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Symbolic evaluation is a program analysis method that
represents a program’s computations and domain by
symbolic expressions. In this paper a general functional
model of a prograrh is first presented. Then, three related
methods of symbolic evaluation, which create this func-
tional description from a program, are described: path-de-
pendent symbolic evaluation provides a representation of
a specified path; dynamic symbolic evaluation, which is
more restrictive but less costly than path-dependent sym-
bolic evaluation, is a data-dependent method; and global
symbolic evaluation, which is the most general yet most
costly method, captures the functional behavior of an en-
tire program when successful. All three methods have
been implemented in experimental systems. Some of the
major implementation concems, which include effectively
representing loops, determining path feasibility, dealing
with compound data structures, and handling routine in-
vocations, are explained. The remainder of the paper sur-
veys the range of applications to which symbolic evalua-
tion techniques are being applied. The current and
potential role of symbolic evaluation in verification, test-
ing, debugging, optimization, and software development
is explored.

1. INTRODUCTION

The ever increasing demand for larger and more com-
plex programs has created a need for automated sup-
port environments to assist in the software development
precess. The primary components of such an environ-
ment will include validation tools to detect errors and
determine consistency, as well as development tools to’
assist in design, construction, and optimization. The use
of such tools will reduce the development costs and im-
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prove the reliability of the resulting program. Secveral
of the tools presently being developed employ a method,
called symbolic evaluation, that creates a symbolic rep-
resentation of the functional behavior of a program.
This paper describes symbolic evaluation and surveys
many of the current applications of this method.

Symbolic evaluation is a program analysis technique
that derives an algebraic representation, over the input
values, of the computations and their applicable do-
main. Thus symbolic evaluation describes the relation-
ship between the input data and the resulting values,
whereas normal execution computes numeric values but
loses information about the way in which these numeric
values were derived. There are three basic methods of
symbolic evaluation: path-dependent symbolic evalua-
tion describes data dependencies for a specified path;
dynamic symbolic evaluation produces a trace of the
data dependencies for particular input data; global
symbolic evaluation represents the data dependencies
for all paths in a program. When further analyzed, the
algebraic representations produced by symbolic evalu-
ation provide the basis for a wide range of applications,
including verification, testing, debugging, program op-
timization, and program development.

Formal verification techniques have typically ap-
plied symbolic evaluation techniques to develop verifi-
cation conditions. (Formal verification has been exten-
sively described in the literature and is not discussed
further in this paper.) There are a number of less com-
prehensive verification techniques that have used sym-
bolic evaluation to certify the correctness of selected
program properties. In addition, some current work is
being directed at developing methods that integrate
testing and formal verification, based upon symbolic
cvaluation.

For the most part, current testing research is di-
rected at either the problem of determining the paths,
the particular sequences of statements that must be
tested, or the problem of sclecting revealing test data
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for the sclected paths. For the path selection problem,
techniques such as program coverage, data flow testing,
and perturbation testing have been proposed. For the
test data sclection problem, there has been recent re-
scarch on dcveloping systematic test data selection
tcchniques that can either eliminate certain classes of
errors or provide a quantifiable error bound. Many of
these path selection and test data selection techniques
base their analysis on the information provided by sym-
bolic evaluation. Morecover, if testing reveals an error,
dcbugging techniques that are based on symbolic eval-
uation can be used to search for the cause of the error.

Symbolic evaluation also provides information that
is useful in program optimization and, if applied early
in the software development process, in program devel-
opment. It is thus a tool that can be employed through-
out the software development lifecycle and made wide
use of within an automated programming environment.

The next section of this paper introduces the basic
concepts of symbolic evaluation as well as some termi-
nology. The three methods of symbolic evaluation are
then described. Examples of the three methods are
given to demonstrate their corresponding strengths and
weaknesses. The third section discusses implementation
considerations related to all three methods, while the
fourth section describes some of the applications of
symbolic evaluation.

2. GENERAL METHODS

This section presents some concepts fundamental to
symbolic evaluation. Some terminology is introduced
and general descriptions of cach of the three methods
are provided. Initially, thesc descriptions are restricted
to single routines and to routines whose input and out-
put are done only via parameters. These restrictions are
made merely to simplify the presentation. The modifi-
cations necessary to eliminate these restrictions are ad-
dressed later.

2.1 Basic Concepts

A routine R can be viewed as a function that maps cle-
ments in a domain X into elements in a range Z. An
element in X is a vector x with specific input values, x
= (X,u Xx . - - + Xy). and corresponds to a single point in
the M-dimensional input space X. Likewise, R(x) in Z
is a vector z with specific output values, z = (z,
Zs . ... 2.). and corresponds 10 a single point in the N-
dimensional output space Z. A routine’s variables,
which store input, intermediate and output values, are
represented by a vectory = (Y. ¥ -« -0 Yw)-

Program analysis methods typically represent a rou-
tine by a directed graph. called a conrrol flow graph
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that describes the possible flow of control through the
routine. The nodes in the graph. {1. 2, ..., g}, represent
cxecutable statements. Figurc 1 presents RECTAN-
GLE, a routine that is used below to illustrate symbolic
evaluation; note that the statements in RECTANGLE
are annotated with node numbers. An edge is specified
by an ordered pair of nodes. (1, j) that indicates that a
transfer of control exists from node i to node j. Associ-
ated with each transfer of control are conditions under
which such a transfer occurs. The branch predicate that
governs traversal of the edge (i j) is denoted by bp(i,
). For a sequential transfer of control, the branch pred-
icate has the constant value true and thus need not be
considered. For a binary condition at node i that trans-
fers control to cither node j or k. the branch predicate
for edge (i, j) is the complement of the branch predicate
for the edge (i, k)—thus,

bp(i. j) = not (bp(i.X)).

In RECTANGLE for example, node 1 precedes nodes
2 and 3 and

bp(1.2) = (H > B — A),
bp(1.3) = (H < B — A).

Note that each IF statement. nested or otherwise, forms
a pair of complementary branch predicates. Some con-
ditional statements, such as the FORTRAN computed
GO TO or the Pascal and Ada CASE statements, may
have more than two successor nodes, and each branch
predicate must be represented appropriately. To facili-
tate analysis, the control flow graph has a single entry
point, the start node s, and a single exit point, the final
node f. Without loss of generality, a null node can be
added to a graph for the start node, and likewise for the
final node, if necessary, to accomplish this single-entry,
single-exit form. Figure 2 shows the control flow graph
for RECTANGLE.

A subpath in a control flow graph is a sequence of

Figure 1. Procedure RECTANGLE.
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Figure 2. Control flow graph for RECTANGLE.

statements, (J,, Jiyp, ..., I where forall ki <k <
t, J, is a node in the control flow graph such that there
exists edge ()., Ji.,). A partial path is a subpath that
begins with the start node and is denoted by P,_, where
Py, = (s 3. Jn ..., J.). Hence, for any partial path
P withu = 1, P,, = (P,_,.J), where P,, = (s). A
path is a partial path that ends with the final node and
is denoted by Py, thus P, = (s, J,, J,, ..., J. ). A
routine R is composed of a set of paths {P,, Py, ..., Py
| 1 = R =< oo}; there may be an infinite number of
paths due to program loops. The routine RECTAN-
GLE contains a loop whose iteration count is dependent
on unbounded input values; there are, therefore, an in-
finite number of paths through RECTANGLE.

There is no guarantee that a sequence of statements
representing a path is executable; a path may be

nonexecutable due to contradictory conditions govern-

ing the transfers of control along the path. Path
(5.1.3.4.5.,6,10,f) in RECTANGLE is an example of a
nonexecutable path, while (5.1.3,4,5,6,7.8.9,6.10.) is
an executable path. The contr! flow graph is a repre-
sentation of all possible paths, both executable and
nonexecutable, through the carresponding routine.
The parth domain D[P,] i the set of all x € X for
which the path P, could be executed. The path domain
of a nonexecutable path, therefore, is empty. Execution
of path P, performs a park compuration C[P,] that pro-
vides R{x) = zin Z. For each excecutable path, the path

~ domain and the path computation define the function

of the path. Since the executable paths of a routine di-
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vide the domain X into disjoint subdomains, the func-
tion of a routine R is composed of the set of functions
of all executable paths in R.

Symbolic cvaluation provides symbolic representa-
tions for the path domains and path computations of a
routine. For any path, these symbolic representations
can be developed incrementally as the statements on a
path are interpreted. To create this representation,
symbolic cvaluation assigns symbolic names for the
input values and cvaluates a path by interpreting the
statements on the path in terms of these symbolic
names. During symbolic evaluation, the values of all
variables arc maintained as algebraic expressions in
terms of the symbolic names. At any point in the eval-
uation of path P, some partial path P,, = (s, J,
J., ..., J.) has been evaluated. The symbolic values of
the variables after evaluation of that partial path are
referred to as the parh values and denoted PV([P, ]. The
PV (the partial path will not be referenced when un-
ncccssary) iS a vector (5()'1)’ s(Yl)v sy 5()'\'/)). whm
s(y,) denotes the current symbolic value of variable y,.
After interpretation of the entire path P,, the path com-
putation C[P,] is represented by the components of
PV[P,] that corresponds to the output parameters. The
symbolic representation of the path domain can also be
formed incrementally by maintaining a representation
of the domain of input values for the partial path that
has been interpreted so far. This is done by interpreting
the branch predicates for the conditional statements on
a path. Thus, each such branch predicate is represented
by constraints in terms of the symbolic names for the
input value. The conjunction of these constraints is
called the path condition and is denoted PC[P,].
PC[P,]] = s(bp(s, J,)) and s(bp(J,, J,)) and ... and
s(bp(J.-1, 1.)). where s(bp(J., Jai1)), | =m < u, de-
notes the symoblic value of the branch predicate bp(J,..
Jm+1) when evaluated over the values of the program
variables preceding traversal of the edge (J., Ja,,)—
that is, over PV[P,_]. The path domain is represented
by the path condition after interpretation of the entire
path PC[P,]. For noncxecutable paths, the PC is incon-
sistent, thus no input values exist that could cause ex-
ecution of the path.

The next three subsections demonstrate how this
technique can be employed to derive the symbolic rep-
resentations of the path computation and path domain
in the context of path-dependent symbolic evaluation,
dynamic symbolic evaluation, and global symbolic eval-
uation. The methods differ primarily in their techniques
for sclecting the paths to be analyzed. With path-de-
pendent symbolic evaluation, each path to be analyzed
is chosen by the user or selected by heuristics employed
by the system. Dynamic symbolic evaluation is a data-
dependent method that analyzes a path while it is ac-
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tually being executed for specific input data. Rather
than analyze a routine on a path-by-path basis, global
symbolic evaluation attempts to create a closed-form
expression that represents all paths.

2.2 Path-Dependent Symbolic Evaluation

Path-dependent symbolic evaluation analyzes distinct
paths. In general, path-dependent symbolic evaluation
is attempted on only a subset of the paths in a routine
since a routine containing a loop may have an effec-
tively infinite number of paths. The description of path-
dependent symbolic evaluation that follows is indepen-
dent of the method of path selection; it is assumed that
path selection information is provided externally. This
section provides an overview of the way path-dependent
symbolic evaluation systems develop the symbolic rep-
resentation of a given path.

Several path-dependent symbolic evaluation systems
have been described [4,10,36,39,42,48,53,65]. These
systems employ either of two evaluation techniques:
forward expansion or backward substitution. The for-
ward expansion technique [4,10,42] begins at the start
node and develops the symolic representations as cach
statement on a path is interpreted. The backward sub-
stitution technique [39,36] begins with the final node
and works toward the start node. While both techniques
produce equivalent results, backward substitution re-
quires additional processing when further analysis, such
as determining path condition consistency, is desired.
Thus, forward expansion is the technique outlined
below. The path-dependent symbolic evaluation of the
feasible path (s,1,3,4,5,6,7.8,9,6,10,) is described
below, and Figure 3 shows the expressions that are
generated.

Forward expansion begins at the start node, where
the path condition is initialized to the value truc and
the path values are set to their initial values: the input
parameters are assigned symbolic names, variables that
are initialized before execution are assigned their cor-
responding constant value, and all other variables are
assigned the undefined value “?”. Thus, before symbol-
ically evaluating a path in RECTANGLE, the var-
ables would be set to the initial values specified for node
s in Figure 3, where variable names are written in upper
case and symbolic names in lower case.

After initializing the path values and path condition,
each statement is interpreted, as it is encountcred on
the path, by substituting the current symbolic value of
a variable wherever that variable is referenced. Thus,
when an assignment statement, such as y, 1= yx * Yu
is interpreted, the algebraic expression s(yy) * s(yL) is
generated and provides the new symbolic valuc for y,,
updating the corresponding element in PV. For the as-
signment statement at node 5 in RECTANGLE, for
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Figure 3. Path-dependent symbolic evaluation of path in
RECTANGLE.

example, the current symbolic values of X and F after
interpretation of statements (s,1,3,4) are substituted
into the expression on the right-hand side, resulting in

AREA = [0] + a=f[1] + 2.0 *as f[2].

If AREA is subsequently referenced on the path, then

‘this new value would be substituted for AREA. For a

conditional statement, the branch predicate corre-
sponding to the selected path is interpreted. When in-
terpreting a branch predicate, such as bp(i, j) = (yx >
y.), the conditional expression (s(yx) > s(y)) is gen-
erated and provides a symbolic value for the branch
predicate s(bp(i, j)). which is conjoined to the evolving
PC. When interpreting node 1 in RECTANGLE, the
branch predicate representing the condition to go from
nodc | to node 3 is the complement of the condition at
node 1. This evaluated branch predicate is first simpli-
fied and then conjoined to the previously generated path
condition, resulting in the path condition

trueand not (h > b — a) = {a — b + h < 0.0).
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It is possible that the new PC is inconsistent, which im-
plies that the path is nonexecutable. Methods for deter-
mining PC consistency are discussed in Section 3.1.

In RECTANGLE, the output parameters are
ERROR and AREA, and thus the path computation is
represented by

(s(CERROR), s(AREA)).

For path (s,1,3,4,5,6,7.8,9,10,6,10,f) in RECTAN-
GLE, the path domain is represeated by

s(bp(1,3)) and s(bp(6,7)) and s(bp(6,10)).

The path domain and path computation resulting
from path-dependent symbolic evaluation of path
(s,1,3,4,5,6,7,8,9,6,10,f) are shown in Figure 3.

The paths to be evaluated by path-dependent sym-
bolic evaluation can be either chosen by the use or se-
lected automatically by a component of the system.
Most path-dependent symbolic evaluation systems sup-
port an interactive path selection facility that allows the
user to “walk through” a program, statement by state-
ment. Such capabilities have been described for DIS-
SECT [36] and ATTEST [10,71]. This feature is use-
ful for debugging since the evolution of the PC and PV
can be observed. More extensive program coverage can
be expedited by an automated path selection facility for
choosing a set of paths based on some coverage crite-
rion. Several coverage criteria are discussed in Section
42.

2.3 Dynamic Symbolic Evaluation

Dynamic symbolic evaluation is one of the features
often provided by dynamic testing systems [1,24,63].
Using test data to determine the path, the dynamic
symbolic evaluation method monitors the execution of
the path and provides symbolic representations of the
results created by executing the path.
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The dynamic symbolic evaluation component of dy-
namic testing systems provides a symbolic representa-
tion of the computation of each executed path. In ad-
dition to the user-supplied test data, symbolic names
are associated with the input values. Throughout the
execution, dynamic symbolic evaluation maintains the
symbolic values of all variables as well as their usual
computed values. As with path-dependent symbolic
evaluation, the symbolic values are represented as al-
gebraic expressions in terms of the symbolic names.
Since dynamic testing systems monitor the normal ex-
ccution process, the forward expansion technique de-
scribed for path-dependent symbolic evaluation is a
natural approach for creating these symbolic values,

After executing path P,, the symbolic value for each
output parameter is shown, providing the path compu-
tation. With dynamic symbolic evaluation, these
expressions are generally displayed as trees instead of
as algebraic expressions, although both or cither form
could be displayed. The computation trees that would
be created for the specified input values to RECTAN-
GLE are shown in Figure 4. Note that these input val-
ues cause path (s,1,3,4,5,6,7,8,9,6,10,f) to be executed.

Most dynamic symbolic evaluation systems are only
concerned with providing the path computation. Since
the input values are known, each interpreted branch
predicate evaluates to the constant value true (or a run-
time error is encountered). The PC is, therefore, equal
to true and thus it is not necessary to check for PC con-
sistency. Since the PC is often useful in validating the
path, dymamic symbolic evaluation systems may also
provide the symbolic representation of the path domain.

2.4 Global Symbolic Evaluation

The goal of global symbolic evaluation [8,52] is the
derivation of a global representation of a routine—a
symbolic representation of the domain and computation
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Figure 4. Dynamic symbolic evaluation of path in
RECTANGLE.
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for all paths, rather than along one specific path. Since
there may be an cffectively infinite number of execut-
ablc paths in a routine, using path-dependent symbolic
evaluation is unreasonable. Instead, global symbolic
cvaluation attempts to rcplace each loop with a closed
form expression that captures the effect of that loop
[8,12]. Using this technique, a path may then represent
a class of paths in which each member differs from the
others only by its number of loop iterations.

Global symbolic evaluation, like path-dependent
symbolic evaluation, uses the control flow graph of a
routine to guide evaluation. Loops are evaluated first by
a loop analysis technique. For each loop, this technique
attempts to create a loop expression, which is a closed
form representation encompassing the effects of the
loop. An analyzed loop can be replaced by the resulting
loop expression, which can thereafter be evaluated as a
single node. Thus, inner loops must be analyzed before
outer loops. After all loops have been analyzed, the con-
trol flow graph has been reduced to a directed acyclic
graph. In this section, an efficient interpretive technique
for acyclic programs is described and then loop analy-
sis, which also uses this interpretive technique, is
explained.

For acyclic programs, or programs that have becn
made acyclic by using loop analysis, a more efficient in-
terpretive technique than the forward expansion tech-
nique described above can be used. This technique in-
terprets each node only once but in the context of all its
predecessors and then saves this interpreted represen-
tation to be used when interpreting any of its successor
nodes. To do this, a node cannot be interpreted until all
its predecessors have been interpreted. Thus, global
symbolic evaluation starts by interpreting the start
node, then all nodes that have only the start node as a
predecessor, and so on. For a node in the control flow
graph, a case expression' is maintained, where each
subcase represents one partial path reaching that node.
Each subcase is composed of the PC for a partial path,
as well as the symbolic values of all the variables com-
puted along that partial path.

To sec how a node is interpreted, consider a partic-
ular node m, with predecessor nodes i, ..., j, which
have been previously interpreted. Control may reach m
via any of the edges (i, m), . . . , (j, m), and the transfer
from a predecessor node occurs under the conditions of
the corresponding branch predicate. Thus, when m is
interpreted, each subcase of the case expression of cach
predecessor node must be considered independently.
For predecessor node i, for instance, the branch predi-

"In the case cxpression used by global symbolic cvaluation, a
subvase consists of an arbitrary bovlcan expression followed by the
symbulic values assigned 10 the vanables.

T i 2 ik e e e
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cate bp(i, m) is evaluated in the context of cach subcase
for node i, and for a particular subcase, bp(i, m) is in-
terpreted in terms of the symbolic values of the vari-
ables for this subcase. This interpreted branch predi-
cate is then conjoined to the PC for the partial path
associated with this subcase of predecessor node i. As
with path-dependent symbolic evaluation, it is desirable
to check the consistency of the PC. If the PC is found
to be inconsistent, this subcase is discarded, otherwise,
the statcment at node m must be interpreted in the con-
text of this subcase for node i. After all the subcases for
node i have been considered, this same procedure is fol-
lowed for all other predecessor nodes of m. Finally, the
subcase expressions derived from evaluating all the sub-
cases of the predecessor nedes are combined and the
resulting case expression represents all executable par-
tial paths reaching node m. To illustrate this technique,
Figure 5 shows a fragment of a control flow graph, gives
a hypothetical case expression for node 11 in the graph,
and shows the resulting case expressions for nodes 13,
14, and 15.

In global symbolic evaluation, a global representa- -
tion of all paths is only possible when the loop analysis
technique can create closed-form representations for all
loops in the program. This loop analysis technique at-
tempts to represent each loop by a loop expression,
which describes the effects of that loop. For each ana-
lyzed loop, a conditional expression is created repre-
senting the final iteration count for any arbitrary exe-
cution of the loop. The final iteration count is expressed

" in terms of the symbolic values of the variables at entry

to the loop. In addition, for each variable modified
within the loop its symbolic value at exit from the loop
is created in terms of both the final iteration count and
the symbolic values of the variables at entry to the loop.
Figure 6 shows the results from loop analysis; these re-
sults as well as the loop analysis technique are ex-
plained in the remainder of this section.

A loop is not analyzed until all its nested loops have
been replaced by their associated loop expression. At
the time of analysis, therefore, cach loop® contains only
one backward branch. If we temporarily ignore this one
branch, the loop body can be represented as an acyclic
directed graph to which the interpretation technique
described above can be applied. To initiate this inter-
pretation, an iteration counter, say k, is associated with
the loop. For cach variable y, y, represents the value of
the variable y on entry to the first iteration of the loop
and y,, k = 1, represents the value of the variable y
after execution of the kth iteration of the loop. The
body of the loop is then symbolically evaluated to get a
represcntation of a typical iteration. This evaluation,

*Only single-entry. single-cxit loops arc considered here.
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Figure 5. Hypothetical interpretation with global

symbolic evaluation.
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assuming it is for the kth iteration, is identical to the
process described above, except that the symbolic name
initially assigned to each variable is its value after ex-
ecution of iteration k — 1—that is, the assumed value
fory isy,., if y is changed in the loop and y, otherwise.
The result of this interpretation is a set of recurrence
relations that are in terms of the values of the variables
after iteration k — 1. Next, the branch predicate con-
trolling exit from the loop is interpreted in terms of the
values of the variables after execution of the kth itera-
tion. This provides the loop exit condition, denoted lec,,
which represents the condition under which the loop
will be exited after the kth iteration. The first part of
Figure 6 shows the results of this evaluation for the
WHILE loop in RECTANGLE. (Since the loop in
RECTANGLE only contains straight line code, each
node only has one predecessor and so no case expression
need be formed.)

Next, loop analysis attempits to find solutions to the
recurrence relations for each vanable in terms of the
values of the vanables on entry to the loop. The solution
10 the recurrence relation for y, is denoted by (k) and
represents the value of the variable y on exit from the

kth iteration of the loop. Solutions are found first for
those variables that do not reference other variables
whose recurrence relations are as yet unsolved. Once a
solution is found for a variable, it is substituted for all
references to it in the remaining recurrence relations.
This process is repeated, if possible, until all recurrence
relations are solved. The loop exit condition lec, is then
solved by replacing cach y, referenced in the condition
by its solution y(k) and simplifying. This provides
lec(k). the condition under which the loop will be exited
after execution of the kth iteration. The second part of
Figure 6 provides the solutions to the recurrence rela-
tions for the loop in RECTANGLE. Although not i}
lustrated in this example, two subcases must sometimes
be considered independently: (1) the first iteratioa of
the loop (k = 1), where the recurrence relations and
loop exit condition depend on the values of the vanables
at entry to the loop: and (2) all subsequent iteratioas
(k > 1), where the recurrence relations and loop exit
condition depend on the values computed by the pre-
vious iteration.

After solutions to the recurrence relations have been
determined, the loop expression can be created. The
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Figure 6. Loop analysis of RECTANGLE.
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loop expression for the loop in RECTANGLE appears
in the last part of Figure 6. Each subcase consists of the
loop exit condition and the values of the variables at
exit from the loop. The first subcase in this figure rep-
resents the fall-through condition that must be included
for any WHILE loop or similar loop construct. For this
subcase, the values at entry to the first iteration of the
loop satisfy the loop exit condition and provide the val-
ues on exit from the loop. The second subcase repre-
sents one or more iterations of the loop and is derived
from the solved recurrence relations and loop exit con-
dition. Usually, for this subcase, the final iteration
count, call it k,, is represented in terms of the minimum
k. k = 1, such that the loop exit condition is true. Thus,
for this subcase the condition is

not(lec(0)) and (k, = min{k| (k = 1) and lec(k)})

and the value for each variable y, at exit from the loop
is represented by yi(k.). In this example, it is possible
10 precisely represent k, by int(b/h — X,/h). Since the
lcop expression is a closed-form representation captur-
ing the effects of the loop, the nodes in the loop can be

Y = 0] + qiPXy + flIbeek, + fZFXg=2 + 20-Phek oXg + fZhee2ok o2

replaced by a single node, annotated by this loop
expression. If the loop body contains nodes i through j,
this single node is denoted (i — j).

When a loop is encountered during global symbolic
evaluation, each subcase in the loop expression must be
considered in the context of each subcase of each pred-
ecessor node. Consider the interpretation of one subcase
of the loop expression in the context of one subcase of
a predecessor node. The results of this interpretation
will be a single subcase for the interpreted loop node.
The symbolic values of the variables of the predecessor
subcase provide the values of the variables at entry to
the loop. Thus, for variable y, the symbolic value of y
in the subcase of the predecessor node is the value to be
substituted for y,. The PC of the loop node subcase is
developed by interpreting the condition from the loop
expression subcase and conjoining it with the PC of the
predecessor subcase. The symbolic values of the vari-
ables of the loop node subcase are developed by inter-
preting the assignments specified by the loop expression
subcase.

The above process is repeated for cach subcase in the
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loop cxpression with each subcase of cach predecessor
node. The resulting subcases are then combined to form
the case expression for the interpreted loop node.
Global symbolic evaluation can proceed as usual from
this point. Figure 7 demonstrates the global symbolic
evaluation of RECTANGLE. Here, only the start
node, the final node, the nodes corresponding to condi-
tional statements, the node preceeding the loop, and the
loop node are shown. The symbolic values of variables
that cannot be modified arc shown only at the start
node. Note that node S is the only predecessor node to
the loop and node (6-9) provides the case expression
resulting from interpretation of the loop expression.
The final output of global symbolic evaluation of REC-
TANGLE also appears in Figure 7, where path P; rep-
resents the class of paths with one or more iterations of
the loop.

As one might expect, there are several problems as-
sociated with loop analysis. Obtaining the solutions to
tHe recurrence relations is not always straightforward
and sometimes may not be possible. Complications
arise in several situations. In particular, the interdepen-
dence betweecn two recurrence relations may be
cyclic—y may depend on x, which depends on y—in
which case the recurrence relations cannot be solved.
Problems also arise when conditional execution occurs
within the loop bedy, causing conditional recurrence re-
lations. This results in a more complicated loop expres-
sion, provided these recurrence relations can even be
solved. Thus, loops often cause an explosion in the size
and complexity of the global representation of a rou-
tine. Nested loops exacerbate this problem. In addition,
determining consistency of a PC incorporating a loop
exit condition may also be problematic if this condition
is represented in terms of conditional expressions or a
minimum value expression, or both. Deciding the exis-
tence of these minimum values is essentially proving
routine termination. When none of these problems
arise, however, the loop analysis technique provides a
general evaluation of a loop that is very useful. In prac-
tice, not only can loops often be represented in a closed-
form, but many loops are variants of common patterns.
Recognizing these patterns [66] may be easier and
more efficient than invoking general axiomatic and al-
gebraic mechanisms to solve recurrence relations.

3. IMPLEMENTATION CONSIDERATIONS

The above section described the general methods asso-
ciated with symboalic evaluation. When implementing a
symbolic evaluation system there are many additional
issues to be considered. This section discusses several of
these issues, some of which are well understood and
others that remain arcas of current research.
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3.1. Further Analysis of the Symbolic
Representations

In the purest sense, the path domain and path compu-
tation are all that need be provided by symbolic evalu-
ation. To do further analysis, however, it is often desir-
able to simplify the symbolic representations, determine
the consistency of the PC, and find alternative solutions
for the PC that serve as test data.

Simplification can be done by converting the sym-
bolic expressions into canonical forms. There are sev-
eral available algebraic manipulation systems [3,6,56]
that can be used to accomplish this simplification. A
canonical form for the symbolic value of each output
parameter might be one in which like terms are
grouped together and terms are ordered first by degree
and then lexically. The PC might be put into conjunc-
tive normal form and each relational expression put
into a canonical form. This canonical form might be
one in which the constant term is on the right-hand side
of the relational operator and the left-hand side has the .
same form as that for an output parameter. To enhance
readability, we have simplified the output from sym-
bolic evaluation to these canonical forms in all the ex-
amples given in this paper.

As noted above, only a subset of the paths in a pro-
gram are executable and, therefore, for path-dependent
symbolic evaluation or global symbolic evaluation it is
desirable to determine whether or not the PC is consis-
tent. Not only is it desirable to recognize nonexecutable
paths but also to recognize the inconsistency as soon as
possible. Early detection of a nonexecutable path pre-
vents worthless, yet costly, symbolic evaluation. A
nonexecutable path can be detected as soon as possible
by developing the PC as the statements on a path are
interpreted and examining the evolving PC for consis-
tency as each branch predicate is interpreted. For par-
tial path P,, = (s, J,, ..., J,), the path condition is
denoted PC[P, ]. When a node J,,, is considered as an
extension to the partial path P, , the interpreted branch

.predicate s(bp(J,, J.41)) is first simplified and then ex-

amined for consistency with PC[P, ]. Unless inconsis-
tency is determined, the interpreted branch predicate is
conjoined to PC[P, ], creating

PC[P,,.,] = PC[P,]] and s(bp(J., J....)).

Thus at any point in this interpretation, there is a sym-
bolic representation of the domain for the partial path
that has been evaluated so far.

When used with the path-dependent symbolic eval-
uation, the incremental development of the PC allows
an alternative edge to be selected on a partial path
when an inconsistent branch predicate is initially en-
countered. Thus, the evaluation of the partial path up
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1o an inconsistent branch predicate can usually be sal-
vaged. For example, the noncxecutable partial path
(5,1.3.4,5.6,10) in RECTANGLE can be terminated as
soon as the inconsistent PC is discovered. The symbolic
value of the branch predicate for the edge (6,10), where
the inconsistency occurred, is replaced by the symbolic
value of the branch predicate for the alternative edge
(6.8), and analysis continues.

Consistency or inconsistency may possibly be deter-
mined by performing simple reductions [21,22] on the
newly interpreted branch predicate s(bp(J_.l..,) in the
context of the existing consistent PC. On the one hand,
it may be possible to determine that s(bp(J,, J,,,) is
dominated by relational expressions in PC[P,], in
which case PC[P,,_,,] must not be inconsistent, since
PC[P,,] is not inconsistent. On the other hand, s(bp(J,,
J..1)) may be contradicted by a relational expression in
PC[P, ]. in which case PC[P,_.,] is inconsistent. In the
evaluation of path P, in RECTANGLE, for example,
s(bp(6,10)) = (a — b + h > 0.0) is contradicted
by s(bp(1,3)) = (@ — b + h =< 0.0), thus
PC[s,1,3,4,5,6,10] is inconsistent. While such reduc-
tions are sometimes applicable, it is often necessary to
rely on more costly techniques, such as an automatic
theorem prover [5] or onc of a number of algebraic
techniques. The ATTEST system [10,11], for example,
uses a linear programming algorithm [43]. The advan-
tage of choosing an algebraic technique is that a solu-
tion is provided when the PC is determined to be con-
sistent. This solution serves as test data to exccute the
path. The next section discusses more sophisticated
strategies for selecting test data for the PC that are
aimed at detecting errors on the path. Both automatic
theorem provers and algebraic techniques work well on
the simple constraints that are generally created during
symbeolic evaluation. No method, however, can solve all
arbitrary systems of constraints [19]. In some in-
stances, PC consistency or inconsistency cannot be de-
termined; the symbolic representations for such a path
can be provided, but whether or not the path can be
executed is unknown.

3.2 Amays

Array element determination causes a problem when-
ever the subscript of an array depends on input values,
in which case, the clement that is being referenced or
defincd in the array is unknown. The flow charts in Fig-
urc 8 illustrate this problem. The first part of Figure 8
shows indeterminate array subscripts. Note that at
nodes 5 and 6 there is a constraint on the range of val-
ucs [or the subscript due to the PC. In the second part
of Figure 8, the subscript values are constant and thus
cause no problems. Although an indeterminate array
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Figure 8. Array clement determination.

clement can be represented symbolically, determining
PC consistency may become extremely complicated
when such an occurrence affects the PC. This problem
occurs frequently during both path-dependent symbolic
evaluation and global symbolic evaluation. It cannot
occur during dynamic symbolic evaluation since all val-
ues, including subscript values, are known.

Inefficient solutions for determining an appropriate
array eclement exist, for in the worst case all possible
subscript values can be enumerated. Though there has
been some work on this problem [4,10,53], the results
are still unsatisfactory. Efficient solutions requiring a
minimal amount of backtracking are still being
explored.

3.3 Routine Invocation

Several approaches to routine invocation during sym-
bolic evaluation have been proposed. The simplest ap-
proach, which is not applicable for dynamic symbolic
evaluation, is to represent the results of a routine invo-
cation symbolically. For a procedure, such an approach
might assign unique symbolic names for the output pa-
rameters each time the procedure is called. For a func-
tion (with no side effects), this approach might repre-
sent each invocation by the function name along with
the arguments’ symbolic values at the point of invoca-
tion. The advantage of this approach is that the calling
routine can be cvaluated even when the called routine



28

is pot available. Thus this approach supports unit
testing.

Another straightforward approach to routine invo-
cation is to symbolically evaluate a path (or paths in the
case of global symbolic evaluation) through the called
routine by passing information to and from the called
routine via the parameters. This approach is similar to
pormal execution. When a routine invocation is encoun-
tered, the symbolic values of the arguments arc passed
10 the called routine. Any branch predicates that are
interpreted within the called ‘routine are conjoined to
the PC in the usual manner. The symbolic values of the
parameters arc updated by the interpretation of assign-
ment statements on the path in the called routine.
When control returns to the calling routine, the sym-
bolic value of each parameter is returned and assigned
to the corresponding argument. This is the only ap-
proach to routine invocation that is applicable for dy-
namic symbolic evaluation.

The drawback of the first approach is that the pre-
cise cffect of the invocation is unknown and this loss of
“information may degrade the results of any subsequent
analysis. The drawback of the second approach is the
incfficiency of interpretating a routine cach time that
routine is invoked. A third approach, called subroutine
substitution, may avoid these drawbacks by utilizing
the previously created symbolic representations of a
routine. With path-dependent symbolic evaluation, the
PC and PV of a path in a routine are saved for substi-
tution. Later, when the routine is invoked, the symbolic
values of the argunents arc substituted for the sym-
bolic names that were assigned to the parameters in the
saved PC and PV of the called routinc. The updated PC
of the called routine is then conjoined to the existing PC
of the calling routine. If. this conjunction is consistent,
then the corresponding path through the called routine
oould be executed, and this conjunction is the new PC.
In addition, the symbolic values of the output parame-
ters, which are represented in the PV of the called rou-
tine, are rcturned to the calling routine. With global
symbolic evaluation, the global representation of the
called routine is substituted into the global representa-
tion of the calling routine. Each subcase of the called
routine must be evaluated in the context of each sub-
case of the calling routine at the point of invocation. For
each such combination, this evaluation is similar to sub-
routine substitution during path-dependent symbolic
cvaluation.

Using subroutine substitution involves expensive re-
formulation and simplification of the symbolic repre-
sentations. Unfortunately, it may not always be more
cfficient than reevaluation of the path(s) {72]. When
arguments are functions or large arrays, these problems
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arc further aggravated. Moreover, for path-dependent
symbolic evaluation several evaluations of the called
routine must be saved to make this a viable approach.
For either path-dependent symbolic evaluation or
global symbolic evaluation this approach assumes a
bottom-up testing environment, where called routines
must be tested before the calling routine.

A variation of subroutine substitution allows the
specification of a called routine to be supplied in place
of the source code of that routine. Such a specification
would describe the function of the routine by providing
the intended path domains and their associated path
computations. There are a number of specification tech-
niques that could be used, as described in Section 4.6.
The evaluated specification could then be substituted as
described for subroutine substitution. Such an ap-
proach has some of the drawbacks of subroutine sub-
stitution but allows for top-down testing and incremen-
tal development of software.

3.4 Input/Output

So far in this paper, we have only described symbolic
evaluation for routines whose input and output are done
only via parameters. Only minor modifications are nec-
essary to handle input and output at arbitrary points in
a routine. To handle input along a path, symbolic
names representing the input values are assigned to the
input variables whenever an input statement is encoun-
tered. The convention previously described for repre-
senting input values must be modified slightly, however,
since input may occur more than once for a variable.
One approach that maintains the association between
input values and variables is to suffix each symbolic
name with an index notation when necessary. For ex-
ample, if a variable, say AMOUNT, is assigned input
twice along a path, the first input value might be rep-
resented by amount.1 and the second by amount.2. To
handle output along a path, the symbolic values of the
output variables arc provided whenever an output state-
ment is encountered. With these extensions, the van-
ables assigned input values, the variables whose values
are output, as well as the number of inputs and outputs,
may vary from path to path because different input and
output statements may be encountered on different
paths. Morcover, for global symbolic evaluation, the
number of inputs and outputs may depend on the final
loop iteration counts for the routine. Although input
and output along a path requires no substantial changes
to the interpretive techniques originally described, the
functional conceptualization of a routine must allow for
an arbitrary, and perhaps varying, number of inputs
and outputs. .
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4. APPLICATIONS

Most notably symbolic evaluation has been the foun-
dation for much of the research in program testing.
Much of this work is concerned with the problem of
selecting the paths that should be tested and the prob-
lem of selecting test data for those paths. The symbolic
representations of the path domains and path compu-
tations have proven useful in both these aspects. In ad-
dition to testing, symbolic evaluation methods have
been readily applied to other research areas of software
engineering, including verification and certification, de-
bugging, optimization, and early software development.
This section discusses the application of symbolic eval-

" uation for each of these areas.

4.1 Verification and Certification

Formal verification methods use symbolic evaluation
techniques to assist in forming the verification condi-
tions. Typically, input, output, and loop invariant asser-
tions are supplied. Verification conditions are then cre-
ated by symbolically evaluating the code between two
adjacent assertions. These verification conditions must
then be shown to be true based on the semantics of the
programming language and any required application-
dependent axioms. This process [25,32,33,47] and a
number of related approaches to verification, have been
frequently described in the literature and will not be
discussed here. Instead, this section disucsses some less
comprehensive verification techniques that are used to
detect or certify the absence of particular program
properties.

The symbolic representations that are generated by
symbolic evaluation can quite naturally be used for cer-
tification. The path computation often provides a con-
cise functional representation of the output for the en-
tire path domain. Normal exccution, on the other hand,
only provides particular output values for particular
input values. Examination of the path computation as
well as the path condition is often useful in uncovering
program crrors. In RECTANGLE, for example, ex-
amination of C[P,] would most likely reveal the erro-
neous use of multiplication rather than exponentiation
in statement 5. This method of certification is referred
to as symbolic testing [38]. Symbolic testing is a par-
ticularly bencficial feature for scientific applications,
where it is often extremely difficult to manually com-
pute the intended result accurately due to both the
complexity of the computations and the required num-
ber of significant digits. _

Symbolic evaluation can also be applied in certifying
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the absence of specific types of program errors. At ap-
propriate points in a routine, expressions describing
error conditions can be interpreted and checked for
consistency with the PC just as branch predicates are
interpreted and checked. Consistency implies the exis-
tence of input values in the path domain that would
cause the described error. Inconsistency implies that
the error condition could not occur for any element in
the path domain. While normal exccution of a path
may not uncover a potential run-time error, symbolic
cvaluation of a path can detect the presence or certify
the absence of some errors for all possibic inputs to the
path.

The ATTEST system, for example, automatically
gencrates expressions for predcfined error conditions
whenever it encounters certain program constructs. For
instance, whenever a nonconstant divisor is encoun-
tered, a relational expression comparing the symbolic
value of the divisor to zero is created. This expression
is then temporarily conjoined to the PC. If the resulting
PC is consistent, then input values exist that would
cause a division by zero error and an error report is is-
sued. If the resulting PC is inconsistent, then this po-
tential run-time error could not occur on this path.
After checking for consistency, the expression for the
error condition is removed from the PC before symbolic
cvaluation continues. The error conditions that can be
checked by symbolic evaluation are language depen-
dent. In FORTRAN, for example, error conditions can
be created for division by zero, invalid DO loop param-
cters, invalid variable dimensions, and out-of-bound
subscript values, among others.

Path verification of assertions is another method of
certifying the absence of errors. Instead of predefining
the error conditions, user-created assertions define con-
ditions that should be true at designated points in the
routine. An error exists if an assertion is not true for all
elements of the path domain. When an assertion is en-
countered during symbolic evaluation, the complement
of the assertion is interpreted and conjoined to the PC.
Inconsistency of the resulting PC implies that the as-

‘sertion is valid for the path, while consistency implies

that the assertion is invalid for the routine.

Checking error conditions during dynamic symbolic
evaluation and path-dependent symbolic evaluation
provides conclusions about the occurrence of that error
on a specific path. When similar capabilities are pro-
vided by global symbolic evaluation certification is done
for all (classes of) paths and conclusions can be drawn
about the entire routine. Thus, if a routine is annotated
with assertions that specify the intended function of the
routine and these are shown to be valid for all paths,
the correctness of the routine has been verified. Meth-
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ods for doing this total verification are discussed further
in Scction 4.6.

4.2 Test Path Selection

It is usually impractical to test every path in a routine
and thus it is imperative to have a method for selecting
a meaningful subset of paths to be exercised. Support
of the path selection process is a natural application of
symbolic evaluation. Several criteria for path selection
that utilize symbolic evaluation techniques are outlined
below.

Three criteria for selecting paths that have typically
been used for program testing are statement, branch,
and path coverage. Statement coverage requires that
each statement in the program occurs at least once on
one of the selected paths. Likewise, branch coverage re-
quires that each branch predicate occurs at least once
on one of the selected paths and path coverage requires
that all paths be selected. Branch coverage implies
statement coverage, while path coverage implies branch
coverage. Thus, these threc measures provide an as-
cending scale of confidence in testing. Given a reliable
method of test data selection, path testing would con-
stitute a proof of correctness. Since path coverage im-
plies the selection of all feasible paths through the rou-
tine, however, attaining path coverage is usually
impractical, if not impossible.

It is generally agreed that branch coverage should be
a minimum criteria for path selection. Achieving even
this level of coverage is not always straightforward.
Statically generating a list of paths that satisfy this cri-
terion usually results.in a number of infeasible paths
being selected. Data flow techniques that attempt to
generate only feasible paths by excluding inconsistent
pairs of branch predicates have been shown to be NP
complete [28]. Symbolic evaluation is a useful tech-
nique, however, for aiding in the selection of executable
paths. The ATTEST system, for example, uses a dy-
namic, goal-oriented approach for automated path se-
lection whereby each statement on a path is selected
based on its potential for a selected coverage criterion.
When an infeasible path is encountered, ATTEST
chooses one of the alternative statements. When there
is more than one consistent alternative, the choice is
based on the selected coverage criterion [72].

Unfortunately, branch coverage is casily shown to be
inadequate; no matter what test data is sclected for
these paths, many simple, common errors will go un-
detected. Several stronger criteria have been proposed
for selecting paths that fall between the two levels of
reliability and expense associated with branch coverage
and path coverage. Some alternative criteria simply
limit loop iterations. The EFFIGY system [42] gener-
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ates all paths with a bound specified on the number of
loop iterations. The ATTEST system strives for state-
ment, branch, or path coverage but attempts to select
paths that traversc each loop a minimum and maxi-
mum number of times.

Howden has proposed the boundary-interior method
for classifying paths [34]. With this method, two paths
that differ other than in loop iterations are in different
classes. In addition, two paths that differ only in the
way they traverse Joops are in different classes if

1. One is a boundary and the other an interior test of
a loop;

2. They enter or leave a loop along different loop en-
trance or loop exit branches;

3. They are boundary tests of a loop and follow differ-
ent paths through the loop;

4. They are interior tests of a loop and follow different
paths through the loop on their first iteration of the
loop.

A boundary test is one that enters the loop but leaves it
before carrying out a complete traversal and an interior
test carries out at least one complete traversal of the
loop. A set of test data is considered to cover all classes
if at least one path from each class is exercised by the
test data. Again, symbolic evaluation is useful for de-
termining a set of feasible paths that satisfy the loop
criterion. Moreover, when loop analysis is successful in
creating a closed form representation of the loop, then
this representation provides a snapshot of the paths that
satisfy the selected loop criterion.

An alternative to the use of control flow as the de-
termining factor in path selection is the use of data flow
information. Data’ flow techniques [44,45,50,54], re-
quire the selection of subpath(s) based on particular se-
quences of definitions and references to the variables in
the program. Rapps and Weyuker [54] have described
a partial ordering on a family of data flow techniques
for path selection. Figure 9 shows part of this partial
ordering as well as its relation to statement, branch,
and path coverage. As an example of the application of
these techniques, consider the flow chart in Figure 10.
Def coverage requires the selection of subpaths contain-
ing each definition of a variable; the following paths

“satisfy def coverage: (1,2,3,5,6,8) and (1,2,3,5,7.8).

Note that this set of paths does not satisfy either state-
ment or branch coverage since statement 4 is not exe-

Figure 9. Data flow testing criteria,
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Figure 10. Data flow testing example.

cuted. Use coverage requires the selection of some sub-
path from each definition of a variable to cach use of
that variable; the following paths satisfy use coverage:
(1,2,3,5,6,8), (1,2,4,5,7,8). Du-path coverage, on the
other hand, requires the sclection of all minimum-loop
subpaths from each definition of a variable to each use
of that variable. In addition to the two paths for use
coverage, the path (1,2,3,5,7,8) must be sclected be-
cause it includes a subpath from the definition of Y at
node 3 to its use at node 8. Note that there is one more
path, (1,2,4,5,6,7), that would need to be selected to
satisfy path coverage but no additional flows of data are
to be gained by testing that path. Although the data
flow path selection techniques can be applied indepen-
dently of symbokc evaluation, a number of infeasible
paths will be generated unless data flow analysis and
symbolic evaluation techniques are paired together.

In addition to using control or data flow information,
path selection techniques have becn developed that re-
late directly to the elimination of potential errors in pro-
gram statements. Perturbation testing [31,73] attempts
to compute the sct of potential errors in arithmetic
expressions that cannot possibly be detected by testing
only the current set of selected test paths, regardless of
the test data selection techniques employed for those
paths. Perturbation testing derives a sct of character-
istic expressions that describe the undetectable pertur-
bations (errors). This information can be used to select
additional paths that must be tested in order to detect
these possible perturbations. As an example, consider
the flow chart in Figure 11. Along path (....79,...)
the value of Z is the same as the value of 2#X at node
9. Any error in the predicate at node 9 that can be rep-
resented by k * (Z — 2#X), where k is a constant, could
not be detected along path ( ...,7.9....). For instance,
if the branch predicate at node 9 should have been Z
— X > Y, the error would not be detected. Along path
(....8.9,...). however, this equality does not hold and
thus the error could be detected. In gencral, another
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% Z:= 22X & T = Y
L

e

Figure 11. Pcrturbation testing example.

proposed path will be a useful test if, and only if, it
eliminates one or more expressions describing unde-
tectable perturbations. In effect, perturbation testing
systematically captures the interesting error detection
capabilities of mutation testing [7], a method that se-
quentially introduces a large number of small errors
(mutants) into a program and then determines which
of these errors were not detected by the selected test
data. The perturbations of a statment can be repre-
sented by using modified symbolic evaluation tech-
niques. Perturbation testing is currently being imple-
mented as an extension to the ATTEST symbolic
cvaluation system.

4.3 Test Data Selection

Symbolic evaluation, like most other methods of pro-
gram analysis, does not actually execute a routine in its
natural environment. Evaluation of the path computa-
tion for particular input values returns numeric results,
but because the environment has been changed, these
results may not always agree with those from normal
execution. Errors in the hardware, operating system,
compiler, or symbolic evaluation system itself may
cause an erroncous result. It is thus important to test
the routine on actual data. In addition, testing a routine
demonstrates its run-time performance characteristics.

The symbolic representation of a path can be used
as the basis on which to select test data for that path.
The most straightforward technique simply examines
the PC to determine a solution—that is, one arbitrary
test datum to execute the path. As noted previously,

SELECT [4] and ATTEST are two path-dependent

symbolic evaluation systems that generate such test
data by using an algebraic technique for determining
PC consistency.

More rigorous techniques have been proposed that
attempt to capture the ideas underlying scveral error-
sensitive heuristics [49,26,69.55]. The error-sensitive
techniques attempt to characterize potential errors in
terms of their effects on a path. For these techniques,
errors are classified into two types, computation errors
and domain errors, according to whether the effect is
an incorrect path computation or an incorrect path do-
main. A domain error may be cither a missing path
error, which occurs when a special case requires a
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unique scquence of actions but the program does not
contain a corresponding path, or a path selection error,
which occurs when a program recognizes the need for
a path but incorrectly determines the conditions under
which a path is executed. A number of test data sclec-
tion techniques focus on the detection of cithcr domain
or computation errors. These techniques analyze the
symbolic representations created by symbolic evalua-
tion and select data for which the path computation and
path domain appear sensitive to errors. A difficult prob-
lem, which must be addressed by these techniques, is
the possibility that an error on an cxecuted path may
not produce erroncous results; this is referred to as co-
incidental correctness. For an example, note that the
second multiplication operator in statement 5 of REC-
TANGLE should be an exponentiation operator. If this
statement is only executed when A = 0.0 or A = 1.0,
then the actual resulting valuc and the intended value
agree. Although this is a contrived example, coinciden-
tal correctness is a common phenomenon of testing.
One goal, therefore, is to minimize the occurrence of
coincidentally correct results by astutely sclecting test
data aimed at exposing, not masking, errors.

In RECTANGLE there are five errors, onc compu-
tation error, three missing path errors, and a path sc-
lection error. As noted above, the first error is caused
by an erroncous computation at statement 5; statement
5 should be AREA := F[0] + F[1] * X + F[2] + X
#+ 2. The second and third errors are caused by an er-
roneous check for a valid input value for h whena > b
(the input check is only correct if a < b). If a > b,
then h must be negative (error two) and its absolute
value must be less than a — b (error three). Both errors
two and three are missing path errors. Moreover, h can-
not be zero, regardless of the relationship between a
and b or an infinite loop results; this is the fourth crrox,
which is also a missing path error. A correct check for
valid input follows:

if (A > Band H = 0.0)or (A < B and H < 0.0) then
ERROR := true;
elsc if (abs(H) > abs(B — A)) then ERROR := true;

Another situation, which might be considered a fifth
error, occurs when a + int(—a/h + b/h) = h < b,
since the area under the quadratic is computed beyond
the point specified by b. A more accurate algorithm
would add in the area of a smaller rectangle on the last
iteration of the loop (or subtract the excess upon exit).
In the ensuing discussion it is shown how four of these
five errors are detected by test data selection techniques
based on symbolic evaluation.

Computation testing techniques sclect test data
aimed at revealing computation errors. One approach
analyzes the symbolic representations of the path com-
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putation. This approach is based on the assumption that
the way an input value is used within the path compu-
tation is indicative of a class of potential computation
crrors. Analysis of the symbolic representatioa of the
path computation reveals the manipulations of the
input values that have been performed to compute
the output values. In general, a path computation may
contain arithmetic manipulations or data manipula-
tions that are inherently sensitive to different classes of
computation errors. Guidelines have been proposed for
selecting test data aimed at revealing computation er-
rors that are considered likely to occur for both types of
path computations [14]. One of these guidelines states
that each symbolic name corresponding to a multiplier
in the path computation should take on the special val-
ues zero, one, and negative one, as well as nooextremal
and extremal values. Note that such a sclection of val-
ues for A in RECTANGLE would reveal the first error.

Theoretical results have shown that more rigorous
computation testing techniques can guarantee the ab-
sence of certain types of computation errors when the
path computations fall into well-behaved functional
classes. For example, there are a few technmiques that
can be applied if the symbolic value for an oatput pa-
rameter is a polynomial. For a univariate potynomial
with integer cocfficients whose magnitudes do not ex-
ceed a known bound, a single test point can be found to
demonstrate the correctness of that polynomial [61].
Alternately, for a univariate polynomial of degree N, N
+ 1 test points are sufficient [37]. Probabilistic argu-
ments have been made for reducing this number with-
out sacrificing must confidence [20]. Similar results
have been provided for multivariate polynomials.

In a similar way, when the path computations fall
into other specialized categories, the computation test-
ing guidclines can be tuned to guide in the sclection of
a more comprehensive set of test data. For example, if
a path computation involves logic functions [27] or
trigonometric functions, then guidelines dependent
upon thcir propertics should be exploited. In REC-
TANGLE, an example for which an extended set of
guidelines are required, s the int function that appears
in the computation of AREA. Data should be selected
so that the dropped remainder that results from apply-
ing the int function takes on the valuc zero and both
positive and negative valucs. Data satisfying this exten-
sion would alert the tester to the poor termimton con-
dition (the fifth erroc)

Domain testing techniques [13,70] concentrate on
the detection of domain errors by analyzing the path
domains and selecting test data “on™ and slightly “off™
the closed borders of cach path domain. If the correct
results are produced for cach of the on and off test
points. the border must be “close™ to the corrext border.
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An undctected border shift can only occur if the on test
points and the off test points lic on opposite sides of the
correct border. The undetectable border shifts are kept
“small” by choosing the off test points as close to the
border being tested as possible. In fact, with the proper
selection of on and off test points, a quantified error
bound measuring the set of elements placed in the
wrong domain by an undetected border shift can be
provided. Figure 12 illustrates a border shift, where G
is the given border, C is the correct border, and the set
of elements in the wrong domain is shaded. The border
shift is revealed by testing the on points P and Q and
the ofT points U and V, since V is in the wrong domain.
For a border in higher dimensions, 2 * v (where v is the
number of vertices of the border) test data points must
be selected for best results. A thorough description of
the domain testing technique and its effectiveness is
provided in [13]. Figure 13 shows the test data selected
for the paths in RECTANGLE to satisfy the domain
testing technique. The only closed borderis (a — b +
h =< 0.0). If extremal values of 100.0 and —100.0 are
assumed for the inputs A and B, this border has six ver-
tices. The figure indicates whether each datum is an on
point or an off point (on or above the border). Four of
the five errors in RECTANGLE are revealed by do-
main testing. Error onc is detected by execution of any
of the on points. Error two is detected by cither of the
two off points (a = 100.0and b = 99.99 and h = 0.01)
or(a = —99.99andb = —100.0and h = 0.01). Error
four is detected by ecither of the two on points (a =
1000and b = 100.0and h = 0.0) or (a = — 100.0
and b = —100.0 and h = 0.0). The inaccuratc ter-
mination condition (error five) is revealed by testing

Figure 12. Domain testing strategy.
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a= 589 and b = ~300 sad b ~ -18

Figure 13. Conditions for satisfying domain testing strategy
for RECTANGLE.

cither of the off points (a = 100.0 and b = 98.99 and
h=—10)or(a = —9899and b = —1000and h
= —1.0). The third error is a missing path error that
will not be detected by domain testing. This error oc-
curs when (a2 > b) and (h < 0.0) and (abs(h) > a —
b), which implies that a — b + h < 0.0; this describes
points in the domain but not on the closed border and
thus will not be selected by domain testing.

Existing domain testing techniques are aimed at the
detection of path selection errors. As illustrated in the
cxample, missing path errors may not be detected by
such techniques. A missing path error is particulary dif-
ficult to detect since it is possible that only one point in
a path domain should be in the missing path domain;
the error will not be detected unless that point happens
to be selected for testing. When a missing path error
corresponds to a missing path domain that is near a
boundary of an existing path domain, then the error
may be caught by domain testing techniques, as oc-
curred in RECTANGLE for errors two and four. Miss-
ing path errors cannot be found systematically, how-
ever, unless a specification is employed by the test data
selection method, as is discussed in Section 4.6.

In sum, the symbolic representations created by
symbolic evaluation appear to be quite useful in deter-
mining what test data should be sclected in order to
have confidence in a path’s reliability. This is a prom-
ising, yet relatively new, rescarch area that should be
cxplored further.

4.4 Debugging

It is not surprising that symbolic evaluation, which is
useflul for guiding testing, can also be used to help dis-
cover the cause of an error—that is, for program de-
bugging. When an error is revealed on a path that has
been symbolically evaluated, then the symbolic repre-
sentations of the path computation and path domain
can be examined to obtain information about the cause
of a known crror. Once an error is known 10 exist, the
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programmer knows at least onc algebraic expression
that is in error and can focus on that expression in
search of clucs to the actual cause of the error. In ad-
dition to the symbolic representations of the erroneous
statements, symbolic cvaluation systems could provide
a list of the executed statements that affected the al-
gebraic expression in error; only those statements need
be examined to determine the cause of the error. This
is similar to program slicing [67], a technique that pro-
vides a modificd listing of the source program contain-
ing only the statements that could affect selected
statements.

To assist in debugging, dynamic testing systems
often provide a capability for examining the computa-
tion trees for the symbolic represcntations while they
are being constructed statement-by-statement. Some of
these systems allow the user to stop execution at any
statement and “‘unexecute.” In other words, the user
can direct the system to undo part of the preceding ex-
ecution. This *“unexecution” would show the reverse
evolution of the computation trees. Observing both the
evolution and reverse evolution of the trees can help the
user isolate an error. Experiments with the dynamic
testing system ISMS [24] have shown that both of
these features are beneficial for debugging. Similar ca-
pabilities are possible with interactive path-dependent
symbolic evaluation systems.

Testing strategies that rely on symbolic evaluation
information can also use that information to provide
valuable assistance to the debugging process [15]. For
example, if a test case that was selected with the goal
of exposing a particular type of error indeed resulted in
an error, then the goal and the information used to find
a test case satisfying that goal would be useful during
debugging. We suspect that, like the way optimization
techniques have been modified to provide interesting
data flow validation techniques [51], testing techniques
can also be redirected to be useful debugging tools.

4.5 Program Optimization

Symbolic evaluation also has applications in program
optimization [64]. The internal representation of the
path values [16], can be used for common subexpres-
sion elimination and constant folding. In addition, sev-
cral types of loop optimizations may sometimes be per-
formed when the loop expressions are obtainable by
global symbolic evaluation. Loop-invariant computa-
tions may be easily detected since they are independent
of the iteration count of the loop; these may thus be
moved outside of the loop. Loop fusion can sometimes
be performed when the number of iterations performed
by two loops can be determined to be the same and varni-
ables referenced in the second loop are not defined in a
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later iteration of the first loop. When variables modified
within the loop have values that form arithmetic pro-
gressions—that is, they are incremented by the same
amount each time through the loop—these computa-
tions can sometimes be moved out of the loop and re-
placed by expressions in terms of the final loop iteration
count. Optimizations that perform in-line substitution
of a routine may also benefit from global symbolic eval-
uation, since the closed form representation of the rou-
tine may enable better determination of when such sub-
stitution is useful.

The REDFUN system [2,23] uses symbolic evalu-
ation to enhance the performance of LISP programs. In
addition, Osterweil [51] describes a method in which
data flow analysis and symbolic evaluation can be used
jointly to optimize code, particularly the instrumented
code created by dynamic testing systems.

4:6 Software Development

In this paper we have focused on the analysis of the
code. Software validation, however, should be con-
cerned with all stages of program development. As
work progresses in the arcas of requirements, specifi-
cations, and design, symbolic evaluation methods are
proving to be useful for these earlier stages of software
development as well [9,58].

Symbolic evaluation of a formal specification has
been proposed as an alternative to early prototype de-
velopment. Symbolic evaluation systems have has been
built for the GIST [17] and INAJO [40] specification
languages. In these systems, symbolic evaluation is used
in'an attempt to characterize the behaviors that satisfy
a given specification. Logic errors in the specification
that are uncovered are pointed out as unintended or
missing behaviors. As was similarly noted for programs,
symbolic evaluation of a specification tests a range of
possible inputs as opposed to the concrete execution of
a prototype, which for each test case only tests a single
path for a unique set of inputs.

Using a specification of the intended function of a
program to help with testing, as opposed to only consid-
ering the code itself, has often been suggested
(29,57.68]. The partition analysis method [58] at-
tempts to accomplish this by applying global symbolic
evaluation to a routine, as well as to its specification,
thus creating global representations of both. By com-
paring these two representations, a partition of the do-
main is determined. This partition is then utilized in
verifying the routine’s consistency with the specifica-
tion. Information derived from this verification process
along with error-sensitive testing strategies are applied
10 guide in the selection of test data. Test data selection
is thus based on the specification and not only the im-
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plementation, as such partition analysis is one of the
few testing techniques to address missing path errors.
A preliminary study of this method showed it to be
quite effective at discovering errors [60]. Partition
analysis has been applicd to several different kinds of
specification languages including predicate calculus
(30], state transitions, and both high-level and low-level
procedural languages [59]. Thus, the basic ideas of ap-
plying symbolic evaluation to pre-implementation de-
scriptions and comparing two representations at differ-
ent levels of detail seems to be generally applicable to
a wide range of languages and at various stages in the
lifecycle; it can be applied to compare software speci-
fications to designs, high-level to low-level designs,
VLSI specs to VLSI designs, and so on.

Symbolic evaluation has also been used to support
program construction. Tinker [46], Pygmalion [62],
and Curry [18) are experimental systems that allow the
user to express program requirements in terms of sym-
bolic representations and then an attempt is made to
construct the program automatically based on the ex-
amples provided. Similarly, Waters [66] uses symbolic
evaluation, in conjunction with a library of common
program patterns, to synthesize programs.

5. SUMMARY

Symbolic evaluation is of interest because it is the foun-
dation for a number of software engineering tech-
niques. This paper describes three methods of symbolic
evaluation. Although the symbolic representations pro-
vided by each of the three methods are similar, they
differ enough to substantially affect the cost as well as
the types of subsequent program analysis that can be
performed. If dynamic symbolic evaluation maintains
only the information required to develop the final sym-
bolic representations, its applications are usually re-
stricted to program debugging. Path-dependent sym-
bolic evaluation maintains more general information
about a path and thus has a more extensive range of
applications, including test path sclection, test data
generation, and cerfitication. Global symbolic evalua-
tion analyzes all paths and maintains a global represen-
tation of a routine and thereby has applications to pro-
gram optimization and verification in addition to the
applications of path-dependent symbolic evaluation.
While all three methods of symbolic evaluation have
been implemented in experimental systems, efficient,
more useful implementations pose several problems.
Initially, symbolic evaluation was employed by for-
mal verification techniques to formulate the verification
conditions that must be proven. As discussed in this
paper, there are several less comprehensive ways in
which verification can be done in the context of sym-
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bolic evaluation. Another alternative is the partition
analysis method, which integrates testing and
verification.

For the path selection aspects of testing, symbolic
evaluation is useful in determining path feasibility for
the control and data flow criteria. It is also being used
in the analysis employed by perturbation testing. It is
interesting to note that path selection and symbolic
evaluation have a symbiotic relationship. Symbolic
evaluation is used to guide the selection of paths, which
are then symbolically evaluated. Thus, adaptive sys-
tems, where path selection and symbolic evaluation dy-
namically interact, should be considered. Several test
data selection techniques are being developed that se-
lect data based on an examination of the symbolic rep-
resentations created by symbolic evaluation. Both com-
putation and domain testing techniques have been
proposed which use this approach. While the initial
work in this area is quite promising, better, as well as
more integrated, techniques must be developed.

For the most part, current research is addressing the
issues of verification, path selection, test data sclection,
debugging, optimization, and development as indepen-
dent topics. It is clear, however, that these topics are
closely related and eventually should be integrated into
a software development environment.
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