
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL Ih. NO. 4. APRIL 1990 

STATEMATE: A Working 
Development of Complex 

DAVID HAREL, MEMBER, IEEE, HAG1 LACHOVER, 

403 

Environment for the 
Reactive Systems 

AMNON NAAMAD, AMIR PNUELI, 
MICHAL POLITI, RIVI SHERMAN, AHARON SHTULL-TRAURING, 

AND MARK TRAKHTENBROT 

Abstract-This paper provides an overvien of the STATEMATE” 
system, constructed over the past several years by the authors and their 
colleagues at Ad Cad Ltd., the R&D subsidiary of i-Logix, Inc. 
STATEMATE is a set of tools, with a heavy graphical orientation, in- 
tended for the specification, analysis, design, and documentation of 
large and complex reactive systems, such as real-time embedded sys- 
tems, control and communication systems, and interactive software or 
hardware. It enables a user to prepare, analyze, and debug diagram- 
matic, yet precise, descriptions of the system under development from 
three interrelated points of view, capturing structure, furrctionafity, and 
behavior. These views are represented by three graphical languages, 
the most intricate of which is the language of statecharts 141, used to 
depict reactive behavior over time. In addition to the use of state- 
charts, the main novaelty of STATEMATE is in the fact that it “under- 
stands” the entire descriptions perfectly, to the point of being able to 
analyze them for crucial dynamic properties, to carry out rigorous ex- 
ecutions and simulations of the described system, and to create run- 
ning code automatically. These features are invaluable when it comes 
to the quality and reliability of the final outcome. 

Index Terms-Code-generation, executable specifications, func- 
tional decomposition, propotyping, reactive systems, statecharts, 
STATEMATE. 

I. INTRODUCTION 

R EACTIVE systems (see [ 181, [6]) are characterized 
as owing much of their complexity to the intricate 

nature of reactions to discrete occurrences. The compu- 
tational parts of such systems are assumed to be dealt with 
using other means, and it is their reactive, control-driven 
parts that are considered here to be the most problematic. 
Examples of reactive systems include most kinds of real- 
time computer embedded systems, control plants, com- 
munication systems, interactive software of varying na- 
ture, and even VLSI circuits. Common to all of these is 
the notion of reuctive hehaviov, whereby the system is not 
adequately described by specifying the output that results 
from a set of inputs, but, rather. requires specifying the 
relationship of inputs and outputs over time. Typically, 
such descriptions involve complex sequences of events, 

Manuscript received May 12. 1988: revised November 13. 1989. Rec- 
ommended by L. A. Belady. This work wah wpported tn part by the Bird 
Foundation and the Israel Ministry ot’ Industry and Commerce. 

D. Hare1 and A. Pnueli are with i-Logix Inc.. Burlington. MA 01803. 
Ad Cad Ltd.. Rehovot. Israel. and the Department of Applied Mathemattcs 
and Computer Science. The Weizmann lnstttute of Science. Rehovot 76100, 
Israel. 

H. Lachover. A. Naamad. M. Politi. R. Sherman. A. Shtull-Trauring. 
and M. Trakhtenbrot are with I-Logix Inc., Burlington. MA 01803. and 
Ad Cad Ltd.. Rehovot. Israel. 

IEEE Log Number 8933740. 
“STATEMATE is a registered trademark of i-Logix. Inc. 

actions, conditions and information flow, often with ex- 
plicit timing constraints, that combine to form the sys- 
tem’s overall behavior. 

It is fair to say that the problem of finding good meth- 
ods to aid in the development of such systems has not 
been satisfactorily solved. Standard structured analysis 
and structured design methods do not adequately deal with 
the dynamics of reactive systems, since they were pro- 
posed to deal primarily with nonreactive, data-driven ap- 
plications, in which a good functional decomposition and 
data-flow description are sufficient. Some of these meth- 
ods have recently been extended to deal with real-time 
systems (see, e.g., [8], [9], [16], [17], (20)~[221), and 
our approach, developed independently,’ can be viewed 
as being consistent with many of the ideas in these. See 
the comparisons in the recent 1221. As to commercially 
available tools for real-time system design, most are, by 
and large, but sophisticated graphics editors, with which 
one can model certain aspects of reactive systems, but 
with which a user can do little with the resulting descrip- 
tions beyond testing them for syntactic consistency and 
completeness and producing various kinds of output re- 
ports. These systems are often helpful in organizing a de- 
signer’s thoughts and in communicating those thoughts to 
others, but they are generally considered severely inade- 
quate when it comes to the more difficult task of preparing 
reliable specifications and designs that satisfy the require- 
ments, that behave over time as expected, and from which 
a satisfactory final system can be constructed with relative 
ease. 

If we were to draw an analogy with the discipline of 
conventional programming, there is an acute need for the 
reactive system’s analog of a programming environment 
that comes complete with a powerful programming lan- 
guage, a useful program editor and syntax checker, but, 
most importantly, also with a working compiler and/or 
interpreter, and with extensive debugging facilities. Pro- 
grams are not only to be written and checked for syntax 
errors; they must also be run, tested, debugged, and thor- 
oughly analyzed before they are set free to do their thing 
in the real world. 

As it turns out, the problems arising in the design of a 
typical reactive system are far more difficult than those 

‘Moat of the ideas described in thi\ paper were concetved between 1983 
and 1985. 
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arising in the preparat ion of a  typical computat ional or 
data-processing program. Most reactive systems are 
highly concurrent and  distributed; they fall quite naturally 
into multiple levels of detail, and  usually display unpre-  
dictable, often catastrophic, behavior  under  unanticipated 
circumstances. More often than not, the development 
phases  of such systems are laden with misunderstandings 
between customers, subcontractors, and  users, as  well as  
among  the various members  of the design team itself, and  
their life-cycle is replete with trouble-shooting, modifi- 
cations, and  enhancements.  

The  languages in which reactive systems are specif ied 
ought  to be  clear and  intuitive, and  thus amenable to gen-  
eration, inspection and  modification by  humans,  as  well 
as  precise and  rigorous, and  thus amenable to validation, 
simulation, and  analysis by  computers.  Such languages 
ought  to make it possible to move easily, and  with suffi- 
cient semantic underpinnings, from the initial s tages of 
requirements and  specification to prototyping and  design, 
and  to form the basis for modifications and  maintenance 
at later stages. One  of the underlying principles adopted 
in this paper  is that clarity and  intuition can be  greatly 
enhanced by  the adopt ion of visual languages for the bulk 
of the description effort, behavioral  aspects included. 
This, together with the need  for precision and  rigor, leads 
naturally to the notion of visual formalisms [5], i.e., lan- 
guages  that are highly visual in nature, depending on  a  
small number  of carefully chosen diagrammatic para- 
digms, yet which, at the same time, admit a  formal se- 
mantics that provides each feature, graphical and  non-  
graphical alike, with a  precise and  unambiguous meaning.  
For reactive systems, this means  that it should be  possible 
to prepare intuitive and  comprehensive specifications that 
can be  analyzed, simulated, and  debugged  at any  stage 
with the aid of a  computer ized support  system. 

This paper  descr ibes the ideas behind STATEMATE, a  
computer ized environment for the development of reac- 
tive systems, which adheres to these principles. The  
reader is also referred to additional material about  the sys- 
tem, particularly [12]-[14]. 

II. STATEMATE AT A GLANCE 

The underlying premise of STATEMATE is the need  
to specify and  analyze the system under  development 
(SUD in the sequel)  from three separate, but related, 
points of view: structural, functional, and  behavioral.  
The  latter two are closely linked, as  we shall see later, 
and  constitute together the conceptual  model  of the SUD. 
See Fig. 1. 

In the structural view, one  provides a  hierarchical de-  
composit ion of the SUD into its physical components,  
called modules here, and  identifies the information that 
flows between them: that is, the “chunks” of data and  
control signals that flow through whatever physical links 
exist between the modules.  The  word “physical” should 
be  taken as  rather general,  with a  module being anything 
from an  actual piece of hardware in some systems to the 

A m  
Fig. I. Structure of a STATEMATE model. 

subroutines, packages and  tasks in the software parts of 
others. 

The  conceptual  model  of the SUD consists of a  hier- 
archy of activities, complete with the details of the data 
items and  control signals that flow between them, and,  
significantly, control activities that specify behavior.  Let 
us  be  a  little more explicit here. The  activity hierarchy 
and  flow information (without the control activities) con-  
stitute our  functional view, and  are essentially what is 
often called the funcrional decomposit ion of the SUD. 
However,  in the functional view we do  not specify dy- 
namics; we do  not say when and  why the activities are 
activated, whether or not they terminate on  their own, and  
whether they can be  carried out in parallel. The  same is 
true of the data-flow; in the functional view we specify 
only that data can flow, and  not whether and  when it will. 
For example, if we  have identified that two of the subac-  
tivities of an  automatic teller machine are identify-cus- 
tomer and  report-balance, and  that the data item ac- 
count-number can flow from the former to the latter, then 
no  more and  no  less than that is implied; we still have  not 
specif ied when that item will flow, how often will it flow, 
and  in response to what, and,  indeed, whether the flow 
will be  initiated by  the former activity or requested by  the 
latter. In other words, the functional view provides the 
decomposit ion into activities and  the possible flow of in- 
formation, but it says virtually nothing about  how those 
activities and  their associated inputs and  outputs are con-  
trolled during the cont inued behavior  of the SUD. 

It is the behavioral  view, our  third, that is used to spec-  
ify the control activities. These can be  present on  any  level 
of the activity hierarchy, controll ing that particular level. 
It is these controllers that are responsible for specifying 
when,  how and  why things happen  as  the SUD reacts over  
time. Among other things, a  controll ing statechart can 
start and  stop activities, can generate new events, and  can 
change the values of variables. It can also sense whether 
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activities are active or data has  flowed, and  it can respond 
to events and  test the values of condit ions and  variables. 
These connect ions between activities and  control will be  
seen in Section Ill to be  rather elaborate and  multifaceted, 
so  that the conceptual  model  should be  regarded as  a  
closely knit aggregate.  The  relationship between this con-  
ceptual model  and  the physical view, on  the other hand,  
is far simpler, and  consists essentially of specifying which 
modules implement which activities. 

For these three views, the structural, functional, and  
behavioral,  STATEMATE provides graphical, diagram- 
matic languages,  module-charts,  activitycharts, andstare- 
charts, respectively. All three languages are based on  a  
common set of simple graphical convent ions (see [S]) and  
come complete with graphics editors that check for syn- 
tactic validity as  the specifications are developed,  and,  
more importantly, with formal semantics that are embed-  
ded  within. The  languages are descr ibed in some detail in 
Section Ill, and  in more detail in [ 121  (statecharts are de-  
scr ibed in [4]). 

Fig. 2  illustrates the overall structure of STATE- 
MATE. The database is central, and  obtains much of its 
input from the three graphics editors, and  also from an  
editor for a  fortns language.  in which additional infor- 
mation is specified, as  we shall see later. 

The  most interesting parts of STATEMATE, however,  
are the analysis capabilities, descr ibed in Sections IV and  
V and  in [ 131.  As mentioned, the entire approach is gov-  
erned by  the desire to enable the user  to run, debug  and  
analyze the specifications and  designs that result from the 
graphical languages.  To  this end,  the database has  been  
constructed to make it possible to r igorously execute the 
specification and  to retrieve information of a  variety of 
kinds from the description of the SUD provided by  the 
user. Some of the special tools provided for these pur- 
poses  are 1) a  means  for querying the database and  re- 
trieving information from it; 2) an  execut ion ability with 
a  simulation control language,  allowing the user  to emu-  
late the SUD’s environment and  execute the specifica- 
tions, interactively or in batch or programmed mode,  with 
or without graphic animated response,  and  using break- 
points if desired; 3) a  set of dynamic tests, e.g., for reach- 
ability and  the detection of deadlock and  nondeterminism, 
which are based on  exhaust ive executions; 4) an  auto- 
matic translation of the specification into a  high-level pro- 
gramming language,  such as  Ada or C, yielding code that 
can be  l inked to a  real or simulated target environment.  

STATEMATE has  been  under  development and  exten- 
sion since early 1984,  and  has  been  commercially avail- 
able since late 1987.  The  currently available versions run 
on  Sun, Apollo and  Vax color’ workstations (or networks 
of such). Many  of the ideas and  methods embodied in 
STATEMATE have been  field-tested successfully in a  
number  of large real-world development projects. among  
which is the mission-specific avionics system for the Lavi 

fighter aircraft des igned by  the Israel Aircraft Industries, 
which was specif ied in part using statecharts (see 141).  
The  reader is also referred to [ 191,  a  case study of using 
STATEMATE, to [ 111,  in which an  application to pro- 
cess model ing is described, and  to the recent comparat ive 
evaluation [22]. 

Ill. THE MODELING LANGUAGES OF STATEMATE 
In this section we present the highlights of the three 

graphical languages and  the forms language that the user  
of STATEMATE employs to specify the SUD. No formal 
syntax or semantics are given here. neither are all of the 
features presented. The  reader is referred to [ 121  for a  
more comprehensive description, and  to [4], [ 141  for a  
detailed treatment of the language of statecharts. The  lan- 
guages  are descr ibed with the help of a  simple example 
of an  early warning system (EWS in the sequel).  which 
has  the ability to take measurements  from an  external sen-  
sor, compare them to some prespecif ied upper  and  lower 
limits, and  warn the user  when the measured value ex- 
ceeds these limits. 

The  structural view of the SUD is descr ibed using the 
language of module-charts,  which descr ibe the SUD tnod- 
ules (i.e., its physical components) ,  the environment 
modules (i.e.. those parts that for the purpose of specifi- 
cation are deemed to be  external to the SUD), and  the 
clusters of data and/or control signals that may flow 
among them. Modules are depicted as  rectilinear shapes 
and  storage modules as  rectangles with dashed sides. En- 
capsulat ion is used to capture the submodule relationship. 
Environment modules appear  as  dashed-l ine rectangles 
external to that of the SUD itself. Information flow is rep- 
resented by  labeled arrows or hyperarrows.’ Various kinds 

‘A hqperarrou ha3 more than two endpoint> 
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Fig. 3. Module-chart of the early warning system 

of connectors can appear in these charts, both to abbre- 
viate lengthy arrows and to denote compound chunks of 
data. 

Fig. 3 is (part of) the module-chart of our early wam- 
ing system. It specifies in a self-explanatory fashion that 
the modules, or subsystems, of the EWS are a main com- 
ponent, a man-machine-interface (MMI), and a signal- 
handler, and that the operator-terminal, sensor, timer, 
and alarm are considered to be external to the system. 
The MM1 is further decomposed into submodules, as 
shown. There is also a storage module, by the name of 
shared-data, and the information flowing between the 
modules is specified as well. 

Turning to conceptual modeling, the functional decom- 
position of the SUD is captured by the language of activ- 
ity-charts. Graphically, these are very similar to module- 
charts, but here the rectilinear shapes stand for the activ- 
ities, or the functions, carried out by the system. Solid 
arrows represent the flow of data items and dashed arrows 
capture the flow of control items.4 See Fig. 4. A typical 
activity will accept input items and produce output items 
during its active time-spans, its inner workings being 
specified by its own lower level decomposition. Activities 
that are atomic, or basic (i.e., they reside on the lowest 
level) may be described as simple input/output transfor- 
mations using other means, such as code in a high-level 
programming language. 

Activity-charts may contain two additional kinds of ob- 
jects: data-stores and control activities. Data-stores can 
be thought of as representing databases, data structures, 
buffers, and variables of various kinds, or even physical 
containers or reservoirs, and typically correspond to the 
storage modules in the module-chart. They represent the 
ability to store the data items that flow into them and to 
produce those items as outputs upon request. 

‘In displaying module-charta and activity-charts on the screen, we em- 
ploy different conventions regarding color and arrow type. so that a user 
can distinguish between them quite easily. Thus. for example. the arrows 
in module-charts are drawn using rectilinear segments parallel to the axes. 
whereas in activity-charts they are drawn using smooth spline functions. 
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Fig. 4. An activity-chart 

The control activities constitute the behavioral view of 
the system and they appear in the activity-chart as empty 
boxes only. A control activity may appear inside an ac- 
tivity on any level, as shown in Fig. 4. The contents of 
the control activities are described in the third of the 
graphical languages, statecharts, which we discuss be- 
low. In general, a control activity has the ability to control 
its sibling activities by essentially sensing their status’ and 
issuing commands to them. Thus, for example, in Fig. 4 
the control activity St can, among other things, perform 
actions that cause subactivities A, B, and D to start and 
stop, and can sense whether those subactivities have 
started or stopped by appropriate events and conditions. 
Various consequences of such occurrences are integrated 
into the semantics of the activity-charts language, such as 
the fact that all subactivities stop (respectively, suspend) 
upon the stopping (respectively, suspension) of the parent 
activity. 

We now turn to the behavioral view. Statecharts, which 
were introduced in [4] (see also [5]), are an extension of 
conventional finite-state machines (FSM’s) and their vi- 
sual counterpart, state-transition diagrams. Conventional 
state diagrams are inappropriate for the behavioral de- 
scription of complex control, since they suffer from being 
flat and unstructured, are inherently sequential in nature, 
and give rise to an exponential blow-up in the number of 
states (i.e., small extensions of a system cause unaccept- 
able growth in the number of states to be considered). 
These problems are overcome in statecharts by supporting 
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the repeated decomposit ion of states into substates in an  
AND/OR fashion, combined with an  instantaneous 
broadcast  communicat ion mechanism. A rather important 
facet of these extensions is the ability to have  transitions 
leave and  enter states on  any  level. 

Consider Fig. 5, in which (a) and  (b) are equivalent. In 
Fig. 5(b) states S and  T have’been  clustered into a  new 
state U so that to be  in U is to be  either in S or in T. The  
f-arrow leaving U denotes a  high-level interrupt, and  has  
the effect of prescribing an  exit from U, i.e., from which- 
ever  of S or T  the system happens  to be  in, to the new 
state V. The  h-arrow entering U would appear  to be  un-  
derspecif ied, as  it must cause entry to S or T; in fact, its 
meaning relies on  the internal default arrow at tached to 
T, which causes entrance to T. 

Turning to AND decomposit ion, consider Fig. 6, in 
which, again, Fig. 6(a) and  (b) are equivalent. Here, to 
be  in state U the system must be  in both S and  T. An 
unspecif ied entrance to U relies on  both default arrows to 
enter the pair { I/, W  }, from which an  occurrence of e, 
for example, would lead to the new pair {X, Y ), and  k 
would lead to { I’, Z  }. The  meaning of the other transi- 
t ions appear ing therein, including entrances and  exits, can 
be  deduced by  compar ing Fig. 6(a) and  (b). It is worth 
mentioning that this AND decomposit ion, into what we 
call or thogonul state components,  can be  carried out on  
any  level of states and  is therefore more convenient  than 
allowing only single-level sets of communicat ing FSM’s. 
Orthogonali ty is the feature statecharts employ to solve 
the state blow-up problem, by  making it possible to de-  
scribe independent  and  concurrent state components;  see 
[4], [5]. Also, or thogonal state decomposit ion eliminates 
the need  for multiple control activities within a  single ac- 
tivity, as  is done,  e.g., in [9], [21]. 

The  general  syntax of an  expression labeling a  transi- 
tion in a  statechart is 

4CllP 
where 01  is the event  that tr iggers the transition, C is a  
condit ion that guards the transition from being taken un-  
less it is true when CY occurs, and  fl is an  action that is 
carried out if, and  precisely when,  the transition is taken. 
All of these are optional. Events and  condit ions can be  
considered as  inputs, and  actions as  outputs, except  that 
here this cor respondence is more subtle than in ordinary 
FSM’s, due  to the intricate nature of the statecharts them- 
selves and  their relationship with the activities. For ex- 
ample, if /3 appears  as  an  action along some transition, 
but it also appears  as  a  triggering event  of a  transition in 
some orthogonal component ,  then execut ing the action in 
the first transition will immediately cause the second tran- 
sition to be  taken simultaneously. Moreover,  in the 
expression CY//~, rather than being simply a  primitil’e  ac- 
tion that might cause other transitions, p  can be  the spe- 
cial action start (A ) that causes the activity A to start. 
Similarly, rather than being simply an  external, primitive 
event,  cx might be  the special event  stopped(B) that oc- 
curs (and hence  causes the transition to take place) when 

(a) (b) 
Fig. 5. OR-~ecompo\i l ion in il statechar? 

(a) (b) 
Fig. 6. AND~decomposit ion in a statechart 

B stops or is stopped. Table I shows a  selection of the 
special events, condit ions, and  actions that can appear  as  
part of the labels a long a  transition. It should be  noted 
that the syntax is also closed under  boolean combinations, 
so  that, for example, the following is a  legal label: 

entered(S) [in< T) and  not active(C)]/ 

suspend(C);  X := Y + 7  

Notice that we have incorporated another  extension of 
the FSM approach- the use of conventional variables. The  
changing of a  value is now al lowed as  an  event,  s tandard 
compar isons are al lowed as  condit ions, and  assignment 
statements are al lowed as  actions. 

Besides allowing actions to appear  along transitions, 
they can also appear  associated with the entrance to or 
exit from a  state (any state, of course, on  any  level).’ This 
associat ion is currently specif ied nongraphical ly, in the 
forms language discussed below. Thus,  if we  associate 
the action resume(A) with the entrance to state S, activ- 
ity A will be  resumed whenever  S is entered. 

Some of the special constructs appear ing in Table I thus 
serve to link the control activities with the other objects 
appear ing in an  activity-chart, and,  as  such, are part of 
the way behavior  is associated with functionality and  data- 
flow. There are other facets to this association, one  of 
which is the ability to specify an  activity A as  taking place 
throughout state (S ), which is the same as saying that A 
is started upon  entering state S and  is s topped upon  leav- 
ing it. This connect ion is also stated via forms. 

The  power  to control and  sense the status of activities 
is limited by  a  scoping rule to the control activity appear-  

he sxn to both Mcalj 
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Fig. 7. Activity-chart of the early warning system. 

mands to the control activity; this is an informationjow, 
which, via a form, is specified to consist of set-up, exe- 
cute, and reset instructions. The operator can also send 
the upper and lower required limits to the get-check 
subactivity of set-up. These limits can be stored in the 
data-store range, and can subsequently be used by the 
compare and report-fault activities. (The item req-lim- 
its is a compound data item, and stands for the pair con- 
taining the required upper and lower limits.) A special 
activity, get-measurements, can receive the signal from 
the sensor and a clock reading from the timer, and trans- 
lates these into a t ime-stamped digital value sample, which 
can be sent to the comparing activity. If out of range, a 
signal and value can be sent to the controller and the re- 
port-fault activity, respectively. The latter is responsible 
for sending out an alarm and formatting and sending the 
user an appropriate message. The second level of Fig. 7 
is self explanatory. 

It is important to emphasize that Fig. 7 is not required 
to provide dynamic, behavioral information about the 
EWS; that is the role of the controlling statecharts. Fig. 
8, for example, shows one possible statechart for the high- 
level control activity of Fig. 7, i.e., EWS-control, and 
the reader should be able to comprehend it quite easily. 

The connections between activity-charts and statecharts 
are rather intricate, resulting in a tightly knit conceptual 
model. In contrast, the connections between this model 
and the structural view are more strightforward. What we 
have to do is to assign implementational responsibility for 
each part of the former to appropriate parts of the latter. 
This is done by associating modules with activities, and 
storage modules with data stores. In our example, some 
of these associations are that the MAIN module imple- 
ments the EWS-control activity, SIGNAL-HANDLER 

TABLE I 
SOME SPECIAL EVENTS, CONDITIONS, AND ACTIONS 

REFERRISG ‘TO El.ESTS COSDITIOSS 1 ACTIOSS 

data items 

D,F 

condition C 

rcnrl( D) 

written(D) 

hut(C) 

f&?(C) 

t 

I 
ing on the same level as the activities and flow in ques- 
tion. Thus, in Fig. 4, for example, some of the events and 
actions that can appear in the statechart S, are:6 st (A), 
rs! (B) and wr! (d ), but ones referring to, say, H  and K, 
such as st! (H ), cannot, and would appear only in S,. This 
scoping mechanism for hiding information is intended to 
help in making specifications modular and amenable to 
the kind of division of work that is required in large proj- 
ects. The scoping rule can easily be overridden by explic- 
itly-flowing events and actions, but we shall not get into 
the details here. 

Fig. 7 shows the activity-chart of the early warning sys- 
tem. The user, via the operator terminal, can send com- 

‘Here. and also in Fig. 8. we use abbreviations for the elements ap- 
pearing in Table I. such as st instead of started, rs! instead of resume, 
and tm instead of timeout. STATEMATE recognizes these abbreviations 
too. 
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readjng-signal 

Fig. 8. Statechart for the high-level activity of the warning system 

implements get-measurements and compare, and MM1 
implements set-up and report-fault. Within the MM1 as- 
sociation, the send-err subactivity is implemented by the 
output-proc submodule and the other three by set-up- 
main. The associations themselves are input in the forms 
of the activities. 

We now turn to the forms language itself. A special 
form is maintained for each of the elements in the descrip- 
tion, in which additional information can be input. This 
includes details that are nongraphical in nature, such as 
lengthy definitions of compound events and conditions, 
or the type and structure of data items. Fig. 9 shows an 
example of the form for a data item, in which most fields 
are self-explanatory. The “Consists of” field therein 
makes it possible to structure data items into components, 
and the “Attribute” fields make it possible to associate 
attributes with the items (e.g., units and precision for cer- 
tain kinds of data-items, or the names of the personnel 
responsible for the specification for certain high-level ele- 
ments). The attributes are recognizable by the retrieval 
tools of STATEMATE and are therefore able to play a 
role in the evaluation and documentation of the model, as 
we shall see later. 

The color graphical editors for all three charts lan- 
guages continuously check the input for syntactic sound- 
ness, and the database is updated as graphical elements 
are introduced. The editors are mouse- and menu-based, 
and support a wide range of possibilities, including move, 
copy, stretch, hide, reveal, and zoom options, all appli- 
cable to single or multiple elements in the charts, that can 
be selected in a number of ways. The form for a selected 
element can be viewed and updated not only from the spe- 
cial forms editor, but from the appropriate graphical edi- 
tor as well. 

Consists Of 

(1 

Attribute Name AttrIbute Value 

Fig. 9. The form for 3 data Item. 

Extensive consistency and completeness tests, as well 
as more subtle sratic logic tests can be carried out during 
a session. Examples include checking whether informa- 
tion flow in the module-chart is consistent with that in the 
activity-chart, listing modules that have no outputs, or ac- 
tivities that are never started, and identifying cyclic defi- 
nitions of nongraphical elements (e.g., events and con- 
ditions). 

IV. QUERIES. REPORTS, AND DOCUMENTS 

In this section, we describe some of the tools that are 
available for retrieving and formatting information from 
the model. 

STATEMATE provides a querying tool, the object list 
generator, with which the user can retrieve information 
from the database. It works by generating lists of ele- 
ments that satisfy certain criteria. At all times it keeps a 
pending list that gets modified as the user refines the cri- 
teria or asks for a list of elements of another type. For 
example, starting with an empty pending list, one can ask 
for all states in the controlling statechart of activity A, and 
the resulting list promptly becomes the new pending list. 
This list might then be refined by asking for those states 
therein that have an attribute named “responsibility-of” 
whose value is “Jim Brown.” Then one might ask for 
all activities that are started within any of those states, 
and so on. This query language, on the face of it, might 
appear to be bounded in its expressive power by that of 
the conjunctive queries of [2]. However, since it actually 
supports certain kinds of transitive closures (such as the 
ancestor and descendent relationships between states or 
activities), it is not directly comparable with the conjunc- 
tive queries, and can be shown to be a subset of the more 
general fixpoint queries (see [I]). 

The charts that constitute the SUD’s description can be 
plotted. The user can control the portion of the chart to 
be plotted, as well as its size and depth. In addition, the 
user can ask for several kinds of fixed-format reports that 
are compiled directly from the description of the SUD in 
the database, and which can be displayed on the worksta- 
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tion screen or output to an alphanumeric terminal or 
printer. Each of these can be projected. so to speak, on 
any part of the description that is retrievable by the query 
language. In other words, the user may first use queries 
to capture, say, a set of activities of particular interest. 
and then request the report; it will be applied only to the 
activities in the list. Among the reports currently imple- 
mented are d&u dictionaries of various kinds, textual 
prorocols of states or activities that contain all the infor- 
mation relevant to them, interface diagrams, tree ver- 
sions of various hierarchies, and so-called &“-diagrams 
of [ 151. Using certain parameters, the user can control 
various aspects of the reports produced, such as the depth 
of the trees in the tree reports, and the keys by which the 
dictionaries are to be sorted. 

In addition to fixed-format reports, STATEMATE has 
a document generation language with which users can tai- 
lor their own documents. Programs can be written in this 
language to produce documents with particular structure, 
contents and appearance. One uses the language to design 
a document template, containing formatting commands 
for one’s desired word processor,’ interleaved with in- 
structions to incorporate information from the model. 
These instructions activate queries in the query language 
to retrieve information, or routines to extract graphical 
charts, and then format these according to the template. 
A document generation program can therefore be pre- 
pared once, in advance, and can then be run whenever the 
document is needed. The templates for some particular 
documents have been prepackaged, and are available 
ready-made to the user. They include the main parts of 
the US DOD Standards 2167 and 2167A. Programmed 
documents too can be generated at any stage of the de- 
velopment, and for the complete model or portions 
thereof. 

V. EXECUTIONS AND DYNAMIC ANALYSIS 

We now turn to the analysis capabilities of STATE- 
MATE, which constitute one of its main novelties. In [ 131 
we have tried to set out the underlying philosophy in some 
detail, emphasizing the analysis capabilities. 

The heart of these is the ability to carry out a step of 
the SUD’s dynamic behavior, with all the consequences 
taken into account. A step, briefly, is one unit of dynamic 
behavior, at the beginning and end of which the SUD is 
in some legal status. A status captures the system’s cur- 
rently active states and activities, the current values of 
variables and conditions, etc. During a step, the environ- 
ment activities can generate external events, change the 
truth values of conditions, and update variables and other 
data items. Given the potentially intricate form that a 
STATEMATE description of the SUD might take on, such 
changes can have a profound effect on the status, trigger- 
ing transitions in statecharts, activating and deactivating 
activities, modifying other data items, and so on. Clearly, 
each of these changes, in turn, may cause many others. 

‘Several standard word processors are supported 

The portion of STATEMATE that is responsible for 
calculating the effect of a step contains involved algo- 
rithmic procedures, which reflect the formal semantics that 
have been defined mathematically for the modeling lan- 
guages. The particular semantics of statecharts that has 
been adopted is described in [14], and is somewhat dif- 
ferent from that described in (71, although on most stan- 
dard examples the two are equivalent. 

The most basic way of “running” the SUD is in a step- 
by-step interactive fashion. At each step the user gener- 
ates external events, changes conditions and carries out 
other actions (such as changing the values of variables) at 
will, thus emulating the environment of the system. All 
of these are assumed to have occurred within a single step, 
the most recent one. When the user then gives the “go” 
command, STATEMATE responds by transforming the 
SUD into the new resulting status. Typically, there will 
be one or more statecharts on the screen while this is hap- 
pening, and often also an activity-chart. The currently ac- 
tive states and activities will be highlighted with special 
coloring. * 

This ability to run through dynamic scenarios has ob- 
vious value as a debugging mechanism in the specification 
stage. If we find that the system’s response is not as ex- 
pected we go back to the model, change it (by modifying 
a statechart, for example), and run the same scenario 
again. 

At times, however, we want to be able to see the model 
executing noninteractively, and under circumstances that 
we do not care to spell out in detail ourselves. We would 
like to see it perform under random conditions, and in 
both typical and less typical situations. This more pow- 
erful notion of executing the model is achieved by the idea 
of programmed executions. To that end, a specially tai- 
lored simulation control language (SCL) has been de- 
signed and incorporated into STATEMATE, enabling the 
user to retain general control over how the executions pro- 
ceed, yet exploit the tool to take over many of the details. 

Programs in SCL look a little like conventional pro- 
grams in a high-level language; they employ variables and 
support several control structures that can be combined 
and nested. They are used to control the simulation by 
reading events and changes from previously prepared files, 
and/or generating them using, say, random sampling from 
a variety of probability distributions. Several kinds of 
breakpoints can be incorporated into the program, caus- 
ing the execution to stop and take certain actions when 
particular situations come up. These actions can range 
from incrementing counters (e.g., to accumulate statistics 
about performance), through switching to interactive 
mode (from which the user can return to the programmed 
execution by a simple command), and all the way to ex- 
ecuting a lengthy calculation constituting the inners of a 
basic activity that was left unspecified when modeling the 
SUD. 

‘Actually. the .\yatem will highlIght only those state\ and activities that 
are on the lowest level \ isible. 
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Executions can thus be  s topped and  restarted, and  in- 
tervening changes  can be  made;  the effects of events gen-  
erated with prescr ibed probabilit ies can be  checked,  and  
the computat ional parts of the SUD and  its environment 
can be  emulated. Moreover,  dur ing such simulated exe-  
cutions a  trace database is maintained, which records 
changes  made  in the status of the SUD. The trace data- 
base  can later be  reviewed, filed away, printed or dis- 
carded, and,  of course, is important for inspecting the ex- 
ecution and  its effects off-line. A variety of simulation 
reports can be  produced,  in which parts of the information 
are gathered as  the execut ion proceeds,  via instructions in 
the SCL program, and  other parts are taken from the trace 
database after the execut ion ends.  Moreover,  we may view 
the progress of a  programmed execut ion graphically just 
as  in the interactive case; the same color codes are used 
to continuously update the displayed charts. The  result is 
a  visually pleasing discrete animation of the behavior  of 
the SUD.” 

The part of the SUD that is simulated (in either inter- 
active or p rogrammed mode)  can be  restricted in scope.  
For example, one  can simulate an  activity and  its inners, 
and  the rest of the STATEMATE specification is consid- 
ered to be  nonexistent for the durat ion of that simulation. 
Moreover,  there is no  need  to wait until the entire SUD 
is specif ied before initiating execut ions and  simulations; 
a  user  can start simulating, or running, a  description from 
the moment  the port ion that is available is syntactically 
intact (and this can be  checked by  the static tests). In the 
simulation the user  will typically provide those events and  
other items of information that are external to the speci- 
fied portion, even though later they might become internal 
to the complete specification. 

In general,  then, a  carefully prepared SCL program can 
be  used to test the specification of the SUD under  a  wide 
range of test data, to emulate both the environment and  
the as-of-yet unspecif ied parts of the SUD, to check the 
specification for time-critical per formance and  efficiency, 
and,  in general,  to debug  it and  identify subtle run-time 
errors. Needless to say, the kinds of errors and  miscon- 
ceptions that can be  discovered in this way are quite dif- 
ferent from the syntactic completeness and  consistency 
checks that form the highlights of most of the other avail- 
able tools for system design, and  which STATEMATE 
carries out routinely. 

It is important to keep in mind that the role of the SCL 
programs is to oversee the execut ion of the model;  they 
are not intended to replace it. Thus,  SCL is not a  mod-  
eling language but a  meta- language that serves as  a  ve- 
hicle for some of our  analysis capabilities. It should not 
be  compared with simulation languages in the sense that 
term is often used,  where the programs themselves con- 
stitute the model.  

Now, since STATEMATE can fully execute steps of 
dynamic behavior,  and  since SCL programs can be  writ- 

“There are 
example. 131 

auppol l  

ten to control the execut ion of many  scenarios, it becomes 
tempting to provide the ability to execute all scenarios- 
as  long as  the number  of possibilities is manageable- in 
order to test for crucial dynamic properties. STATE- 
MATE has  been  programmed to provide a  number  of these 
dynamic tests, all of which proceed essentially by  carry- 
ing out exhaustive, brute-force, sets of executions. They 
include reachability, nondeterminism, deudlock,  and  
usage of transitions. For the first of these, given an  ini- 
tial configuration and  a  target condition, the test seeks se- 
quences  of external events and  other occurrences that lead 
from the initial status to one  that satisfies the condition, 
producing these sequences  if they exist and  stating that 
there are none  otherwise. It is important to stress that this 
is run-time, dynamic, reachability, not merely a  test for 
whether two boxes in some diagram are connected by  ar- 
rows. The  same applies to the other dynamic tests too. 

One  must realize, however,  that even if we limit the 
values of variables to finite sets, the number  of scenarios 
that have  to be  tested in an  exhaust ive execut ion quickly 
becomes unmanageable.  This means  that unless the por- 
tion of the model  that we are testing is sufficiently small 
and  has  only a  few external connect ions, we will not al- 
ways be  able to complete our  exhaust ive test. Indeed, 
these dynamic tests should be  used only on  very critical, 
well isolated parts of our  model.  W h e n  larger parts re- 
quire exhaust ive testing, we may limit the scope of the 
test by  instructing it, for example, to ignore some of the 
external events, or to avoid simulating the details of cer- 
tain activities. W e  have used the reachability test suc- 
cessfully on  a  number  of occasions. In one  real-world sit- 
uation, when analyzing part of the specification of the 
trigger mechanism in a  certain deployed missile system, 
our  reachability test d iscovered a  new sequence of events 
(that was unknown to the design team!) leading to the 
firing of a  missile. 

The  reachability test can be  used in a  more sophisti- 
cated way, by  attaching watchdog statecharts to the model  
being tested. Thus,  we can test whether it is possible to 
reach situations of temporal, dynamic nature, by  adding 
a  watchdog statechart that enters a  special state S when 
the situation in case arises. A reachability test is then run 
on  the original statechart with the new one  added  as  an  
orthogonal component ,  and  the condit ion being sought  for 
is specif ied to be  in ( S ). 

An additional feature that is p lanned for a  future ver- 
sion is the ability to verify a  STATEMATE specification 
against a  formula in temporal logic. 

VI. CODE-GENERATION AND RAPID PROTOTYPING 

Once a  model  of the SUD has  been  constructed, and  
has  been  executed and  analyzed to the satisfaction of the 
designer,  STATEMATE can be  instructed to translate it 
automatically into code in a  high-level programming lan- 
guage.  This is analogous to the compilation of a  program 
in a  high-level language,  whereas the executability of the 
model  is analogous to its interpretation. Currently, trans- 
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lations into Ada and C are supported. Technically, any 
activity-chart (together with its controlling statecharts) can 
be translated. which, again, means that one need not wait 
until the entire model is ready but can produce code from 
portions thereof. If code was supplied by the bottom-level 
basic activities, it can be appropriately linked to the gen- 
erated code, resulting in a complete running version of 
the system. 

We term the result protorxpe code, since it is generated 
automatically, and reflects only those design decisions 
made in the process of preparing the conceptual model. It 
may thus not be as efficient as final real-time code, though 
it runs much faster than the executions of the model itself, 
just as compiled code runs faster than interpreted code. 
Future plans call for enhancing the code generator with 
the ability to incorporate decisions made interactively by 
the human designer, as well as with various further opti- 
mization features. We might add that an interesting way 
to further exploit STATEMATE for analyzing the model 
is to construct special statechatts, which are not part of 
the model itself, and whose role is to test the model. Of 
course, for these test suites (and also for the watchdog 
statecharts described earlier) the output from the code- 
generation is actually final code. 

One of the main uses of the prototype code is in ob- 
serving the SUD performing in circumstances that are 
close to its final environment. The code can be ported and 
executed in the actual target environment, or-as is more 
realistic in most cases-in a simulated version of the tar- 
get environment. Often we have linked the prototype code 
with “soft” panels, graphical mock-ups of control panels, 
dials, gauges, etc.. that represent the actual user interface 
of the final system. These panels appear on the screen and 
are manipulated with the mouse and keyboard. Unlike 
conventional prototypes of such systems, however, here 
the soft panels are not driven by hastily-written code pre- 
pared especially for the prototype, but by code generated 
automatically from the STATEMATE model, which typ- 
ically will have been thoroughly tested and analyzed be- 
fore being subjected to code-generation. The idea is to use 
this feature for goals that go beyond the development 
team. We envision mock-ups of the SUD driven by our 
prototype code being used as part of the communication 
between customer and contractor or contractor and sub- 
contractor. It is not unreasonable to require such a run- 
ning version of the system to be one of the deliverables 
in certain development stages, such as the preliminary de- 
sign review. 

Associated with the code-generation facility is a debug- 
ging mechanism, with which the user can trace the exe- 
cuting parts of the code back up to the STATEMATE 
model. Breakpoints can be inserted to stop the run of the 
code when chosen events occur, at which point one may 
examine the model’s configuration (states. activities, etc.) 
and modify elements (conditions, data-items, etc.), prior 
to resuming the run. Of course, if substantial problems 
arise in the running of the code, changes can be made in 
the STATEMATE model itself, which is then recompiled 
down into Ada or C, and rerun. As in simulations, trace 

files can be requested. in which the changes in desired 
elements can be recorded. Continuing the analogy be- 
tween conventional compilation and our generation of 
code from a STATEMATE model, this debugging facility 
might be termed source-level debugging. 

Finally, the code-generation facility can be used for 
bringing the model gradually closer to a final software 
implementation. This is done by incremenfal subsrirurion, 
whereby increasingly larger parts of the system are re- 
placed by code, the process being interleaved with the 
making of design decisions. This procedure, which we 
hope to discuss more fully in a subsequent paper, is dif- 
ferent from conventional integration in that the medium 
is changed (from conceptual model to code) as the inte- 
gration is being carried out. As a consequence, there is a 
need for testing and validation in intermediate steps, 
much of which can be carried out in STATEMATE. 

In the future, we plan to enrich the code-generator with 
the ability to yield VHDL code. This will enable hard- 
ware designers to use STATEMATE not only for the 
specification and early design stages, but also for the later 
stages. Silicon compilation would then be carried out from 
code that is generated automatically from a STATE- 
MATE specification. 

VII. CONCLUSIONS 

In conclusion, we might say that the STATEMATE 
system combines two principles, or theses, that we feel 
should guide future attempts to design support tools for 
system development. The first is the long-advocated need 
for executable speci$cations, and the second is the advan- 
tage of using visual ,formalisms. 

As far as the first of these goes, the development of 
complex systems must not be allowed to progress from 
untested requirements or specifications. Rather, ways 
should be found to model the SUD on any desired level 
of detail in a manner that is fully executable and analyz- 
able, and which allows for deep and comprehensive test- 
ing and debugging, of both static and dynamic nature, 
prior to, and in the process of, building the system itself. 
We might add that the dynamic analysis capabilities of 
STATEMATE go far beyond what is normally taken as 
the meaning of the term executable specification, i.e., the 
simple ability to animate a diagram in a step-by-step fash- 
ion. 

As to the second principle, we believe that visual for- 
malisms will turn out to be a crucial ingredient in the con- 
tinuous search for more natural and powerful ways to ex- 
ploit computers. It is our feeling that the progress made 
in graphical hardware, combined with the capabilities of 
the human visual system, will result in a significant change 
in the way we carry out many of our complex engineering 
activities. The surviving approaches will be, we believe, 
of diagrammatic nature, yet will be formal and rigorous, 
in both syntax and semantics. 
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