1318

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 11, NOVEMBER 1989

A Formal Evaluation of Data Flow Path Selection
Criteria

LORI A. CLARKE, ANDY PODGURSKI, DEBRA J. RICHARDSON,
AND STEVEN J. ZEIL, MEMBER, IEEE

Abstract—A number of path selection criteria have been proposed
throughout the years. Unfortunately, little work has been done on com-
paring these criteria. To determine what would be an effective path
selection criterion for revealing faults in programs, we have under-
taken an evaluation of these criteria. This paper reports on the resuits
of our evaluation of path selection criteria based on data flow relation-
ships. We show how these criteria relate to each other, thereby dem-
onstrating some of their strengths and weaknesses. In addition, we sug-
gest minor changes to some criteria that improve their performance.
We conclude with a disc of the major limitations of these criteria
and directions for future research.

Index Terms—Path selection, software testing, testing criteria.

I. INTRODUCTION

NE of the concerns of software testing is selecting

test data that adequately exercise the various state-
ments in a program. Stucki showed that, when left to their
own devices, programmers do a poor job of selecting test
data that provide good program coverage [22]. This has
led to the development of a number of coverage criteria.
A path coverage criterion is satisfied by certain sets of
paths through a program, where a path is a sequence of
statements. An effective criterion requires paths with a
high probability of revealing faults—that is, when the pro-
gram is run with test data that cause the selected paths to
be executed, there is a high probability that faults, if they
exist, are exposed by those test runs. Of course, the ef-
fectiveness of such a criterion depends not only on the
selected paths but also on the test data for those paths. In

Manuscript received February 28, 1986; revised June 17, 1989. Rec-
ommended by W. E. Howden. This work was supported by the National
Science Foundation under Grants DCR-8404217 and CCR-8704478 in co-
operation with the Defense Advanced Research Projects Agency (ARPA
Order 6104). and by the Rome Air Development Center under Contract
F30602-86-C-0006.

L. A. Clarke is with the Department of Computer and Information Sci-
ence, University of Massachusetts, Amherst, MA 01003.

A. Podgurski was with the Department of Computer and Information
Science, University of Massachusetts, Amherst, MA 01003. He is now
with the Department of Computer Engineering and Science, Case Western
Reserve University, Cleveland, OH 44106.

D. J. Richardson was with the Department of Computer and Information
Science, University of Massachusetts, Amherst, MA 01003. She is now
with the Department of Information and Computer Science, University of
California, Irvine, CA 92717.

S. J. Zeil was with the Department of Computer and Information Sci-
ence, University of Massachusetts, Amherst, MA 01003. He is now with
the Department of Computer Science, Old Dominion University, Norfolk,
VA 23529.

1EEE Log Number 8930893.

this paper, we address the path selection problem; recent
research on test data selection can be found elsewhere [3],
{71, 1101, [21], [27].

Testing all the paths in a program is usually impossible,
because programs often contain an infinite number of
paths. Thus, a practical path selection criterion should
specify only a finite subset of a program’s paths. It is gen-
erally agreed that, at a minimum, this subset should re-
quire that every branch, and thus every statement, in a
program be executed at least once. It has been repeatedly
shown that this minimum requirement, although impor-
tant, is far from effective. Several other factors, such as
loop coverage and data relationships, should also be con-
sidered. Thus, there have been a number of more thor-
ough path selection criteria proposed throughout the years
[6], [9], [13], [19], [25]. Unfortunately, there has been
little work done on comparing or evaluating the different
criteria. We are studying path selection criteria, working
toward the formulation of a more effective criterion that
builds upon the strengths of existing ones. As a first step
in this study, we evaluated the path selection criteria that
are based on data flow relationships [9], [13], [19]. This
paper reports on how these criteria relate to each other and
demonstrates some of their strengths and weaknesses.

The authors of these criteria defined them using differ-
ent terminologies. To facilitate the comparison and sim-
plify the discussion, we define all the criteria using a sin-
gle set of terms. Although our definitions of the criteria
are usually equivalent in meaning to those originally
given, some are not. This occurs for two reasons. First,
some of the original definitions are ambiguous. Second,
the original, formal definitions of the criteria often differ
from the intent of their authors as indicated by their pub-
lished examples. In both cases we have tried to redefine
the criteria in ways that strengthen them yet seem con-
sistent with the intent of their authors.

In this paper, we formally compare data flow path se-
lection criteria. The next section defines the terms we use
throughout this paper. Section III defines the criteria we
are evaluating using the terminology presented in Section
I1. In Section IV, we compare each criterion to the others
and present a subsumption hierarchy showing their rela-
tionships. One of the major weaknesses of all these cri-
teria is that they are solely based on syntactic information
and do not consider semantic issues such as infeasible

0098-5589/89/1100-1318$01.00 © 1989 IEEE

CLARKE er al.: DATA FLOW PATH SELECTION CRITERIA

paths. The conclusion discusses the infeasible path prob-
lem as well as other issues that must be considered in or-
der to evaluate these criteria more meaningfully and, more
importantly, in order to formulate a more effective path
selection criterion. This paper lays the foundation for such
future research.

II. TERMINOLOGY

Our evaluation considers the application of a path se-
lection criterion to a module, although our results can eas-
ily be extended to interprocedural analysis. To simplify
the discussion, we assume a module is either a main pro-
gram or a single subprogram and has only one entry and
one exit point. In applying a path selection criterion, a
module is represented by a directed graph that describes
the possible flow of control through the module. A control
flow graph of a module M is a (not necessarily unique)
directed graph G(M) = (N, E, ny, ns), where N is the
(finite) set of nodes, E & N X N is the set of edges, n, €
N is called the start node, and ny € N is called the final
node. Each node in N, except the start node and the final
node, represents a statement fragment in M, where a
statement fragment can be a part of a statement or a whole
statement. We assume the control flow graphs are defined
so that each assignment statement and procedure call is
represented by a node, as is the predicate from each con-
ditional statement. For each pair of distinct nodes m and
n in N for which there is a possible transfer of control
from the statement fragment represented by m to that rep-
resented by n, there is a single edge (m, n) in E. There
is also an edge in E from the start node to the entry point
of M and an edge in E from the exit point to the final node.
We also assume that E contains no edges of the form (n,
n).

A control flow graph defines the paths within a module.
A subpath in G(M) is a finite, possibly empty, sequence
of nodes p = (ny, n>, ..., ”hr\)l such that for all i, 1
< i < |pl, (n, n;+,) € E. A subpath formed by the
concatenation of two subpaths p, and p, is denoted by p,
* p2. An initial subpath is a subpath whose first node is
the start node n,. A path is an initial subpath whose last
node is the final node n;. The set of all paths in G(M) is
denoted by PATHS (M). The graph G(M) is well-formed
iff every node in N occurs along some path in PATHS (M).
In this paper, we consider only well-formed control flow
graphs.

A loop of a control flow graph G(M) is a strongly con-
nected subgraph of G(M) corresponding to a looping
construct in module M. An entry node of a loop L is a
node n in L such that there is an edge (m, n) in G(M),
where m is not in L. An exit node for L is a node n outside
L such that there is an edge (m, n) in G(M), where m is
in L. We assume that all loops have single entry and sin-
gle exit nodes.

'We denote the length of (the number of elements in) a sequence s by
|s].

1319

We frequently need to distinguish between several types
of subpaths that visit loops. A cycle is a subpath of length
> 2 that begins and ends with the same node. A cycle
(n) + p + (n) such that the nodes of p are distinct and do
not include »n is called a simple cycle. A traversal of a
loop L is a subpath within L that begins with the entry
node of L, does not return to that node, and ends with a
predecessor of either the entry node or the exit node of L.
A traversal of .a loop represents a single iteration of the
loop or possibly a ‘‘fall through’’ execution of the loop.
A subpath is said to traverse a loop L if the subpath con-
tains a traversal of L. Finally, consider a complete exe-
cution of a loop, which consists of one or more consecu-
tive traversals of that loop. A complete loop-subpath or
cl-subpath for a loop L is a subpath (m) - p - (n) such
that p is a nonempty subpath lying entirely within L and
m and n occur outside L. A cl-subpath represents a fall-
through execution of a loop or contains at least one cycle.

The path selection criteria described in this paper are
based on data flow analysis and thus are concerned with
definitions and uses of variables. Let x be a variable in a
module M. A definition of x is associated with each node
n in G(M) that represents a statement fragment that can
assign a value to x; this definition is denoted by 4, (x).
The set of variables for which there is a definition asso-
ciated with a particular node n is denoted by DE-
FINED (n). A use of x is associated with each node n in
G (M) that represents a statement fragment that can ac-
cess the value of x; this use is denoted by u, (x).? The set
of variables for which there is a use associated with a par-
ticular node n is denoted by USED (n).

A use u,(x) is called a predicate use iff node n repre-
sents the predicate from a conditional branch statement;
otherwise u, (x) is called a computation use. Note that a
predicate use is associated with any node having two or
more successors. A node representing a predicate is as-
sumed to have at least one variable use but no definitions
associated with it.

Data flow analysis is concerned not only with the defi-
nitions and uses of variables, but also with subpaths from
definitions to statements where those definitions are used.
A definition-clear subpath with respect to (wrt) a variable
x is a subpath p such that for all nodes n in p, x ¢ DE-
FINED(n). A definition d,,(x) reaches a use u,(x) iff
there is a subpath (m) - p - (n) such that p is definition-
clear wrt x. It is possible that a given definition might not
reach any use or that a given use might not be reached by
any definition. Since these anomalies are normally con-
sidered to be errors and are easily detectable by static
analysis [16], we assume that every definition of a vari-
able x reaches at least one use of x and that every use of
x is reached by at least one definition of x.

When a module receives information from a calling
module via parameters or global variables, we add a node,
n;,, to the control flow graph and associate with it defi-

“When nodes are subscripted, as in n,, we abbreviate d,, (x) to d;(x) and
abbreviate u,, (x) to u,(x).

1320

nitions of those variables importing information. The edge
(ng, m), where m is the node representing the entry point
of the module, is replaced by the edges (n,, n;,) and (n,,,
m). We assume that there is at least one definition asso-
ciated with a control flow graph, although this definition
may be associated with n;,. Similarly, when a module re-
turns information via parameters or global variables, we
add a node, n,,, to the control flow graph and associate
with it uses of those variables exporting information from
the module. The edge (m, ny), where m is the node rep-
resenting the exit point of the module, is replaced by the
edges (m, n,,,) and (n,,, ny). Since n, and n; do not rep-
resent statement fragments, there are no definitions or uses
associated with either node.

A path selection criterion, or simply a criterion, is a
predicate that assigns a truth value to any pair (M, P),
where M is a module and P is a subset of PATHS(M). A
pair (M, P) satisfies a criterion C iff C(M, P) = true. A
path selection criterion C; subsumes a criterion C, iff
every pair (M, P) that satisfies C, also satisfies C,. Two
criteria are equivalent iff each subsumes the other. A cri-
terion C, strictly subsumes a criterion C, iff C, subsumes
C, but C, does not subsume C,. Two criteria are incom-
parable iff neither criterion subsumes the other. Note that
the subsumption relation defines a partial order on any set
of path selection criteria.

III. DEFINITIONS OF THE CRITERIA

In this section, we define the family of path selection
criteria proposed by Rapps and Weyuker, the Required -
Tuples criteria proposed by Ntafos, and the three criteria
proposed by Laski and Korel.

A. The Rapps and Weyuker Family of Criteria

Rapps and Weyuker define a family of path selection
criteria and analyze these criteria in an attempt to specify
the subsumption relationships that exist among the mem-
bers of the family [18], [19]. This family includes three
well-known control flow criteria and some new path se-
lection criteria based on the concepts of data flow analy-
sis.

The control flow criteria considered by Rapps and
Weyuker are All-Paths (path coverage), All-Edges
(branch coverage), and All-Nodes (statement coverage).
The All-Paths criterion requires that a path set contain
every path through a module’s control flow graph. The
All-Edges and All-Nodes criteria require that a path set
cover every edge and every node, respectively.

The pair (M, P) satisfies the All-Paths criterion iff
P = PATHS (M).

The pair (M, P) satisfies the All-Edges criterion iff

for all edges e, there is at least one path in P along
which e occurs.

The pair (M, P) satisfies the All-Nodes criterion iff
for all nodes n, there is at least one path in P along
which n occurs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 11, NOVEMBER 1989

It is well-known that (for well-formed graphs) All-Paths
subsumes All-Edges, which subsumes All-Nodes. For
most modules M, the only pairs (M, P) that satisfy the
All-Paths criterion are those whose path set P is infinite.
Thus, All-Paths is not useful for such modules. On the
other hand, important combinations of nodes and/or edges
might not be required by either All-Edges or All-Nodes.
The data flow criteria developed by Rapps and Weyuker
distinguish combinations that are important in terms of
the flow of data through a module. Their criteria direct
the selection of definition-clear subpaths between defini-
tions and uses reached by those definitions.

Rapps and Weyuker first define a criterion that forces
each definition to be used. The All-Defs criterion requires
that a path set contain at least one definition-clear subpath
from each definition to some use reached by that defini-
tion.

The pair (M, P) satisfies the All-Defs criterion iff
for all definitions d,, (x), there is at least one subpath
(m) - p - (n) in P such that p is definition-clear wrt
x and there is a use u, (x).

Next, Rapps and Weyuker define a criterion that re-
quires that all uses reached by a definition be covered.
The All-Uses criterion requires that a path set contain at
least one definition-clear subpath from each definition to
each use reached by that definition and each successor of
the use. The significance of the successor node is that it
forces all branches to be taken following a predicate use.

The pair (M, P) satisfies the All-Uses criterion iff
for all definitions d,,(x), all uses u,(x) reached by
d,, (x), and all successors n’ of node n, P contains
at least one subpath (m) - p - (n, n') such that p is
definition-clear wrt x.

Rapps and Weyuker define three criteria that are similar
to All-Uses but that distinguish between computation uses
and predicate uses. The All-C-Uses/Some-P-Uses crite-
rion requires that a path set contain at least one definition-
clear subpath from each definition to each computation
use reached by that definition; if the definition reaches
only predicate uses, the path set must contain at least one
definition-clear subpath from the definition to a predicate
use.

The pair (M, P) satisfies the All-C-Uses/Some-P-
Uses criterion iff for all definitions d,,(x):

1) For all computation uses u,(x) reached by
d, (x), P contains at least one subpath (m) : p - (n)
such that p is definition-clear wrt x;

2) If there is no computation use of x reached by
d,, (x), then for at least one predicate use u,(x), P
contains a subpath (m) * p + (n) such that p is def-
inition-clear wrt x.

The All-P-Uses/Some-C-Uses criterion requires that a
path set contain at least one definition-clear subpath from
each definition to each predicate use reached by that def-

CLARKE er al.: DATA FLOW PATH SELECTION CRITERIA

inition and each successor of that use; if the definition
reaches only computation uses, the path set must contain
at least one definition-clear subpath from the definition to
a computation use.

The pair (M, P) satisfies the All-P-Uses/Some-C-
Uses criterion iff for all definitions d,,(x):

1) For all predicate uses u, (x) reached by d,, (x)
and all successors n' of node n, P contains at least
one subpath (m) - p - (n, n') such that p is defini-
tion-clear wrt x;

2) If there is no predicate use of x reached by
d,,(x), then for at least one computation use u,(x),
P contains a subpath (m) - p - (n) such that p is
definition-clear wrt x.

The All-P-Uses criterion requires that a path set contain
at least one definition-clear subpath from each definition
to each predicate use reached by that definition and each
successor of the use.

The pair (M, P) satisfies the All-P-Uses criterion iff
for all definitions d,,(x), all predicate uses u,(x)
reached by d,,(x), and all successors n' of node n,
P contains at least one subpath (m) - p - (n, n')
such that p is definition-clear wrt x.

The final criterion, All-DU-Paths (DU stands for defi-
nition-use), goes a step further than All-Uses; rather than
requiring one definition-clear subpath from every defini-
tion to all the successor nodes of each use reached by that
definition, All-DU-Paths requires every such definition-
clear subpath that is a simple cycle or is cycle-free. This
limitation on cycles is included to ensure that the path set
is finite.

The pair (M, P) satisfies the All-DU-Paths criterion
iff for all definitions d,,(x), all uses u,(x) reached
by d,,(x), and all successor nodes n' of n, P con-
tains every subpath (m) - p - (n, n') such that (m)
- p - (n) is a simple cycle or is cycle-free and p is
definition-clear wrt x.

B. Ntafos’ Required k-Tuples Criteria

Ntafos also uses data flow information to overcome the
shortcomings of using control flow information alone to
select paths. He defines a class of path selection criteria,
based on data flow analysis, called Required k-Tuples
[11]-[13]. These criteria require that a path set cover
chains of alternating definitions and uses, called k-dr in-
teractions. Each definition in a k-dr interaction reaches
the next use in the chain, which occurs at the same node
as the next definition in the chain. Thus a k-dr interaction
propagates information along a subpath, which is called
an interaction subpath for the k-dr interaction.

The Required k-Tuples criteria are only defined for k =
2. Fork = 2, ak-dr interaction is a sequence « = [d|(x,),
U (xy), ... d_ (X), up(x,—)] of k — 1 definitions
and k — 1 uses associated with k distinct nodes ny, n,,

., Ny, where forall i, 1 < i < k, the ith definition

1321

d;(x) reaches the ith use u;,(x;). Note that, although
the nodes must be distinct, the variables x|, x5, * -+ , X, _
need not be distinct. An interaction subpath for k is a
subpathp = (ny) - p; * ... * () * pr-1 - (ng) such
that for all i, 1 < i < k, subpath p; is definition-clear wrt
X«

A Required k-Tuples criterion is satisfied by a pair (M,
P) only if there is at least one interaction subpath in P for
every I-dr interaction in G(M), 2 < | < k. In addition,
P must exercise certain branches and loops with particular
kinds of subpaths. To exercise all branches from a pred-
icate use u;(x;_) that ends an [-dr interaction A, P must
contain a subpath p - (m) for each successor m of node
n;, where p is an interaction subpath for A. To exercise
loops, if L is the innermost loop containing the first defi-
nition or last reference of an /-dr interaction A, then P
must contain subpaths that both cover N\ and exercise L a
minimal and larger number of times.

In Ntafos’ definition of the Required k-Tuples criteria,
definitions and uses of all the variables in a module are
associated with a ‘‘source’’ and ‘‘sink’’ node, respec-
tively. To achieve the same effect, we require that: 1) the
control flow graphs to which Ntafos’ criteria are applied
always contain the nodes n;, and n,,,, 2) definitions of all
variables (not just those that import information) are as-
sociated with n;,, and 3) uses of all variables (not just
those that export information) are associated with 7,,,.

We now formally define the Required k-Tuples criteria
as described in [11]-[14]. Let k be a fixed integer, k =
2.

The pair (M, P) satisfies the Required k-Tuples
criterion iff for all [-dr interactions N in G(M), 2 <
| < k, each of the following conditions holds:

1) For all successors m of the node n, associated
with the last use in A, P contains a subpath p * (m)
such that p is an interaction subpath for A;

2) If the node n, associated with the first defini-
tion in N occurs in a loop, then P contains subpaths
p=p - (n) - py-psandp’ =pi- () p;-
pi such that: (n)) - p, - pyand (ny) * p; * pj begin
with interaction subpaths for N, py - (n;) - pyis a
cl-subpath for the loop L immediately containing n,
that traverses L a minimal number of times, and
pi + (ny) * p5is a cl-subpath for L that traverses L
some larger number of times;

3) If the node n, associated with the last use in A
occurs in a loop, then P contains subpaths p = p, -
p> - (m) - psandp’ =pi - p5 - (n) - p3such that:
p1* p2 - (ny)and pi - pj - (n;) end with interaction
subpaths for N, p, - (n;) - p; is a cl-subpath for the
loop L immediately containing n, that traverses L a
minimal number of times, and p5 - (n;) - pjisacl-
subpath for L that traverses L some larger number of
times.

*A loop L immediately contains a node iff L contains the node and there
is no subloop of L that also contains it.

1322

Our definition for a Required k-Tuples criterion differs
from that given by Ntafos in that ours requires interaction
subpaths for every [-dr interaction where [< k, while his
requires interaction subpaths only for every k-dr interac-
tion. Ntafos’ Required k-Tuples criterion does not nec-
essarily subsume his Required (k — 1)-Tuples criterion
for a fixed k > 2, because for any module there exists a
constant n such that there are no k-dr interactions for k >
n. It is clear from Ntafos’ examples, however, that he did
intend the Required k-Tuples criterion to subsume the Re-
quired (k — 1)-Tuples criterion for k > 2. Our definition
of the criteria assures this.

C. Laski’s and Korel’s Criteria

Laski and Korel define three path selection criteria
based on data flow analysis [9]. Their criteria emphasize
the fact that a given node may contain uses of several
different variables, where each use may be reached by
several definitions occurring at different nodes. Laski’s
and Korel’s criteria are concerned with selecting subpaths
along which the various combinations of definitions reach
the node. We refer to their three criteria as the Reach
Coverage criterion, the Context Coverage criterion, and
the Ordered Context Coverage criterion.

The Reach Coverage criterion was originally defined by
Herman [5]. It requires that a path set contain at least one
subpath between each definition and each use reached by
that definition.

The pair (M, P) satisfies the Reach Coverage cri-
terion iff for all definitions d,,(x) and all uses u, (x)
reached by d,,(x), P contains at least one subpath
(m) + p * (n) such that p is definition-clear wrt x.

Before defining the remaining two criteria, some addi-
tional terminology must be introduced. Let n be a node in
a control flow graph G(M), and let {x, x5, . .., x;} be
a nonempty subset of USED(n). An ordered definition
context of node n is a sequence of definitions ODC(n) =
ld,(xy), d>,(x3), ..., d.(x;)] associated with nodes n,,
n,, . . ., nsuch that there exists a subpath p - (n), called
an ordered context subpath for ODC (n), with the follow-
ing property: foralli, 1 <i < k,p =p; - () * q,
where d;(x;) occurs at n; and g; is definition-clear wrt x;
and for all j, i < j < k, either n; = n; or n; occurs along
g;. Thus, an ordered definition context of a node is a se-
quence of definitions that occur along the same subpath
and that reach uses at that node via the subpath. The order
of the definitions in the sequence is the same as their order
along the subpath. An ordered context subpath for an or-
dered definition context is a subpath along.which the or-
dered definition context occurs.

Again, let n be a node in a control flow graph G(M),
and let {x,, x5, ... , x;} be a nonempty subset of
USED (n). A definition context of node n is a set of def-
initions DC(n) = {d,(xy), dy(x3), . . ., di(x;) }, some
permutation of which is an ordered definition context of
n. There is, in general, a many-to-one relationship be-
tween the ordered definition contents of n, which are sets

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 1l. NOVEMBER 1989

of definitions, and the definition contexts of n, which are
sequences of definitions. A context subpath for a DC(n)
is a subpath along which DC(n) occurs. Any ordered
context subpath for an ODC(n) is a context subpath for
the corresponding DC (n).

The Context Coverage criterion requires that a path set
cover every definition context in a module; the Ordered
Context Coverage criterion requires that every ordered
definition context be covered. The Context Coverage and
Ordered Context Coverage criteria defined here differ
somewhat from those originally defined by Laski and Ko-
rel, who require a definition context or ordered definition
context of a node to include definitions of all variables
used at the node, instead of any subset. Thus, the criteria
we define require paths to a statement even when there is
no path that defines all the variables used at the state-
ment—a situation that might legitimately occur, for ex-
ample, if the statement calls a procedure that references
some of its parameters conditionally. We now formally
define the Context Coverage and Ordered Context Cov-
erage criteria.

The pair (M, P) satisfies the Context Coverage cri-
terion iff for all nodes n and for all definition con-
texts DC(n), P contains at least one context subpath
for DC(n).

The pair (M, P) satisfies the Ordered Context
Coverage criterion iff for all nodes n and for all or-
dered definition contexts ODC(n), P contains at
least one ordered context subpath for ODC(n).

IV. ANALYSIS OF THE CRITERIA

In this section, we investigate the subsumption rela-
tionships between the criteria presented in Section III.
This analysis is important in understanding the differences
between the criteria. Clearly, no new criteria should be
proposed without first demonstrating where those criteria
fit into the subsumption hierarchy and the significance of
those differences. The analysis is based upon a ‘‘reason-
able’’ model of an annotated control flow graph. As noted
previously, we took care in formulating the criteria in
terms of this model so that the results of our analysis
would not be biased based on our choice of model or the
redefinition of the criteria in terms of that model. For the
most part, the model is similar to that usually assumed by
those doing such analysis, but the failure to explicitly de-
fine the model has led to misunderstandings or inaccurate
analysis in the past. Thus, before presenting the analysis
results we remind the reader of the assumptions developed
in Section II:

1) There are no edges of the form (n, n;) or (ns, n) for
any node n;

2) There are no edges of the form (n, n) for any node
n;

3) There is at most one edge of the form (m, n) for any
pair of nodes m and n;

4) Every control flow graph is well-formed;

5) Every loop has a single entry and single exit node;

CLARKE er al.: DATA FLOW PATH SELECTION CRITERIA

6) At least one variable use is associated with a node
representing a predicate;

7) No variable definitions are associated with a node
representing a predicate;

8) Every definition of a variable reaches at least one
use of that variable;

9) Every use of a variable is reached by at least one
definition of that variable;

10) Every control flow graph contains at least one vari-
able definition;

11) No variable definitions or uses are associated with
n, or ny.

A. Evaluating the Rapps and Weyuker Hierarchy

In addition to defining their family of path selection cri-
teria, Rapps and Weyuker provide the subsumption rela-
tionships illustrated in Fig. 1 [18], [19]. Because Rapps
and Weyuker do not offer a proof that All-DU-Paths
strictly subsumes All-Uses, we prove it here. First, how-
ever, we must prove a graph-theoretic lemma.

Lemma 1: Let (m) + p - (n) be a subpath in a control
flow graph G(M), such that there is a definition d,(x)
and p is definition-clear wrt x. Then there exists a subpath
r=(m) - p' - (n)in G(M) such that r is cycle-free or
is a simple cycle and p’ is definition-clear wrt x.

Proof: Since p is definition-clear wrt x, m does not
occur along p, and if n occurs along p then n has a first
occurrence. Thus, there is a subpath (m) - g - (n) in
G (M) such that neither m nor n occurs along g and q is
definition-clear wrt x. If g is cycle-free then we may let r
=(m) - q- (n).

Suppose, however, that g contains one or more cycles.
It is a well-known result that if there exists a subpath (m)
- g - (n) in a graph such that g is not cycle-free, then
there exists a subpath (m) + ¢’ - (n) in the graph, where
q' is cycle-free and is obtained by deletion of nodes from
g. Since no definitions have been added to q’, ¢’ is defi-
nition clear wrt x. Thus, we may let r = (m) * q' -
(n). ([

Theorem 1: The All-DU-Paths criterion strictly sub-
sumes the All-Uses criterion.

Proof: We first prove that the All-DU-Paths crite-
rion subsumes the All-Uses criterion. Suppose the pair
(M, P) satisfies All-DU-Paths. Let d,,(x) be a definition,
let u, (x) be a use reached by d,,(x), and let n’ be a suc-
cessor of node n. To prove that (M, P) satisfies All-Uses,
it is sufficient to show that P must contain at least one
subpath of the form

(m) - p - (n,n'), (1)
where p is definition-clear wrt x. Since d,,(x) reaches
u,(x), there is a subpath (m) - q¢ - (n, n')in G(M) such
that ¢ is definition-clear wrt x. Thus, by Lemma 1, there
is a subpath r = (m) - ¢’ - (n, n') in G(M) such that
(m) - q’ - (n) is cycle-free or is a simple cycle and g’ is
definition-clear wrt x. Since (M, P) satisfies All-DU-
Paths, P must contain r. But r is of the form shown in
(1), and so (M, P) satisfies All-Uses. Since (M, P) was

1323

All-Paths

|

All-DU-Paths

!

All-Uses

/\

All-C-Uses/Some-P-Uses All-P-Uses/Some-C-Uses

\/

All-Defs

All-P-Uses

!

All-Edges

!

All-Nodes
Fig. 1. The Rapps and Weyuker subsumption hierarchy.

any pair satisfying All-DU-Paths, that criterion subsumes
All-Uses.

We now show that All-Uses does not subsume All-DU-
Paths. Consider the module M, and its control flow graph
G(M,), both shown in Fig. 2. The pair (M,, P) satisfies
All-Uses, where

P = {(n:’ ny, Ny, N3, N4, N5, Ng, nf),

(n5, ny, na, 1y, ng, nf)}, (2)

It does not satisfy All-DU-Paths, however, because P does
not contain all subpaths of the form (n,) * p * (ns, ns),
where p is definition-clear wrt y. In particular, P does not
contain the subpath (n,, n,, n3, ny, ne, ny). Thus, All-
Uses does not subsume All-DU-Paths. O

B. Incorporating Ntafos’ Required k-Tuples Criteria

In this section, we compare Ntafos’ Required k-Tuples
criteria to the Rapps and Weyuker criteria. First, Ntafos’
criteria form a hierarchy.

Theorem 2: Each Required k-Tuples criterion strictly
subsumes the Required (k — 1)-Tuples criterion.

Proof: Obvious from the definition. dJ

The All-Paths criterion obviously subsumes each of the
Required k-Tuples criteria. None of the Required k-Tu-
ples criteria subsume the All-Defs criterion, because the
Required k-Tuples criteria do not require that a variable
definition be covered if its only use is at the node where
the definition occurs. The All-DU-Paths criterion does not
subsume any of the Required k-Tuples criteria, because
All-DU-Paths does not require each loop containing a def-
inition or use to be tested with at least two cl-subpaths as
do the Required k-Tuples criteria. These last two facts
imply that the Required k-Tuples criteria are incompara-
ble to all the criteria that are subsumed by All-DU-Paths
and that subsume All-Defs. Because the Required k-Tu-
ples criteria require that both edges from a branch predi-

1324

di(z), di(y)

ny input (z, ¥);
ny if z < O then
n3 T = 1; u2(%)

end if; @ ds(z)
ng if y > O then
n5 y :=0;

end if; ds(y)
ne output (z, ¥);

Fig. 2. Module M, and its control flow graph G(M,).

cate be covered, they do subsume the All-P-Uses crite-
rion. We now formally state and prove each of these
relationships.

Theorem 3: There is no Required k-Tuples criterion that
subsumes the All-Defs criterion.

Proof: Consider the module M, and its control flow

graph G(M,), both shown in Fig. 3. The 2-dr interac-
tions associated with G(M,) are as follows:

[din(accept), us(accept)], |di,(accept), uy,(accept)],
[di(state), uy(state)],
[dy(char), u;(char)],
[, (char), us(char)],
[dy(state), u,,(state)],
[d4(accept), ug(accept)],

[d)(state), uy,(state)],

[d,(char), us(char)],
[d>(char), uy,(char)],

[d.(accept), u,,(accept)].
The 3-dr interactions associated with G(M,) are:

[d, (state), u,(state), dy(state), U, (state)),
[d, (state), uy(state), dy(accept), ug(accept)],
(di (state), uy(state), dy(accept), u,,(accept)],

[d>(char), us(char), d,(state), u,,(state)],
[d>(char), uy(char), d,(accept), ug(accept)],
[dy(char), us(char), d,(accept), U, (accept)].

There are no k-dr interactions associated with G(M,) for
k > 3. The pair (M,, P) satisfies each Required k-Tuples
criterion, where

P = {Pl,Pz,Ps}
and
Py = (l’l_‘, Niyy Ny Ny, N3, N4, Rs, Ny, N3, né’ ey Noyrs nf)a
P = (nw iy Ry, Ry N3, Ay, s, Ngy Ny s nf),
Py = (ny, My, ny, my, Ny, ns, NG, Ry, M)

This pair contains interaction subpaths for the 2-dr and
3-dr interactions associated with G(M,) and contains the
additional subpaths required because some of these inter-
actions begin or end in loops and because some end in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

15. NO. 1i. NOVEMBER 1989

dmfstnte) din(char),
-- initial, blank, and cr dinlaceept)
-= are constants.
7y state := initial;
repeat
g input (char);
ns if char ¢ {blank, cr} then
~-The procedure fsa takes
--char and state as inputs
--and yields state and
~-accept as outputs.
ng fsa (state, char, accept);
end if;
ns until char = cr;
ng output (accept);

dy(state)
dy(char)

us(char)
{ns) du(state), dy(accept)

ug(state), ua{char)
us(char)

ug(accept)

: Uoue(state), upur(char),
Ugug(aceept)

Fig. 3. Module M, and its control flow graph G(M,).

branch predicates. Although the Required k-Tuples cri-
teria artificially introduce a use of state at n,,, for All-
Defs the only use of d,(state) is at n4. Thus, (M,, P)
does not satisfy the All-Defs criterion, because P does not
contain a subpath (n,) * p + (n4) such that p is definition-
clear wrt the variable state. O
Corollary 1: The All-Paths criterion strictly subsumes
each of the Required k-Tuples criteria.
Theorem 4: The All-DU-Paths criterion does not sub-
sume the Required 2-Tuples criterion.
Proof: Consider the module M; and its control flow
graph G(M;), both shown in Fig. 4. The pair (M3, P)
satisfies the All-DU-Paths criterion, where

P = {(ns, ny, Ny, N3, Ny, N3, Ny, nf)}.

It does not satisfy the Required 2-Tuples criterion, how-
ever, because there is no subpath p; - p, * (n;) - p3in P
such that p, - p> - (n,) ends with an interaction subpath
for the 2-dr interaction [d,(x), u>(x)], and p, * (n,) *
ps is a cl-subpath for the loop in G(M;) that traverses it
a minimal number of times (in this case once).]

Corollary 2: Each Required k-Tuples criterion is in-
comparable to the All-DU-Paths criterion, the All-Uses
criterion, the All-C-Uses/Some-P-Uses criterion, the All-
P-Uses/Some-C-Uses criterion, and the All-Defs crite-
rion.

Theorem 5: Each Required k-Tuples criterion sub-
sumes the All-P-Uses criterion.

Proof: Suppose the pair (M, P) satisfies the Re-
quired k-Tuples criterion, where k = 2. Let u,(x) be a
predicate use reached by a definition d,,(x), and let n’ be
a successor of node n. To prove that (M, P) satisfies All-
P-Uses, it is sufficient to show that P must contain at least
one subpath of the form

(m) - p - (n,n"), (3)
where p is definition-clear wrt x. Note that m # n, be-
cause a definition and a predicate use can not be associ-
ated with the same node. Thus A = [d,,(x), u,(x)] is a
2-dr interaction in G(M). Since (M, P) satisfies the Re-
quired k-Tuples criterion, P must contain a subpath g -
(n'), where g is an interaction subpath for A. By defini-

CLARKE er al.: DATA FLOW PATH SELECTION CRITERIA

@) di=)
n input (z);
repeat @ da(z), ux(x)
ny T =z +1; .
n3 until z > 0; ua(z
ny output (z); @ o)
(29 (=)

Fig. 4. Module M; and its control flow graph G(M;).

tion, g = (m) - q' - (n), where g’ is definition-clear wrt
x. But then g + (n’) is of the form shown in (3), and so
(M, P) satisfies All-P-Uses. Since (M, P) was any pair
satisfying the Required k-Tuples criterion, that criterion
subsumes All-P-Uses. Because k was any integer greater
than or equal to 2, each Required k-Tuples criterion sub-
sumes All-P-Uses. U

Corollary 3: Each Required k-Tuples criterion strictly
subsumes the All-P-Uses criterion, the All-Edges crite-
rion, and the All-Nodes criterion.

C. Incorporating Laski’s and Korel’s Criteria

In this section, we demonstrate the subsumption rela-
tionships between the criteria defined by Laski and Korel
and those of Rapps and Weyuker and those of Ntafos. We
first show that Laski and Korel’s criteria form a hierarchy.
The Ordered Context Coverage criterion subsumes the
Context Coverage criterion because all ordered context
subpaths for an ordered definition context ODC(n) are
context subpaths for the definition context containing the
same definitions as ODC(n). The subsumption is strict
because a context subpath for a definition context DC (n)
is not necessarily an ordered context subpath for all the
ordered definition contexts containing the same defini-
tions as DC(n). The Context Coverage criterion sub-
sumes the Reach Coverage criterion because every defi-
nition reaching a use at a node must appear in some
definition context of that node*. This subsumption is strict
because the Reach Coverage criterion does not require
paths exercising combinations of definitions as does the
Context Coverage criterion. Laski and Korel did not prove
these relationships, so we formally state and prove them.

Theorem 6: The Ordered Context Coverage criterion
strictly subsumes the Context Coverage criterion.

Proof: We first prove that the Ordered Context Cov-
erage criterion subsumes the Context Coverage criterion.
Let (M, P) be a pair satisfying Ordered Context Coverage
and let DC(n) be a definition context in G(M). To prove
that (M, P) satisfies Context Coverage, it is sufficient to
show that P must contain at least one context subpath for
DC(n). By definition, there is at least one ordered defi-
nition context of node n whose definitions are exactly the

“For reasons pointed out in Section III-C, this is not true for Laski’s
and Korel’s original definition of a definition context.

1325

elements of DC(n); let ODC(n) be such an ordered def-
inition context. Since (M, P) satisfies Ordered Context
Coverage, P must contain an ordered context subpath p
for ODC(n). But then p is also a context subpath for
DC(n). Thus, Ordered Context Coverage subsumes Con-
text Coverage.

We now prove that Context Coverage does not subsume
Ordered Context Coverage. Consider the module M, and
its control flow graph G (M,), both shown in Fig. 5. The
definition contexts associated with G(M,) are as follows:

DCy(n,) = {dl(Z)} DCZ(nz):{d3(Z)},

DC,(n3) = {d (x) dl()’)}’ DCz("3)={d1(x)7 ds()’)}’
DCy(n3) ={ds(x), di(y)}, DCi(m3) ={ds(x). do(¥)}
DC,(n,):{ }
DCI("5)={d3(Z)}
DC,(ng) ={d(Z)}
DC, ("8)={d (x), di(y) }, DC2(”8)={dl(x)7 dﬁ(}’)}ﬂ

DC;3(ng) —{d5(x), 3d1()}, DC4(”8)={d5(x)’ de()’)}-

The pair (M,, P) satisfies Context Coverage, where

P = {pi, ps. ps, s} (4)
and
py = (n,, ny, nay 13, 0y, RS, Ry, Mo, NG,
Ry, N5, My, N, Ny, 1y,
pr = (R, 1y, 0y, N3, Ay, Rs, Ny, Bs, T3,
My, He, Ry, Ha, N3, Hy, He, Ry, Ha, Hg, n_,),
py = (1, ny, Ny, Aa, Ny, Mg, N7, Mo, 13,

Ny, R, Ny, Ny, Rg, Np),

Ps = (n.* ny, na, g, ’1/).

This pair does not satisfy the Ordered Context Coverage
criterion, however, because P does not contain an ordered
context subpath for the ordered definition context
ODC(ng) = [de(y), ds(x)]. 0

Theorem 7: The Context Coverage criterion strictly
subsumes the Reach Coverage criterion.

Proof: We first prove that the Context Coverage cri-
terion subsumes the Reach Coverage criterion. Suppose
the pair (M, P) satisfies Context Coverage. Let d,,(x) be
a definition and let u,(x) be a use reached by d,,(x). To
prove that (M, P) satisfies Reach Coverage, it is sufficient
to show that P must contain at least one subpath of the
form

(n), (5)

where p is definition-clear wrt x. Since d,(x) reaches
u,(x), DC(n) = {d,,(x)} is a definition-context of node
n. Because (M, P) satisfies Context Coverage, P must

(m) - p-

1326

() A=), di(y), di(2)

3! input (z, y, 2);
ng while 2z < 100 loop
n3 z = flz,y);
7y if z < 50 then
ns z = z;

else
ng Yy =z

end if;
nr end loop;
ng output (z, ¥);

Fig. 5. Module M, and its control flow graph G(M,).

contain a context subpath g for DC(n). By definition, g
=g, (m)* q * (n), where g, is definition-clear wrt x.
But then (m) + g, * (n) is of the form shown in (5), and
so (M, P) satisfies Reach Coverage. Thus, Context Cov-
erage subsumes Reach Coverage.

We now show that the Reach Coverage criterion does
not subsume the Context Coverage criterion. Consider
again the module M, and its control flow graph G(M,),
both shown in Fig. 2. The pair (M,, P) satisfies Reach
Coverage, where P is defined by (2). It does not satisfy
Context Coverage, however, because P contains no con-
text subpath for the definition context DC(ng) = {d,(x),
ds(y)}.

Having proven how Laski’s and Korel’s three criteria
relate to each other, we now show how they relate to the
other data flow criteria. The Ordered Context Coverage
criterion does not subsume the All-Nodes criterion, be-
cause Ordered Context Coverage does not require that
both branches following a predicate use be taken. The All-
DU-Paths criterion does not subsume the Context Cov-
erage criterion, because the presence of a loop between a
definition and a node may cause all the context subpaths
for a definition context of the node to contain nonsimple
cycles. None of the Required k-Tuples criteria subsumes
Context Coverage either, because the definitions in a def-
inition context are not necessarily linked by an interaction
subpath. These three facts imply that Ordered Context
Coverage and Context Coverage are incomparable to all
the criteria that are subsumed by All-DU-Paths or the Re-
quired k-Tuples criteria and that subsume All-Nodes. The
All-Uses criterion is similar to the Reach Coverage cri-
terion but strictly subsumes it, because Reach Coverage
does not require that all branches following a predicate
use be covered as does All-Uses. Finally, Reach Cover-
age strictly subsumes the All-C-Uses/Some-P-Uses cri-
terion because it requires that every use be exercised at
least once. It follows from the above and the fact that the
All-P-Uses/Some-C-Uses criterion is incomparable to All-
C-Uses/Some-P-Uses that Reach Coverage is incompa-
rable to the criteria that are subsumed by All-P-Uses/
Some-C-Uses and that subsume All-Nodes.

Theorem 8: The Ordered Context Coverage criterion
does not subsume the All-Nodes criterion.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

15, NO. 11, NOVEMBER 1989

ny input (z);

ng if z = 1 then

n3 output (1);
else

ng output (0);

end if;

Fig. 6. Module Mj and its control flow graph G (M5).

Proof : Consider the module M;5 and its control flow
graph G(M;), both shown in Fig. 6. The only ordered
definition context associated with G(Ms) is ODC(n,) =
[di(x)]. Thus, the pair (Ms, P) satisfies the Ordered
Context Coverage criterion, where

P = {(ns, ny, ny, N3, ”f)}

It does not satisfy the All-Nodes criterion, however, be-
cause node n, does not occur along the path in P.]

Corollary 4: The All-Paths criterion strictly subsumes
the Ordered Context Coverage criterion.

Theorem 9: The All-DU-Paths criterion does not sub-
sume the Context Coverage criterion.

Proof: Consider again the module M, and its control

flow graph G(M,), both shown in Fig. 5. The pair (M,,
P) satisfies the All-DU-Paths criterion, where

pP= {Pl, Pz,P3}
and

p1 = (ny, ny, ny, n3, ny, ns, ny, ny, N3, Ny,
e, Mg, Ny, N3, Ay, Ng, N7, Ny, Ng, nj),

p2 = (ny, ny, ny, n3, ny, ns, ny, ny, ng, nf),

p3 = (ng, ny, ny, ng, nf)~

This pair does not satisfy the Context Coverage criterion,
however, because P does not contain a context subpath
for the definition context DC(ng) = {d;(x), ds(y)}. O

Theorem 10: There is no Required k-Tuples criterion
that subsumes the Context Coverage criterion.

Proof: Consider again the module M, and its control
flow graph, both shown in Fig. 2. The pair (M,, P) sat-
isfies each Required k-Tuples criterion, where P is de-
fined by (2). It does not satisfy the Context Coverage cri-
terion, however, because P contains no context subpath
for the definition context DC(ng) = {d,(x), ds(y)}. O

Corollary 5: The Context Coverage and Ordered Con-
text Coverage criteria are incomparable to the All-DU-
Paths, Required k-Tuples, All-Uses, All-P-Uses/Some-C-
Uses, All-P-Uses, All-Edges, and All-Nodes criteria.

Theorem 11: The All-Uses criterion strictly subsumes
the Reach Coverage criterion.

Proof: We first prove that the All-Uses criterion sub-
sumes the Reach Coverage criterion. Suppose the pair (M,
P) satisfies All-Uses. Let u,(x) be a use reached by a

CLARKE er al.: DATA FLOW PATH SELECTION CRITERIA

) input (z);
Ty if =z > 0 then
n3 if z > 1 then
ng output (0);
else
ns output (1);
end if;
else
ng output (2);

end if;

Fig. 7. Module M, and its control flow graph G(M;).

definition d,,(x). To prove that (M, P) satisfies Reach
Coverage, it is sufficient to show that P must contain at
least one subpath of the form (m) - p + (n), where p is
definition-clear wrt x. Since (M, P) satisfies All-Uses, P
must contain a subpath (m) - p - (n, n'), where p is
definition-clear with respect to x, for every successor n’
of node n. Since every node except the final node has at
least one successor and by definition the final node has no
uses, (M, P) satisfies Reach Coverage. Thus, All-Uses
subsumes Reach Coverage.

Clearly the Reach Coverage criterion can not subsume
the All-Uses criterion, because by Theorem 7 the Context
Coverage criterion subsumes Reach coverage and by Cor-
ollary 5 Context Coverage does not subsume All-Uses.

O

Theorem 12: The Reach Coverage criterion strictly
subsumes the All-C-Uses/Some-P-Uses criterion.

Proof: We first prove that the Reach Coverage cri-
terion subsumes the All-C-Uses/Some-P-Uses criterion.
Let (M, P) be a pair satisfying Reach Coverage and let
d,,(x) be a definition. To prove that (M, P) satisfies All-
C-Uses/Some-P-Uses, it is sufficient to show that:

1) For all computation uses u,(x) reached by 4, (x),
P must contain at least one subpath (m) - p + (n) such
that p is definition-clear wrt x;

2) If there is no computation use of x reached by d,, (x),
then for at least one predicate use u, (x), P must contain
a subpath (m) - p - (n) such that p is definition-clear wrt
X.

First, suppose d,, (x) reaches a computation use u, (x).
Since (M, P) satisfies Reach Coverage, P must contain a
subpath (m) - p - (n) such that p is definition-clear wrt
x. On the other hand, suppose there is no computation use
reached by d,, (x). Because every definition must reach at
least one use, there is a predicate use u,(x) reached by
d,(x). Again, since (M, P) satisfies Reach Coverage, P
must contain a subpath (m) - p - (n) such that p is defi-
nition-clear wrt x. Thus Reach Coverage subsumes All-
C-Uses/Some-P-Uses.

We now show that the All-C-Uses/Some-P-Uses crite-
rion does not subsume the Reach Coverage criterion.
Consider the module Mg and its control flow graph
G(My), both shown in Fig. 7. The pair (Mg, P) satisfies
All-C-Uses/Some-P-Uses, where

P = {(ns, n,, ny, ng, nf)}.

1327

All-Paths

T

Ordered Context Coverage All-DU-Paths Required k-Tuples

Context Coverage Required (k-1)-Tuples
t

¥
Reach Coverage+———All- bses Required 2-Tuples

™~

All-C-Uses/Some-P-Uses All-P-Uses/Some-C-Uses

\/\

All-Defs All-P-Uses

All-Edges

All-Nodes
Fig. 8. The new subsumption hierarchy.

It does not satisfty Reach Coverage, however, because P
does not contain the subpath (n,, n,, n3), along which
d; (x) reaches u;(x).

Corollary 6: The Reach Coverage criterion is incom-
parable to the All-P-Uses/Some-C-Uses, All-P-Uses, All-
Edges, and All-Nodes criteria.

The subsumption hierarchy including all the criteria
considered is shown in Fig. 8.

V. MODIFICATION TO THE CRITERIA

The subsumption hierarchy of Fig. 8 shows that some
of the path selection criteria we have considered fail to
achieve certain minimum program coverage require-
ments. Specifically, the Required k-Tuples criteria do not
ensure that each definition in a program is referenced at
least once, and the Reach Coverage, Context Coverage,
and Ordered Context Coverage criteria each fail to ensure
that all statements are covered. The proofs given in the
preceding section suggest that simple modifications to
these criteria might correct their deficiencies. In this sec-
tion, we make those modifications and determine their ef-
fect on the subsumption hierarchy.

A. Modifications to Ntafos’ Criteria

The first modification we consider is to the Required k-
Tuples criteria. By Theorem 3, there is no Required k-
Tuples criterion that subsumes the All-Defs criterion. The
Required 2-Tuples criterion, however, is clearly similar
to the All-Uses criterion, which subsumes All-Defs. In-
deed, since Required 2-Tuples calls for tests of loops that
All-Uses does not, one might expect that Required 2-Tu-
ples, and hence all the Required k-Tuples criteria, would
strictly subsume All-Uses. As shown in the proof of
Theorem 3, however, this is not true because, if the only
use reached by d,(x) occurs at node n, the Required k-
Tuples criteria may fail to select any definition-clear sub-

1328

path wrt the variable x. The reason such a subpath may
not be selected is that the nodes associated with a k-dr
interaction must be distinct [11]-[14]; hence, there can be
no k-dr interaction containing d, (x).

If we modify the Required k-Tuples criteria to allow the
first definition and last use in a k-dr interaction to occur
at the same node, it subsumes the All-Defs criterion. We
call a sequence of definitions and uses that satisfies this
modified definition a k-dr™ interaction, and we call the
corresponding criteria the Required k-Tuples® criteria
(we omit the formal definitions, which are obvious). We
then have the following results.

Theorem 13: Each Required k-Tuples * criterion strictly
subsumes the corresponding Required k-Tuples criterion.

Proof: Obvious from the definitions. O

Theorem 14: Each Required k-Tuples* criterion strictly
subsumes the Required (k — 1)-Tuples™ criterion.

Proof: Obvious from the definition. 0

Theorem 15: Each required k-Tuples™ criterion strictly
subsumes the All-Uses criterion.

Proof: The proof that each Required k-Tuples™ cri-
terion subsumes the All-Uses criterion is similar to the
proof of Theorem 5.

We now show that the All-Uses criterion does not sub-
sume any Required k-Tuples™ criterion. If the All-Uses
criterion subsumed the Required k-Tuples™ criterion,
where k = 2, then it would also subsume the Required k-
Tuples criterion is incomparable to All-Uses. Thus, there
is no Required k-Tuples™ criterion subsumed by All-
Uses. O

Like the Required k-Tuples criteria, the Required k-Tu-
ples™ criteria do not in general select all cycle-free sub-
paths and simple cycles between a definition-use pair in a
k-dr* interaction. Thus, there is no Required k-Tuples™
criterion that subsumes the All-DU-Paths criterion. Nei-
ther does All-DU-Paths subsume any Required k-Tuples *
criterion, becuse of the tests of loops needed to satisfy the
Required k-Tuples™ criteria.

Theorem 16: Each Required k-Tuples™ criterion is in-
comparable to the All-DU-Paths criterion.

Proof: The All-DU-Paths criterion does not sub-
sume any Required k-Tuples™ criterion, or it would sub-
sume the corresponding Required k-Tuples criterion,
which by Corollary 2 can not be true.

We now show that there is no Required k-Tuples™ cri-
terion that subsumes the All-DU-Paths criterion. Con-
sider again the module M, and its control flow graph
G(M,), both shown in Fig. 2. The 2-dr™ interactions as-
sociated with G(M,) are as follows:

[d, (x), uz(x)], [dl(x), us(x)], [dl (x), unut(x)]’
[di(y), w(»)] (). us(N] [() wau(9)].
[d3(x)» uﬁ(X)]» [dz(x% um,,(x)],
[ds; (), ue(3)], [ds()s o ($)]-

There are no I-dr* interactions associated with G(M,)
for [> 2. Thus the pair (M,, P) satisfies each Required

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 11, NOVEMBER 1989

k-Tuples™ criterion, where P is defined by (2). This pair
does not satisfy All-DU-Paths, as shown in the proof of
Theorem 1. O

Corollary 7: The All-Paths criterion strictly subsumes
each Required k-Tuples* criterion.

In response to our first published evaluation of data flow
path selection criteria [1], Ntafos proposed an alternative
modification to the Required k-Tuples criteria [15], which
allows any definitions and uses in a k-dr interaction to
occur at the same node. This modification also ensures
that the Required k-Tuples criteria subsume the All-Defs
criterion, but requires more additional paths than does our
modification.

B. Modifications to Laski’s and Korel’s Criteria

We now consider modifications to Laski’s and Korel’s
criteria. By Corollaries S and 6, none of these criteria sub-
sume the All-Nodes criterion. This is because none of
Laski’s and Korel’s criteria force the coverage of all suc-
cessors of a node associated with a predicate use. There-
fore, we redefine the Laski and Korel criteria so that they
do cover these successors and then determine the place of
the modified criteria in the subsumption hierarchy. We
call the modified criteria Reach Coverage™, Context Cov-
erage’, and Ordered Context Coverage®. Reach Cover-
age™ is obviously equivalent to the All-Uses criterion. The
definitions of the other criteria are as follows:

The pair (M, P) satisfies the Context Coverage*
criterion iff for all nodes n in G(M), all definition
contexts DC(n), and all successors n’ of node n, P
contains at least one subpath p - (n') such that p is
a context subpath for DC(n).

The pair (M, P) satisfies the Ordered Context
Coverage"* criterion iff for all nodes n in G(M), all
ordered definition contexts ODC(n), and all suc-
cessors n' of node n, P contains at least one subpath
p + (n') such that p is an ordered context subpath
for ODC(n).

The Context Coverage™ criterion and the Ordered Con-
text Coverage® criterion clearly subsume the Context
Coverage criterion and the Ordered Context Coverage cri-
terion, respectively. Context Coverage® is not strong
enough to subsume Ordered Context Coverage, however,
for the same reason Context Coverage is not: there may
be several ordered definition contexts corresponding to a
single definition context, each of which must be covered
to satisfy Ordered Context Coverage.

Theorem 17: The Context Coverage ™ criterion does not
subsume the Ordered Context Coverage criterion.

Proof: Consider again the module M, and its control
flow graph G(M,), both shown in Fig. 5. The pair (M,,
P) satisfies Context Coverage™, where P is defined by
(4). This pair does not satisfy Ordered Context Coverage,
however, as shown in the proof of Theorem 6. O

We now relate the modified Laski and Korel criteria to
each other and to the remaining criteria. As one might
expect, the change we have made to Laski’s and Korel’s

CLARKE er al.: DATA FLOW PATH SELECTION CRITERIA

criteria preserves their relationship to each other. This is
because for every definition context of a node there is at
least one ordered definition context of the same node hav-
ing the same definitions.

Theorem 18: The Ordered Context Coverage® crite-
rion strictly subsumes the Context Coverage™ criterion.

Proof: The proof that the Ordered Context Cover-
age™ criterion subsumes the Context Coverage* criterion
is similar to the proof of Theorem 6.

If Context Coverage™ subsumed Ordered Context Cov-
erage”, it would subsume Ordered Context Coverage. But
by Theorem 17, this is not the case. Thus, Context Cov-
erage’ does not subsume Ordered Context Coverage ™.

0

The modified Laski and Korel criteria take a more cen-
tral position in the subsumption hierarchy and relate to the
Rapps and Weyuker criteria differently than do the origi-
nal criteria. As desired, they subsume the All-Nodes and
All-Edges criteria, because the new criteria cover all suc-
cessors of a predicate use. More significantly, they sub-
sume All-Uses, because a definition occurs in at least one
definition context of each node associated with a use
reached by that definition. The subsumption is strict be-
cause All-Uses does not require that combinations of def-
initions be tested. The modified Laski and Korel criteria
do not subsume the All-DU-Paths criterion, because any
single ordered context subpath for an ordered definition
context suffices to cover the ordered definition context;
thus all cycle-free subpaths and simple cycles between a
definition and use may not be covered.

Theorem 19: The Context Coverage* criterion strictly
subsumes the Reach Coverage™ (All-Uses) criterion.

Proof: The proof is similar to the proof of Theorem
7. [

Corollary 8: The Context-Coverage™ criterion is in-
comparable to the Ordered Context Coverage criterion.

Theorem 20: The Ordered Context Coverage™ crite-
rion does not subsume the All-DU-Paths criterion.

Proof: Consider the module M; and its control flow
graph G(M;), both shown in Fig. 9. The ordered defi-
nition contexts associated with G(M,) are as follows:

0DC\(ny) = [d,(x)].
oDC\(ns5) = [d,(¥)].
0DC\(ng) = [dy(x). d\ ()],
ODC,(ng) = [dy(¥), dy(x)].

The pair (M,, P) satisfies the Ordered Context Coverage™
criterion, where

P = {(n,., ny, ny, N3, As, He, nf),
(ng, ny, ny, ny, ns, nf)}.

This pair does not satisfy the All-DU-Paths criterion,
however, because P does not contain all subpaths of the
form (ny) - p - (ne, ny), where p is definition-clear wrt
x. In particular, P does not contain the subpath (n;, n,,

1329

ny input (z, y);
ng if F(z) then (1) di(z), di(v)
n3 output (1);

else © @ us(z)
ng output B

end if; @ @
ns if y < 0 then
ng output (z * y); @ us(y)

end if; (ne) us(z), us(y)

Fig. 9. Module M, and its control flow graph G(M;).

ng, ns, ng, ny). Thus, Ordered Context Coverage™ does
not subsume All-DU-Paths. U

Corollary 9: The All-Paths criterion strictly subsumes
the Ordered Context Coverage™ criterion.

Corollary 10: The Context Coverage” criterion and the
Ordered Context Coverage™ criterion are both incompa-
rable to the All-DU-Paths criterion.

Like the original criteria, the modified Laski and Korel
criteria do not subsume any Required k-Tuples criterion,
because they do not incorporate the tests of loops as do
the Required k-Tuples criteria.

Theorem 21: The Ordered Context Coverage® crite-
rion does not subsume any Required k-Tuples criterion.

Proof: Consider again the module M; and its control
flow graph G(Mj;), both shown in Fig. 4. The ordered
definition contexts associated with G(M;) are as follows:

ODC,(ny) = [dl(-")] ODC,(ny) = [dz(x)]
ODC\(n3) = [dz(x)]
ODC,(n,) = [dz(x)]

The pair (M3, P) satisfies the Ordered Context Coverage
criterion, where

P = {(nx, ny, Ny, N3, Ny, N3, Ay, nf)}.

This pair does not satisfy any Required k-Tuples crite-
rion, however, because P does not contain a subpath p, -
p> * (ny) - pysuch that p; - p, - (ny) ends with an inter-
action subpath for the 2-dr interaction [d, (x), u,(x)] and
p» - (ny) * ps is a cl-subpath for the loop in G(M;) that
traverses it a minimal number of times (in this case once).
Thus, Ordered Context Coverage™ does not subsume any
Required k-Tuples criterion. 0

Corollary 11: The Context Coverage " criterion and the
Ordered Context Coverage ™ criterion are incomparable to
each Required k-Tuples criterion and to each Required k-
Tuples™ criterion.

The subsumption hierarchy including the modified cri-
teria is shown in Fig. 10.

VI. CoNCLUSION

This paper shows the subsumption relationships that
exist among the data flow path selection criteria proposed
by Rapps and Weyuker, Ntafos, and Laski and Korel.
These relationships are not at all obvious; in fact, we dis-
covered errors in published statements about them [12]-

1330

All-Paths

Ordered Context Coverage® All-DL-Paths\\fquired k-Tuples*

Required (k-1)-Tuplest
¥

\

Context Coveraget

1
Reach Coverage™ All- Required 2-Tuples*

All-C-Uses/Some-P-Uses All-P-Uses/Some-C-Uses

\/\

All-Defs All-P-Uses

\

All-Edges

All-Nodes
Fig. 10. The final subsumption hierarchy.

[15], [18]. Understanding the relationships among these
criteria points out some of their strengths and weaknesses.
For example, the original Laski and Korel criteria fail to
satisfy the minimum requirement of selecting paths that
cover all edges and all nodes. On the other hand, Laski’s
and Korel’s use of combinations of definitions captures
certain data flow relationships not considered by the other
criteria.

We consider this evaluation to be a first step toward
formulating an effective testing method. In this study, we
have primarily considered data flow path selection crite-
ria. Since these criteria have related goals, we chose them
first for evaluation. Other, more diverse path selection
criteria must also be considered and their place in the sub-
sumption hierarchy determined. Not only do the sub-
sumption relationships need to be clearly understood, but
a number of other important issues must also be ad-
dressed. These include the effect of infeasible paths on
the criteria, the relative cost of the criteria, and the fault
detection capabilities of the criteria.

One problem that arises when using these data flow cri-
teria in testing is that none attempt to deal with infeasible
paths, which are a common phenomena of programs [25].
The semantics of a program cause certain paths to be
unexecutable. Consider the module Mg and its control flow
graph G(Mj), both shown in Fig. 11, where any path that
iterates the loop less than ten times is infeasible. If we use
the All-DU-Paths criterion as an example, there is no ex-
ecutable subpath from the definition of x to its only use
that is cycle free or is a simple cycle. Consequently, no
executable path would be required to test that data flow
relationship. In this example, the selected executable
paths would not even satisfy the All-Nodes criterion. In
general, the existence of a feasible path to a specific state-
ment in a module cannot be determined, and so we can-
not guarantee that any of these path selection criteria can
be satisfied by a set of feasible paths for that module. In
practice, however, we can often detect infeasible paths,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO.

11. NOVEMBER 1989

@) &)
ny input (z); @ 40
na for i in 1 .. 10 loop
n3 output (* ’); @
n4 end loop;
ng output (z); @

@ us(z)

Fig. 11. Module Mg and its control flow graph G (Mg).

either using simple static analysis or, when necessary,
symbolic evaluation techniques [2].

To be useful, a path selection criterion should prescribe
alternative guidelines when infeasible paths would be se-
lected. Frankl and Weyuker recognize the unsatisfiability
problem that arises due to infeasible paths and circumvent
it by deriving a new family of criteria from the Rapps and
Weyuker family [4]. These new criteria require the selec-
tion of feasible paths that cover definition-clear subpaths
between definitions and uses reached by those definitions.
These criteria are always satisfiable, but, in general, the
question of whether or not a set of paths satisfies any one
of these criteria is undecidable. Thus, although Frankl and
Weyuker have moved the question of undecidability, it
nonetheless remains.

Another notable absence in the evaluation presented
here is that it does not consider the cost incurred in ap-
plying the criteria. Complexity analysis of some of the
data flow path selection criteria have been performed by
their authors, where complexity is defined as the upper
bound on the number of paths needed to satisfy the cri-
terion. Weyuker determined the worst case complexity of
each criterion in Rapps’ and Weyuker’s family [23]. The
complexity of All-Defs is linear in the number of assign-
ment statements, and the complexity of All-Uses and All-
DU-Paths, respectively, are quadratic and exponential in
the number of conditional statements. Weyuker followed
this analysis by an empirical study that showed that, in
practice, these criteria are usually linear in the number of
conditional statements and that, on the average, All-Uses
and All-DU-Paths required fewer than twice the number
of test cases of All-Defs [24]. This empirical evidence
supports the practical usability of the data flow path se-
lection criteria. Ntafos proved that the complexity of Re-
quired 2-Tuples is quadratic in the number of statements
[15]. Laski found the complexity of the Reach Coverage
and Context Coverage criteria, respectively, to be linear
and quadratic in the number of definitions that reach uses
[8]. The three complexity studies are difficult to compare
due to the different bases of the complexity measures.
None of these complexity analyses. moreover, consider
the cost of selecting data to satisfy a criterion or the rel-
ative fault detection capability of the criteria.

Finally, our evaluation failed to consider the fault de-

CLARKE et al.: DATA FLOW PATH SELECTION CRITERIA

tection capabilities of the criteria. Specifically, if one cri-
terion subsumes or is incomparable to another, then what
types of faults could be revealed by executing that crite-
rion’s paths that could not be revealed by executing the
paths of the other? The fault detection capabilities of the
criteria must be understood to meaningfully evaluate the
different criteria or to assess the value of an enhancement.
For example, we could further extend the Required k-Tu-
ples criteria to require all interaction subpaths that contain
only cycle-free or simple-cycle subpaths between the
nodes of a k-dr interaction. This extension would be sim-
ilar to the way in which Rapps and Weyuker extended the
All-Uses criterion in formulating the All-DU-Paths cri-
terion. It is not clear, however, what additional types of
faults these additional subpaths might reveal. Thus, we
have decided not to propose a criterion to subsume the
three highest-ranked, incomparable criteria until this is-
sue is satisfactorily addressed.

Another study addressed the relative number of paths
required by classes of path selection criteria to achieve a
desired testing goal [26], where a testing goal is related
to fault detection. A path selection criterion is more se-
lective than another with respect to some testing goal if it
never requires more, and sometimes requires fewer, test
paths to achieve that goal. The data flow criteria as a gen-
eral class were shown to be more selective than the con-
trol flow criteria for some practical testing goals. This re-
sult, however, does not hold for all testing goals. This
supports the incorporation of both control flow and data
flow information into path selection criteria. Current data
flow criteria fail to capture all the ways in which control
and data flow information may impact a statement. A gen-
eral model of program dependencies that remedies this
failing has recently been formulated [17].

In another study, the fault detection capabilities of test
data selection criteria were analyzed via the RELAY model
[20]. The fault classification employed in that study may
prove useful in identifying the fault detection capabilities
of data flow path selection criteria as well. Moreover, this
study reaffirmed that test path and test data selection must
be performed hand-in-hand. In general, path selection is
insufficient to achieve comprehensive fault detection; the
selection of test data that does not mask faults along a
path is also necessary as is the selection of paths that en-
sure that faults are actually revealed as failures. The REe-
LAY model provides useful guidance on how to integrate
path selection with test data selection [21].

In sum, the evaluation reported here has clearly shown
that all three families of criteria have a unique contribu-
tion to make, although there is substantial overlap among
them. Now that the subsumption relationships are better
understood, we intend to focus on other important issues.
Our long-term goal is to formulate an effective testing
method. We expect that this method will integrate test
data selection with path selection as well as exploit the
data flow relationships used by the three families of data
flow path selection criteria considered in this paper and
more effectively incorporate control flow information.

1331

REFERENCES

[1] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, ‘A
comparison of data flow path selection criteria.’’ in Proc. Eighth Int.
Conf. Software Engineering, IEEE Comput. Soc., London, England,
Aug. 1985, pp. 244-251.

[2] L. A. Clarke and D. J. Richardson, ‘‘Applications of symbolic eval-
uation,’” J. Syst. Software, vol. 5, no. 1, pp. 15-35, Jan. 1985.

[3] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J. Offut, and

K. N. King, ‘*An extended overview of the mothra software testing

environment,’’ in Proc. ACM SIGSOFT/IEEE Second Workshop Soft-

ware Testing, Verification, and Analysis, IEEE Comput. Soc., Banff,

Alberta, Canada, July 1988, pp. 142-151.

P. G. Frankl and E. J. Weyuker, ‘‘Data flow testing in the presence

of unexecutable paths,”” in Proc. ACM SIGSOFT/IEEE Workshop

Software Testing, IEEE Comput. Soc., Banff, Alberta, Canada, July

1986, pp. 4-13.

[5] P. M. Herman, ‘A data flow analysis approach to program testing,”’
Australian Comput. J., vol. 8, no. 3, Nov. 1976.

[6] W. E. Howden, ‘‘Methodology for the generation of program test
data,”’ JIEEE Trans. Comput., vol. C-24, no. 5, pp. 554-559, May
1975.

[7] —, **A functional approach to program testing and analysis,”” IEEE
Trans. Software Eng., vol. SE-12, no. 10, pp. 997-1005, Oct. 1986.

[8] J. W. Laski, ‘‘On the comparative analysis of some data flow testing
strategies,”” Dep. Eng. Comput. Sci., Oakland Univ., Rochester, MI,
Tech. Rep. 87-05, May 1987.

[9] J. W. Laski and B. Korel, ‘A data flow oriented program testing
strategy,”’ IEEE Trans. Software Eng., vol. SE-9, no. 3, pp. 347-
354, May 1983.

[10] L. J. Morell, **Theoretical insights into fault-based testing,"” in Proc.
ACM SIGSOFT/IEEE Second Workshop Software Testing, Verifica-
tion, and Analysis, IEEE Comput. Soc., Banff, Alberta, Canada, July
1988, pp. 45-62.

[11] S. C. Ntafos, *‘On testing with required elements,’” in Proc. COMP-
SAC ’81, IEEE Comput. Soc., Nov. 1981, pp. 132-139.

[4

[12] —, **On required element testing,”’ Comput. Sci. Program, Univ.
Texas, Dallas, Tech. Rep. 123, Nov. 1982.

[13] —, “*On requiréd element testing,”” IEEE Trans. Software Eng.,
vol. SE-10, no. 6, pp. 795-803, Nov. 1984.

[14] —, **A comparison of some structural testing strategies,”” Comput.
Sci. Program, Univ. Texas, Dallas, Tech. Rep. 210, June 1985.

[15] —, “*A comparison of some structural testing strategies,”’ IEEE

Trans. Software Eng., vol. SE-14, no. 6, pp. 868-874, June 1988.

[16] L. J. Osterweil and L. D. Fosdick, ‘“DAVE—A validation, error de-
tection, and documentation system for Fortran programs,’’ Software
Practice and Experience, vol. 6, no. 4, pp. 473-486, Oct. 1976.

[17] A. Podgurski and L. A. Clarke, ‘‘The significance of program de-
pendences for software testing, debugging, and maintenance,’” in
Proc. ACM SIGSOFT '89: Third Symp. Testing, Verification, and
Analysis, Key West, FL, Dec. 1989.

[18] S. Rapps and E. J. Weyuker, “‘Data flow analysis techniques for test
data selection,’” in Proc. Sixth Int. Conf. Software Engineering, IEEE
Comput. Soc., Tokyo, Japan, Sept. 1982, pp. 272-277.

[19] —, “‘Selecting software test data using data flow information,”” JEEE
Trans. Software Eng., vol. SE-11, no. 4, pp. 367-375, Apr. 1985.

120] D. J. Richardson and M. C. Thompson. "*An analysis of test data
selection criteria using the RELAy model of error detection.”” Dep.
Comput. Inform. Sci.. Univ. Massachusetts, Amherst, Tech. Rep.
86-65. Dec. 1986.

[21] —. ""The RELAY model of error detection and its application.”” in
Proc. ACM SIGSOFT/IEEE Second Workshop Software Testing,
Analysis and Verification. IEEE Comput. Soc.. Banff, Alberta. Can-
ada. July 1988, pp. 223-230.

[22] L. G. Stucki, ‘‘Automatic generation of self-metric software,’” in Rec.
1973 IEEE Symp. Software Reliability, IEEE Comput. Soc., Apr.
1973, pp. 94-100.

[23] E. J. Weyuker, “‘The complexity of data flow criteria for test data
selection,”” Inform. Processing Lett.. vol. 19, pp. 103-109, Aug.
1984.

[24] —. **An empirical study of the complexity of data flow testing,”’ in
Proc. ACM SIGSOFT/IEEE Second Workshop Software Testing, Ver-
ification, and Analysis, IEEE Comput. Soc., Banff, Alberta, Canada,
July 1988, pp. 188-195.

[25] M. R. Woodward, D. Hedley, and M. A. Hennel, **Experience with
path analysis and testing of programs,’” [EEE Trans. Software Eng.,
vol. SE-6, no. 3, pp. 278-286. May 1980.

1332

[26] S. J. Zeil, *‘Selectivity of data-flow and control-flow path criteria,”’
in Proc. ACM SIGSOFT/IEEE Second Workshop Software Testing,
Verification, and Analysis, IEEE Comput. Soc., Banff, Alberta, Can-
ada, July 1988, pp. 216-222.

[27] —, ‘‘Perturbation techniques for detecting domain errors,”” /EEE
Trans. Software Eng., vol. SE-15, no. 6, pp. 737-746, June 1989.

Lori A. Clarke received the B.A. degree in math-
ematics from the University of Rochester, Roch-
ester, NY, and the Ph.D. degree in computer sci-
ence from the University of Colorado, Boulder.

She worked as a programmer for the University
of Rochester, School of Medicine, and for the Na-
tional Center for Atmospheric Research. Since
1975 she has been on the faculty in the Depart-
ment of Computer and Information Science at the
University of Massachusetts, where she currently
holds the rank of professor. She is Director of the
University’s Software Development Laboratory, which is investigating a
range of software engineering issues, and she is a principal investigator in
the Arcadia Consortium, which is investigating environment architectural
issues. Her primary research area is software engineering environments and
software validation techniques.

Dr. Clarke is a former IEEE Distinguished Visitor and ACM National
Lecturer and is currently Vice-Chair of SIGSOFT and a member of the
IEEE Executive Committee on Software Engineering.

Andy Podgurski received the M.S. and Ph.D.
degrees in computer science from the University
of Massachusetts at Amherst in 1985 and 1989,
respectively.

He is currently an Assistant Professor at the
Department of Computer Engineering and Sci-
ence, Case Western Reserve University, Cleve-
land, OH. His research interests include software
engineering, software validation, programming
languages and translators, and the automated se-
mantic analysis of programs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 11, NOVEMBER 1989

Debra J. Richardson received the B.A. degree
in mathematics from Revelle College of the Uni-
versity of California at San Diego in 1976 and the
M.S. and Ph.D. degrees in computer science from
the University of Massachusetts at Ambherst in
1978 and 1981, respectively.

She is currently an Assistant Professor in the
Department of Information and Computer Science
at the University of California, Irvine. She is a
member of the Arcadia Consortim; she serves as
chair of the consortium’s analysis working group,
which is developing a wide range of analysis techniques and investigating
their integration within a prototype environment. Her research interests in-
clude software testing, analysis, and verification, specification languages
and specification-based testing, and tool integration within software devel-
opment environments.

Steven J. Zeil (S'80-M’81) received the B.A. de-
gree in physics and applied mathematics from
Thomas More College, Fort Mitchell, KY, in 1977
and the M.S. and Ph.D. degrees in computer sci-
ence from the Ohio State University, Columbus,
in 1978 and 1981, respectively.

He is currently an Associate Professor in the
Department of Computer Science of Old Domin-
ion University in Norfolk, VA. His research in-
terests include software testing and analysis tech-
niques, software development environments, and
the design and integration of software tools.

