer, or middleware layer for some domains, is introduced for the 

grouping of communication related functions. This communication layer normally 

consists of the software implementation of protocols in the OSI layer from the data link 

layer to the transport layer. For example, this  layer would contain the TCP, IP and PPP 

implementation of the TCP/IP protocol over the Ethernet network. The application layer, 

with the similar concept of the application layer in the OSI model, contains customized 

commands and functionalities for the implementation of protocols such as TCP/IP. 

However, for more complicated devices such as Device Programmer, the Application 

Layer also entails display management, user input management such as keypad 

management, multiple application management, data management, diagnostic 

management and the management of application layer for protocols such as TCP/IP, I2C 

etc.  

A p p li ca t io nL a y e r

Co m m u n ic a tio n L a ye r

H a rd w a r eA b s tra c tio n La ye rO S A b sL a ye rR T O S

Co n ta in in g  d iffe re n t  R T O S  su c h  a s  V x

W o rk s , o r s im p le  sc h e d u le r if  R T O S  is  n o t 

su p p o rte d

 
Figure 3: High-level software architecture of the Device Programmer 

 

3.4) Functional Decomposition of the Application Layer 

Figure 4 shows the functional decomposition of the ApplicationLayer clearly delineates 

different functions that will be further decomposed using the class decomposition 

method. Messages from other software layers are stored in the AppBuff and CommBuff 

software modules. The messages are retrieved and processed by the AppManager 

according to the data set in the dest_t field of the message. The messages are forwarded 

to the appropriate applications including ProgramApp, DataApp, DiagnosticApp etc. 

New applications can be easily added to the Application Layer with minor modifications 

in the AppBuff and CommBuff and AppManager. 



Page 7 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

AppM anager

DataAppProgramApp

HardwareAbstractionLayer

(from Logical View)

Co mmunicat ionLayer

(from Logical View)

DiagnosticApp

Keyp adApp

AppBuff

(from OSAbsLayer)

CommBuf fer

(from OSAbsLayer)

 
Figure 4: Functional decomposition of the Application Layer 

 

3.5) Functional Decomposition of the HAL 

Figure 5 shows the functional decomposition of the HAL using the software modules and 

class diagram in the UML.  The HAL consists of a board support package (BSP) module 

containing functions to initialize the processor of the Device Programmer and all the 

hardware devices, including USB, RTC drivers etc. . The modules in the HAL 

communicate with the ApplicationLayer using the AppBuff, which is part of the ROSAL. 

AppBuff

(from OSAbsLayer)

BSP

FlashDriverKeypa dDrive rRTCDriverUSBDriver I2CDriver

 
Figure 5: Functional decomposition of the HAL 

 

3.6) Functional Decomposition of the Communication Layer 

Figure 6 shows the functional decomposition of the Communication Layer. In this case, 

the development team has decided to outsource the TCPIP and USB software modules 

will not be developed internally. The modules are two of the commercial-off-the-self 

(COTS) components in the Device Programmer.  



Page 8 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

TCPIP USB

CommBuffer

(from OSAbsLayer)

Commerc ial-off-the-shelf 

(COTS) components

 
Figure 6: Functional decomposition of the Communication Layer 

 

3.7) Scenario Analysis 

Figure 7 shows the scenario analysis of the GetRemoteData use case to design the 

software architecture of the Device Programmer. The figure shows the messages between 

different functions that implicitly represent the relationship between the software 

modules. 

 
Figure 7: Scenario analysis of the GetRemoteData use case 

 

4) Class Decomposition for Software Detail Design 
With the completion functional decomposition using of some well-structured s software 

modules in UML, the object-oriented design and implementation using the class 

decomposition method is commenced.  

 

4.1) Class Decomposition of the AppManager module 

Figure 8 shows the class decomposition of the AppManager module into classes using the 

object-oriented design and programming method. The AppManager is decomposed into 

AppManagerInt, AppManager and AppMgrStateMachine classes with interface with the 

AppBuff and ProgramAppBuff classes. The AppManagerInt class is the interface class 

for the AppManager module. Other software modules execute the initialize() function in 

the AppManagerInt interface class to execute the Run() function in the AppManager 

class. The AppManagerInt, AppManager and AppMgrStateMachine are implemented 

following the Singleton design pattern. This should ensure that there is single instance for 

the classes AppManagerInt, AppManager and AppMgrStateMachine class.  



Page 9 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

The AppManager executes the Run() function that calls the GetMsg() function in the 

AppBuff class pending the availability of messages from other software layers. The 

AppManager calls the SendMsg() function of the AppMgrStateMachine class passing the 

message with an event. The AppMgrStateMachine consists of the logic to implement the 

state machine shown in Figure 9. The state machine consists of variables specifying an 

array of current states, next states, events and executing functions. For example, the 

initial state of the state machine is READY, and if the event 

AppBuff::PROGRAM_APP_ID occurs then the ProcProgApp() function will be 

executed. The ProcProgApp() function may pass the message to the ProgramApp module 

by executing the SendMsg() function. The existing state of the state machine is now in 

PROC_PROGRAM_APP_MSG. The event AppBuff::PROC_END will cause the state 

machine to execute the Null() function with its current state changes from 

PROC_PROGRAM_APP_MSG state to READY state.     

 

 

Figure 8: Class decomposition of the AppManager module 



Page 10 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

Start

READY

PROC_PROGRAM_APP_MSG

AppBuff::PROGRAM_APP_ID /  ProcProgApp

AppBuff::PROC_END /  Null

AppBuff::PROGRAM_APP_ID /  ProcProgApp

AppBuff::PROC_END /  Null

 
Figure 9: State diagram of the AppMgrStateMachine class 

 

4.2) RTOS Abstraction Layer (ROSAL) 

Figure 10 shows the class decomposition in the RTOS abstraction layer (ROSAL). The 

ROSAL uses AppBuff and CommBuff receive messages transmitted by the HAL and 

Communication Layer to the Application Layer. The OSAL class diagram also consists 

of the FlashOSServices class that provides an abstraction between OS specific functions 

with the FlashDriver.  

AppBuff

$  m_Instan ce : AppBuff*

d est_t  : e num

a ppMsg_ t : struct

Distrib ute Msg()

GetMsg ()

~Ap pBuff()

Ap pBuff()

$ Ge tInstan ce()

(from AppBuff)

CommBuffer

PutMsg()

(f rom Co mmBuffer)

FlashOSServices

flashSemId : SE MAP_ID

SemT ake()

SemGive ()

TaskDelay()

Init()

(from OSServices)

RTOS

VxW orksInt

InstallIsrFunction()

LockInterrupt()

UnlockInterrupt()

Init()

SemTake()

SemGive()

TaskDelay()

W dInit()

W dStart()

(from VxW orks)

MicroC

 
Figure 10: Class decomposition of the OS Abstraction Layer 

 



Page 11 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

4.3) Class Decomposition of the FlashDriver module 

Figure 11 shows how to design the class diagram of the FlashDriver module achieving 

the aim of design for reuse and portability. The FlashDriver module provides three major 

operations to read, write and erase memory . The FlashInt class interfaces to the 

FlashDevice and is dependent on some OS services to synchronize the device driver 

states. The FlashDriver contains a Flash abstract class consisting of the 

ATACompactFlash and CfiFlash for Compact flash and Common Flash Interface (CFI) 

based flash respectively. The ATACompactFlash consists of ATA-based operations such 

as ATADrive() with variables initializing and specifying the specifications of a ATA-

based Compact flash connected to the Device Programmer. The ATA-based commands 

are  implemented by the ATACommand() function. However, the ATACompactFlash 

class does not contain any hardware related register information as these registers are 

declared and modified in the STR71ATAPort that directly manipulates the registers of 

the STR71-based controller. Therefore, FlashOSServices and STR71ATAPort are 

grouped under the OSServices and STR71Hardware module respectively easing the 

migration of the FlashDevice from STR71 hardware platform and a RTOS software 

platform to a new hardware and software platform. 

 
Figure 11: Class decomposition of the FlashDriver 

 

5) Implementation for ApplicationManager and Device 
Drivers 

This section shows how the class diagrams are implemented in the C++.  

 



Page 12 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

5.1) ApplicationLayer 

5.1.1) C++ Implementation for the ApplicationManagerClass 

Figure 12 is the header file for the ApplicationManager class based on the class diagram 

shown in Figure 8. It is implemented based on the Singleton design pattern ensuring that 

there is only one instance of the ApplicationManager class. Other software modules 

instantiate the ApplicationManager class using the APP_MANAGER that calls the 

ApplicationManager::GetInstance() returning the only instance of the 

ApplicationManager class. The source file for the ApplicationManager class is shown in 

Figure 13. The ApplicationManager class contains a state machine implemented as 

APP_MGR_SM. The ApplicationManager class executes the SendMsg() function to pass 

events to the APP_MGR_SM. The APP_MGR_SM will react to the event according to 

the basic theory of a state machine shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: ApplicationManager.h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: ApplicationManager.cpp 

ApplicationManager* ApplicationManager::m_Instance = NULL; 

 

ApplicationManager* ApplicationManager::GetInstance() 

{ 

 if (m_Instance==NULL) 

 { 

  m_Instance = new ApplicationManager; 

 } 

 return m_Instance;   

} 

 

AppBuff::appMsg_t* ApplicationManager::GetMsg() 

{ 

 return (APP_BUFF->GetMsg()); 

} 

 

void ApplicationManager::Run() 

{ 

 AppBuff::appMsg_t* appMsg; 

 

 while (1) 

 { 

  appMsg = (AppBuff::appMsg_t*)GetMsg(); 

  APP_MGR_SM->SendMsg(appMsg); 

 } 

} 

#define APP_MANAGER (ApplicationManager::GetInstance()) 

 

class ApplicationManager 

{ 

public: 

 static ApplicationManager* GetInstance(); 

 AppBuff::appMsg_t* GetMsg(); 

 void Run(); 

 

private: 

 static ApplicationManager* m_Instance; 

 ApplicationManager(void); 

 ~ApplicationManager(void); 

}; 



Page 13 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

5.1.1) C++ Implementation of the state diagram for the 
ApplicationManager Class 

Figure 14 shows the source code for the state machine of the ApplicationManager class. 

AppMgrStateMachine implementing the state machine shown in Figure 9 consists of: 

• state_t containing all the states of the state machine 

• stateMachineTable_t containing the variables of a state machine including the 

current states, events, next states and the functions to be executed. 

• void (*ExecutingFunction)(void) is a function pointer executing a specific 

function based on the existing state and an incoming event. For example, 

stateMachineTable[] in Figure 15 shows that the ExecutingFunction points to the 

ProcProgApp() if the current state is READY and the event is 

AppBuff::PROGRAM_APP_ID.   

• static uint8_t StateMachineSize is the size of the state machine on compiled time. 

• static stateMachineTable_t stateMachineTable[] contains an array of current 

states, events, next states and functions forming the state machine. 

• curState is the variable referring to the current state of the state machine. 

• static void ProcProgApp(void) and static void Null(void) are two of the functions 

that will be executed by the state machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: AppMgrStateMachine.h 

#define APP_MGR_SM AppMgrStateMachine::GetInstance() 

 

class AppMgrStateMachine 

{ 

public: 

 static AppMgrStateMachine* GetInstance(); 

 void SendMsg(AppBuff::appMsg_t* appMsg); 

 

private: 

 AppMgrStateMachine(void); 

 ~AppMgrStateMachine(void); 

 static AppMgrStateMachine* m_Instance; 

 

 typedef enum  

 { 

  READY, 

  PROC_PROGRAM_APP_MSG, 

 } state_t; 

 

 typedef struct 

 { 

  state_t curState; 

  AppBuff::dest_t event; 

  state_t nextState; 

  void* functionCall; 

 } stateMachineTable_t; 

 

 void (*ExecutingFunction)(void); 

 static uint8_t stateMachineSize; 

 static stateMachineTable_t stateMachineTable[]; 

 state_t curState; 

 AppBuff::dest_t eventOccured; 

 void* m_Msg; 

 

 /* Function call for the state machine */ 

 static void ProcProgApp(void); 

 static void Null(void); 

}; 



Page 14 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

Figure 15 shows part of the source code of the AppMgrStateMachine class with 

GetInstance() function and destructor omitted from the code for simplification. The 

AppMgrStateMachine class contains stateMachineTable[] with an array of 

stateMachineTable_t. The stateMachineTable_t type contains data for current state, 

event, next state and function call. The stateMachineSize is a static function that changes 

according to the size of the array for stateMachineTable[]. The SendMsg() function runs 

the  loop with two conditions, I) the run time value of the current state is stored in 

curState, II) telling the compiler that the loop begins at 0, and stops at stateMachineSize 

unless stateMachineTable[stateArray].curState in the state machine is equal to the current 

state in curState and the stateMachineTable[stateArray].event is equal to the event that 

just occurs.  

 

In other words, the SendMsg() function attempts to match the event that it receives 

against the current state with its event of the state machine. If the event matches the state 

machine will change to a new state according to the Next State field in the state machine, 

and a function call is executed as the result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Part of the AppMgrStateMachine.cpp 

AppMgrStateMachine::stateMachineTable_t AppMgrStateMachine::stateMachineTable[] = 

{ 

/* Current State */  /* Event */               * Next State */  /* Function Call */ 

{READY,    AppBuff::PROGRAM_APP_ID,  PROC_PROGRAM_APP_MSG,(void*) ProcProgApp }, 

{PROC_PROG_APP_MSG,  AppBuff::PROC_END, READY,   (void*) Null } 

}; 

 

uint8_t AppMgrStateMachine::stateMachineSize 

(sizeof(AppMgrStateMachine::stateMachineTable)/sizeof(AppMgrStateMachine::stateMachineTable_t)); 

 

AppMgrStateMachine::AppMgrStateMachine(void) 

{ 

 curState = READY; 

} 

 
void AppMgrStateMachine::ProcProgApp(void) 

{ 

 // Processing the ProgramApp 

 PROG_APP_BUFF->SendMsg(APP_MGR_SM->m_Msg); 

} 

 

void AppMgrStateMachine::SendMsg(AppBuff::appMsg_t* appMsg) 

{ 

 m_Msg = (void*)appMsg; 

 eventOccured = appMsg->destID; 

 

 for (uint8_t stateArray = 0; stateArray < stateMachineSize; stateArray++) 

 { 

  if (stateMachineTable[stateArray].curState == curState) 

  { 

   if (stateMachineTable[stateArray].event == eventOccured) 

   { 

    curState = stateMachineTable[stateArray].nextState; 

     

    // Pointing to a function 

    ExecutingFunction = (void(*)(void)) stateMachineTable[stateArray].functionCall; 

     

    if (ExecutingFunction != NULL) 

    { 

     // Executing a function call 

     (*ExecutingFunction)(); 

    } 

 



Page 15 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

5.2) RTOS Abstraction Layer 

Figure 16 shows the header file for the AppBuff acting as an OS abstraction layer 

between the Application Layer with the HAL. The AppBuff class consists of the 

following variables: 

• DistributeMsg() function. Software layers interfacing to the Application Layer 

using this AppBuff class by executing the DistributeMsg() function. The 

DistributeMsg() function calls appropriate RTOS message passing functions 

passing messages to the buffer, which is then received by the 

ApplicationManager class.  

• dest_t. The software layers indicate the destination of the message by specifying 

a specific destination, including ProgramApp module specified by dest_t. 

• appMsg_t. The destID variable is the destination of the message, and the 

appMsgHeader contains specific command coding that specifies how a specific 

application (such as ProgApp etc.) should process the data of the message.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: AppBuff.cpp 

5.3) FlashDriver 

Figure 17 shows the header file of the FlashDriver shown in Figure 11. The header 

consists of a flashDevice_t for the ATA compact flash and CFI-based flash. The 

GetFlashDevice() function in the FlashDevice class accepts parameter passing from 

external class, and initialize and returns a FlashDevice instance referring to the 

ATA_PPC405_FLASH and CFI_ALTERA_FLASH respectively. The external class will 

be able to run code referring to the type of flash it initializes. 

 

#define APP_BUFF AppBuff::GetInstance() 

 

class AppBuff 

{ 

public: 

 

 typedef enum  

 { 

  PROGRAM_APP_ID, 

  FILE_APP_ID, 

  PROC_END 

 } dest_t; 

 

 typedef struct 

 { 

  dest_t destID; 

  uint32_t appMsgHeader; 

  uint32_t dataLength; 

  uint8_t* data; 

 } appMsg_t; 

 

 static AppBuff* GetInstance(); 

 void DistributeMsg(dest_t destId, uint32_t dataLength, void* data); 

 appMsg_t* GetMsg(); 

 

private: 

 AppBuff(void); 

 ~AppBuff(void); 

 static AppBuff* m_Instance; 

}; 



Page 16 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: FlashInterface.cpp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: GetFlashDevice Function 
 

6) Conclusion and Future Work 
The function-class decomposition method based on UML presents a top down and 

bottom up approach to embedded software design. This design method has fulfilled many 

design requirements as follows: 

i) Design for test. The FCD approach allows the application of a systematic 

approach to component and system integration test. For example, an 

application can read message passing in the ROSAL and state machine to 

check  that the  system is behaving according to the state diagram in Figure 9 

and sequence diagram in  Figure 7.  

ii) Design for distributed development. The functional decomposition results in a 

well-defined software architecture, and well-delineated software modules that 

would allow an easier distributed development. For example, different 

#define FLASH_INT FlashInt::GetInstance() 

 

class FlashInt 

{ 

public: 

 

 typedef enum { 

  ATA_PPC405_FLASH, 

     CFI_ALTERA_FLASH 

 } flashDevice_t; 

 

 FlashDevice* GetFlashDevice(flashDevice_t flashDevice); 

 FlashInt* GetInstance(); 

 

private: 

 FlashInt(void); 

 ~FlashInt(void); 

}; 

FlashDevice* FlashInt::GetFlashDevice(flashDevice_t flashDevice) 

{ 

 FlashDevice* m_flash = NULL; 

 switch (flashDevice) 

     { 

      case FlashInt::ATA_PPC405_FLASH: // Initialize ATA-based Compact flash 

          { 

          m_flash = new FlashDevice(flashDevice); 

          break; 

          } 

      case FlashInt::CFI_ALTERA_FLASH: // Initialize Cfi-based flash      

          { 

  m_flash = new FlashDevice(flashDevice); 

          break; 

          } 

      default: 

          m_flash = NULL; 

          break; 

     } 

 return m_flash; 

} 



Page 17 of 17 

 

UML and Function-Class Decomposition for Embedded Software Design 

development teams can develop different software modules according to 

sequence diagrams showing the inter-module relationship, and using the state 

diagram to develop correct software modules.   

iii) Design for maintainability. UML diagrams could be developed in a software 

tool that supports model-driven software development, thus ensuring that the 

software design models are in synchronized with the software implementation.  

iv) Design for reuse. The FCD approach groups design models that are software 

platform dependent into the ROSAL, and design models that are hardware 

platform dependent into the HAL. Thus ensuring that most of the software 

modules are hardware and platform independent allowing an effective way for 

software reuse. UML and model-driven software development are also 

provides an infrastructure for better software reuse. 

v) Design for change management. The flexible software architecture and OO 

implementation of state diagram provide a flexible software structure for 

change management including adding new states to state machines, adding 

new applications to the ApplicationLayer etc. 

 

The systematic large-scale software decomposition has fulfilled many design 

requirements as stated above. Future work should include examples how to use tools to 

integrate these design for X factors into the software design life cycle. For example, it is 

possible to use sequence diagrams and state machines to write software module and 

component test cases, and either automatically or manually compare the test results 

executed in an actual target with these diagrams. Furthermore, it is also possible to 

analyze inter-module messages and state machine events in the target verifying that the 

product satisfies the requirements according to the specification in the sequence and state 

diagrams. 

 

7) References 
[1] A. Goldberg and A. Kay. Smalltalk 72 Instruction Manual. Xerox PARC, 1976. 

[2] G. Booch. Object oriented development. IEEE Transactions on Software Engineering, 

SE-12(2):211-221, February 1986. 

[3]  M. Veeraraghavan and T. F. La Porta. Object-oriented analysis of signaling and 

control in broadband networks. International Journal of Communication Systems, 

7(2):131 147, April 1994. 

[4] R. J. Allen, A Formal Approach to Software Architecture (1997), IFIP Congress, Vol. 

1. 

[5] Len Bass, Rick Kazman, Paul Clements, Software Architecture in Practice, Addison-

Wesley Professional, 2003. 

[6] Alexander Kossiakoff, William N. Sweet, Systems Engineering Principles and 

Practice,  Wiley-IEEE, 2002. 

[7] Carl K. Chang, Jane Cleland-Haung etc., Function-Class Decomposition: A Hybrid 

Software Engineering Method, Computer, Volume 34, Issue 12  (December 2001), 

Pages: 87 – 93, IEEE Press.     

                                                 
 


