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After describing, applying, comparing, and evaluating four major
methodologies, this guided tour concludes with an interim procedure

A Guided Tour of
Program Design
Methodologies

G. D. Bergland
Bell Telephone Laboratories

Much as a building architect specifies the structure and
construction of a building (see Figure 1), the software ar-
chitect must specify the structure and construction of a pro-
gram. This guided tour examines some of the concepts,
techniques, and methodologies that can aid in this task.

During this guided tour, the software problem and the
attempts at its solution are briefly described. Software
engineering techniques are classified into three groups:
those that primarily impact the program structure, the
development process, and the development support
tools. Structural analysis concepts are described that have
their major impact at the code level, the module level, and
the system level. Then, four of the major program design
methodologies that have been reported in the literature
are developed and compared. Functional decomposition,
data flow design, data structure design, and program-
ming calculus are described, characterized, and applied to
a specific example.

While no one design methodology can be shown to be
“correct’’ for all types of problems, these four methodol-
ogies can cover a variety of applications. Finally, an in-
terim approach for large software design problems is sug-
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for use until the “‘right’’ method appears.
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gested that may be useful until an accepted ‘‘correct’’
methodology comes along.

Motivation. The major motivation for looking at pro-
gram design methodologies is the desire to reduce the cost
of producing and maintaining software. Developing pro-
grams that are reliable enough to support nonstop com-
puter systems can sometimes be a secondary motivation,
but these applications seem to be in the minority.

Figure 1. A good design implies a good structure.
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A host of claims in technical journals, conference pro-
ceedings, and short-course advertisements herald the vir-
tues of new design methodologies—claims suchas 1.9to
increase in productivity, 39 percent savings in program-
ming costs, 80 percent reduction in bugs, etc. Their incon-
sistencies suggest that without a good set of metrics, you
can prove anything you want. Alternatively, software devel-
opment is so inefficient that almost anything can improve it.

If one were to take these claims at face value, it would
seem that at least some of the problems of producinginex-
pensive, reliable software have been solved. Unfortunate-
ly, the benefits of structured programming, software en-
gineering techniques, or whatever have remained either
nebulous or illusive to many people. Even though struc-
tured programming has been with us for more than a de-
cade, we are still far from having ail the answers or, for that
matter, even all of the questions. While it is clear that prog-
ress has been made, there is still much to be done.

Historical perspective. During the 1950’s, program-
ming was in its golden age. The approach was to take a
small group of highly qualified people and solve a problem
by writing largely undocumented code maintained by the
people who wrote it. The resuit was inflexible and inexten-
sible code, but it was adequate to the demands of the time.
Buxton' called this “‘cottage industry”’ programming.

The software crisis hit in the 1960’s. The problems got
two orders of magnitude harder, and we were introduced
to the problems of having many people work on large pro-
grams that were continually changing. This was the begin-
ning of ’heavy industry’’ programming. }

Thestructured programming of the 1970’s was primari-
ly an attempt to address the problems of heavy industry
programming. This quest for a better way was started in
response to rapidly rising costs>—more than one percent
of the gross national product was being spent on software
in the US—and the feeling that change was technically
feasible. Thus started a variety of approaches that are col-
lectively known as structured programming.

Techniques hierarchy. Software engineering has been
defined by Parnas as multiperson construction of multi-
version programs.> As such, there is much emphasis on
the development process, its attendant support tools, and
the basic structure of a program. Many of the concepts
which people tend to apply first—like teams, design
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Figure 2. Software engineering techniques hierarchy.

reviews, and program librarians—primarily invoive
changing the development process. Vyssotsky charac-
terized these techniques as dealing with programmer
“crowd control.””* While they can be implemented
relatively quickly, their major benefits can only be real-
ized in the context of a well-structured program. Those
techniques dealing with program structure form the foun-
dation on which the other techniques should be applied’
(see Figure 2). Admittedly, the support tools and the
development process strongly influence the structure of
the program; however, the tools should be adapted to
support the desired structure, not vice versa.

While there are many design methodologies around,
only a few of them have been extensively tested. Four
methodologies used or discussed more than most are

¢ functional decomposition,
* data flow design,

® data structure design, and
* programming calculus.

[ believe that the quality of the program structure re-
sulting from a design methodology is the single most im-
portant determinant of the life-cycle costs for the
resuiting software system. Thus, before discussing the
methodologies in detail, it seems worthwhile to discuss
some of the concepts that play a role in evaluating the
structure of a program.

Structural analysis concepts

While most structural analysis concepts apply at more
than one level of a software system, it is convenient in this
discussion to separate them into three categories. Concepts
are discussed that have their major impact at the code level,
the module level, and the software system level,

Code-level concepts. Concepts having their major im-
pact at this level include abstraction, communication,
clarity, and control flow censtructs.

Abstraction. Abstraction is defined as the considera-
tion of a quality apart from a particular instance. In pro-
gramming, the application of abstraction ranks as one of
the most important advances that has occurred in the last
20 years. It is the basis for high-level languages, virtual
machines, virtual 1/0 devices, data abstractions, plus
both top-down and bottom-up design.

The whole concept of bottom-up design consists of
building up layers of abstract machines that get more and
more powerful until only one instruction is needed to
solve the problem. While people usually stop far short of
defining that one superpowerful instruction, they do
significantly enhance the environment in which they have
to program. Device drivers, operating system primitives,
170 routines, and user-defined macros are built on the
concept of abstraction. All of them raise the level at which
the programmer thinks and programs.

Often, the objective is to abstract many of the com-
plicated interactions that can occur when many users or
user programs are sharing the same machine. In other in-
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stances, a virtual machine is created to hide the idiosvn-
crasies of a particular machine from the user so that the
resulting program will be more portable.

When the modular programming era began in the
1960°’s, many people hoped that hundreds of reusable
building-block programs could be abstracted and added
to their programming libraries so that they could finally
begin to ‘‘build on the work of others.'’ Unfortunately,
as Weinberg noted, ‘‘Program libraries are unique;
everyone wants to put something in but no one wants to
take anything out.”’®

Communication. A program communicates with both
people and machines. The effect of comments can be pro-
found. A ten-year-old program I’ve seen that has the
comment ‘‘subtle’” in it is still left alone at all costs.
Although the person who wrote the program is long gone,
he hasleft alegacy of problems that will last as long as the
program,

Another program contained the comment, ‘“‘They
made me do it!”” This comment was undoubtedly an
apology for corrupting the structure ot the program to
provide an expedient fix to a pressing problem. Clearly,
the program is a little harder to understand and modify
now. This type of change is not unusual. It’s the apology
that’s unusual.

In the long run, changes tend to obscure the structure of
a program, thus making the processes of error correction
and feature addition difficult and dangerous. A well-
written and well-maintained program is meant to commu-
nicate its structure to the programmer as well as to give in-
structions to the machine. I believe that the life-cycle cost of
operating a program usually depends far more on how well
it communicates with people than on how fast it initially
runs.

Clarity. It has been said that a person who writes
English clearly can write a program clearly. In studving
English, we are taught first to read and then to write. This
seems to work well. In programming, however, we are
usually taught only to write. I think we miss something by
not learning to read programs first. At one time it was
even considered fashionable to write unreadable pro-
grams. [t got so bad that one language, famous for its
‘‘one-liners,”” was dubbed a ‘‘write-only’’ language.

The structure® of an article, paper, or book is very im-
portant in clearly communicating ideas. The structure of
a program is equally important in communicating both
the algorithm and the context of a problem solution. This
structure should be apparent when one reads a program.

Clarity of program structure was obviously not the
primary concern of the person who wrote the program
represented in Figure 3. This program has been running
for more than 10 vears. Fortunately, few changes or
feature enhancements have been required. In an attempt
to understand how the program worked, this diagram was
drawn by the last person who had to change it.

The “‘structuredness’’ of this program—and, for that
matter, of any program—is not well-defined. There is stili

*An adequate but not inspired definition of **structure " is *‘the arrange-
ment or interrefation of parts as dominated by the general character of the
whote."
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no generally accepted metric for characterizing the merit
of a program structure. The unavailability of such a met-
ric results in some strange phenomena. For example, do
you know someone who writes complicated and unintel-
ligible code, who spends long hours and late nights on it,
finally getting it ‘‘done’’ just before the deadline—all the
while letting everyone know how difficult his task is and
what a hero he is for having gotten it done just in time?

In contrast, consider the neat, well-organized program-
mer who takes care to pilan ahead, do a proper design,
document her work, and get done weil ahead of the dead-
line, with no one even aware that she was involved. How
often have you thought ‘‘Boy, John has certainly earned
his wings with that difficult program, while Jane hasn’t
had a chance to prove herself.””

Inthe best of all worlds, the criterion of clarity could be
applied quantitively. Lacking that, we’ll have to stick
with peer pressure applied in design reviews and code
walkthroughs to ensure the clarity of the final product.

Control flow constructs. The concept of limiting the
number and type of control flow constructs, to more
clearly express algorithms, is now pretty generally ac-
cepted. The notation recommended by Michael Jackson”
is shown in Figure 4.

The sequence and selection constructs shown in this
figure can be generalized in the obvious way to a sequence
or selection of Nitems for arbitrary N. The iteration stands
for ‘‘zero or more’’ program executions. The advantage of
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Figure 3. A clearly presented program structure?

SEQUENCE
8] 8]

TERATION SELECTION.

A SEQUENCE A iTERATION A SELECTION
do B: 20 B: do B:
do C: A END A ALT
A END do C:
A END

Figure 4. The three basic control flow constructs.
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these constructs is that they tend to provide a map of the
program structure rather than an itinerary of tasks.

The transformation of a program that uses these graph-
ical constructs to structure text (also shown in Figure 4) is
remarkably straightforward, as is the later transtforma-
tion to a specific programming language.

Module-level concepts. Cohesion, coupling, complexi-
ty, correctness, and correspondence are concepts with
major impact at the module level.

Cohesion. Cohesion is the *‘glue’’ that holds a module
together. it can also be thought of as the type of associa-
tion among the component elements of a module. Gen-
erally, one wants the highest level of cohesion possible.
While no quantitative measure of cohesion exists, a qual-
itative set of levels for cohesion has been suggested by
Constantine® and modified by Myers.® The levels pro-
posed by Constantine are shown in Figure 5.

Coincidental cohesion is Constantine’s lowest level of
cohesion. Here, the component parts of a module are
there only by coincidence. No significant relationship ex-
ists among them.

Logical cohesion is present when a module performs
one of a set of logically related functions. An example
would be a module composed of 10 different types of
print routines. The routines do not work together or pass
work to each other but logically perform the same func-
tion of printing.

Temporal cohesion is present when a module pertforms
asetof functionsrelated in time. Aninitialization module
performs a set of operations at the beginning of a pro-
gram. The only connection between these operations is
that they are all performed at essentially the same time.

Procedural cohesion occurs when a module consists of
functions related to the procedural processes in a pro-
gram. Functions that can be well represented together on
a flowchart are often grouped together in a module with
procedural strength. Conversely, when a program is
designed by using a flowchart, the resulting module often
has procedural cohesion.

Communicational cohesion results when functions
that operate on common data are grouped together. A
data abstraction, or data cluster,'%is a good example of a
module with communicational cohesion.

Sequential cohesion often resuits when a module repre-
sents a portion of a data flow diagram. Typically, the
modules so formed accept data fron one module, modify
or transform it, and then pass it on to another module.

Functionai cohesion resuits when every function within
the module contributes directly to performing one single
function. The module often transforms a single input into
a single output. An example often cited is square root.
This is the highest level of cohesion in the hierarchy. As
such, it is desirable whenever it can be achieved.

A program of any reasonable size will usually contain
modules of several different levels of cohesion. Many
modules simultaneously exhibit characteristics of a mul-
tiplicity of levels. Where possible, functional, sequential,
and communicational strength modules should be given
preference over modules with lower levels of cohesion.
Onascale of 0to 10, Yourdon®rates coincidental, logical,
and temporal cohesion as 0, 1, and 3, respectively. Pro-
cedural cohesion would score 5. Communicational, se-
quential, and functional cohesion would score 7, 9, and
10, respectively.

While levels of cohesion can be useful guides in eval-
uating the structure of a program, they don’t provide a
clear-cut method for attaining high levels of cohesion.
Furthermore, levels of cohesion do not allow us to say
that program A is right and program B is wrong. Theydo,
however, represent a definite step forward. Before levels
of cohesion were introduced, there was no recognized
basis for comparison. Now, at least one can say that struc-
ture A is probably better than structure B.

Coupling. Coupling is a measure of the strength of in-
terconnection (i.e., the communication bandwidth) be-
tween modules. In Figure 6, two program structures are
represented that would result in significantly different
degrees of coupling.

High coupling among program modules results when a
problem is partitioned in an arbitrary way such as cutting
off sections of a flowchart. This method of choppingupa
large program often complicates the total job because of
the resultant tight coupling between the pieces. This latter
type of partitioning leads to ‘‘mosaic’’ modularity.!!

The other extreme in structuring a program is to con-
sider only pure tree structures. These structures give rise
to the concept of hierarchical modularity and provide
many advantages for abstraction, testing, and later mod-

OO

LEVELS OF COHESION

e FUNCTIONAL ~ integral
* SEQUENTIAL ~ data fiow

high 1 ¢ COMMUNICATIONAL ~ common data
* PROCEDURAL ~ flow chart

low | o TEMPORAL ~ same time
o LOGICAL ~ simiiar function
« COINCIDENTAL ~ random

HIERARCHICAL
MODULARITY VS

MOSAIC
MODULARITY

Figure 5. Levels of cohesion.

Figure 6. Partitioning method atfects level of coupling.
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ification. Jackson wouid accuse you of *‘arboricide’’ (the
killing of trees) whenever you deviate from a pure hierar-
chical tree structure. Brooks has said, ‘I am persuaded
that top-down design {incorporating hierarchy, mod-
ularity, and stepwise refinement) is the most important
new programming formalization of the decade.’ "' And
Dijkstra has said that ‘‘the sooner we learn to limit
ourselves to hierarchical program constructs the faster we
will progress.”*!3

Modular programs can be characterized as

* implementing a single independent function,
* performing a single logical task,

* having a single entry and exit point,

* being separately testable, and

* being entirely constructed of modules.

When these rules are followed, a set of nested modules
result that can be connected in a hierarchy to form large
programs. In an attitude survey,!* users perceived that
modular programs were easier to maintain and change,
caster to test, and more reliable. The major perceived
disadvantage was the feeling that the final program was
less efficient than it couid have been.

When modularity is used without hierarchy, one can
only impiement independent functions that can be ex-
ecuted in sequence, which corresponds to drawing circles
around portions of a flowchart. Although this approach
tends to work on small programs, it can seldom be applied
to complex programs without seriously compromising
module independence, connectivity, and testability. Only
when the concepts of modular programming are combined
with the concepts of hierarchical program structure can
one tmplement arbitrarily complex functions and still
maintain module integrity.

Modularity can be applied without hierarchy in cases
that lend themseives naturally to the efficient use of a very
high level language. Very high level language statements
are examples of functions that can be implemented rela-
tively independent of each other but still be strung
together sequentially in a useful form. Unfortunately for
most applications, the design of a convenient and effi-
cient very high level language is difficult.

Hierarchical modularity forms an extremely attractive
foundation for most of the other software engineering
techniques. While some of these techniques can be used
without having a hierarchical program structure, the
primary benefit can only be gained when the techniques
are used as a unit and build on each other. Specifically, a
hierarchical modular program structure enhances top-
down development, programming teams, modular pro-
gramming, design walkthroughs, and other techniques
that deal with improving the development process.

Complexity. The control of program complexity is the
underlying objective of most of the software engineering
techniques. The concept of ‘‘divide and conquer’’ is im-
portant as an answer to complexity, provided it is done
correctly. When a program can be divided into two in-
dependent parts, complexity is reduced dramatically, as
shown in Figure 7.

Consider program A, where you have access toonly the
input and the output.? A noble goal would be to com-
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pletely test this program by executing each unique path.
[ntheexample shown, there areapproximately 250 billion
unique paths through this module. If you were capable of
performing one test each millisecond, it would take you
eight years to completely test all of the unique paths. If,
however, you had knowledge of what was inside the pro-
gram and recognized that it could be partitioned into two
independent modules B and C, which have low connec-
tivity and coupling, your testing job could be reduced. To
test both of these modules separately requires that you on-
ly test the one million unique paths through each module.
At one millisecond per test, these tests would take a total
of only 17 minutes.

In this particular example, from a testing viewpoint, it
is clearly worth trying to partition the problem so that
small, independently testable modules can be dealt with
instead of just the input and output of a large program.
Unfortunately, partitioning most programs into inde-
pendently testable 1odules requires much more work
than simply drawing small circles around portions of the
flowchart.

[t should also be clear from this exampie that the testing
problem is best soived during the design stage. it isimpos-
sible to exhaustively test any program of significant size.
Testing is experimental evidence.” [t does not verify cor-
rectness. It simply raises your confidence.

Correctness. A ‘‘correct’’ program is one that accurately
implements the specification. A ‘‘correct’’ program often
has limited value since the specifications are in error.
Again, correctness cannot be verified by testing. Searching
for errors is like searching for mermaids. Just because you
haven’t seen one doesn’t mean they don’t exist.

It is also unfortunate that, for most problems, math-
ematical proofs of correctness are as difficult to produce
as a correct program. Some people can write and prove
their program simultaneously. For most of us, however,
day-to-day proving of programs is still a long way off.

The most promising approach for the near future may
lie in finding a constructive proof of correctness. We will
really have something if a design methodology can be
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Figure 7. Control of compiexity.



found that leads one through the design process step-by-
step and guarantees the correctness of the final programif
each of the steps has been done correctly. While I don’t
remember that 321 x 25 is 8025, | do remember that
5x1=35,and5 x 2 =10,and5 x 3 = 15, etc. Knowing
these values and the steps of multiplication, I can rest
assured that 8025 is indeed the correct answer. If only a
program design process existed that was as foolproof and
easy to apply.

Without such a process, we must live with a limitless
capacity for producing error. Weinberg once pointed out
that errors can be produced in arbitrarily large numbers
for an arbitrarily low cost.

Correspondence. In Jackson’s view, perhaps the most
critical factor in determining the life-cycle cost of a pro-
gram is the degree to which it faithfully models the prob-
lem environment’—that is, the degree to which the pro-
gram model corresponds to the real world. All too often,
asmalllocal change in the problem environment results in
a large diffuse change in the program.

The world is always bigger than the program specifica-
tionsays it is. but a specification can always be extended if
it corresponds to reality. Since users tend to be grad-
ualists, the changes in a realistic problem model will tend
to be gradual. If the program structure is formed around
the static instead of the dynamic properties of the prob-
lem, it should prove to be more resilient to changes.

While a program’s model of the world cannot be com-
plete, it must at least be useful and true. If these criteria
are met, many maintenance and feature enhancement
problems will be avoided in the future.

System-level concepts. Concepts of major impact at
this level include consistency, connectivity, continuity,
change, chaos, optimization and packaging.

Consistency. An important objective of a good design
methodology is that it should produce a consistent pro-
gram structure independent of whoever is applying it.
Three different programs——created by using the same
design methodology to model the same problem environ-
ment—should have the same basic structure. Unless con-
sistent designs can be achieved, there can never be a true
right or wrong structure for a given problem solution.

One problem with most design methodologies is that
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there is no one consistently obtainable solution. Instead.
designers seem to pull unique solutions out of the air.
Consequently, there is never discussion of a solution being
right or wrong—only discussion of my style versus your
style.

Connectivity. The harmful effects of high connectivity
on system modifiability can best be illustrated by using an
analogy.'?

Consider a system composed of 100 light bulbs. Each
lightinthesystem caneither be on or off. Connections are
made between the light bulbs so that if the light is on, it
has a 50 percent chance of going off in the next second. If
the light bulb is off, it has a 50 percent chance of going on
in the next second—provided one of the lights to which it
is connected in on. [f none of the lights connected to it is
on, the light stays off. Sooner or later, this system of light
bulbs will reach an equilibrium state in which all of the
lights go off and stay off.

The average length of time required for this system to
reach equilibrium is solely a function of the interconnec-
tion pattern of the lights. In the most trivial interconnec-
tion pattern, all of the lights operate independently. None
of them is connected to any of its neighbors. Here, the
average time for the system to reach equilibrium is ap-
proximately the time required for any given light to go
off—about two seconds. Thus, the system can be ex-
pected to reach equilibrium in a matter of seconds.

At the other extreme, consider the case when each light
in the array is fully connected to all other lights in the ar-
ray—that is, assume that there is a connectivity matrix for
the lights similar to the program connectivity matrix
shown on the left side of Figure 8, where Nisequalto 100.
The array on the left side of the figure then describes the
connectivity matrix of the lights and shows that every light
is connected to every other light. In this case, the length of
time required for the system to reach equilibrium is 1042
vears. This is a very long time when you consider that the
current age of the universe is only 10'0 vears.

Now, consider one final interconnection pattern in
which the set of 100 lights is partitioned into 10 sets of 10
lights each, with no connections between the sets, but
with full interconnection within each set. In this case, the
time required for the system of lights to reach equilibrium
is about 17 minutes. This example dramatically shows the
effect of connectivity. In terms of the concepts presented
earlier, this example corresponds to high cohesion within
each module and low coupling between modules.

Much as proper physical partitioning can dramatically
reduce the time required for the system of lights to reach
equilibrium, proper functional partitioning can dramati-

LAW OF CONTINUING CHANGE: A SYSTEM THAT IS USED
UNDERGOES CONTINUING CHANGE UNTIL IT {S JUDGED
MORE COST-EFFECTIVE TO FREEZE AND RECREATE IT.

LAW OF INCREASING UNSTRUCTUREDNESS: THE ENTROPY
(DISORDER) OF A SYSTEM INCREASES WITH TIME UNLESS
SPECIFIC WORK 1S EXECUTED TO MAINTAIN OR REDUCE IT.

Figure 8. Low connectivity
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implies low maintenance costs.

Figure 9. Continuity/change/chaos.

COMPUTER



cally reduce the time required for a program that is being
debugged to reach stability.

Continuity/change/chaos. As noted by Belady and
Lehman, !¢ a large program often seems to live a life of its
own, independent of the noble intentions of those trying
to control it. Two important observations are summa-
rized inthe Law of Continuing Change and the Law of In-
creasing Unstructuredness shown in Figure 9.

These laws dramatize the key role played by the pro-
gram structure during the life cycle of software systems.
The natural order of things is to produce disorder. If the
program structure is unclear from the beginning, things
will only get worse later. These two laws coupled with a
poor program structure have produced many of the main-
tenance-cost horror stories.

Optimization and packaging. All too often, peopie
confuse packaging and design. Design is the process of
partitioning a problem and its solution into significant
pieces. Optimization and packaging consist of clustering
pieces of a problem solution into computer load modules
that run within system space and time requirements with-
out unduly compromising the integrity of the original
design.®

At least three different types of modules must be con-
sidered in programming—tunctional modules, data mod-
ules, and physical modules. Packaging is concerned with
placing functional modules and data modules into physical
modules. In packaging a program, several of these pieces of
the program may be put together as one load module or
may even be written together as one program.

It is in the packaging phase of a design that optimiza-
tion should be considered for the first time. This phase is
done at theend, and great care should be taken to preserve
the program structure that you have worked so hard to
create. In Jackson’s words, “*ltiseasy to make a program
that is right, faster. Itis difficult to make a program thatis
fast, right.”” Once an optimization has been cast in code,
iU’s like concrete. It is very difficult to undo.

Functional decomposition

Functional decomposition is simply the divide-and-
conquer technique applied to programming, as shown in
Figure 10. Various forms of functional decomposition
have been popularized by a host of people including
Dijkstra, Wirth, Parnas, Liskov, Mills, and Baker.!7-22

By viewing the stepwise decomposition of the problem
and the simultaneous development and refinement of the
program as a gradual progression to levels of greater and
greater detail, we can characterize functional decomposi-
tion as a rop-down approach to problem-solving. Con-
versely, we can form and layer groups of instruction se-
quences together into ‘‘action clusters,’” starting at the
atomic machine instruction level and working our way up
to the complete solution. This approach leads to a
botrom-up method.*}

Often, the preferred strategy is to shift back and forth
between top-down functional decomposition and the
bottom-up definition of a virtual machine environment.

QOctober 1981

Design strategy. The design process can be divided into
the following steps:!?

(1) Clearly state the intended function.

(2) Divide, connect, and check the intended function by
reexpressing it as an equivalent structure of properly
connected subfunctions, each solving part of the
problem.

(3) Divide, connect, and check each subfunction far
enough to tfeel comfortable.

In following this procedure, the key to successful pro-
gram design is rewriting followed by more rewriting.
Every effort should be made at each step to conceive and
evaluate alternate designs.

A useful mind set is to pretend that you are program-
ming on a machine that has a language powerful enough
to solve your problem in only a handful of commands. In
vour level 1 decomposition, you simply write down that
handful of commands and you have a complete program.
In your level 2 decomposition, you try to refine each of
your level | instructions into a set of less powerful instruc-
tions. By continuing to successively refine each instruction,
one level at a time, you eventually get to a program that can
be executed on your own real computer. Incarrying out this
process, you will have decomposed the problem into its
constituent functions by ‘‘stepwise refinement.”’

There are several problems involved in applying this
technique. First, the method specifies that a functional
decomposition be performed, but it does not say what
you are decomposing with respect to. One can decompose
with respect to time order, data flow, logical groupings,
access to a common resource, control flow, or some other
criterion. If you decompose with respect to time, you get
modules like initialize, process, and terminate, and you
have a structure with temporal cohesion. If you cluster
functions that access a shared data base, you have madea
start toward defining abstract data types and will get com-
municational cohesion. If you decompose using a data
flow chart, you may end up with sequential cohesion. If
you decompose around a flowchart, you will oftenend up
with logical cohesion. The choice of ‘‘what to decompose
with respect to’” has a major effect on the *‘goodness’ of
the resulting program and is therefore the subject of much
controversy.

The major advantage of functional decompositionisits
general applicability. [t has also been used by more people
longer than any of the other methods discussed. The dis-

DIVIDE AND CONQUER

STEPWISE REFINEMENT

Figure 10. Functional decomposition.
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advantages are its unpredictability and variability. The
chance of two programmers independently solving a
given problem in the same way are practically nil. Thus,
each new person exposed to a program starts by saying,
““This isn’t the way I would have done it, but. . .”> To
some extent, this problem can be reduced by using func-
tional decomposition in combination with some other
technique that determines what each function should be
composed with respect to.

McDonald’s exampie. The McDonald’s functional de-
composition solution, presented below, is patterned (with
permission) after a story called *‘Getting it Wrong”’ that
has been related by Michael Jackson on numerous occa-
sions in his short courses and seminars. The McDonald’s
frozen-food warehouse problem is, of course, entirely fic-
titious.

Problem specification. McDonald’s frozen-food ware-
house receives and distributes food items. Each shipment
received or distributed is recorded on a punched card that
contains the name of the item, the type of shipment (R for
received. D for distributed), and the quantity of each item

EQF MANAGEMENT REPORT

SORTED
0 ITEM NET-CHANGE
GROUPS BMAC +25
FRFR 200
Z/— HAMB +300
QPND b5
z(/- AECORDS NUMBER CHANGED = 1
BMAC R200

M RDOTY
PROJUCT
- P
2£PORT REPORT
e PROOUCE
JEvER F PORT
T
LEVEL 7 sROYCE PRODUCE PRODUCE
=ZADNG BGOY SUMMARY
LEVEL 3 PROCESS
“ARD
PROCESS SROCESS
CEVEL S FIRST CARD SUBSEQUENT
IN GROUP LARD N GROUP
=ROCESS END START PROCESS FIRST
LEVEL & JF PREVIQUS NEW CARD IN
LAGUP GROUP ;R0UP

Figure 12. A five-level functional decomposition.
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affected. These transaction cards are sorted by another
program and appear grouped in alphabetical order by item
name. A management report, showing the net changenin-
ventory of each item, is produced once a week. The input
file and output report formats are shown in Figure 11.

Design phase. The hero who originally designed this
program is named Ivan. Ivanis a very “‘with it’” fellow.
He swore off GO TOs years ago. His code is structured
like the Eiffel Tower. He can whip out a neatly indented
structured program in nothing flat. In doing his design,
fvan was careful to do the five-level, hierarchical, func-
tional decomposition shown in Figure 12.

In this figure, PRODUCE REPORT is shown to be a
sequence of PRODUCE HEADING followed by PRO-
DUCE BODY followed by PRODUCE SUMMARY.
PRODUCE BODY is shown to be an iteration of PRO-
DUCE CARD that is a selection between PROCESS
FIRST CARD IN GROUP and PROCESS SUBSE-
QUENT CARD IN GROUP.

Clearly, recognizing the first card of each item group is
important. Once this card is found, everything else falls
into place.

At this point, it may be worth examining the structure
of Ivan’s program. The obvious question is, *‘Is this a
good decomposition?’’ The obvious reply is, ““Good with
respect to what?”’

If we apply the concept of cohesion to this structure, it
might seem that the level 1 PRODUCE REPORT module
has temporal cohesion since the PRODUCE HEADING
module is something like an initialization module and the
PRODUCE SUMMARY module is something like a ter-
minate module. On the other hand, one could argue that
the heading, body, and summary are such integral parts
of the report that this is really functional cohesion.

Likewise, the PROCESS CARD module seems to have
been partitioned along temporal lines as weil. On the
other hand, PROCESS CARD seems to be an integral
part of the PRODUCE BODY module, so maybe PRO-
DUCE BODY is also functionally cohesive.

As you can tell by the preceding examination, while
levels of cohesion may constitute an improvement over
having no basis for comparison, they are still difficult to
apply consistently. In cases where more than one type of
cohesion seem to be present, the ruledistoassume that itis
really the higher of the two levels.

Ivan wrote the level 1, 2, and 3 programs shown in
Figure 13. The level 4 decomposition shown in Figure 14
started to look like a finished product. The level 5 decom-
position shown in Figure 15 was the finished product.

in his normal thorough manner, Ivan volume-tested his
program and turned it over to the user. It was perfect ex-
cept for one small glitch. You see, the systems program-
mers were still playing with the compiler and obviously
hadn’t fixed all the errors. As a result, the program worked
fine, but some garbage appeared on the first line of the
output immediately after the headings. It was believed, of
course, that this would disappear as soon as they fixed
that %& " **? > compiler.

Friendly user phase. Now, Ronald McUserisa friendly
sort of person. Since he was in a hurry to use the program,
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he did not complain about the small glitch that would, of
course, disappear very soon. Ronald’s boss, Big Mac,
however, failed to see the humor of it all. The compiler
had been fixed for three months now, and the manage-
ment report that went to the board of directors still had
that garbage in it.

Finally, one day, Ronald could stand it no ionger. The
program had to be fixed. When Ronald arrived, Ivan was
in his cubicle, listening to an audio cassette of Dijkstra’s
Turing lecture. He, of course, didn’t learn anything;
that’s the way he had always done his designs. Ronald
showed Ivan a printout.

After a few MMMs and AAAHHHHs and
AAAHHHAAAS, he saw the problem. This first time
through the program, there was no previous group. Thus,
the output was just random data. The solution to any
first-time-through problem is, of course, obvious. Add a
first-time switch (see Figure 16).

Maintenance phase. Six months later. our hero was in
McDonald’s “‘think room’’ when Ronald McUser came
in and said. “‘l put 80 transactions in last week and
nothing came out!”’ Our hero looked at the printout and
saw that, indeed, only the heading had come out.

Ivan knew immediately what the problem was. [t must
be a hardware problem. After all, his program had been
running nearly a year now with only one small complaint.

Ivanspent most of the night running hardware diagnos-
tics until Steve Saintly, a keypunch operator, wandered
by and said, ‘‘That nationwide special on Big Macs last
week was all we handled. Everything else had to wait.”’

A little later, Sally Saintly came by and said, ‘‘Isn’t it
about time you included those new Zebra sodas in the
management report?’’

By this time, Ivan was very discouraged with his diag-
nostics, so he followed last week’s inputs through the
code. ‘‘Horrors! There was only one item group processed
last week—Big Macs!”’

As Ivan soon discovered, the last item group was never
processed. Since only one item group was processed all
week, nothing was output. Up until this time, only Zebra
sodas had been skipped. Since they were not a big winner,
it seems that no one had even cared that they had been left
off. In fact, everyone assumed they were being left off on
purpose. [van’s solution is shown in Figure 17.

LEVEL 1 P: PRODUCE REPQRT:
STOP:
LEVEL 2 P: PRODUCE HEADING:

PRODUCE BODY:
PRODUCE SUMMARY:
STOP:

LEVEL 3 P: PRODUCE HEADING:
READ STF:
DO WHILE (NOT EOF-STF):
PROCESS CARD:
READ STF:
END:
PRODUCE SUMMARY:
STQP:

P PRODUCE HEADING:

READSTF:
D0 WHILE (NOT EQOF—STF):
IF FIRST CARD N GROUP THEN
DO:
PROCESS END OF PREVIOUS GROUP:

PROCESS START OF NEW GROUP:
PROCESS CARD:

END:
ELSE D0: PROCESS CARD:
END:
READ STF:
END:

PRODUCE SUMMARY:
STOP:

Figure 13. Steps in functional decomposition.

P: PRODUCE HEADING:

READ STF:
DO WHILE (NOT EOF—STF):
IF FIRST CARD IN GROUP THEN
PROCESS FIRST CARD IN GROUP:
ELSE PROCESS SUBSEQUENT CARD IN GROUP:
READ STF:
END:

PRODUCE SUMMARY:
STOP:

Figure 15. The finai functional decomposition.

P PRODUCE HEADING:
SN =0
READSTF:
DO WHILE (NOT EOF—STF):
IF FIRST CARD iN GROUP THEN
DO: tF SW1=1 THEN
00: PROCESS END OF PREVIOUS GROUP:
ND. SW1 =
PROCESS START OF NEW GROUP:
PROCESS CARD:

END:
ELSE DO: PROCESS CARD:
END:
READ STF:
END:

PRODUCE SUMMARY:
ST0P:

Figure 14. Levei 4 functional decomposition.
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Figure 16. Quick fix no. 1.
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Meanwhile, Sally Saintly asked, *“Why didn’t you see
that during all the volume-testing you did? You ued up
the machine for most of a day.”

The answer again is obvious. In volume-testing, you
put in thousands of inputs but don’t look at the output.

Passing the baton. Six months later, Ivan was feeling
pretty pleased with himself. He had just turned the pro-
gram over (0 a new hire. There would still be some train-
ing, but everything should go well. After all, hadn’t the
program run for nearly a year and a half with only a cou-
ple of small problems? Suddenly, Ronald burst in, *‘l
thought you fixed this first-line problem. Here it is
again.”’

Ivan knew immediately what the problem was. The new
program librarian they had forced him to use had put in
an old version of the program without his first patch.

P: PRODUCE HEADING:
SW1=0.
READSTF:
DO WHILE (NOT EOF—STFY:
IF FIRST CARD IN GROUP THEN
DO: IF SW1=1 THEN
DO: PROCESS END OF PREVIOUS GROUP:
END: SW1: =1
PROCESS START OF NEW GROUP:
PROCESS CARD:

END:
ELSE DO: PROCESS CARD:
END:
READ STF:
END:
PROCESS END OF LAST GROUP

PRODUCE SUMMARY:
STOP:

Figure 17. Quick fix no. 2.

After many heated comments plus a core dump, lvan
was still baffled. Finally, in desperation, he sat down to
look at the input data and tound out there wasn’t any.
Last week, a trucker’s strike had shut down the ware-
house. Nothing came in; nothing went out. They ran the
program anyway. Good grietf, who would have thought
that they would run the program with no inputs!

The problem, as it turns out, was that the new PRO-
CESS END OF LAST GROUP module needed protec-
tion just like the PROCESS END OF PREVIOUS
GROUP module had before. Since that first-time switch
had worked so nicely earlier, it was clearly the solution to
apply again (see Figure 18).

We all know that Ivan’s troubles are over now. Or are
they? Two months later, Sally Saintly came in and said,
““Where are the Zippo sandwiches? They were in for two
months, but now they’ve suddenly disappeared from the
report.”’

After complaining that the new hire was supposed to be
maintaining that program now, Ivan looked at the input
data and noticed that onlv one order per item had been
issued during the whole run.

*“What happened?’” he exclaimed.

It seems that a new manager, Mary Starr, had started a
new policy to try to get things better organized. She had
asked each of the stores to place only one order a day in-
stead of placing ordersat random. She had also said that it
would be nice if they could schedule things so that the
warehouse had to be concerned only with receiving one
particular item on one day and with distributing that item
the next day. In addition, she wanted the management
report program run once a day from now on. The effect on
Ivan’s program was that Zippo sandwiches was dropped.

Instead of moving the set for SW2, the safest thing to
do—according to the principles of defensive program-
ming—is to add an extra set. Since you don’t know what
you’re doing, you never touch a previous fix—just add a
new one {see Figure 19).

Now we can all rest assured that [van's program works,
right?

P: PRODUCE HEADING:
SW1:=0. SW2:=9
READSTF:
DO WHILE (NOT EOF—STF):
IF FIRST CARD IN GROUP THEN
DO: IF SW1=1 THEN
DO; PROCESS END OF PREVIOUS GROUP:
END; SWt:=1:
PROCESS START OF NEW GROUP:
PROCESS CARD:

END:
ELSE DO: PROCESS CARD; SW2. ="
END:
READ STF:
END: iF SW2: =1 THEN
D0: PROCESS END OF LAST GROUP:
END:
PRODUCE SUMMARY:
STOP:

P: PROBUCE HEADING:
SW1:=0: SWe2: =0:
READSTF:
DO WHILE (NOT EOF—STFY:
IF FIRST CARD IN GROUP THEN
DO; IF SW1=1 THEN
DO:; PROCESS END OF PREVIOUS GROUP:
END: SW1. =1
PROCESS START OF NEW GROUP:
PROCESS CARD:

SW2 =1
END:
ELSE DO: PROCESS CARD: SW2:=1.
END:
READ STF:

END: IF SW2:=1 THEN
DO:; PROCESS END OF LAST GROUP:
END:
PRODUCE SUMMARY:
STOP:

Figure 18. Quick fix no. 3

Figure 19. Quick fix no. 4.
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Theeffect of all of these changes on the program struc-
ture is shown in Figure 20.

What was Ivan’s major sin? Simply that the program
structure didn’t correspond to the problem structure. In
the original data, there existed something called an item
group. There is no single component in Ivan’s program
structure that corresponds toan item group. Thus, the ac-
tions that should be performed once per group, before a
group, or after a group have no natural home. They are
spread all over the program. and we have to rely on first-
time switches and the like to control them. Instead of
components that start a new group, process a group, or
process the end of a group, we have a mess,

In Jackson’s words, when this correspondence is not
present, the program is not poor, suboptimal, inefficient,
or tricky. It’s wrong. The problems we have seen are, in
reality, nothing but self-inflicted wounds stemming from
an incorrect program structure.

Data flow design

The data flow design method first proposed by Larry
Constantine® has been advocated and extended by Ed
Yourdon® and Glen Myers.” It has been called by several
different names, including *‘transform-centered design’’
and ‘‘composite design.”’ In its simplest form, it is
nothing more than functional decomposition with respect
todata flow. Each block of the structure chart is obtained
by successive application of the engineering definition of
a black box that transforms an input data stream into an
output data stream. When these transforms are linked to-
gether appropriately, the computational process can be
modeled and implemented much like an assembly line
that merges streams of input parts and outputs streams of
final products.8:®

Design strategy. The first step in using the data flow
design method is to draw a data flow graph (see Figure
21). This graph is a model of the problem environment
that is transformed into the program structure. An exam-
ple of its use will be given later.

While the modules in functional decomposition often
tend to be attached by a ‘‘uses’’ relationship, the bubbles
inadata flow graph could be labeled ‘‘becomes.”” That is,
data input A ‘‘becomes’’ data output B. Data B becomes
C, C becomes D, etc. The only shortcoming of this de-
composition is that it tends to produce a network of pro-
grams-—not a hierarchy of programs. Yourdon and Con-
stantine solve this problem by simply picking the data
flow graph up in the middle and letting the input and out-
put data streams ‘*hang down’’ from the middle. At each
level, a module in one of the input or output data streams
can be factored into a ‘‘get’’ module, a ‘“transform”’
module, and a ‘‘put’’ module. By appropriate linking, a
hierarchy is formed. Thus, once the data flow graph is
drawn, the hierarchical program structure chart can be
derived in a relatively mechanical way.

Given the data flow graph of Figure 21, the modules of
the structure chart are defined as GET A, GET B, and
GET C. Also defined are the modules that transform A
into B, Binto C, Cinto D, and so on. The output module
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isillustrated by the PUT D module. The GET modules are
called “‘afferent modules’’ and the PUT modules are called
“‘efferent modules.’’8 The TRANSFORM C TO D module
1s known as the *‘central transform.”’

The data tlow design method can be broken into the
following four basic steps:

(1) Model the program as a data flow graph.

(2) Identify afferent, efferent, and central transform
elements.

(3) Factortheafferent, efferent, and centraltransform
branches to form a hierarchical program structure.

(4) Refine and optimize.

This procedure is represented schematically in Figure 22.

Note that while the connections between modulesin the
data flow graph context were motivated by a *‘becomes’’
or ‘“‘consumes/produces’’ relationship, the factoring
procedure leads to modules that are connected by a
“‘calls/is called by’ relationship. Thus, the hierarchy
formed is really being artificially imposed by the schedul-
ing and has little to do with modeling the problem in
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Figure 20. Functional decomposition with quick fixes.

DATA FLOW GRAPH STRUCTURE CHART

Figure 21. Data fiow design method.
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hierarchical fashion. This contrasts with both the *‘uses’’
relationship of decomposition with respect to function
and the *‘is composed of’’ relationship that motivates a
data structure design.

Also note that a lot of data passes between modules in
the structure in assembly-line fashion. This results in se-
quential cohesion. By Constantine’s measure of good-
ness, the data flow design method produces a very good
program structure.

The act of concentrating the {/0 functions in the af-
ferent and efferent ‘‘ears’’ of the program structure may
or may not produce a structure that models the problem
environment accurately. This partitioning often seems ar-
tificial to me and would seem to violate the principle of
correspondence.

The central transform is located between the data flow
graph’s most abstract input and most abstract output.
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Figure 22.
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Data flow design structure.

While the graph shows it as simply transtorming Cs into
Ds, it often requires a sophisticated functional decom-
position in its own right. That is, except for the ‘‘ears”
which come from the data tlow graph, one is forced right
back to the art of functional decomposition.

McDonald’s example. The heroine who designed the
next program was fvan’s sister, [vy. lvy is a child of the
late 1960’s. When modular programming came in, she
jumped right on the bandwagon. Her modules had only
one entrance and one exit. She passed all her parameters
in each call statement. Each of her modules performed
only a single logical task, was independent, and could be
separately tested. She read daily from the gospel accord-
ing to Harlan Mills'" and remembered nearly every error
that she had ever made. She well remembers the day she
designed this program.

Model problem. The data flow graph for the McDon-
ald’s example is shown on the left side of Figure 23. The
data items being passed between bubbles are labeled, and
the modules are named with an action verb and an object.
Note that one or more card images *‘become’” a card
group after being processed by the COLLECT CARD
GROUP function.

Afferent, efferent, and central transform elements.
The most abstract input in the data flow graph is a card
group. The most abstract output is the net change
resulting from processing each card group. Thus, the
COMPUTE GROUP NET CHANGE module is the cen-
tral transform, the WRITE NET CHANGE LINE mod-
ule is the efferent (or output) element, and the READ
CARD and COLLECT CARD GROUP modules are the
afferent (or input) elements.

Factor branches. Note that the concept of a card group
emerges naturally out of the data flow diagram and leads
to a reasonably straightforward program structure (see
Figure 23). The TRANSFORM CARD IMAGES TO
CARD GROUP module is shown with aroof that denotes
lexical inclusion. That is, while TRANSFORM CARD
IMAGESTO CARD GROUP isa functional module, itis
not necessarily a physical module. In this example, it will
be packaged together with the GET CARD GROUP
module.

The curved arrows in Figure 23 denote iteration. That
is, the GET CARD GROUP module calis its two subtend-
ing modules once per card image. The EXECUTIVE
module calls its three subtending modules once per card
group. Note that the READ CARD module is assumed to
pass an ‘‘end of file’’ flag up the chain when it is detected.
(The passing of control information is denoted by the
small arrows with solid tails, while the passing of data is
shown by the small arrows with open tails.) Ivy’s program
listing is shown in Figure 24.

Only three of the six modules are shown. The TRANS-
FORM CARD IMAGES TO CARD GROUP module was
lexically included in the GET CARD GROUP module. The
other two modules are not necessary for this particular
discussion. Note that the READ CARD module leaves
much to be desired.
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Program testing. Ivy has learned to make good use of a
program librarian. She wrote the program, gave the cod-
ing sheets to the librarian, and went back to her reading.
The program librarian faithfully executed his duties
and brought back a printout that said ““CRITEM un-
defined.”’

Ivy had forgotten to make sure that all of her variables
were initialized. Oh well, this should be easy. How about
setting CRITEM: = XXXX at the beginning of the GET
CARD GROUP module? That would be before CRITEM
was used the first time, and when it has a symmetry with
the way EOG (end of group) is initialized.

Unfortunately, something just didn’t seem right about
it. GET CARD GROUP is executed many times during
the program, and CRITEM only needs to be initialized
once.

fvy decided to initialize CRITEM at the beginning, in-
stead. While that means passing it as a parameter up two
levels, it certainly sounded better than a bunch of first-
time switches. :

On the next run, Ivy’s efforts were rewarded with some
output—nothing tancy, but still some output.

*“What happened to the heading?’’ exclaimed Ivy.
““That data link must be dropping bits again.”’

“*Where did you write out the heading?’’ asked the pro-
gram librarian. Enter quick fix number 2, shown in Figure
25.

*“Wait, what about that garbage in the front?”’

The problem, of course, is that the program has no way
of knowing when it’s through with a group until it’s
already started processing the next group. Thus, the first
card of a new group serves as a key to tell the rest of the
program to send on the previous group. [t can’t do this,
however, without distorting the structure.

1 think it’s time to call out my secret weapon,’”’ said
vy, “‘my UNREAD command.”’ Enter quick fix number
3, shown in Figure 26.

Field debugging. This tix apparently worked fine for
about two months. It was not exactly speedy, but it did
work. Then, all of a sudden, a visit from on high. Big Mac
himself came down and said, ‘‘Our people in Provo,
Utah, have been trying to bring up your program, and it
just doesn’t work.”’

[t turns out that in Provo they never found it necessary
to buy a tape reader. Ivy’s UNREAD operation didn’t
work on cards. That meant that {vy had to find another
way of UNREADiIng.

In this data flow design, theequivalent of an UNREAD
is, at best, messy. [t corrupts the structure badly, no mat-
ter how it’s done. Modules end up storing internal states
or values, and first-time switches abound.

In Ivy’s case, she chose to read ahead by one, passing
state information by SW1 and storing the NEW CARD
value within moduie READ CARD. Other solutions are
possible, of course, but it isn’t clear that they are a whole
lot better (see Figure 27). The effect of these changes on
the program structure is shown dramatically in Figure 28.

fvy has committed arboricide. to use Jackson's words.
What was a nice clean tree structure now has two pro-
grams calling the same READ CARD module. 1 think
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EXECUTIVE: EOF. = FALSE:

DO WHILE{EOF = FALSE).
GET__CARD __GROUP(CG.EOF ).
TRANSFORM __CG__TO__NC__LINE(CG.NC)
WRITE __NC __LINE (NC.EOF):

END: STOP:

GET_CARD _GROUP(CG.EQF
DO WHILE (EOG=FALSE): 11 =1+1
READ __CARD(CI1.EQG.EOF
END; RETURN:

} BEOG: =FALSE: 11 =0

y:.CG(Yy = Gl

READ___CARD(CI.EOG.EOF )
NEW __ CARD: =READ STF:
{F NEW __CARD __ITEM = CRITEM THEN
DO: £0G. =TRUE; CRITEM=NEW _ CARD __1TEM:
END;
ELSE Cl:=NEW CARD:
IF Cl=FEQF _ STF THEN EOF: =TRUE; RETURN:

Figure 24. Data flow design program.

ZXECUTIVE: EOF: =FALSE:
SRITEM: = xXXX;
DO WHILE(EOF = FALSE):
GET__CARD _GROUP(CG.EOF .CRITEM
TRANSFORM _CG__TO __NC __LINE(CG.NC):
WRITE _NC __ LINE (NC.EQFY:
END: STOP:

GET __CARD__GROUP(CG.EOF.CRITEM
DO WHILE (EOG=FALSE). L =1+1:
READ __ CARD (C!.EQG.EQOF .CRITEM
END: RETURN:
READ__ CARD(C!.EOG.EQOF.CRITEM )
NEW __CARD: =READ STF:
IF NEW__CARD_ITEM =CRITEM THEN
DO: EOG: = TRUE: CRITEM: =NEW __ CARD __ITEM:
END:
ELSE I =NEW __CARD:
IF Cl=EOF __STF THEN EOF =7RUE: RETURN:

). EOG:=FALSE: I' =0

).CG(H =Cl:

Figure 25. Quick fix no. 1.

SXECUTIVE: EQOF =FALSE "WRITE HEADING:
CRITEM: = XXXX:
DO WHILE(EOF = FALSE):
GET __CARD __GROUP(CG.EOF CRITEM
TRANSFORM __CG __TO _NC _LINE(CG.NC)
WRITE __"iC _LINE (NC.EOF)
eND: ST0P

GET _ CARD __GROUPICG.EQF.CRITEM i
70 WHILE (EOG =FALSEY | =i+
READ _ CARD (CI.EQOG EOF CRITEM
END: RETURN

2EAD _ CARDICI.ECG.EQF CRITEM i
“EW _CARD =READ STF
‘F NEW __CARD __!TEM s CRITEM THEN
DO: EOG = TRUE. CRITEM =LEW [CARD  iTEM
UNREAD 7% END
ELSE T =NEW _CARD
‘f Cl=EQF STF THEN EOF = TRUE. RETURN

EQG =FALSE ! =0

. CGhy =Cl

Figure 26. Quick fixes no. 2 and no. 3.
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EXECUTIVE: EOF: =FALSE.WRITE HEADING: S'W1 =FALSE.
CRITEM: = XXXX: READ __CARD(CI.ECG.EOF CRITEM SWT
00 WHILE(EQF = FALSE):
GET _CARD _GROUP(CG.EOF .CRITEM SW1).
TRANSFORM __CG_TO _NC _LINE(CG.NC).
WRITE __NC __LINE(NC.EOF}):
END: ST0P:

GET __CARD __GROUP(CG.EQF CRITEM.SW1): EOG: =FALSE: I: =0:
DO WHILE (EOG=FALSE). L=1+1!
READ __CARD (C!.EOG.EQF CRITEM.SW1).CG(1) =Cl:
END:; SW1 =7RUE: RETURN:

READ __ CARD(CI.EOG.EQF CRITEM.SW1):iF SW1 =FALSE THEN
NEW _CARD: =READ STF:
[F NCW_CARD _TEM = CRITEM THEN
DO: EOG: =TRUE: CRITEM =NEW _CARD __ITEM:
SW1:=TRUE: END:
ELSE D0: Cl: =NEW __CARD:SW1: =FALSE: END:
IF Ci=EQF __STF THEN EQF:=TRUE: RETURN:

Figure 27. Quick fix no. 4.

EXECUTIVE
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Figure 28. Data flow design with fixes.

EXECUTIVE: EOF: = FALSE: WRITE HEADING: SW1:=FALSE:
CRITEM: = XXXX: Cl: =READ STF:
DO WHILE (Ci NOT EOF — STF):
E0G: =FALSE |1 =0:
DO WHILE (EOG=FALSE); I: =1+ 1:
IF SW1=FALSE THEN NEW _ CARD: =READ STF:
IF NEW __CARD _ITEM = CRITEM THEN
DO: EOG: =TRUE: CRITEM: =NEW__CARD _ITEM:
SW1: =TRUE:
END;
ELSE DO; Cl: = NEW _CARD SW1: =FALSE:
END:
CG(Hy: =Cl:
END:
SW1: =TRUE:
TRANSFORM __CG_TO__NC__LINE {CG.NC):
WRITE __NC__LINE (NC.EQF):
END:
STOP:

Figure 29. Data flow design packaged in one module.

26

read and write operations should be thought of as general-
purpose routines callable from anywhere within the pro-
gram structure. To hope to constrain them to the “*ears”
of a structure chart seems, at best, unwise.

Optimization. In this program, things look much better
if we simply package the whole thing as one module, as
shown in Figure 29.

The point, however, is that the problems Ivy had were
representative of larger problems that could appear in
larger programs each time the data flow design method is
applied.

Data structure design

Slightly different forms of the data structure design
method were developed concurrently by Michael J ackson’
in England and J. D. Warnier®? in France. In this discus-
sion, Jackson’s formulation and notation are used.

The basic premise is that a program views the world
through its data structures and that, therefore, a correct
model of the data structures can be transformed into a pro-
gram that incorporates a correct modet of the world. The
importance of this view, stated earlier as the principle of
correspondence, is emphasized by Michael Jackson’s
words that ‘‘a program that doesn’t directly correspond to
the problem environment is not poor. is not bad, but is
wrong!”’

When the program structure is derived from the data
structure, the relationship between different leveis of
each resulting hierarchy tends to be a ‘‘is composed of”’
relationship. For example, an output report is composed
of aheader followed by areport body followed by areport
summary. This is generally a static relationship that does
not change during the execution of the program, thus
forming a firm base for modeling the problem.

Since a data-structure specification usually lends itself
well to being viewed as correct or incorrect, the program
structure based on a data-structure specification can
often be viewed as being correct or incorrect. Jackson’
purports that two people solving the same problem
should come up with program structures that are essen-
tially the same. Thus, this method satisfies the principle of
consistency to a large degree.

Design strategy. The programming process can be par-
titioned into the following steps:

(1) Form a system network diagram that models the
problem environment.

(2) Define and verify the data-stream structures.

(3) Derive and verify the program structures.

(4) Derive and allocate the elementary operations.

(5) Write the structure text and program text.

These steps can usually be performed and verified in-
dependently, separating concerns by partitioning both
the design process and the problem soiution. For large
problems, the objective is a network of hierarchies, each
representing a simple program. Jackson’s premise is that
although simple programs are difficuli to write, complex
programs are impossible. The trick, then, is to partition
complex problems into simpie programs.
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These simple programs. individuaily implemented as
true hierarchical modular structures, are connected in a
data-flow network. This network can be placed into a
“calls”” or *‘is called by’’ hierarchy bv a scheduling pro-
cedure called “‘program inversion’'” that is pertormed as
aseparate step after the structure of the program has been
defined.

The system network diagram for a simple program is
represented schematically in the upper left corner ot Fig-
ure 30 and is explained further in the example. In its
simplest form, it represents a network of functions that
consume, transform, and produce sequential files. Below
this network diagram, the data structure of each fite is
shown to be represented by data structure diagrams. The
notation used is similar to that shown in Figure 4.

If the data structures correspond well, a program struc-
ture diagram can be drawn that encompasses both data
structures. When a diagram cannot encompass both data
structures, a structure clash’ exists.

Since the program structure models the data structures.
and since most operations are pertormed on data ele-
ments, one can list and allocate executable operations to
each component of the program structure. These elemen-
tary operations are denoted by the smali squares in the
structure diagram and are shown in a list in the lower left
corner of Figure 30.

The basic data structure design procedure can also be
represented schematically, as shown in Figure 31. The ar-
rows represent the flow of work and theresults required in
following the basic design procedure. Note that the final
program structure is formed by first finding data struc-
ture correspondences and then by adding in the execut-
able operations also derived from the data structures. The
problem model is usuaily documented by a system net-
work diagram, the data structures and program structure
by structure diagrams, and the program text by structure
text. Examples of each of these are given below in the
McDonald’s example.

The major problem with Jackson's data structure de-
sign methodology is that, in Jackson's words, **it is being
developed from the bottom up.” That is, although it is

SYSTEM NETWORK/DATA
STRUCTURES/OPERATIONS

Q- PQ

e
—
—>

1. OPEN FILE
2. READ FILE
3. -

4

STRUCTURE DIAGRAM

Figure 30. Data structure design method.
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clear at this point how to appiy it to small problems. the
“correct’’ method for extending it to large system prob-
lems is sull being developed.

McDonald’s example. ida is a data structure designer
from way back. She went to London to study the Jackson
design method. She learned French just so she could read
Warnier's six paperbacks. (She savs they lose a lot in
translation.) With the McDonald’s problem, she is cer-
tain that a data structure design is the only wav to
go—atter all, it fits into Jackson’s ‘‘stores movement’’
problem solution format.’

Mode! step. The system network diagram for the
McDonald problem was given at the bottom of Figure 1 1.

Data step. The second design step was to construct and
verify the input and output data structures for each file
shown in the system network diagram. The three basic
program constructs of sequence, iteration, and selec-
tion—shown in Figure 4—apply equally well to describing
the structure ot a data file (see Figure 32). Note that the
SORTED TRANSACTION FILE is an iteration of
ITEM GROUP, which is an iteration of TRANSAC-
TION RECORD, which—in turn—is a selection of a RE-
CEIVED RECORD or a DISTRIBUTED RECORD.
The output report is a sequence of the REPORT HEAD-
ING followed by the REPORT BODY followed by the
REPORT SUMMARY. The REPORT BODY isan itera-
tion of REPORT LINE. (Note that REPORT BODY is
an iteration of REPORT LINE-—not REPORT LINES.
Plural names in data component boxes often indicate an
erTor in naming.)

After the input and output data structures were dia-
grammed, one-to-one correspondences were shown by ar-
rows. Forexample, one SORTED TRANSACTION FILE
is consumed in producing one REPORT, and one ITEM
GROUP is consumed in producing one REPORT LINE.

MODEL OF 1 MODEL STEP
PROBLEM

ENVIRONMENT

2. DATASTEP

DATA
STRUCTURES

4. OPERATIONS STEP

DATA
STRUCTURE
CORRESPONDENCES

OPERATIONS TO
SOLVE PROBLEMS

PROGRAM

3. PROGRAM STEP STRUCTURE

5. TEXT STEP

PROGRAM TEXT

Figure 31. Basic data structure design procedure.
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Program step. From these data structures, a program
structure was constructed encompassing all of the parts in
each data structure. Where there were one-to-one corre-
spondences, the modules took the formof CONSUME. . .
TO PRODUCE. . . .Where there were modules corre-
sponding to only the input data structure, the form was
CONSUME. . . .Where there were modules correspond-
ing to oniy the output data structure, the form was PRO-
DUCE. . . .All of these are shown in Figure 32.

CATASTRUCTURES

PROGRAN S7RYCTURE

SORTED
Tmane | 1 o CONSUME STF
RANS REPORT PENOL :Eiom
£ E -
REPT REPT REPT PROD PROD
HEAD 300 SUMM HEAD SUMM
TV | g— PEW?Q'.
ROUP “E
TRANS
RECORD
REC © DISTR CONSUME CONSUME
REC REC REC D RET DISTR REC
Figure 32. Data and program structures.
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Figure 33. Listing executable operations.
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in finding the producer-consumer correspondences.
the question is always, ‘‘Does one instance of this result in
one instance of that?”’ This question should be asked
again during the verification procedure, which consists of
showing that both the input and output data structures
are subtrees of the program structure.

Operations step. The input, output, and computation-
al operations are identified by working back from the out-
put data structure to the input data structure (see Figure
33). If necessary, the equivalent of a data flow diagram
can be drawn with nodes to represent intermediate
variables.

The operations must be sufficiently rich to guarantee
that each output can be produced and each input can be
consumed. Computational operations must also be spec-
ified that will implement the algorithms which link the
two. One other type of operation is usually required for
completeness. [n our example, this is shown as operation
12. This operation provides the key that will be used in
determining item group boundaries, and it is usually
called a *‘structure-derived operation.””

While it is desirable to have a complete list of opera-
tions from the start, it is not required, since missing opera-
tions will become apparent later in the process.

The last part of the operations step invoives allocating
all of these executable operations to the program struc-
ture (see Figure 34). In each case, the questions to ask are
““How often should this operation be executed?”’ and
““Should this operation occur before or after. . .7’ For
this example, the answer to the first question could be
once per report, once per sorted transaction file, once per
heading, once per summary, Once per item group, once
per report line, once per transaction record, once per item
received record, or once per item distributed record.
Clearly, you open the sorted transaction file, or STF,
before vou read it, you close the STF before you stop, etc.
Using the read-ahead rule, vou read one card ahead and
then read to replace (see operation 10}

At the end of this step, one should verify that all out-
puts are produced, all intermediate results are produced,
and all inputs are consumed.

Text step. Although the structure of the program is
now secure, Jackson recommends one final step before
coding. That fifth step is to translate the structure
diagram into structure text, as shown in Figure 35. This s
done using the three basic program constructs shown in
Figure 4.

Structure text is straightforward and easy to under-
stand as long as your program labels are short and
descriptive. With long program labels, it can become a
mess. In Figure 35, the letters C and P are sometimes used
as abbreviations for CONSUME and PRODUCE.

Ida’s final program was produced by translating the
structure text of Figure 35 into the target programming
language of Figure 36. The major disadvantage of this
method is that the number of distinct steps and procedures
involved imply that both the data structure diagramand the
structure text should be kept as permanent parts of the
documentation. This seems unlikely unless an automated
structure chart drawer is available that will store the struc-
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ture chart with the program in a convenient form so that it
can be updated when the programis changed. At this point.
available machine aids are far from adequate. Another
disadvantage is that for certain classes of problems, the
data structure diagrams and the resulting program struc-
tures can get unduly cumbersome.

A programming calculus

While a “‘proof of correctness’’ is disappointingly dif-
ficult to develop after a program has been written, the
constructive proof-of-correctness discipline taught by Di-
jkstra2® and Gries?* is relatively encouraging. Dijkstra’s
design discipline can be methodically applied to obtain a
modest-sized ‘‘elegant’’ program with a ‘‘deep logical
beauty.”” Using this method, the program and the proof
are constructed hand-in-hand.

Design strategy. The initial design task consists of for-
mally specifying the required result as an assertion stated
in the predicate calculus. Given this desired postcondi-
tion, one must derive and verify the appropriate precon-
ditions while working back through the program being
constructed. The program and even individual statements
play a dual role in that they must be viewed in both an
operational way and as predicate transformers. The
method is a top-down method to the extent that both the
resulting program and the predicates can be formed in
stages by a sequence of stepwise refinements.

Definitions. The programming language is used as a set
of statements that perform predicate transformations of
the form?20-24.2

‘QISIR! (1

In this expression, Qrepresents a precondition that is true
before execution of statement S. R represents a postcon-
dition that is true after the execution of statement S. In
simple terms, the formula means that the execution of
statement S beginning in a state satisfying Q will terminate
in a state satisfying R, but Q need not describe the largest
set of such states. When Q does describe the largest set of
such states. it is called the weakest (least restrictive) pre-
condition.

When Qis the weakest precondition, thisis expressed in
the form

Q=wp(S,R) (2)
When S is an assignment statement, it takes the form
xi=e 3

where ¢ is an expression. Its definition as a predicate
transformer is given by

wp("x:=e” ,R) =R} 4)
The term RY is used to denote the textual substitution of
expression e for each free occurrence of x within expres-

sion R.
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Figure 34. Allocating executable operations.

When sis a Selection statement, it takes the form

IF = if B;—‘Sl

l B:—S$

L 5)
H Bn_‘sn
fi

P seq
item__grps:=0.
open stt: read stf:
write heading:
P-BODY itr until (eof-stf)
C-ITEM-GRP-P-REPT-LINE seq
net __chg: =0:
item __grps: =ilem_grps+ 1
critem: = next item:
PRLBDY itr while (next item = critem)
C-TRANS-REC seq
CTRBDY sei (code — R}
net__chg:=net__chg+aty
CTRBDY alt (code —~D)
net__chg: =net__chg—aty.
CTRBDY end
read stf:
C-TRANS-REC end
PRLBDY end
write net __chq:
C-ITEM-GRP-P-REPT-LINE end
P-BODY end
write item __grps: close stt:
P end

Figure 35. Structure text.
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This is valid where n>0. the B, are boolean expressions
called guards, and the S, are statements. The vertical bar
“I” serves to separate otherwise unordered alternatives.
To execute IF, at least one of the guards B, must be true.
Toexecute it, choose one guard that is true (nondetermin-
istically) and execute the corresponding statement. The
expression B; — S; may beread as **When guard B istrue,
statement S; may be executed.’’” The definition ot [F asa
predicate transtormer is given by

wp(lF,Ry=BBand(Ai:l <i<n:B;=>wp(S, R)) (6)

where BB=B, or Byor. . . or B,. Thus, we must prove
that executing any S, when B,and Qare true establishes R.
In practice, given R and §;, we derive B, using the weakest
precondition.

The iteration statement takes the form

DO = do B]—‘S]

I B.—5:

o (¥
[] BN”’Sn
od

Iteration continues as long as at least one of the guards
B\, ..., B,istrue. From the set of statements with true
guards, one is selected (nondeterministically) for execu-
tion. The definition of DO as a predicate transtormer is
given by

wp(DO,R)=(Ek: k=0:H(R)) 8.1)

where H;(R) for k20 is the weakest precondition such
that execution of DO will terminate atter, at most, &
“‘iterations’’ and in a state satisfying R. In developing a
program that contains a loop structure, this is tound by
completing the following steps:

1. Write a formal specification of the desired result R.

2. Determine an invariant P.

PB: item__grps: =0:
open sif:
read stf:
write heading:
PBB:  do while (not eof—sti):
net__chg:=0:
item __grps: =item _5rps+ 1
critem: = next item:
PRLBB: do while (next item—critemy:
CTRBB: it {code=R) then
net __chg: =net__chg+qty:
else if (coce=D) then
CTRBE: net __chg: =net_chg—aty:

read stf:
PRLBE: end:
write net __chg:
PBE.  end:
write summary:
PE: close stf:

Figure 36. Finai data structure design program.

3. Derive a loop body such that:
a. Q=>P(i.e., Pisinitally true).
b. Ai:!Pand B, S, | P!
(i.e., P remains invariantly true).
¢. (Pand not BBY=>R
(i.e., upon termination R is true).
d. Show the ioop terminates:
(1) (Pand BB)=> >0
(i.e., before termination, ! is positive).
(2) Ai:|Pand B, ' mi=1; S;{t<7—1]
(i.e., r decreases with each iteration).

In step 3d, ¢ is a termination function chosen to be
positive dusing the execution of the iteration and zero
upon completion; 7 is a fresh integer variable.

McDonald’s example. The problem is initiaily simpli-
fied by eliminating the R/D field of each transaction and
considering the quantity field g(/) as positive for items
received and negative for items dispersed. The R/D field
is reintroduced later when the final pseudocode is written
so that the resulting program can be readily compared
with previous designs.

Problem specification. Note that the STF isan iteration
of item group, which is an iteration of transaction,
which—in turn—is a sequence of the item field (/) and
the quantity field g() for 1 <j < m and f(m)= EOF.

Since the transaction file has been sorted, anitem group
g(J, k) can be defined as

g,k =f(N=fU - Dand f(j)=f(k) 9)
and f(k)#f(k+1)

Similarly, a partial item group g(J, k) can be defined as

20, k) = f(j)#f(j - Dand f(j) = f(k) (10)
and f(k)=f(k+1)

The number of complete groups over the range 1 through
k can be defined as

n(l,ky=(Np:1<sp=<k: f(p)=f(p+1)) (11)

where N p is the number of distinct values of b'over the
range | <p <k for which fip)=f(p+1).

Formal specification of R. Step | in the design pro-
cedure is to develop, in a top-down fashion, a formal
specification of the desired result R. A first attempt could
look something like this:

R : The total number of item groups / is calculated.

The net change in inventory cis calculated foreach
item group.

More formally:
R : (Ajk:1=sj<sk<mandg(k) (12)

K
i=n(lLk)and c()= Y, q(r)

r=y
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This whole expression may be read **If R is true. the fol-
lowing holds: For all j and & such that | </ <k <m and
thetransactions between jand & inclusive form a group, it
is true that /is set equal to the number of complete groups
over theinterval | through & and c(/) is formed as the sum
of the quantity fields within each complete group.”’ This
notation is consistent with that used by Dijkstra and
Gries.>> Note that the result assertion specifies what is to
be derived—not how it is to be derived.

When we examine (12), the requirement for counting
the number of complete groups and the summation re-
quired for computing (/) suggest that at least one loop
structure isrequired in the program. Thus, our next stepis
'0 determine an invariant P.

Determine an invariant P. When step 2 is performed,
the resuit assertion (12) is weakened to form an invariant
P.In this example, R may be weakened by introducing a
variable m, where | < i1 < m, such that

Pl <m=<m
and (A j,k: 1 <j<k<mand g(j,k)
k
Li=n(lk) and ci)= Y, g(r)
r=j

and (A j,k:1<j<k<mandg(jk)and k=m— |
- k
Lé= )0 qn) (13)
I':j

This invariant states that ““If P is true, the following
holds: For ali the complete item groups, / is set to the
group number and c(/) is set to the sum of the g fields
within each group. For the last partial item group, ¢ is set
to the sum of the g fields.””

Derive the program. Step 3d(1) requires that a termina-
tion function ¢ be chosen that is greater than zero while
any of the guards B; are still true and that decreases with
every execution of S,. For our example, a termination
function that can readily be made to satisty these condi-
tions is

(=m-—m (14)

This function will equal zero on termination if the guard
By is set to terminate the iteration when m=m.

With this in mind, the basic program form becomes

‘‘define Q toestablish P’
‘Pl
do m=m—
‘‘decrease t while maintaining P’ (15)
od
(R

A statement that would decrement ¢ is

m:i=m+1 (16)
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As noted in step 3a, we must next show that Pis initially
true. In other words, the initial state | Q| must be so defined
that Q implies P. That is

Q=>P 17
Note that if the program starts with the statement
m,i, ¢:=1,0,0 (18)

then P holds.

To satisfy step 3b, we must show that P remains true
after statement (16) is executed. One way of meeting this
requirement is to introduce further guards B, by embed-
ding an IF selection statement within the loop construct.
The IF statement format is shown in (5). The program is
now in the form

m,i, ¢:=1,0,0;
(Pl
do m=m—
if
“‘statements that reestablish P’ (19)
fis
m: =m+1
P
od
(R}

The guards of the IF statement must be chosen such that P
remains true after statement (16) is executed. In general,
guards B; must be chosen so that

Pand B; =>wp(S, P) 20)
In our example, we must find

wp(“mi=m+1",P)
=(l=m+1l<m)
and (A j,k : 1<j<k<m+1andg(jk)
. @D
ti=n(lk)and c)= Y q(r)

r=j

and (A J,k : 1sjsk§r;7+1and g/, k)
and k=m

K
e= Y atr)
r=y

Consequently, we must choose guards for the [F that
ensure that all three of the terms of (21) are satisfied when
(16) is executed. The first term

lsm+1l<m 22)

can be established directly from P and the iteration guard
(m#m). The second term of (21)

Ajk:l<j<k<m+landg(,k) 23)
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P
vi=n(l,kyand c(D = E q{r)

r=j

can be established if Pis true and if

Smyzf(m+ 1)—i:=i+ Lic(i): = ¢=q(m); = ¢:=0

24)
where initially
—1
c= Y, q(r) (25
r=y
It can also be shown that the third term of (21)
- Ajk:l<j<k<m+land g(j,k)andk=m
(26)
&
=Y q0n)
r=j
is true if Pis true and if
flm)y=f(m+1D—c:=c+q(m) Qn
With these observations, our final program becomes
i 6t =1,0,0;
[P
do m=m-—
iff(my=f (m+1)—c:=c+q(m) (28)

QA #=f(m+D)—i:=i+ L;ci): = c+q(m);c: =0
fi;

od
R

Show the loop terminates. During the design pro-
cedure, we have verified the truth of the first three condi-
tions stated earlier in step 3 regarding the invariant P. Step
3d can be satisfied by showing that ¢ remains positive
while at least one guard is true and that each iteration
decreases 7. These final termination conditions should be
verified by the reader.

Pseudocode. A pseudocode version of the final pro-
gram is shown in Figure 37. Note that the meanings of
code R, code D, and EOF have been restored. In this
figure, { becomes item_grps, ¢ becomes ner_chg, m cor-
respondsto curr_rec, and f{ m) corresponds to curr_item.

Conclusion

Comparison. While there is something to be learned
from examining the pseudocode resulting from the four
solutions to the McDonald’s problem, more significant
points can be made by comparing the differences in pro-
gram structure.

Functional decomposition solution. A skeleton struc-
ture diagram for the functional decomposition solution is
shown in Figure 38. Note that the basic operation was as-
sumed to be PROCESS CARD and that this design treats
the first card as different from the subsequent cards quite
early. Thisresuitsin a structure that favors the addition of
changes that can be keyed to the beginning of a group.
Changes that must be keyed to the end of a group are add-
ed with more difficulty.

Data flow design solution. The data flow design solu-
tion had the basic structure shown in Figure 39. Note that
in this case there is a difference between a lead card and
thelast card in a group. Thatisthelast cardina group gets
treated in a special way—not the first card. For later
modification, this means that operations added to theend
of a group will be favored while operations added to the
beginning of a group will not fit in as naturally.

Even through the concept of group is well localized on
the diagram, the data flow nature of the processing forces
one to do some of the group operations at the PROCESS
CARD level. In this case, an end-of-group control signal
must be inserted at the PROCESS CARD level so that
other end-of-group processing functions can be activated
within the PROCESS GROUP function.

The resulting program has sequential cohesion. Both
data and control are passed up the structure diagram.
Generating the end-of-group indication still causes a few
minor problems, but in this particular example keying on
thelast card in a group turns out to be a better choice than
keying on the first card in a group.

Data structure design solution. The data structure
design solution is shown in Figure 40. In this solution, all
of the cards are processed by the same PROCESS CARD
function. The keying of groups is done automatically

item__qgrps: =0:
net__chg:=0:
open stf:
curr__rec; =read stf:
write heading.
do curr__rec=EQF
next___rec: =read stf;
if curr __item=next _item—
if code=R—net__chg: =net__chg+qty.
J code=D-net_chg:=net_chg—aqty:
fi
I curr _item#next__item—
item __grps: =item__grps+1:
if code=R—net_chg:=net __chg+aqaty:
I code=D—net__chg: =net__chg—aqty;
fi
write net__chg:

net__chg:=0:
fi
curr__rec: =next__rec.
od
wnite item __grps:
close stf:

Figure 37. Programming calculus McDonald’s solution.
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within the controlstructure through use ot the read-ahead
rule. Thus, no cards are treated with special functions,
and everything looks clean. This solution can handle fur-
ther additions that require special action at the beginning
or at the end of a group with relative ease.

Programming calculus sofution. The programming
calculus solution structure diagram is shown in Figure 41.
Note that this solution treats the last card as special.
favoring extensions that occur at theend of a group. Since
most of the McDonald’s problem group functions are

PRODUCE
REPORT

PRODUCE PRODUCE PRODUCE
HEADING 80DY SUMMARY

PROCESS )
CARD

PN

0 0
PROCESS THE PROCESS A
SUBSEQUENT
FIRST CARD
IN GROUP CARD
IN GROUP

Figure 38. Functional decomposition structure diagram.

end-of-group functions, the resulting solution looks quite
clean. In the long run, this solution could cause problems
when new beginning-of-group operations are added.

Of these four solutions, the one that seems to model the
problem best is the data structure design solution shown
in Figure 40. A proper choice ot loop invariants using the
predicate calculus may have led to the same structure, but
the choice that was made didn’t. Likewise, a proper ap-
plication of functional decomposition also could have led
to the same structure. Even the data flow design method
does not completely rule out this preferred solution.

[t might be argued that ail four design methodologies
were capable of yielding any of the other solutions. My
view is that it would take a designer with unusual insight
to reliably proceed toward the preferred solution using
any of these techniques. I do feel, however, that for the
class of problems represented by the McDonald’s exam-
ple, people are more likely to derive the pretferred solution
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Figure 40. Data structure structure diagram.
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Figure 39. Data flow structure diagram.
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Figure 41. Programming calculus structure diagram.
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by using data structure design than by using any ot the
other methods. For a different class of problems, of
course, the results could be different.

Critique. Since functional decomposition has been
around for more than a decade, there have been many
well-documented success stories and even a few well-
documented failures.

One success story was summarized by its designers, using
the diagrams in Figure 42. Perceived project visibility was
dramatically improved by the application of functional
decomposition together with other techniques. They also
felt that project staffing couid be reduced over that nor-
mally required. In this particular project, there was a lot
of personnel turnover but this was taken in stride, partly
owing to the beneficial effects of the new techniques.

[t seems that functional decomposition can lead to a
““good”’ hierarchical program structure if carefully ap-
plied. If not used carefully, however, it can lead toward
logical cohesion and, occasionally, toward telescop-
ing—that is, toward defining smaller and smailer modules
that are not independent but have strong coupling with
each other. Applying functional decomposition to obtain
mathematical functions (e.g., square root) is refatively
straightforward.

For any given problem, the number of potential de-
compositions can be large. This makes applying the tech-
nique much more of an art than a science. 1 know that Di-
jkstra can do beautiful functional decompositions.

In Johnson’s!! words, functional decomposition seems
to be a triumph of individual intellect over lack of an
orderly strategy. The question ‘‘Decomposition with
respect to what?” is always a point to ponder. The
measures of ‘‘goodness’’ are difficult to apply consistent-
ly. Finally, this method requires that the intellectual tasks
of problem modeling and program construction be ad-
dressed simultaneously. Ideally, these two tasks would be
separated.

Because the concept of data flow design came later than
pure functional decomposition, it has not been used asex-
tensively. Apparently, several projects within I[BM have
used the ‘‘composite design’’ version of data flow design
with varying degrees of success. [ have personally seen a
number of success stories that praise data flow design.

PROJECT REQUIRED e
VISIBILITY STAFFING 7
NEW 4
7
— <
oD ~
~ —
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TEST  TEST RELEASE NG

Figure 42. Experience with functional decomposition as
used with hierarchical structure, stepwise refinement,
high-leveil language, teams, walkthroughs, cause/effect
charts, etc.

The concepts of coupling and cohesion, which accom-
panied the introduction of the data flow design method,?
have been thought-provoking and, on some occasions,
revealing. They have given people a language to express
previously unverbalized thoughts.

The data flow design method can be used to produce a
hierarchical program structure with all of its intrinsic ad-
vantages. The tendency is strongly toward modules with
sequential cohesion at the system level, although anything
can happen within the central transform. The data flow
chart, which forms the basis for decomposing with re-
spect to data flow, is a useful contribution and may be the
best approach currently available at the system design
level. It’s not clear that the later step of putting thingsinto
a ‘*calls’’ hierarchy using ‘‘transform centered design’'3is
as useful. It seems to produce a structure with alot of data
passing and adds artificial ‘‘afferent’” (input) and ‘‘ef-
ferent’’ (output) ears to the structure chart, while rever-
ting back to standard functional decomposition for the
“‘central transform’’ which is the heart ot the problem. it
isn’t clear that anything is gained over simply using func-
tional decomposition from the start.

In summary, the concepts of cohesion and coupling
represent a real step forward from straight functional
decomposition. A gualitative measure of goodness is not
as good as a quantitative measure, but it is a start. Fur-
thermore, the data flow chart separates the modeling of
the problem from detailing the structure of the program.
The hard part becomes deriving the correct data flow
chart (or “’bubble chart’’), which is still an art for large
systems.

Neither the Jackson nor the Warnier methodologies for
data structure design were widely used in this country un-
til quite recently. They have, however, been used for a
number of years in Europe. Jackson’s method seems
closer to a true methodology than the other design method-
ologies currently available. It is repeatable, teachable, and
reliable in many applications. It usually results in a pro-
gram structure that faithfully models the problem.

The data structure design method resuits in a hierar-
chical program structure, if the data structure is hierar-
chical. It produces mulitiple, independent hierarchies, if
they are present in the problem environment. [tisdifficult
to determine the level of cohesion of the modules within
the resulting program structure. Sometimes it tends 10 be
functional, in other cases communicational. By modeling
the data structures and therefore the problem environ-
ment first, the problem modeling task is done before the
program construction task.

While there is still no clear methodology for large
sysiems and deriving the “‘correct’’ data structures can be
difficult, it still seems that this method is a big step for-
ward. Being able to ask whether a structure is right or
wrong is somehow much more satisfying than trying to
decide if it is good, better, or best.

Both Jackson’s and Warnier’s data structure design
methods were first applied in business data processing. At
this point, they have also been applied to a number of on-
line problems, although they are still unproven for large
real-time applications.

The number of people who use the programming cal-
culus method regularly and proficiently is extremely
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small. The primary disadvantage is that a relatively high
degree of logicaland mathematical maturity is required to
produce even “‘simple’” programs. The mathematical
proofs involved are usually several times longer than the
program derived.

A second and perhaps less important disadvantage is
that this method admits the existence of multiple solu-
tions to the same problem. Different choices of an in-
variant assertion can lead to different program structures.
The resulting programs do not necessarily portray ac-
curate and consistent models of the problem’s environ-
ment or its solution. That is, a ‘‘correct’’ program may
still have the ‘‘wrong’’ structure.

In spite of these problems, Dijkstra’s programming
calculus design discipline is an encouraging step forward
on the road to developing correct programs. Itisamethod
that you should be aware of, for it holds promise for the
future.

Summary. As shown in Figure 43, many claims have
been made about the different strategies for designing
software. For functional decomposition, the proponents
have largely said, ‘‘D is good design, believe me.’’ For
data flow design methods, peopie have said, ‘‘Program C
is better than program D. Let me tell you why.”’ For data
structure design methods, the claim is that ‘B is right; C
and D are wrong. A program that worksisn’t necessarily
right.”” In the programming calculus, the contention is
that “‘Program A is probably correct. B, C, and D are
unproven.”’

In my view, there is still much room for innovation in
the area of program design methodologies. The current
state of the art was represented schematically by John-
son'!in the form of Figure 44. Functional decomposition
has been described as the ideal methodology for people
who already know the answer. The other three methodol-
ogies seem less reliant on knowing the answer before you
start.

All of the methodologies rely on some magic. For func-
tional decomposition, the magic gets applied very closeto
the end product. In the other three methodologies, at feast
some of the magic gets applied at the problem-model
level. Clearly, we need to get a much better handle on the
magic part of all four of the methodologies.

FUNCTIONAL DECOMPOSITION

B

DATA FLOW DESIGN METHOD

5 —

Prognosis. Many different design methodologies are
available. Although the first three methodologies dis-
cussed in this article have been used extensively and to a
large measure successfully, there 1s still much to be done.

Desired resuits. The results I would like to see from the
work yet to come are

o a complete methodology for partitioning ‘‘big”’
problems,

e better documentation for both the shortcomings and
attributes of existing methodologies.

 guidelines for combining methods when ap-
propriate,

e agenerally accepted metric for quantifying program
complexity (or entropy),

e help for the four out of five programmers who are
maintaining and enhancing old programs, and

» more published examples of real-time applications.

Hopes for the future. Some possibie requirementsona
“complete’’ methodology could include the following:

e It must include a rational procedure for partitioning
and modeling the problem.

¢ ltshouid resultin consistent designs when applied by
different people.

e It must systematically scale upward to large prob-
tems while interacting consistently with a model of
the real worid.

o It must partition the design process as well as the
problem solution.

e The correctness of individual design steps must
guarantee the correctness of the final combination.

e [t should minimize the innovation required during
the design process. The innovation should occur in
the algorithm specification phase.
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Figure 43. Summary of program design methodology

claims. Figure 44. Current state of the art.
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An interim procedure. Until we know the *‘right”’
method for designing the structure of a large program, [
would propose the following interim procedure:

* Define the high-level language and operating system
macros bottom-up, using the principle of abstraction
to hide the peculiarities of the hardware and to create
a desirable virtual machine environment.

* Map the system flow diagram into your virtual ma-
chine environment.

¢ Work through the inversion’ process or construct a
data flow model of the **big’’ problem.

e Construct data structure diagrams that correspond
to each data flow path.

¢ Cluster and combine bubbles that can be treated by
one of Jackson’s ‘‘simple’’ programs.

® Use the Jackson data structure design method to
combine simple programs and reduce the number of
intermediate files.

* {mplement each cluster as concurrent, asynchronous
processes if you are operating under a suitable pro-
gramming environment—for example, Simula or
Unix. 6*

e If a decent operating system is not available, con-
struct some scheduling kludge.

While these interim suggestions do not fit together well
enough to call them a method, they may form a reason-
able approach to follow until a true methodology for
large problems is found. B

*Unix is a trademark of Bell Laboratories.
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