
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 1, JANUARY 1977

Structured Analysis (SA): A Language for
- Communicating Ideas

DOUGLAS T.- ROSS

Abstract-Structured analysis (SA) combines blueprint-like graphic
language with the nouns and verbs of any other language to provide
a hierarchic, top-down, gradual exposition of detail in the form of an
SA model. The things and happenings of a subject are expressed in a
data decomposition and an activity decomposition, both of which em-
ploy the same graphic building block, the SA box, to represent a part of
a whole. SA arrows, representing input, output, control, and mecha-
nism, express the relation of each part to the whole. The paper de-
scribes the rationalization behind some 40 features of the SA lan-
guage, and shows how they enable rigorous communication which
results frorn disciplined, recursive application of the SA maxim: "Every-
thing worth saying about anything worth saying something about must
be expressed in six or fewer pieces."

Index Terms-Graphic language, hierarchic, requirements analysis,
requirements definition, structured analysis (SA), structured program-
ming, system analysis, system design, top-down.

I. BLUEPRINT LANGUAGE
N EITHER Watt's steam engine nor Whitney's standardized

parts really started the Industrial Revolution, although
each has been awarded that claim, in the past. The real start
was the awakening of scientific and technological thoughts
during the Renaissance, with the idea that the lawful behavior
of nature can be understood, analyzed, and manipulated to
accomplish useful ends. That idea itself, alone, was not
enough, however, for not until the creation and evolution of
blueprints was it possible to express exactly how power and
parts were to be combined for each specific task at hand.
Mechanical drawings and blueprints are not mere pictures,

but a complete and rich language. In blueprint language,
scientific, mathematical, and geometric formulations, nota-
tions, mensurations, and naming do not merely describe an
object or process, they actually model it. Because of broad
differences in subject, purpose, roles, and the needs of the
people who use them, many forms of blueprint have evolved,
but all rigorously present well structured information in under-
standable form.
Failure to develop such a communication capability for data

processing is due not merely to the diversity and complexity
of the problems we tackle, but to the newness of our field. It
has naturally taken time for us to escape from naive "program-
ming by priesthood" to the more mature approaches, such as
structured programming, language and database design, and
software production methods. Still missing from this expand-
ing repertoire of evidence of maturity, however, is the common
thread that will allow all of the pieces to be tied together into
a predictable and dependable approach.

Manuscript received June 21, 1976; revised September 16, 1976.
The author is with SofTech, Inc., Waltham, MA 02154.

II. STRUCTURED ANALYSIS (SA) LANGUAGE
It is the thesis of this paper that the language of structured

analysis (SA), a new disciplined way of putting together old
ideas, provides the evolutionary natural language appropriate
to the needs of the computer field. SA is deceptively simple
in its mechanics, which are few in number and have high
mnemonic value, making the language easy and natural to use.
Anybody can leam to read SA language with very little prac-
tice and will be able to understand the actual information con-
tent being conveyed by the graphical notation and the words
of the language with ease and precision. But being a language
with rigorously defined semantics, SA is a tough taskmaster.
Not only do well conceived and well phrased thoughts come
across concisely and with precision, but poorly conceived
and poorly expressed thoughts also are recognized as such.
This simply has to be a fact for any language whose primary
accomplishment is valid communication of understanding.
If both the bad and the good were not equally recognizable,
the understanding itself would be incomplete.
SA does the same for any problem chosen for analysis, for

every natural language and every formal language are, by defi-
nition, included in SA. The only function ofSA is to bind up,
structure, and communicate units ofthought expressed in any,
other chosen language. Synthesis is composition, analysis is
decomposition. SA is structured decomposition, to enable
structured synthesis to achieve a given end. The actual
building-block elements of analysis or synthesis may be of any
sort whatsoever. Pictures, words, expressions of any sort may
be incorporated into and made a part of the structure.
The facts about Structured Analysis are as follows.
1) It incorporates any other language; its scope is universal

and unrestricted.
2) It is concerned only with the orderly and well-structured

decomposition of the subject matter.
3) The decomposed units are sized to suit the modes of

thinking and understanding of the intended audience.
4) Those units of understanding are expressed in a way that

rigorously and precisely represents their interrelation.
5) This structured decomposition may be carried out to any

required degree of depth, breadth, and scope while still main-
taining all of the above properties.
6) Therefore, SA greatly increases both the quantity and

quality of understanding that can be effectively and precisely
communicated well beyond the limitations inherently imposed
by the imbedded natural or formal language used to address
the chosen subject matter.
The universality and precision of SA makes it particularly

effective for requirements definition for arbitrary systems
problems, a subject treated in some detail in a companion pa-

16

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

per (see [5]). Requirements definition encompasses all aspects
of system development prior to actual system design, and hence
is concerned with the discovery of real user needs and com-
municating those requirements to those who must produce an
effective system solution. Structured Analysis and Design
Technique (SADT(®) is the name of SofTech's proprietary
methodology based on SA. The method has been applied to
a wide range of planning, analysis, and design problems involv-
ing men, machines, software, hardware, database, communica-
tions procedures, and finances over the last two years, and sev-
eral are cited in that paper. It is recommended that that paper
(see [5]) be read prior to this paper to provide motivation and
insight into the features of SA language described here.
SA is not limited to requirements definition nor even prob-

lems that are easily recognized as system problems. The end
product of an SA analysis is a working model of a well-struc-
tured understanding, and that can be beneficial even on a
uniquely personal level-just to "think things through." Social,
artistic, scientific, legal, societal, political, and even philosophic
subjects, all are subject to analysis, and the resulting models
can effectively communicate the ideas to others. The same
methods, approach, and discipline can be used to model the
problem environment, requirements, and proposed solu-
tion, as well as the project organization, operation, budget,
schedule, and action plan. Man thinks with language., Man
communicates with language. SA structures language for
communicating ideas more effectively. The human mind can
accommodate any amount of complexity as long as it is pre-
sented in easy-to-grasp chunks that are structured together to
make the whole.

III. OUTLINE OF THE DEMONSTRATION

Five years ago I said in an editorial regarding software [l]:
"Tell me why it works, not that it works." That is the ap-
proach taken in this paper. This paper does not present a for-
mal grammar for the SA language-that will come later, else-
where. This paper also is not a user manual for either authors
or readers of the language-a simple "how to" exposition. In-
stead, we concentrate here on the motivation behind the fea-
tures of SA in an attempt to convey directly an appreciation
for its features and power even beyond that acquired through
use by most SA practitioners. SA has been heavily developed,
applied, taught, and used for almost three years already, but
the design rationale behind it is first set down here.
SA (both the language and the discipline of thought) derives

from the way our minds work, and from the way we under-
stand real-world situations and problems. Therefore, we start
out with a summary of principles of exposition-good story-
telling. This turns out to yield the familiar top-down decom-
position, a key component of SA. -But more than that results,
for consideration of how we view our space-time world shows
that we always understand anything and everything in terms of
both things and happenings. This is why all of our languages
have both nouns and verbs-and this, in turn, yields the means

by which SA language is universal, and can absorb any other
language as a component part.
SA supplies rigorous structural connections to any language

whose nouns and verbs it absorbs in order to talk about things
and happenings, and we will spend some time covering the
basics carefully, so that the fundamentals are solid. We do
this by presenting, in tabular form, some 40 basic features,
and then analyzing them bit by bit, using SA diagrams as
figures to guide and illustrate the discussion.
Once the basics have thus been introduced, certain impor-

tant topics that would have been obscure earlier are covered
in some depth because their combinations are at the heart
of SA's effectiveness. These topics concern constraints,
boundaries, necessity, and dominance between modular por-
tions of subject matter being analyzed. It turns out that con-
straints based on purpose and viewpoint actually make the
structure. The depth of treatment gives insight into how we
understand things.
The actual output of SA is a hierarchically organized struc-

ture of separate diagrams, each ofwhich exposes only a limited
part of the subject to view, so that even very complex subjects
can be understood. The structured collection of diagrams is
called an SA model. The demonstration here concludes with
several special notations to clarify presentation and facilitate
the orderly organization of the material. Since actual SA
diagrams (some good, some illustrating poor style) are used,
as figure illustrations, the reader is exposed here to the style
of SA even though the SA model represented by the collection
of figures is not complete enough to be understandable by it-
self. Later papers will treat more advanced topics and present
complete examples of SA use and practice in a wide variety of
applications.

IV. PRINCIPLES OF GOOD STORYTELLING

There are certain basic, known principles about how people's
minds go about the business of understanding, and communi-
cating understanding by means of language, which have been
known and used for many centuries. No matter how these
principles are addressed, they always end up with hierarchic
decomposition as being the heart of good storytelling. Perhaps
the most relevant formulation is the familiar: "Tell 'em
whatcha gonna tell'em. Tell 'em. Tell 'em whatcha told 'em."
This is a pattern of communication almost as universal and
well-entrenched as Newton's laws of motion. It is the pattern
found in all effective forms of communication and in all anal-
yses of why such communication is effective. Artistic and
scientific fields, in addition to journalism, all follow the same
sequence, for that is the way our minds work.
Only- something so obvious as not to be worth saying can be

conveyed in a single stage of the communication process, how-
ever. In any worthwhile subject matter, Stage Two ("Tell 'em")
requires the parallel introduction of several more instances of
the same pattern starting again with Stage One. Usually a story
establishes several such levels of telling, and weaves back and
forth between them as the need arises, to convey understand-
ing, staying clear, of excesses in either detail (boredom) or
abstraction (confusion).)Trademark of SofIech, Inc.

17

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

V. THE SA MAXIM

This weaving together of parts with whole is the heart of SA.
The natural law of good communications takes the following,
quite different, form in SA:

"Everything worth saying
about anything worth saying something about
must be expressed in six or fewer pieces."

Let us analyze this maxim and see how and why it, too,
yields hierarchically structured storytelling.

First of all, there must be something (anything) that is "worth
saying something about." We must have some subject matter
that has some value to us. We must have an interest in some
aspect of it. This is called establishing the viewpoint for the
model, in SA terminology. Then we must have in mind some
audience we want to communicate with. That audience will
determine what is (and is not) "worth saying" about the sub-
ject from that viewpoint. This is called establishing the pur-
pose for the model, in SA terminology. As we will see, every
subject has many aspects of interest to many audiences, so
that there can be many viewpoints and purposes. But each SA
model must have only one of each, to bound and structure its
subject matter. We also will see that each model also has an
established vantage point within the purpose-structured context
of some other model's viewpoint, and this is how multiple
models are interrelated so that they collectively cover the whole
subject matter. But a single SA model considers only worthy
thoughts about a single worthy subject.
The clincher, however, is that every worthy thought about

that worthy subject must be included. The first word of the
maxim is everything, and that means exactly that-absolutely
nothing that fits the purpose and viewpoint can be left out.
The reason is simple. By definition everything is the subject
itself, for otherwise it would not be that subject-it would
be a lesser subject. Then, if the subject is to be broken into
six or fewer pieces, every single thing must go into exactly
one of those (nonoverlapping) pieces. Only in this way can
we ensure that the subject stays the same, and does not degen-
erate into some lesser subject as we decompose it. Also, if
overlapping pieces were allowed, conflicts and confusions
might arise.
A "piece" can be anything we choose it to be-the maxim

merely requires that the single piece of thought about the
subject be broken into several (not too few, and not too
many1) pieces. Now, certainly if the original single piece
of thought about the subject is worthy, it is very unlikely
that the mere breaking of it into six-or-fewer pieces exhausts
that worth. The maxim still applies so that every one of them
must similarly be expressed in six-or-fewer more pieces-again
and again-until the number of pieces has grown to suit the

'Many people have urged me to relate the magic number "six" to
various psychological studies about the characteristics of the human
mind. I won't. It's neither scientific nor "magic." It is simply the
right number. (Readers who doubt my judgement are invited to read
for themselves the primary source [6].) The only proper reference
would be to the little bear in the Goldilocks story. His portions always
were "just right," too!

Fig. 1. Structured decomposition.

total worthiness. At a fine enough level of decomposition, it
is not worth continuing. No further decomposition is required
for completely clear understanding. Thus we see that the SA
maxim must be interpreted recursively, and yields top-down
hierarchic decomposition. The SA language allows this hier-
archic structure to be expressed (see Fig. 1).

VI. EXPRESSION
In the maxim, the word "express" covers both the rigorous

grammar of SA language itself, as well as the grammar (however
well or ill formed) of the natural language chosen to address
the subject matter. By definition, SA language includes all
other languages, and regardless of what language is embedded,
the decomposition discipline (expressed by the SA language
component of the combined language) ensures that at each
stage, the natural language (whatever it may be) is used to
address and express only every worthy thought about a more
and more restricted piece of the worthy subject matter. Be-
cause of this orderly zeroing-in, SA certainly cannot decrease
the effectiveness of that chosen language. In effect, the SA
maxim is valid by definition, for whenever the subject matter
has already been broken down to such a fine level that the SA
decomposition would add nothing to what already would be
done (as, for example, in jokes or some poetry) the chosen
language stands by itself, not decreased in effectiveness.
Most of the time the conscious practice of Structured

Analysis and its thought discipline improves people's ability
to think clearly and find solutions. In the cases where this
does not happen, however, Structured Analysis still "works,"
in the sense that the bad portions stand out more clearly and
are understood to be bad and needing further attention. For
the next step in our demonstration we consider thoughts, and
the expression of thoughts in language.

18

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

VII. THINGS AND HAPPENINGS
We live in a space-time world. Numerous philosophical and

scientific studies, as well as the innate experience of every per-

son, shows that we never have any understanding of any subject
matter except in terms of our own mental constructs of
"things" and "happenings" of that subject matter. It seems to
be impossible for us to think about anything without having
that subject automatically be bounded in our minds by a

population of parts or pieces (concrete or abstract-but in any

case "nominal" things, i.e., literally things to which we give
names or nouns) which provide the basis for our even con-

ceiving of the subject matter as a separate subject. Immediately,
however, once we are aware of the things, we are aware of the
happenings-the relationships, changes, and transformations
which take place between and among those things and make
the subject matter meaningful or interesting (the "verbial"
things, to which we give action words or verbs).
The universality of things and happenings provides the next

basic step of decomposition (after the still more fundamental
decomposition of recognizing and isolating the purpose and
viewpoint which established the "worth" of possible things to
say about the "worth" of the subject matter). Every one of
our languages, whether natural or artificial, formal or informal,
has those two complementary aspects-nouns and verbs, oper-
ators and operands, etc.-to permit the expression of thoughts
about the subject matter. Thus the means is provided to incor-
porate any other language into SA. The incorporation of other
languages into SA is not forced, nor awkward.
SA language provides the same graphic notation for both the

things and the happenings aspects of any subject. Every SA
model has two dual aspects-a thing aspect, called the data
decomposition, and a happening aspect, called the activity
decomposition. The model is incomplete without both
decompositions.

VIII. BOUNDED SUBJECT MATTER
So we have now established the starting premises. The SA

maxim forces gradual, top-down decomposition, leaving
nothing out at any stage, and matching good storytelling expo-

sition.' The things and happenings (data and activities, in SA
technical terms) match the nominal and verbial construction
of any chosen language for directly addressing the subject, so

we will never be "at a loss for words." Now we are ready to
address the specifics-how SA language (mostly graphical,
using boxes and arrows) actually allows well structured expres-

sion of well structured thought. We do this in stages: 1) we
dump the entire body of the subject matter all at once into a

table of some 40 separate items of notation and conventions-
just to bound the subject itself; 2) we then start to pick our

way through these topics, starting with those that define the
basics of boxes and arrows; and 3) then we will use those basic
expository capabilities to complete the consideration of the
list.
In a prior, companion paper [21, which had its roots in the

same background that led to the development of SA, we de-
scribed and illustrated a univeral, standard pattern or process

which appears to permeate all of software engineering and
problem-solving in general. Since that pattem is so close to

the natural phenomena of understanding which we are dis-
cussing here with respect to SA itself, we will use it to moti-
vate, clarify, and structure the presentation. The idea of the
pattem is captured in five words: 1) purpose; 2) concept;
3) mechanism; 4) notation; and 5) usage. Any systematic
approach to a problem requires a concise purpose or objec-
tive that specifies which aspect of the problem is of concern.
Within that purpose we formulate a valid conceptual struc-
ture (both things and happenings) in terms of which the prob-
lem can be analyzed and approached. We then seek out (or
work out) the designs (mechanisms-concrete or abstract,
but always including both data and activity aspects) which
are capable of implementing the relevant concepts and of
working together to achieve the stated purpose. (This com-
bines three of the five words together.) Now, purpose, con-
cepts, and mechanism, being a systematic approach to a class
of problems, require a notation for expressing the capabilities
of the mechanism and invoking its use for a particular problem
in the class. Finally, usage rules are spelled out, explicitly or
by example, to guide the use of the notation to invoke the im-
plementation to realize the concept to achieve the specified
purpose for the problem. The cited paper [2] gives numerous
carefully drawn examples showing how the pattern arises over
and over again throughout systematic problem solving, at both
abstract and concrete levels, and with numerous hierarchic and
cross-linked interconnections.

IX. THE FEATURES OF SA LANGUAGE
Fig. 2 is a tabulation of some 40 features or aspects of SA

which constitute the basic core of the language for communi-
cation. For each feature, the purpose, concept, mechanism,
and notation are shown. Usages (for the purposes of this pa-
per) are covered only informally by the examples which follow.
The reader should scan down the "purpose" column of Fig. 2
at this time, because the collection of entries there set the ob-
jectives for the bounded subject matter which we are about to
consider. Note also the heavy use of pictures in the "notation"
column. These are components of graphic language. But
notice that most entries mix both English and graphic language
into a "phrase" of SA notation. Clearly, any other spoken
language such as French, German, or Sanskrit could be trans-
lated and substituted. for the English terms, for they merely
aid the understanding the syntax and semantics of SA language
itself.
In Fig. 2, the name and label portions of the "notation" col-

umn for rows 1 and 2, and the corresponding noun and verb in-
dications in rows 6 and 7 are precisely the places where SA lan-
guage absorbs other natural or formal languages in the sense of
the preceding discussion. As the preceding sections have tried to
make clear, any language, whether informal and natural or for-
mal and artificial, has things and happenings aspects in the
nominal and verbial components of its vocabulary. These are
to be related to the names of boxes and labels on arrows in
order to absorb those "foreign" languages into SA language.
Notice that it is not merely the nouns and verbs which are

absorbed. Whatever richness the "foreign" language may pos-
sess, the full richness of the nominal and verbial expressions,
including modifiers, is available in the naming and labeling por-

19

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, J-ANUARY 1977

PURPOSE CONCEPT MECHANISM NOTATION NODE

1 BOUND CONTEXT INSIDE/OUTSIDE SA BOX NAME All

2 RELATE/CONNECT FROM/TO SA ARROW LABEL A12

3 SHOW TRANSFORMATION INPUT-OUTPUT SA INTERFACE INU [_OUPUT, A13

CONTROL
4 SHOW CIRCUMSTANCE CONTROL SA INTERFACE TR A14

5 SHOW MEANS SUPPORT SA MECHANISM i A15
l EHANI SM

ACTIVITY DATA ACTIVITY DATA
6 NAME APT LY SA NAMES E-RiB1 A211

HAPPENINGS THINGS IYR |ON

7 LABEL APTLY THINGS HAPPENINGS SA LABELS A-.- ..8212

8 SHOW NECESSITY 1U0 C-U PATH .- A213

9 SHOW DOMINANCE C CONSTRAINT A211

10 SHOW RELEVANCE [CO iCO ALL INTERFACES AWA215

11 OMIT OBVIOUS C-S 1I0 OMITTED ARROW
A

f.8216

12 BE EXPLICIT PIPELINES, BRANCH A o o A2ME ~~~~~~~~~~~~~~~~~~~~A221
__ cWITHOTEUTR CONDUITS,

CLUTTER
13 wIRES JOIN A A221

14 BE CONCISE BUNDLE B X(=AU) A222
AND CLEAR CABLES,

15 MULTI-HIRES SPREAD C=(AUB) L RZ A222

16 OR BRANCH OR A223
SHOW EXPLICIT

1 EXCLIJSIVES ALTERNATIVES A AjORJ
171 OR JOIN B 8223

8 SHOW INTERFACES. ARNT18 TO L 1 1 - SA BOUNDARY ARROWS AF . 8231
PARENT DIAGRAM ' ..'

ARROWS PENETRATE (ON CHILD) NO BOO SHOWN)

NUMBER CONVENTION C jL jc2
SHOW EXPLICIT FOR PARENT, 8232

9 PARENT CONNECTION WRITE COIIDE n r TON CHILD (ON CHILD)

20 SHOW UNIQUE DETAIL REFERENCE PAGE NUMBERRBOX
DECOMPOSITION EXPRESSION (DRE) OF DETAIL DIAGRAM El-DRE 8233
SHOW SHARED jI

21 OR VARIABLE DRE WITH SA CALL I BOX A234
DECOMPOSITION (MODEL NAME) ON SUPPORT STUBTO1 iW ,nRER

PURPOSE CONCEPT MECHANISM NOTATION I NODE

22 SHOW IINTERCHANGE OF SA 2 -WAY A311
COOPERATION SHANM T

ARROWS A311

SUPPRESS ALLOw 2-RAT
23 INTERCHANUE WITHIN 1-WAY 2-WOY TO 1-WAY

DETAILS PIPELINES BUTTING ARROWS A312

24 SUPPRESS ALLOW ARROWS TO SA "TUNNELING"'PUSS-THROUW" GO .OUTSIDE DIAGRAMS (WITH REFERENCES) 8313
CLUTTER PIARENTC.D FEF.ERJINL
SUPPRESS ALLOW TAGGEDX_L L (A

25 NEEDED-ARROW JUMPS WITHIN TO ALL or FROM ALL 15L 1K 1 A314
CLUTTER DIAGRAM

2 SHOUR NEEDED ALO WRD2N6NNOTTION A G RDS SA NOTE NOTE: A32

27 OVERCOME ALLOW REMOTE27 CRAMERCSPME LOCATION OF WORDS SA FOOTNOTE 832CRAMPEDSPUCE LO DIAURAMEl
SHOW COMMENTS ALLOW WORDS28 ABOU DIAGRAM QN (NOT LN) DIAGRAM SA META-NOTE ID S-s. "I A32

ENSURE PROPER TEWRST29 ASSOCIATION TIE WORDES TOSEA "SQIIIGGLE" A32
OF WORDS INTENDEDREFDJECT)

30 UNUREFERENCE CHRONOLOGICAL SA C-NUMBER AUTHOR INITTC INTEGER A41

31 UNIQUE BOX PATH DOWN TREE SA NODE NUMBMR U, D, OR M 842REFERENCE FROM BOX NUMBERS (BOX NUMBERS PARENT V BOX A 42

32 SUME FOR PRECEDE BY SA MODEL NAME MODEL NAME/NODE# A42MULTI-EiODELS MODEL SAME

UNIQUE INTERFACE ICOM WITH 58MO Cl MM) ICM OD 8433 REFERENCE BOX NUMBER SA BOX 1CO1 BOX0 ICOM CODE A43

UNIQUE ARROW FMBoO ICOM- 834 REFERENCE FROM TO PAIR OF BOX ICOMs BOX ICOM2 A44

A122.411
35 SHOW CONTEXT SPECIFY A SA REF.EXP. "DOT" V IA45REFERENCE REFERENCE POINT

WHICH SEE"

36 ASSIST CORRECT SHOW DOMINANCE D DA NCEINTERPRETATION (GEOMETRPCALL) STAIRCASE LAYOUT A5

37 ASSIST PROSE SUMMURY SA TEXT NODE)) ,0 INTEGER 8537 UNDERSTANDING OF MESSAGE S ET |NDt TGR|A
38 HIGHLIGHT FEATURES SPECIAL EFFECTS SA FEOs NODE# , F , INTEGER A5FUR EXPOSITION ONLY

39 DEFINE TERMS GLOSSARY WITHSE GLOSSARY INTEER 5

40 ORGANIZE PAGES PROVIDE TXBLE SA NUDE INDEX NODE# ORDER AS-OF CONTENTS

Fig. 2. SA language features.

tions of SA language. As we shall see, however, normally these
capabilities for richness are purposely suppressed, for simplicity
and immediacy of understanding normally require brevity and
conciseness.

Fig. 2 has introduced our subject and has served to point out
the precise way in which SA absorbs other languages, but this
mode of discourse would make a long and rambling story. I
therefore proceed to use SA itself to communicate the intended
understanding of Fig. 2. This will not, however, be a perfect,
or even a good example of SA communication in action, for
the intent of this paper is to guide the reader to an understand-
ing of SA, not to teach how to fully exploit SA diagrams and
modeling. The SA diagrams presented here only as figures are

incomplete and exhibit both good and bad examples of SA
expressiveness, as well as showing all the language constructs.
Our subject is too complex to treat in a small model, but the
figures at least present the reader with some measure of the
flexibility of the language.
The reader is forewarned that there is more information in

the diagrams than is actually referenced here in text which uses
them as "figures." After the paper has been read, the total
model can be studied for review and for additional understand-
ing. Everything said here about the SA language and notations
applies to each diagram, and most features are illustrated more

than once, frequently before they are described in the text.
Therefore, on first reading, please ignore any features and no-
tations not explicitly referenced. Non-SA "first-reading" aids
are isolated by a bold outline, in the diagrams.
In practical use of SofTech's SADT, a "reader/author cycle"

is rigorously adhered to in which (similar to the code-reading
phase of egoless structured programming) authors, experts,
and management-level personnel read and critique the efforts
of each individual SADT author to achieve a fully-acceptable
quality of result. (It is in fact this rigorous adherence to quality
control which enables production SA models to be relied upon.
So far as possible everything worthy has been done to make
sure that everything worthy has been expressed to the level
required by the intended readership.)

20

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

SADTGDIAGRAM FORM ST098 9/75
Form s 1975 SofTech, Inc., 460 Totten Pond Road, Waltham, Mass. 02154, USA

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: DRAFT

RECOMMENDED
NOTES: 1 2 3 4 5 6 7 8 9 10 PUBLICATION

GENERAL PARTICULAR PURPOSE AND
SUBJECT SUBJECT VIEWPOINT

SUBJECT, PURPOSE, VIEWPOINT

R3 . PRINCIPLES OF
FEATUREMS _L ' BUIL D PRINCIPLES OF COMMUNICATION

WORDS l * i1~~R COMPLETED W| |

AUSE DIAGRAM
SPECIA L _ S

- NTEXTIOS ; ; EXPRESSIONS
OVER-DEWTAILED MAERA
DIAGRA M 6GRAPHICALLY R PROV IDE-
COMPLETE FOR B SA

REFERENCEITNG S OSA

TEXT a FEOs, WOGANIZETC
WHERE NEEDED _MATERIAL

READ EACH BOX NAME AS SA TEXT,
" RATIONALI ZE FEATURES GLOSSARY,
WHICH ALLOW ONE TO ..."ETC.

NODE: TITLE: NUMBER:
AO FIG.3 RATIONALIZE STRUCTURED ANALYSIS FEATURES RI

Fig. 3. Rationalize SA features.'

X. PURPOSE AND VIEWPOINT
Fig. 3 is an SA diagram2 and, by defmition, it is a meaningful

expression in SA language. It consists of box and arrow graph-
ical notation mixed with words and numbers. Consonant with
the tutorial purpose of this paper, I will not, here, try to teach
how to read a diagram. My tutorial approach aims only to
lead to an understanding of what is in a diagram.
So we will just begin to examine Fig. 3. Start with the title,

"Rationalize structured analysis features"-an adequate match
to our understanding of the purpose and viewpoint of this
whole paper. We seek to make rational the reasons behind
those features. Next read the content of each of the boxes:
"Define graphics; build diagram; use special notations; provide
for referencing; organize material." These must be the six-or-
fewer "parts" into which the titled subject matter is being
broken. In this case there are five of them, and sure enough
this aspect of SA follows exactly the time-tested outline ap-
proach to subject matter. Because our purpose is to have a
graphics-based language (like-blueprints), once we have decided
upon some basics of graphic definition we will use that to build
a diagram for some particular subject, adding special notations
(presumably to improve clarity), and then because (as with
blueprints)- we know that a whole collection will be required

2The SADT diagram form itself is © 1975, Soffech, Inc., and has
various fields used in the practice of SADT methodology.

to convey complex understanding in easy-to-understand pieces,
we must provide for a way of referencing the various pieces
and organizing-the resulting material into what we see as an
understandable whole.
Now, I have tried to compose the preceding long sentence

about Fig. 3 using natural language constructs which, if not
an exact match, are very close to terms which appear directly
in Fig. 3. In fact, the reader should be able to find an exact
correspondence between things which show in the figure and
every important syntactic and semantic point in each part of
the last sentence of the preceding paragraph, although the
diagram has more to it than the sentence. Please reread
that sentence now and check out this correspondence for
yourself. In the process you will notice that considerable
(though not exhaustive) use is made of information which is
not inside the boxes, but instead is associated with the word-
and-arrow structure of the diagram outside the boxes. This
begins to show why, although SA in its basic backbone does
follow the standard outline pattem of presentation, the box-
and-arrow structure conveys a great deal more information
than a simple topic outline (only the box contents) could
possibly convey.

XI. THE FIRST DETAIL VIEW

Fig. 4 is another SA diagram. Simpler in structure than the
diagram of Fig. 3, but nonetheless with much the same "look."

21

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

SADTSDIAGRAM FORM ST098 9/75
Form t 1975 SofTech, Inc., 460 Totten Pond Road, Waltham, Mass. 02154, USA

Fig. 4. Define graphics.

The title, "Define graphics," is identical to the name inside the
first box of Fig. 3, which is here being broken into five compo-
nent worthy pieces, called the nestedfactors in SA terminology.
Again the words written inside the boxes are legible, but are

they understandable? How can "Bound context; relate/con-
nect; show transformation; show circumstance; show means,"
be considered parts of "Defme graphics?"' It is not very clear,
is it? It would seem that something must be wrong with SA
for the touted understandability turns out to be, in fact, quite
obscure!
Look at Fig. 4 again and see if you don't agree that we have

a problem-and see if you can supply the answer to the
problem.
The problem is not with SA at all, but with our too-glib ap-

proach to it. SA is a rigorous language and thereby is unfor-
giving in many ways. In order for the communication of un-

derstanding to take place we ourselves must understand and
conform to the rules of that rigor. The apparent obscurity
should disappear in a twinkling once the following factor is
pointed out: namely, always be sure to do your understand-
ing in the proper context. In this case, the proper context was

established by the title of Fig. 3, "Rationalize structured anal-
ysis features," and the purpose, to define graphical concepts
and notations for the purpose of representing and conveying
understanding of subject matters. Now, if we have all of that
firmly implanted in our mind, then surely the name in Box 1

of Fig. 4 should be amply clear. Read, now, Box 4. 13 for
yourself, and see if that clarity and communication of intended
understanding does not take place.

3To shorten references to figures, "Box 4. 1" will mean "Box 1 of
Fig. 4," etc. in the following discussion.

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: DRAFT

RECOMMENDED
NOTES: 1 2 3 4 5 6 7 8 9 10 PUBLICATION

ci GENERALSUBJECT.MATTER

BOUND X£/I NSIDE/SOUTSIDE

RELATE/ PFROM/TO
SA CONNECT

mlBOX
MI~~~~~~~~~~~~~~~~~~NU

ARROW TRANSFOR-01

mI ~ ~ M NERAE

Jt ~~SHOW CONTROL
OD TITLE: NUMBER:ICM|

Al FIG. 4 DEFINE GRAPHICS R3~~~STNCE

t ~~~~SHOW MECHANISM
,- ~~~~~MEANS O

SA 5A
Ml INTERFACES

NODE: TITLE:.NUMBE R:
Al FIG. 4 DEFINE GRAPHICS R3

TO SCONTROL I NTE RFACeS ASRRUWBOUTSIDE

INPUT/ [OUTPUT
INSIDE -¶E. - _ I -4-

v FROM TRANSFORMATION CIRCUMSTANCE
TMECHANISM (OF TRANSFORMATION)

MEANS

FEO 4A FEO 46 FEO 4C FEO4D

22

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

You see, according to the diagram, the first feature of defin-
ing graphics is to "Bound the context"-precisely the subject
we have just been discussing and precisely the source of the
apparent obscurity which made SA initially appear to be on
shaky ground. To aid first reading of the figures, a suggested
paraphrasing of the intended context is given in a bold box on
each of the other diagrams (see Fig. 3).
As we can see from the section of Fig. 4 labeled FEO 4A4

the general subject matter is isolated from the rest of all subject
matter by means of the SA box which has an inside and an
outside (look at the box). The only thing we are supposed to
consider is the portion of that subject matter which is inside
the box-so the boundary of the box does bound the context
in which we are to consider the subject.

XII. THE SA Box AS BUILDING BLOCK
We lack the background (at this point) to continue an actual

reading of Fig. 4, because it itself defines the basic graphic no-
tations used in it. Instead, consider only the sequence of illus-
trations (4A-4D) labeled FEO. FEO 4A shows that the fun-
damental building block of SA language notation is a box with
four sides called INPUT, CONTROL, OUTPUT, and MECHANISM.
As we have seen above, the bounded piece of subject matter is
inside the box, and, as we will see, the actual boundary of the
box is made by the collection of arrow stubs entering and
leaving the box. The bounded pieces are related and connected
(Box 4.2) by SA arrows which go from an OUTPUT of one
box to the INPUT or CONTROL of another box, i.e., such arrow
connections make the interfaces between subjects. The names
INPUT and OUTPUT are chosen to convey the idea that (see
FEO 4B and Box 4.3) the box represents a transformation
from a "before" to an "after" state of affairs. The CONTROL
interface (see FEO 4C and Box 4.4) interacts and constrains
the transformation to ensure that it applies only under the
appropriate circumstances. The combination of INPUT, OUT-
PUT, and CONTROL fully specifies the bounded piece of sub-
ject, and the interfaces relate it to the other pieces. Finally,
the MECHANISM support (not interface, see FEO 4D and Box
4.5) provide means for realizing the complete piece represented
by the box.
We will see shortly why Fig. 4 contains no INPUT arrows at

all, but except for that anomaly, this description should make
Fig. 4 itself reasonably understandable. (Remember the
context-"Rationalize the features of SA language which allow
one to define graphic notation for....") The diagram (with
FEO's and discussion) is the desired rationalization. It fits
quite well with the idea of following the maxim. We don't
mind breaking everything about a bounded piece of subject
matter into pieces as long as we are sure we can express com-
pletely how all those pieces go back together to constitute the
whole. Input, output, control, and mechanism provide that
capability. As long as the right mechanism is provided, and
the right control is applied, whatever is inside the box can be a
valid transformation of input to output. We now must see

4This notation refers to the sequence of imbedded illustrations in

how to use the "foreign" language names and labels of boxes
and arrows. Then we can start putting SA to work.

XIII. USING THE BASICS FOR UNDERSTANDING

Fig. 4, and especially FEO 4A, now that we have digested
the meaning of the diagram itself, has presented the basic box-
and-arrow-stubs-making-useful-interfaces-for-a-bounded-piece-
of-subject-matter building block of SA. We now can start to
use the input, output, control, and mechanism concepts to
further our understanding. Knowing even this much, the power
of expression of SA diagrams beyond that of simple outlining
will start to become evident.
Fig. 5, entitled "Build diagram," details Box 3.2. Referring

back to Fig. 3 and recalling the opening discussion of its mean-
ing (which we should do in order to establish in our mind the
proper context for reading Fig. 5) we recall that the story line
of Fig. 3 said that after Box 3.1 had defined the arrow and box
basics, then we would build an actual diagram with words and
names for a particular subject in accordance with a purpose
and viewpoint chosen to convey the appropriate understanding.
Looking at Box 3.2 in the light of what we have just learned
about the box/arrow basics in Fig. 4, we can see that indeed
the inputs are words and names, which will be transformed into
a diagram (an over-detailed, but graphically complete diagram,
evidently). Even though the mechanism is not specified, it is
shown that this diagramming process will be controlled by
(i.e., constrained by) the graphic conventions, subject, and
viewpoint. Now refer to Fig. 5 with this established context
and consider its three boxes:-"Build box structure; build arrow
structure; build diagram structure." That matches our under-
standing that a diagram is a structure of boxes and arrows (with
appropriate names and labels, of course). Study Fig. 5 your-
self briefly keeping in mind the points we have discussed so
far. You should find little difficulty, and you will find that a
number of the technical terms that were pure jargon in the
tabulated form in Fig. 2 now start to take on some useful
meaning. (Remember to ignore terms such as "ICOM" and
"DRE," to be described later.)
If you have taken a moment or so to study Fig. 5 on your

own, you probably have the impression things are working all
right, but you are still not really sure that you are acquiring
the intended level of understanding of Fig. 5. It seems to have
too many loose ends semantically, even though it makes par-
tial sense. If this is your reaction, you are quite right. For
more detail and information is needed to make all the words
and relationships take on full meaning. Fig 5 does indeed
tell everything about "Build diagram" in its three boxes,
which are themselves reasonably understandable. But we need
more information for many of the labels to really snap into
place. This we will find in the further detailing of the three
boxes. Context orients for understanding (only orients!);
details enable understanding (and strengthen context).

Fig. 6 provides the detailing for Box 5.1. Especially for this
diagram, it is important to keep in mind the appropriate con-
text for reading. It is not "Draw an SA diagram," but to moti-

Fig. 4 which are "For exposition only" (FEO).

23

vate the features of SA. Thus, when we read the title, "Build

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

SADTeDIAGRAM FORM ST098 9/75
Form c,< 1975 SofTech, Inc., 460 Totten Pond Road, Waltham, Mass. 02154, USA

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: DRAFT

RECOMMENDED
NOTES: 1 2 3 4 5 6 7 8 9 10 -PUBLICATION

C I C2,C3 SUBJECT MATTER,PURPOSE, AND VIEWPOINT

BOX /ARROW
BASICS . . , BOXES DRAWN

r sW AND NAMED

I2 _ ~BUILDBO_112
WORDS] TUCTREI NTER NAL r

ARROW CONNECTEDR4 STUBS AND LABELLED

FEATURES~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ NERAE
l BUI LD __ -

ARROW BOXES ANDSTRUCTUR 2 z I /BOX NUMBERS UE

MODEL NAMES STRUCTURE3
AND NODE NUMBERS5 INNER COMPLETED

R6 \EI NTERFACES DETAILS

LA E ECALLS

READ EACH BOX NAME AS
'RATIONALIZE THE FEATURES WHICH

ALLOW ONE TO ... TO BUILD A DIAGRAM"

NODE: ITITLE: INUMBER
A2 | FIG.5 BUILD DIAGRAM I R2

Fig. 5. Build diagram.

SAD)TeOIAGRAM FROM ST098 9/75
Form 'S 1975 SofTech, Inc., 460 Totten Pond Road, Waltham, Mass. 021 54. USA

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT: E
PROJECT: REV:_ DRAFT I

_ RECOMMENDED I
NOTES: 1 2 3 4 5 6 7 8 9 10 PUBLICATION

Fig. S. Buflddiagram.~~

C2 [SUBJECT MATTER
I - - - Ir-unrvQr. ~~READ EACH BOX NAME AS

| T~~HAPPENINGS VIEWPOINT |RA AHIETEFAUE(THINGS) ~~~~~~~~~"RATIONALIZE THE FEAT'URES
WHICH ALLOW ONE TO . . . IN I

1 I NAME | | VERBS(NOUNS) BUILDING BOX STRUCTURE.

VERBS

KEY FOR LABELS D NTHINGSC
I I IIP I UHAPPENINGS)T

OM NAMES LABEL OW C MIOR S DEFININ$ EACH

|VERBS850 I M I CO)OMIT
Nf mNECESSITY [D/O STRUCTURI ~~BOX BOUNDARIES j - 31 II

T IPATHS OMS IMOW H E A|

|KEY FOR LABELS -IDMNNEM

NOTES: ACTIITY CASE DATA CASE)r
AI INPUT G BUISHOWIDBO TUI C CONTROL LABELLED ARROW CONSTRAINTS 1MlI IRLVNEfw >I OUTPUT =STUBS DEFININS EACHI5I 1I M MECHANISM JINTERFACE OFA BOX I rI5
I ~~~~~~~~~~~~~INTERFACESTMI OMIT lnIQINPUT AND CONTROL BOTH CAN EQUALLY -THEITHI CONTRIBUTE TO OUTPUT, AND HENCE IOBVIOUS II MUST BEMADE COMPATI1 LE RE PURPOSE 91 ALTHOUGH NECESSITY DOMINATES'I 611- AND YIEWPOINT ~~IN [0,DOMINANCE RE COMMUNICA- MTE BOX /

I ~~~~~~~~~TIONIS MOST IMPORTANT HERE. ARROWS TMISTRU0UR
NODE ITITLE: NUMBER:
L A21 | FIG. 6 BUILD BOX STRUCTURE IR4

PUR POF AND

Fig. 6. Build box structure.

24

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

THING

THING
HAPPENING

PROCESSOR

DATA

DATA DATA
ACTIVITY 0

MODEL

NOUN

NOUN NOUN
VERB

NAME

INSTRUCTIONS
AND DATA

BLANK COMPLETED
FORMS FILL OUT FORMS

FORMS

CLER

HAPPENING

HAPPENING HAPPENING
THING

IDEVICE

ACTIVITY

ACTIVITY ACTIVITY
DATA

MODEL

VERB

VERB VERBNOUN

NAME

FOLLOW
INSTRUCTIONS

SUPPLY v FILL OUT
FORM BLANK FORMS

FORMS

DESK

Fig. 7. Duality of activities and data.

box structure," of Fig. 6, we must keep in mind that the
worthy piece of subject matter is not how to build box struc-
ture, nor even the features which create box structure, but
motivation for explanation of the features which allow box
structure to represent the bounded context subject matter.
This actually is a very sophisticated subject and normally we

would only be diagramming it after we had already prepared
rather complete models of the "how to" of SA so that many
of the terms and ideas would already be familiar. In this paper,

however, the opening discussion must serve instead. The next
four sections discuss Fig. 6.

XIV. DUALITY OF DATA AND ACTIVITIES

Recall that a complete 'SA model has to consider both the
things and happenings of the subject being modeled. Happen-
ings are represented by an activity decomposition consisting
of activity diagrams and things are represented by data decom-
position consisting of data diagrams. The neat thing about SA
language is that both of these complementary but "radically
different aspects are diagrammed using exactly the same four-
sided box notatiQn. Fig. 7 illustrates this fact. The happening/
activity and thing/data domains are completely dual in SA.
(Think of an INPUT activity on a data box as one that create's
the data thing, and of OUTPUT as one that uses or references
it.) Notice that mechanism is different in' interpretation, but
the role is the same. For a happening it is the processor, ma-

chine, computer, person, etc., which makes the happening
happen. For a thing it is the device, for storage, representation',
implementation, etc. (of the thing).
A quick check of Fig. 4 shows that mechanism's purpose is

to show the means of realization, and that it is not an interface
but is instead something called "support" in SA (described later
in Section XXIII). For either activity or data modeling, a sup-
port mechanism is a complete model, with both data and activ-
ity aspects. As Fig. 7 shows, that complete ."real thing" is
known by its name, whereas things and happenings are'iden-
tified by nouns and verbs (really nominal expressions and
verbial expressions). With this in mind, we can see that the
first two boxes in Fig. 6 motivate the naming and labeling

features of SA to do or permit what Fig. 7 requires-boxes
are named, and arrows are labeled, with either nouns or verbs
as appropriate to the aspect of the model, and of course, in
accordance with the intended purpose and viewpoint of the
subject matter.

XV. CONSTRAINTS

We will consider next Boxes 6.3 and 6.4 together, and with
some care, for this is one of the more subtle aspects of SA-the
concept of a constraint-the key to well structured thought
and well structured diagrams. The word constraint conjures
up visions of opposing forces at play. Something can be con-
strained only if there is something stronger upon which the
constraining force can be based. It might seem that from the
ideas of SA presented so far, that that strong base will be pro-
vided by the rigorously defined bounded context of a box.
Given a strong boundary, it is easy to envision forces saying
either to stay inside the boundary or to stay outside the bound-
ary. It is a pleasing thought indeed, and would certainly make
strong structure in both our thinking and our diagrams. The
only trouble is it does not work that way (or at least not im-
mediately), but in factit is just the opposite! In SA thinking it
is the constraints that make the boundaries, not the other way
around. This is a tricky point so we will approach it slowly. It
is still true that a constraint, to be a constraint, has to have
something to push against., If it is not the bounded-context
boundary, then what is it?
The subtle answer is that the purpose and viewpoint of the

model provide the basis for all constraints which in tum pro-
vide the strength and rigidity for all the boundaries which in
turn create the inescapable structure which forces correct un-
derstanding to be communicated. This comes about through
the concepts of necessity and dominance, which are the sub-
jects of Boxes 6.3 and 6.4. Dominance sounds much like
constraint, and we will not be surprised to find it being the
purveyor of constraint. But "necessity" has its own subtle
twist in this, the very heart of SA. Therefore we must ap-
proach it, too, with some deliberation.

25

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

Given any activity box that does some I-to-O
transformation

It is impossible for you to have a choice in
how to break it into two parts

Unless you realize that it could be broken
into three parts.

The reason is that only then can you say which
alternative your choice is.

AlWI1I1
*A" B"

So consider the I-to-O continuous transforma-
tion broken into three parts

The arrows must connect as shown. They are
dictated by necessity -- for otherwise the
the I-to-O transformation would not be the same.

But we wanted two parts, not three

1A B C

A' B' or Al B"

Which is your choice?
You can only tell by giving additional dominant constraints

CA C0 CAN' XCf0
5A' BO or All B |-

This shows why at least one control arrow is required to
define any activity box. Unless properly defined, the box
doesn't really exist:
Either CA., C'0 or CA.. C"0 will do. It's your choice.
Both satisfy necessity. I-to-O is the same in each case.

When you make your choice explicit by the Cs, your view
is enforced -- the other is not possible any more.

The same applied to the original I-to-O, as well.

__0O This is what decomposition reallyis
Only this is real structure.

Onl v thi-, wil11 Pnfnrrp vnir vi pw

Co

CA',C'o0 CA..' C0

VI Iŷ ..1 , w,,I ,Il * ul-Lt ,^uur v cw .

And furthermore
This enforces only your view.

You must be understood.

Fig. 8. Dominance and necessity.

Fig. 8 tells the story in concise form. Please read it now.
Then please read it again, for all experience with SA shows
that this simple argument seems to be very subtle and difficult
for most people to grasp correctly. The reason is that the
everything of the. SA maxim makes the I-to-O necessity chain
the weakest possible structure-akin to no structure at all. It
merely states a fact that must be true for every SA box, be-
cause ofthe maxim. Therefore dominant constraints, expressed
by- the control arrows for activity boxes are, in fact, the only
way possible, to impose structure. Furthermore, that enforce-
ment of structure is unique and compelling-no other structure
can be (mis-) understood in place of that intended by the SA
author. This is, of course, all mediated by the effectiveness
with which the SA author wields the chosen non-SA language
used for names ofboxes and labels on arrows, but the argument
presented in this paper holds, nonetheless. This is because
whenever the imprecision of the non-SA language intrudes,
more SA modeling (perhaps even with new purpose and view-
point for greater refinement, still, of objectives) is forced by
the reader/author cycle of the SADT discipline.

XVI. THE RULE OF OMISSION
Now consider Boxes 6.5 and 6.6 "Show relevance" and

"Omit the obvious." These two ideas follow right along with
the above discussion. Namely, in the case of activity diagram-
ming, ifinputs are relevant (i.e., if they make a strong contribu-
tion to understandability) then they are drawn. But on the
other hand, since the important thing is the structure imposed
by the control dominance and output necessity, and inputs
must be supplied in any case for those outputs to result, ob-
vious inputs can and should be omitted from the box struc-

ture of SA activity diagramming. In other words, whenever
an obvious input is omitted in an activity diagram, the reader
knows that (because of the SA maxim) whatever is needed will
be supplied in order that the control and output which are
drawn can happen correctly. Omitting the obvious makes the
understandability and meaning of the diagram much stronger,
because inputs when they are drawn are known to be important
and nonobvious. Remember that SA diagrams are not wiring
diagrams, they are vehicles for communicating understanding.
Although activity and data are dual in SA and use the same

four-sided box notation, they are not quite the same, for the
concept of dominance and constraint in the data aspect centers
on input rather than control. In the data case, the weak chain
of necessity is C-O-C-O-- - not I-0-1-0- * - * as it is in the acti-
vity case. The reason comes from a deep difference between
space and time (i.e., between things and happenings). In the
case of the happening, the dominant feature is the control
which says when to cut the transformation to yield a desired
intermediate result, because the "freedom" of happenings is in
time. In the case of things, however, the "freedom" which
must be constrained and dominated concerns which version
of the thing (i.e., which part of the data box) is the one that
is to exist, regardless of time. The input activity for a data
box "creates" that thing in that form and therefore it is the
dominant constraint to be specified for a data box. An unim-
portant control activity will happen whenever needed, and
may be omitted from the diagram.
Therefore, the rule regarding the obvious in SA is that con-

trols may never be omitted from activity diagrams and inputs
may never be omitted from data diagrams. Fig. 6 summarizes
all of this discussion.

26

s

27ROSS: LANGUAGE FOR COMMUNICATING IDEAS

SADT@DIAGRAM FORM ST098 9/75
Form 9 1975 SofTech, Inc., 460 Totten Pond Road, Waltham. Mass. 02154, USA

USED AT: AUTHOR: DATE: _WORKING READER DATE CONTEXT:
PROJECT: REV: _DRAFT

RECOMMENDED
INOTES: / I r 4 5 6 7 8 9 10 PUBLICATION

COXSTRUCTUREC2 MOVE THESE TO THIS CLUTTER SIMPLY
BOX STRUCTURE--'~ BOTTOM OF SHEET 0 HSCUTRSML

.STUBS * *T O ALL ALAAlI (-R3T) SHOWS ALL COMBINA-
TIONS ARE POSSIBLE,

PURPOSE ANDREAWLE®
VIEWPOINT ,,z /REDRAW LIKE

A~~~
II ________SHOW

WORDS DISTRIBUTION
(LABELS) * xx

BRANCH JOIN S HOW.
L . ~~~~~~SUBDIVISION

READ EACH BOX NAME AS A

"RATIONALIZE THE FEATURES
WHICH ALLOW ONE TO ... BUNDLE SPREAD OR
BY MEANS OF ARROW. STRUCTURES" OA 01,02

l _ B ~~~~~~ ~ ~~~~~~SHOWN_

- ~~~~~~~~~~ ~~~~EXCLUSION
. 3 \(\ ~~~~~~~~~ARROW

STRUCTURE

BRANCH1 1JOIN Bw AORB
OR OR B- B

® PROPOSED
A

CLEANER
LAYOUT
(SEE 0)

NODE: TITLE: NUMBER
A22 FIG.9 BUILD ARROW STRUCTURE IM R R5

Fig. 9. Build arrow structure.

XVII. STRENGTHENING OF BOUNDARIES

Recall that a constraint does need something to push on.

What is that? The answer is the one originally proposed, but
rejected. Constraints are based on the boundary of a bounded
context-but of the single box of the parent diagram which the
current diagram details. (A parenthesized hint that this would
turn out to be the case does appear in the original rejection of
the view that boundaries provide the base for constraints,
above.) In other words, the constraints represented by the
arrows on a diagram are not formed by the several boundaries
of the boxes of that diagram, but all are based on the single
boundary of the corresponding box in the parent diagram. As
was stated above in Section XV, the constraints form the box
boundary interfaces and define the boxes, not the other way
around.' The strength of those constraints comes from the
corresponding "push" passed through from the parent. As the
last "CO" portion of Fig. 8 indicates, this hierarchic cascading
of constraints is based entirely on the purpose of the model as

a whole (further constrained in spread by the limited viewpoint
of the model) as it is successively decomposed in the hierarchic
layering forced by the six-or-fewer rule of the SA maxim.
All of this is a direct consequence of the everything of the

SA maxim, and may be inferred by considering Fig. 8 recur-

sively. The boundary of the top-most box of the analysis is
determined entirely by the subject matter, purpose, and view-
point of the. agreed-upon outset understanding. ("Tell 'em

whatcha gonna tell 'em.") Then each of the subsequent con-
straints derives its footing only insofar as it continues to reflect
that subject, purpose, and viewpoint. And, each, in turn, pro-
vides the same basis for the next subdivision, etc. Inconsisten-
cies in an original high-level interpretation are ironed out and
are replaced by greater and greater precision of specific
meaning.
Even though the basis for all of the constraint structure is

the (perhaps ifl-conceived, ambiguous, rn-defined) outer bound-
ary, that boundary and the innermost boundary, composed of
the collective class of all the boundaries of the fimest subdivision
taken together, are merely two representations of the same
boundary-so that strengtheningofthe inner boundary through
extensive decomposition automatically strengthens the outer
boundary. It is as though the structured analyst (and each of
his readers as well) were saying continually "My outermost
understanding of the problem as a whole can only make sense,
now that I see all this detail, if I refine my interpretation of it
in this, this, and this precise way." This is the hidden power
of SA at work. This is how SA greatly amplifies the precision
and understandability of any natural or formal language whose
nouns and verbs are imbedded in its box and arrow structure.

XVIII. ARROW CONNECTIONS
Fig. 6, which led to this discussion, detailed Box 5.1 "Build

box structure"; Fig. 9 decomposes Box 5.2, "Build arrow

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

Fig. 10. Nested factors.

structure." From Fig. 5 we see that the controlling constraints
that dominate Box 5.2 are the subject matter, purpose, and
viewpoint, as we would expect, along with the "arrow stubs"
which resulted from building each box separately. The outputs
are to be internal arrows connected and labeled, as well as la-
beled external arrows. A relevant (i.e., nonobvious) input is
the collection of words-nouns or verbs-for making those
labels.
With this context in mind, we are now ready to look at Fig.

9, "Build arrow structure." Here is an example of the use of
non-English language to label arrows. Small graphical phrases
show the intended meaning of "branch" and "join" for distri-
bution, and "bundle" and "spread" with respect to subdivision,
as well as two forms of logical OR for exclusion. We have seen
many examples of these in use in the diagrams already consid-
ered, so that the ideas should be quite transparent.
The little pictures as labels show how the labels attach to

arrows to convey the appropriate meaning. In most good SA
diagramming the OR's are used very sparingly-only when they
materially assist understanding. In most circumstances, the
fact that arrows represent constraints either of dominance or
necessity supplies the required understanding in clearer form
merely by topological connection. This also is the reason why
there is no graphical provision for the other logical functions
such as AND, for they are really out of place at the level of
communication of basic SA language. In order for them to
have an appropriate role, the total context of interpretation
of an SA model must have been drawn down very precisely
to some mathematical or logical domain at which point a
language more appropriate to that domain should be chosen.
Then logical terms in the nominal and verbial expressions in
labels can convey the conditions. This is preferable to distort-
ing the SA language into a detailed communication role it was
not designed or intended to fulfill.

XIX. BOUNDARIES
Fig. 12, "Build diagram structure," will provide detailing for

the third and last box of Fig. 5. It is needed as a separate con-
sideration of this motivation model because the building of
box structure (Box 5.1, detailed in Fig. 6) and arrow structure
(Box 5.2, detailed in Fig. 9) only cover arrows between boxes
in a single diagram-the internal arrows. Box 4.2 requires that

every arrow which relates or connects bounded contexts must
participate in both a from and a to interface. Every external
arrow (shown as the second output of Box 5.2) will be missing
either its source (from) or its destination (to) because the rele-
vant boxes do not appear on this diagram. As the relationship
between Boxes 5.2 and 5.3 in Fig. 5 shows, these labeled
arrows are indeed a dominant constraint controlling Box 3,
"Build diagram structure."
Fig. 10 helps to explain the story. This is a partial view of

three levels of nesting of SA boxes, one within the other, in
some model (not an SA diagram). Except for three arrows,
every arrow drawn is a complete from/to connection. The
middle, second-level box has four fme-level boxes within it,
and it in turn is contained within the largest box drawn in the
figure. If we consider the arrows in the middle, second-level
box, we note that only two of them are internal arrows, all of
the others being extemal. But notice also that every one of
those external arrows (with respect to that middle-level box)
are in fact internal with respect to the model as a wlhole.
Each of those arrows does go from one box to another box-
a lowest-level box in each case. In completing the connection,
the arrows penetrate the boundaries of the middle-level boxes
as though those boundaries were not there at all. In fact, there
are only two real boundaries in all of Fig. 10-the two bound-
aries characteristic of every SA decomposition. These are 1)
the outer boundary which is the outermost edge of Fig. 10,
itself, and 2) the inner boundary which is the entire set of
edges of all of the lowest-level boxes drawn in Fig. 10, consid-
ered as a single boundary. As was stated above, the SA maxim
requires that the outer boundary and the inner boundary must
be understood to be exactly the same so that the subject is
merely decomposed, not altered in any way.

XX. PARENTS AND CHILDREN
To understand how the structuring of Fig. 10 is expressed in

SA terms we must be clear about the relationship between
boundaries and interfaces, boxes and diagrams, and the parent/
child relationship. Fig. 11 lays all of this out. In the upper
right appears the diagram for the largest box drawn in Fig. 10,
and in the lower left appears the diagram for the central
middle-level box which we were discussing. The first thing to
notice is that the diagrams are here drawn as though they were

28

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

Fig. 11. Boundaries and interfaces.

punched out of Fig. 10, (lhke cutting cookies from a sheet of
cookie dough). Although the dimensions are distorted, the
note in the upper left points out that, by definition, the dia-
gram outer boundary is actually the same as the parent box
boundary (i. e., the current child diagram is the "cookie" re-

moved from the sheet of dough and placed to one side).
Fig. 11 also points out that, just as for the hierarchic decom-

position as a whole, the inner boundary of the parent diagram
is the collection of all its child box boundaries considered as a

single entity. Notice the terminology-with respect to the
current child diagram, one of the boxes in the parent diagram
is called the parent box of the child diagram. By definition of
Fig. 4, that parent box boundary is the collection of parent
box interfaces and support which compose it. Since we have
just established that the outer boundary of the current diagram
is the same as the corresponding parent box boundary, the
parent box edges (interfaces or support) which compose the
parent box boundary must somehow match the outer edges of
the child diagram. This is the connection which we seek to
establish rigorously.
By Fig. 10 we know that the external arrows of the child

diagram penetrate through the outer boundary and are, in fact,
the same arrows as are the stubs of the interfaces and support
which compose the parent box boundary. Therefore, the con-

nection which has to be made is clear from the definition. But
for flexibility of graphic representation, the external arrows of
the current diagram need not have the same geometric layout,
relationship, or labeling as the corresponding stubs on the par-

ent diagram, which are drawn on a completely different (par-
ent) diagram.
In order to allow this flexibility, we construct a special code-

naming scheme called ICOM codes as follows: An ICOM code
begins with one of the letters I-C-O-M (standing for INPUT,

CONTROL, OUTPUT, MECHANISM) concatenated with an inte-
ger which is obtained by considering that the stubs of the
corresponding parent box edge are numbered consecutively
from top to bottom or from left to right, as the case may be.
With the corresponding ICOM code written beside the unat-
tached end of the arrow in the current diagram, that arrow is

no longer called "extemal," but is called a boundary arrow.

Then the four outer edges of the child diagram are, by defini-
tion, the four collections ofICOM boundary arrows which are,

by deflnition, exactly the same as the corresponding parent
box edges, as defined by Fig. 4 and shown in Fig. 11. Thus
even though the geometric layout may be radically different,
the rigor of interconnection of child and parent diagrams is

complete, and the arrows are continuous and unbroken, as

required. Every diagram in this paper has ICOM codes properly
assigned.
The above presentation is summarized in the first two boxes

of Fig. 12 and should be clear without further discussion.
Boxes 12.3 and 12.4 concern the SA language notations for
establishing the relationships between the child and parent
diagram cookies by means of a detail reference expression
(DRE) or an SA call. We will consider these shortly. For now
it is sufficient to note that the topics we have considered here

NOTE: BY DEFINITION, THE DIAGRAM
OUTER BOUNDARY IS EXACTLY
THE SAME AS THE PARENT BOX BOUNDARY

\\\\\'0\\\\N } ALL ONE THING

ICOM CODE IS
(PARENT) INTERFACE LETTER
c ARROW STUB NUMBER

THE OUTER INTERFACES ARE BY
DEFINITION THE COLLECTION OF ALL
OF THE BOUNDARY ARROWS c ICOM CODES,
AND BY DEFINITION THEY ARE
EXACTLY THE SAME AS THE
PARENT BOX INTERFACES

29

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

SADTODIAGRAM FORM ST098 9/75
Form 1975 SofTech, Inc., 460 Totten Pond Road, Waltham, Mass. 02154, USA

USED AT: AUTHOR: DATE: WORKING IREADER DATE CONTEXT:
PROJECT: REV: DRAFT

RECOMMENDED
NOTES: 1 2 3 4 5 6 7 8 9 10 pUBLICATION

C2,C3
SUBJECT MATTER
ETC.

BO B IN NNER

INTERFACES ~~ ~ ~ ~ ~ ~ __,_ITRFC
LABELLD TO P TPARENT STUBS

EXTERNAL l .~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ OUE

BOUNDARYNIANE
(SHOW AROW FACES S-OUE

BOUNDARY SHOW WITH ICOMS
ARROWS PARENT

()SA ARROWS OUTDETILESARE

ARROWS PARENT 0REFRENC

CONNECTIONS

D NMBOX NUMBERE
E TE UNUMBEROR NODE

(CIOME PAGE NUMBER NUMBERS

CODESAL > 0

DETAILll

A23 FIG. 12 BUILD DIAGRAM STRUC~EXITUR R1116EXPRESSION 1 EXISTS d INNER s
I I INTERFACES

MODEL NAMES MSA
a (|) CALL

NODE NUMBERS
.NODE: TITLE: NUMBER:

A23 FIG. 12 BUILD DIAGRAM STRUCTURE R6

Fig. 12. Build diagram structure.

complete the detailing of Fig. 5, "Build diagram"-how the
box structure and arrow structure for individual diagrams are
built, and then how the whole collection of diagrams is linked
together in a single whole so that everything of the top-most
cookie (treated as a cookie sheet from which other cookies
are cut with zero width cuts) is completely understandable.
Each individual diagram itself is only a portion of the cookie
dough with an outer boundary and an inner boundary formed
by the decomposition operation. Nothing is either gained or
lost in the process-so that the SA maxim is rigorously realized.
Everything can indeed be covered for the stated purpose and
viewpoint. We now complete our presentation of the remaining
items in the 40 features of Fig. 2, which exploit further refine-
ments of notation and provide orderly organization for the
mass of information in a complete SA model.

XXI. WORD NOTES

In SA language, not everything is said in graphical terms.
Bothwords and pictures are also used. If the diagram construc-
tion notations we have considered so far were to be used ex-
clusively and exhaustively, very cluttered and nonunderstand-
able diagrams would result. Therefore SA language includes
further simplifying graphic notations (which also increase the
expressive power of the language), as well as allowing non-
graphic additional information to be incorporated into SA dia-
grams. This is the function of Fig. 13 which details Box 3.3.
Fig. 13 points out that the (potentially) cluttered diagram is

only graphically complete so that special word notations are
needed. Furthermore, special arrow notations can supply
more clarity, to- result in a complete and understandable
diagram.
We will not further detail Box 13.2. We merely point out

that its output consists of three forms of verbal additions to
the diagram. The first two-NOTES and F1 footnotes-are ac-
tual parts of the diagram. The diagrams we have been examin-
ing have examples of each. The third category, ® metanotes,
are not parts of the diagram themselves, but are instead notes
about the diagram. The ® metanotes have only an observa-
tional or referential relation to the actual information content
of these diagrams and therefore they do not in any way alter
or affect the actual representational function of the SA Ian-
(,uage, either graphical or verbal. There is no way that infor-
mation in ® metanotes can participate in the information
content of the diagrams, and therefore they should not be
used in an attempt to affect the interpretation of the diagrams
themselves, but only for mechanical operations regarding the
diagram's physical format or expression. Examples are com-
ments from a reader to an author of a diagram suggesting an
improved layout for greater understandability. A few examples
are included on the diagrams in this paper. The EJ footnotes
are used exclusively for allowing large verbal expressions to
be concisely located with respect to tight geometric layout, in
addition to the normai footnoting function commonly found
in textual information.

30

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

SADT(DDIAGRAM FORM ST098 9/75
Form ;c 1975 SofTech, Inc., 460 Totten Pond Road, Waltham, Mass. 02154, USA

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: DRAFT

_RECOMMENDED
NOTES: 1 2 3 4 5 6 7 8 9 10 PUBLICATION

Cl,C2 SUBJECT, PURPOSE, VIEWPOINT
2-WAY, BUTTED,
TUNNELED, AND
BROKEN ARROWS

, t ~~MORE
USE SPEC A L C lT

II 5 ^ ARROW
CLUTTERED NOTATIONS I
DIAGRAM |R7l

ONLY GRAPHICALLY MORE
COMPLETE DIAGRAMS INFORMATION

_ ~~~~~~~~~~USESPECIAL 01O
WORDS WORD

NOTATIONS 2 COMPLETE
I2 UNDERSTANbABLE

DIAGRAM

NOTES
FOOTNOTES

I® METANOTES

READ EACH BOX NAME AS
"RATIONALIZE THE FEATURES
WHICH ALLOW ONE TO...

NODE: ITLE: NUMBER:
A3 FIG.13 USE SPECIAL NOTATIONS R8

Fig. 13. Use special notations.

XXII. SPECIAL GRAPHIC NOTATIONS

Fig. 14 provides the motivation for four very simple additions
to the graphic notation to improve the understandability of
diagrams. With respect to a specific aspect of the subject mat-
ter, two boxes sometimes really act as one box inasmuch as
each of them shares one portion of a well-defined aspect of
the subject matter. In this case, arrowheads with dots above,
below, or to the right of the arrowhead are added instead of
drawing two separate arrows as shown in FEO 14A. Two-way
arrows are a form of bundling, however, not a mere shorthand
notation for the two separate arrows. If the subject matters
represented by the two separate arrows are not sufficiently
similar, they should not be bundled into a two-way arrow, but
should be drawn separately. Many times, however, the two-way
arrow is the appropriate semantics for the relationship between
two boxes. Notice that if other considerations of diagrams are
sufficiently strong, the awkward, nonstandard two-way arrow
notations shown also may be used to still indicate dominance
in the two-way interaction.
SA arrows should always be thought of as conduits or pipe-

lines containing multistranded 'cables, each strand of which is
another pipeline. Then the branching and joining is like the
cabling of a telephone exchange, including trunk lines. Box
14.2 is related to both two-way arrows and pipelines, and
points out that a one-way pipeline stub at the parent level may
be shown as a two-way boundary arrow in the child. This is

appropriate since, with respect to the communication of under-
standing at the parent level, the relationship between boxes is
one-way, whereas when details are examined, two-way cooper-
ation between the two sets of detailing boxes may be required.
An example is the boss-worker relation. The boss (at parent
level) provides one-way command, but (at the child diagram
level) a two-way interchange between worker and boss may be
needed to clarify details.
Box 14.3 motivates an additional and very useful version of

Box 6.6 ("Omit the obvious"). In this case, instead of omit-
ting the obvious, we only postpone consideration of necessary
detail until the appropriate level is reached. This is done by
putting parentheses around the unattached end of an external
arrow, or at the interface end of a parent box stub. The nota-
tion is intended to convey the image of an arrow "tunneling"
out of view as it crosses a parent box inner boundary only to
emerge later, some number of levels deeper in a child's outer
interface, when that information is actually required. These
are known as "tunneled" or "parenthesized" boundary arrows
when the sources or destinations are somewhere within the SA
model, and as (proper) external arrows when the missing source
or destination is unspecified (i.e., when the model would need
to be imbedded in some context larger than the total model
for the appropriate connection to be made).

Finally, Box 14.4 is a seldom-used notation which allows
internal arrows themselves to be broken by an ad hoc labeling
scheme merely to suppress clutter. Its use is discouraged be-

31

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JANUARY 1977

SADT3DIAGRAM FORM ST098 9/75.
Form 1975 SofTech, Inc., 460 Totten Pond Road, Waltham, Mass.. 02154, USA

USED AT: AUTHOR: DATE: WORKING READER DATE CONTEXT:
PROJECT: REV: DRAFT

._________ J RECOMMENDED
NOTES: 1 2 3 4 5 6 7 8 9 10 _ PUBLICATION

CI SUBJECT MATTER

flr 2-WAY

iION i ARROWS: |l Al

CLUTTERED OOPERATION

CLUTTERED ~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~LA

DIAGRAM I l BUT TED D
READEACHBOX NE AS A]UNDARY

STNDR NONRRTAWAR

| ~~~ARROWS SUPPRESS| | .l ll
* = DOMINANT BXINTERCHANGE

DETA LS 2: PARENTHESIZED
^ 80~~~~BUN DARY

l t:)~~~~~~~~S ARROWS LA

_ t >~~~~~~~~~PASS-THROUGH. OI
CLUTTER 3 SPECIAL

FEOA:TWO WAY ARROWS ' FEO B TUNNELING ARROWS

F 1 SAtn
l ~~~~~~~~~ ~~~TUNNELINGl

.(} ~~~SUPPRESS
AROW

CLTE4 BROKEN
r - _ ., ~~~~~~~~~~~~~~~INTERNAL

READ EACH BO X NAME AS . . ijjARROWS
"RATIONALIZE THE FEATURES WHICH ALLOW SA
ONE TO ...L TO ALL"

NODE- |ITLE: NUMBER:
A31 | FIG.14 USE SPECIAL ARROW NOTATIONS I R7I

2=0~~

STANDARD NON -STANDARD

X=DOMINANT BOX | ''.

FEO 14A: TOWAY ARROWS | FEO 14B TUNNELING

Fig. 14. Use special arrow notat-ions.

cause of its lack of geometric continuity and because its use is
forced only by a diagram containing so much information al-
ready that it is likely not be be clearly understood and should
be redrawn. Examples occur in Fig. 9 just for illustration.

XXIII. THE REFERENCE LANGUAGE
Retuming to Fig. 3, we now have considered all of the as-

pects of basic SA language which go into the creation of dia-
grams themselves, with the single exception of the detail refer-
ence expressions and SA call notation of Fig. 12, which were

saved until this point since they relate so closely to Box 3.4,
"Provide for referencing."
A complete and unique SA reference language derives very

nicely from the hierarchically 'nested factors imposed by the
SA maxim. Diagrams, boxes, interfaces, arrows, and complete
contexts can be referenced by a combination of model names,

node numbers '(starting with A for activity or D for data, and
derived directly from the box numbers), and ICOM codes. The
insertion of a dot, meaning "which see" (i. e. "find the diagram
and look at it"), can specify exactly which diagram is to be
kept' particularly in mind to provide the context for interpret-
ing the SA language. Thus "A122. 411" means "in diagram
A122, the first input of box 4"; "A1224. I1" means "in dia-
gram A1224, the boundary arrow 14"; "A122411" means "the
first input interface of node A1224." The SA language rules
also' allow such reference expressions to degenerate naturally
to the minimum needed to be understandable. Thus, for ex-
ample,'the mechanism for showing that the child detailing
exists is merely to write the corresponding chronological crea-
tion number (called a C-number) under the lower right-hand
corner of a box on the diagram, as a DRE. (A C-number is the
author's intials, concatenated with a sequential integer-

32

ROSS: LANGUAGE FOR COMMUNICATING IDEAS

assigned as the first step whenever a' new' diagram sheet is
begun.) When a model is formally published, the corresponding
detail reference expression is normally converted into the page
number of the appropriate detail diagram. The omission of a
detail reference expression indicates that the,'box is not further
detailed in this model. (For all the diagrams considered in this
paper, the DRE's have been left in C-number form.)
The SA call notation consists of a detail reference expression

preceded by a downward pointing arrow stub, and allows shar-
ing of details among diagrams. It will not be covered in this
paper beyond the illustration in Fig. 15, which is included here
more to illustrate why mechanism support is not an interface
(as has repeatedly been pointed out) than to adequately de-
scribe the SA call scheme. That will be' the subject of a future
paper, and is merely cited here for completeness. The SA call
mechanism (see also [21) corresponds very closely to the sub-
routine call concept of programming languages, and is a key
concept in combining multiple purposes and viewpoints into
a single model of models.

XXIV. ORGANIZING THE MODEL
The fimal box of Fig. 3, Box 3.5, "Organize material," is not

detailed in this model. Instead, we refer the reader back to the
tabulation of Fig. 2 where the corresponding items are listed.
In final publication form each diagram is'normally accompanied
by brief, carefully-structured SA text which, according to the
reading rules, is intended to be read aftr thp diagram itself has
been read and understood. The SA text supplements'but does
not replace the information content of th diagram. Its pur-
pose is to "tell 'em whatcha told 'em' b,y givmng a w4k-thrqugh
through the salient features of the diagramn,,; pointing out, by
using the reference language, how the sory line may be seen in
the diagram. Published models also include' glossaries of terms
used, and are preceded by a node index, which consists 'of the
node-numbered box names in indented form in node number
sequence. Fig. 16 is the node index for the model presented in
this paper, and normally would be published, at the beginning
to act as a table of contents.

XXV. CONCLUSION
The principle of good storytelling style (see Section IV) has

been followed repeatedly in this paper. We have provided mo-
tivations for each of the 40 SA language features of structured
analysis by relating each one to a need for' clear and explicit
exposition with no loss from an original bounded context.
(The "node" column of Fig. 2 maps each feature to,a diagram
box in the other figures.) In the process,,we have seen how
the successive levels of refinement strengthen the orginal state-
ment of purpose and viewpoint, to enforce, unambiguous un-
derstanding. The best "tell 'em whatchaf'told 'em" for the
paper as a whole is to restudy the SA model in the figures.
(Space precludes even sketching the corresponding data decom-
position.) The diagrams not only suimnmwize and integrate
the ideas covered in the paper, but provide fjither information,
as well.
There are more advanced features o the SA language which

will be covered in subsequent papers in the context of applica-
tions. In practice, SA' turns out to depend heavily on the

- CALLING BOX

_.-~ MODEL A

>BOX

MODEL B

Fig. 15. SA "call" for detailing.

RATIONALIZE SA FEATURES

Al DEFINE GRAPHICS

All Bound Context
A 12 Relate/Connect
A13 Show Transformation
A14 Show Circumstance
A15 Show Means

A2 BUILD DIAGRAM

AZI Build Box Structure

A211 Name Aptly
A212 Label Aptly
A213 Show Necessity
A214 Show Dominance
A215 Show Relevance
A216 Omit the Obvious

A22 Build Arrow Structure

AZ21 Show Distribution
A222 Show Subdivision
A2Z3 Show Exclusion

A23 Build Diagram Structure

AZ31 Show Interfaces to Parent
A232 Show Parent Connections
A233 Show Child Detail Exists
A234 Show Shared Detail Exists

A3 USE SPECIAL NOTATIONS

A31 Use Special Arrow Notations

A311 Show Cooperation
A312 Supress Interchange Details
A313 Supress "Pass-Through" Clutter
A314 Supress Arrow Clutter

A32 Use Special Word Notations

A4 PROVIDE FOR (UNIQUE) REFERENCING

(A41 Sheet Reference)
(A42 Box Reference)
(A43 Interface Reference)
(A44 Arrow Reference)
(A45 Context Reference)

A5 ORGANIZE MATERIAL

Fig. 16. Node index.

disciplined thought processes that lead to well-structured anal-
yses expressed in well-structured diagrams. Additional rules
and supporting methodology organize the work flow, support
the mechanics of the methods, and permit teams of people to
work and interact as one mind attacking complex problems.
These are covered in SofTech's SADT methodology. The
fact that SA incorporates by definition any and all languages
within its framework permits a wide variety of natural and
artificial languages to be used to accomplish specific goals

33

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-3, NO. 1, JANUARY 1977

with respect to understanding the requirements for solution.
Then those requirements can be translated, in a rigorous,
organized, efficient, and, above all, understandable fashion,
into actual system design, system implementation, maintenance,
and training. These topics also must of necessity appear in
later papers, as well as a formal language definition for the
ideas unfolded here.

ACKNOWLEDGMENT

The four-sided box notation was originally inspired by the
match between Hori's activity cell [3] and my own notions of
Plex [4]. I have, of course, benefitted greatly from interaction
with my colleagues at SofTech. J. W. Brackett, J. E. Rodriguez,
and particularly J. B. Goodenough gave helpful suggestions for
this paper, and C. G. Feldmann worked closely with me on
early developments. Some of these ideas have earlier been pre-
sented at meetings of the IFIP Work Group 2. 3 on Program-
ming Methodology.

REFERENCES
[1] D. T. Ross, "It's time to ask why?" Software Practise Experience,

voL 1, pp. 103-104, Jan.-Mar. 1971.
[2] D. T. Ross, J. B. Goodenough, C. A. Irvine, "Software engineering:

Process, principles, and goals," Computer, pp. 17-27, May 1975.
[31 S. Hori, "Human-directed activity cell model," in CAM-I, long-range

planning final rep., CAM-I, Inc., 1972.
[4] D. T. Ross, "A generalized technique tor symbol manipulation,and

numerical calculation," Commun Ass. Comput. Mach., voL 4,
pp. 147-150, Mar. 1961.

[51 D. T. Ross and K. E. Schoman, Jr., "Structured analysis for re-
quirements definition," this issue, pp. 6-15.

[6] G. A. Miller, "The magical number seven, plus or minus two: Some
limits on our capacity for processing information," Psychol. Rev.,
vol. 63, pp. 81-97, Mar. 1956.

Douglas T. Ross, for a photograph and biography, see this issue, p. 5.

Automated Software Engineering Through Structured
Data Management

C. A. IRVINE AND JOHN W. BRACKETT

Abstract-The Software Engineering Facility (SEF) is a system for
software engineering which is specifically designed to support the de-
velopment of well-engineered software. However, it is not an operating
system. Unlike operating systems such as OS/370, EXEC 8, and others,
the SEF is not meant to support the execution of applications programs,
just as the ordinary operating systems are not intended to specifically
support the development of well-engineered applications programs.
The SEF, in fact, will run under and use the facilities of such operating
systems. It, then, is easily transferable and can be used with vaxious
hardware/operating system configurations where it will provide a

host-independent software development system. In such a role it will
provide to the software developer standard facilities across a variety of
host systems.
The SEF provides the central support for an integrated collection of

subsystems, and the subsystems provide appropriate facilities for all

phases of the software development process, from requirements defini-
tions through maintenance and enhancement. Each such subsystem
contributes in a cohesive way towards the cost-effective development of
well-engineered software.
The design of the SEF was determined only after a careful analysis of

the software development process and a thorough study of recent efforts
in the field of software engineering.

Index Terms-Requirements definition, software engineering database,
software tools, structured programming, top-down design.

Manuscript received June 14, 1976. This work was supported in part by
the Naval Air Development Center, Warminster, PA, under Contract
N62269-74-C-0790.
The authors are with SofTech, Inc., Waltham, MA 02154.

I. THE SOFTWARE DEVELOPMENT ENVIRONMENT
THE Software Engineering Facility (SEF) which is dis-

cussed in this paper is distinguished by six characteristics,
as follows.

1) Its architecture has been profoundly affected by a desire
to foster the use of the most effective software engineering
principles available.
2) It embodies a unifying design strategy permitting the

development of simple tools that are broadly useful.
3) It allows an evolutionary development strategy wherein

one develops the most useful tools first and may spread the
SEF development costs over many projects.
4) It encourages the development of tools which can reduce

the redundant efforts common to software development
activities.

5) It supports both the technical and the management aspects
of system development in a single facility.
6) It establishes a basis for a host-independent software

development system.
This section describes how the authors' study of the soft-

ware development process and recent work in the field of
software engineering has led to the rationale for the SEF.

Software Development
Software development presents the challenge of making

progress in a constantly changing environment. We are familiar

34

