
The ASTOOT Approach to Testing
Object-Oriented Programs

ROONG-KO DOONG

Sun Microsystems Laboratories

and

PHYLLIS G. FRANKL

Polytechnic University

This article describes a new approach to the unit testing of object-oriented programs, a set of
tools based on this approach, and two case studies. In this approach, each test case consists of a
tuple of sequences of messages, along with tags indicating whether these sequences should put
objects of the class under test into equivalent states and\or return objects that are in equivalent

states. Tests are executed by sending the sequences to objects of the class under test, then
invoking a user-supplied equivalence-checking mechanism. This approach allows for substantial

automation of many aspects of testing, including test case generation, test driver generation, test
execution, and test checking. Experimental prototypes of tools for test generation and test
execution are described. The test generation tool requires the availability of an algebraic
specification of the abstract data type being tested, but the test execution tool can be used when
no formal specification is available. Using the test execution tools, case studies involving

execution of tens of thousands of test cases, with various sequence lengths, parameters, and

combinations of operations were performed. The relationships among likelihood of detecting an
error and sequence length, range of parameters, and relative frequency of various operations

were investigated for priority queue and sorted-list implementations having subtle errors. In
each case, long sequences tended to be more likely to detect the error, provided that the range of
parameters was suffkiently large and likelihood of detecting an error tended to increase up to a

threshold value as the parameter range increased.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifics-
tions—languages; D.2.5 [Software Engineering]: Testing and Debugging-symbolzc execution;

test data generators; D.3.2 [Programming Languages]: Language Classifications-object-
oriented languages; D.3.3 [Programming Languages]: Language Constructs and Features—
abstract data types

General Terms: Algorithms, Experimentation, Languages, Reliability

Additional Key Words and Phrases: Abstract data types, algebraic specification, object-oriented
programming, software testing

This research was supported in part by NSF grants CCR-8810287 and CCR-9003006 and by the
New York State Science and Technology Foundation, and was performed while the first author
was at Polytechnic University.
Authors’ addresses: R. K. Doong, Sun Microsystems Laboratories, 2550 Garcia Avenue, Moun-
tainview, CA 94043; email: roongko@arkesden.eng. sun.tom; P. G. Frankl, Department of Com-
puter Science, Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11201; email:

phyllis(tjmorph.poly .edu.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1994 ACM 1049 -331X/94 /0400-O101 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 3, NO ~, A@ 1994, pages 101-130.

102 . R -K, Doong and P G, Frankl

1. INTRODUCTION

Object-oriented programming, based on the concepts of data abstraction,

inheritance, and dynamic binding, is becoming an increasingly popular soft-

ware development methodology. Much research has been done on developing

object-oriented analysis and design techniques, developing object-oriented

programming languages, and exploring how the methodology changes the

software development process. Yet relatively little research has addressed the

question of how object-oriented programs should be tested.

We have developed a new approach to unit testing object-oriented pro-

grams, which is based on the ideas that the natural units to test are classes,

and that in testing classes, one should focus on the question of whether a

sequence of messages puts an object of the class under test into the “correct”

state. In this approach, roughly speaking, each test case consists of a pair of

sequences of messages, along with a tag indicating whether these sequences

should result in objects that are in the same “abstract state.” A test case is

executed by sending each sequence of messages to an object of the class under

test, invoking a user-supplied equivalence-checking routine to check whether

the objects are in the same abstract state, then comparing the result of this

check to the tag. This testing scheme has several nice properties:

– Expected results of tests are included in test cases in a concise format (one

Boolean) which is independent of the class being tested. This facilitates

automatic checking of test results.

—Test drivers for different classes are very similar to one another, hence can

be automatically generated from class interfaces.

—If an algebraic specification for the class under test is available, term

rewriting can be used to generate test cases automatically. If no algebraic

specification is available, a person can develop test cases by reasoning

about an informal specification.

This approach is embodied in the prototype testing system ASTOOT, A Set

of Tools for Object-Oriented Testing, which includes an interactive specifica-

tion-based test case generation tool and a tool that automatically generates

test drivers. For any class C, ASTOOT can automatically generate a test

driver, which in turn automatically executes test cases and checks their

results. Additionally, when an algebraic specification for C is available,

ASTOOT can partially automate test generation. Thus the system allows for

substantial automation of the entire testing process.

The current version of ASTOOT is targeted to testing programs written in

Eiffel.TM Throughout this article we assume that the classes being tested are

written in Eiffel. However, the underlying ideas and tools can be adapted

relatively easily to other object-oriented languages.

In Section 2, we review relevant background material on software testing,

object-oriented programming, and algebraic specification of abstract data

types. Section 3 describes the ideas underlying ASTOOT—correctness of a

—
‘M Elffel is a trademark of the Nonprofit International Consortium for Eiffel (Nice).

ACM Transactions on Software Engmeermg and Methodology, Vol. 3, No, 2, Aprd 1994.

The ASTOOT Approach to Testing . 103

class that implements an abstract data type, test case format, and test result

checking. The tools are described in Section 4. Section 5 describes two case

studies performed in order to gain more insight into how to generate good

test cases. We compare our approach to related work in Section 6 and note

directions for future work in Section 7’.

2. BACKGROUND

2. i Background on Software Testing

Testing is one of the most time-consuming parts of the software development

process. Increased automation of the testing process could lead to significant

saving of time, thus allowing for more thorough testing. Three aspects of the

testing process which could potentially be at least partially automated are

test data generation, test execution, and test checking. Our approach to

testing object-oriented programs involves all three of these areas.

Perhaps the most obvious opportunity for partially automating testing is

the generation of test cases. In order to automate test generation it is

necessary to analyze some formal object, such as source code or a formal

specification. Most research on automated test generation has involved pro-

gram-based or white-box techniques, i.e., techniques based on analysis of the

source code of the program being tested. However, white-box testing suffers

from certain limitations, such as its inability to generate test cases intended

to exercise aspects of the specification that have inadvertently been omitted

from the program. Black-box or specification-based techniques, based on

analysis of the program’s specification, overcome some of these limitations,

but cannot be automated unless some kind of formal specification is available.

Manual black-box test generation techniques, based on informal specifica-

tions, are widely used in practice. The testing scheme described in this article

is a black-box approach which is automatable when a formal algebraic

specification is available and which can be applied manually, otherwise.

Another area for potential automation is in the construction of test drivers.

Many testing methods can be applied to individual subprograms. When the

program unit being tested is a whole program, the inputs and outputs are

usually a set of files. When the unit being tested is a procedure or function

the inputs and outputs may include values of parameters and of global

variables, as well as values read from and written to files. In order to test a

procedure, it is necessary to build a driver program which initializes global

variables and actual parameters to the appropriate values, calls the proce-

dure, then outputs final values of relevant globals and parameters. It can be

quite cumbersome to initialize the inputs and check the values of the outputs.

It is particularly unwieldy if, as is often the case in object-oriented program-

ming, the parameters have complicated types. The model described below for
testing object-oriented programs circumvents this problem.

Another problem which arises in testing software is the oracle

problem—after running a program P on a test case, it is necessary to check

whether the result agrees with the specification of P. This is often a non-

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994.

104 . R.-K. Doong and P. G. Frankl

trivial problem, for example, if there is a great deal of output, or if it is

difficult to calculate the correct value [Weyuker 1982]. Our testing method

uses a novel approach which allows the correctness of test cases to be checked

automatically by the test execution system.

2.2 Overview of Object-Oriented Programming

Object-oriented languages support abstract data type, inheritance, and dy-

namic binding. An abstract data type is an entity that encapsulates data and

the operations for manipulating that data. In object-oriented programming,

the programmer writes class definitions, which are implementations of ab-

stract data types. An object is an instance of a class; it can be created

dynamically by the instantiation operation, often called “new” or “create.” A

language supports inheritance if classes are organized into a directed acyclic

graph in which definitions are shared, reflecting common behavior of objects

of related classes.

A class consists of an interface which lists the operations that can be

performed on objects of that class and a body which implements those

operations. The state of an object is stored in instance variables (sometimes

called attributes), which are static variables, local to the object. A class’s

operations are sometimes called methods.

In object-oriented programs, computation is performed by “sending mes-

sages” to objects. A message invokes one of the object’s methods, perhaps with

some arguments. The invoked method may then modify the state of its object

and/or send messages to other objects. When a method completes execution,

it returns control (and in some cases returns a result) to the sender of the

message.

The inheritance mechanism of object-oriented languages facilitates the

development of new classes which share some aspects of the behavior of old

ones. A descendent (subclass) Cd of a class C inherits the instance variables

and methods of C. Cd may extend the behavior of C by adding additional

instance variables and methods, and/or specialize C by redefining some of

C’s methods to provide alternative implementations.

A dynamic binding mechanism is used to associate methods with objects. In

strongly typed object-oriented languages, it is legal to assign an object of class

Cd to a variable of class C, but not vice versa. After doing so, a message sent

to this object will invoke the method associated with class Cd. For example,

consider a class POLYGON with subclasses TRIANGLE and SQUARE, each

of which redefines POLYGON’s perimeter method. Assigning an object of class

SQUARE to a variable of class POLYGON, then sending the perimeter

message will invoke SQUARE’s perimeter method. This allows construction of

polymorphic data types.

Some examples of object-oriented langaages include Smalltalk, C + +, and

Eiffel [Goldberg and Robson 1983; Meyer 1988; Stroustrup 1991]. While Ada

and Modula-2 are not, strictly speaking, object-oriented languages, they do

provide support for data abstraction; thus, some of the ideas discussed here

ACM Transactions on Software Engineering and Methodology, Vol 3, No 2, April 1994.

The ASTC)OT Approach to Testing . 105

are relevant to them. See Meyer [1988] for an overview of the object-oriented

approach.

2.3 Algebraic Specification of Abstract Data Types

Before we can talk about how to test a class C, we must have some concept of

what it means for C to be correct. Thus, we must have some means, formal or

informal, of specifying the entity that C is intended to implement and of

stating the conditions under which the implementation conforms to the

specification. In the case where C is intended to implement an abstract data

type, algebraic specifications provide a formal means of doing this.

An algebraic specification has a syntactic part and a semantic part. The

syntactic part consists of function names and their signatures (the types they

take as input and produce as output). In an algebraic specification of type T,

functions which return values of types other than T are called obseruers,

because they provide the only ways for us to query the contents of T.

Functions which return values of type T are called constructors or trczrzsforrn-

ers. 1 The distinction between constructors and transformers is clarified be-

low.

The semantic part of the specification consists of a list of axioms describing

the relation among the functions. Some specification techniques allow for a

list of preconditions describing the domains of the functions, while others

allow functions to return error values indicating that a function has been

applied to an element outside of its domain.

Term rewriting [Knuth and Bendix 1970] has been used to define a formal

semantics for algebraic specifications [Goguen and Winkler 1988; Musser

1980]. Two sequences SI and Sz of operations of ADT T are equivalent if we

can use the axioms as rewrite rules to transform SI to Sz.2 A specification

can then be modeled by a heterogeneous word algebra, in which the elements

are equivalence classes of sequences of operations.

For a specification & to be useful, it must be consistent and sufficiently

complete [Guttag and Horning 1978]. A consistent specification must not

contain contradictory axioms, i.e., no contradiction should be derivable from

any operation sequences of the specification. Let W be the set containing all

the operation sequences consisting of constructors or transformers of 9. S is

sufficiently complete, if for every sequence w in W, the result of applying

each observer of y to w is defined. Discussion of how to construct useful

algebraic specifications can be found in Antoy [1989] and Guttag [1977; 1980].

Most algebraic specification languages use a functional notation. For conve-

nience, we have designed a specification language, LOBAS, whose syntax is

similar to 00 programming language syntax [Doong 1993]. The syntactic

part of a LOBAS specification includes an export section which lists opera-

tions available to the users of the ADT. In LOBAS, the designer of a

lTransformers are called extensions in Guttag and Horning [1978].
zThis definition follows the assumption of Goguen et al. [1978]; Guttag et al. [1978] makes the

opposite assumption, i.e., that two sequences may be assumed to be the equivalent unless
provably inequivalent.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

106 . R.-K. Doong and P, G. Frankl

specification has to classify the operations into three categories—construe-

tors, transformers, and observers. This classification process helps the de-

signer produce a sufficiently complete specification and facilitates the test

generation scheme described in Section 4.2. An additional advantage of this

notation is pointed out in Section 3.1.

Algebraic specifications of a priority queue in LOBAS and in functional

notation are shown in Figure l(a) and Figure l(b). Sequences of operations

(separated by dots) are to be read left to right, so that, for example,
create .add(5) add(3) represents the result of creating a priority queue, then

adding items 5 and 3 to

create. add(5) .add(3). delete

ply axiom 6 twice to give

*

=a

it, in that order. According to the specification,

is equivalent to create. add(3) because we can ap-

create .add(5) add(3) delete

create. add (5) delete add(3)

create. add(3).

The difference between constructors and transfosrners becomes clear at this

point. After the simplification is complete, only constructors are left in the

operation sequence. The role of transformers is to transform a sequence of

constructors into another sequence of constructors.

Note that the appearance of operation sequences in LOBAS bears a strong

resemblance to trace specifications which describe data abstractions by speci-

fying the legality, equivalence, and values of traces (operation sequences)

[Bartussek and Parnas 1986; Hoffman and Snodgrass 1988; Hoffman and

Strooper 1991]. Two advantages of trace specifications over LOBAS are their

ability to specify functions (observers) with side effects and their ability to

handle operation sequences with intermingled procedures and functions.

However, the axioms of LOBAS (and other algebraic languages) facilitate

automatic test case generation, as discussed in Section 4.2.

3. SELF-CHECKING TEST CASES

In this section we describe the main concepts that underlie ASTOOT. These

include a notion of correctness for classes, a model of test cases and their

execution, and a test-checking mechanism.

In one of the early articles on specification of data abstrac~ions, Liskov and

Zilles [1975] pointed out that it is possible to specify a data abstraction by

specifying the intended input-output behavior for each of its operations
individually, but doing so is usually cumbersome and may lead to overspecifi-

cation of the underlying representation of the data. Instead, they and other

[Goguen et al. 1978; Guttag 1977; Guttag et al. 19771 proposed algebraic
specifications of abstract data types (ADTs), which define the intended

behavior of an ADT by giving axioms describing the interaction of operations.

Similarly, it is possible to test a class by testing each of its methods

individually, treating each as a function mapping some input space to some

output space, selecting elements of that input space, and examining the

outputs to see if they are correct. However, doing so shifts the focus of testing

away from the essence of the data abstraction—the interaction among opera-

AC!M Transact,ms m Software Engineering and Methodology, Vol. 3, No, 2, April 1994

The ASTOOT Approach to Teshng . 107

cluss Priority-Queue export
create, largest, add, delete, empty, eqn

constructor
cl-eat e;

add (x: Integer)
transformer

delete

observer

empty: Boolean;

largest: Integer;

eqn (B: Priority_ Queue): Boolean

var

A, B: Priority _Queue,

x, y: Integer

axiom

1: create. empty – > true;

2: A.add(x). empty - > false,

3: create.largest – > – co;

4: A.add(x).largest – >

if x > A.largest then x

eke A.largest;

5: create. delete – > create;

6: A.add(x) delete – >

if x > A.largest then A

else A.delete.add(x);

7: A.eqn(B) – >

if A.empty and B.empty then true

else if ~A.empty and not B ,empty) or

(not A.empty and B.empty)

then fake

else if A.largest = B.largest

then A.delete.eqn(B.delete)

else false

end

(a) Specdication in LOBAS

type Priority _Queue
syntax

create: — > Priority _Queue;

add: Priority_ Queue x Integer

– > Priority_Queue;

delete: Priority _Queue - > Priority .Queue;

empty: Priority _Queue — > Boolean;

largest: Priority.Queue – > Integer;

eqn: Priority-Queue x Priority-Queue

– > Boolean;

declare

A, B: Priority .Queue;

x, y: Integer;

semantics

1: empty (create) – > true;

2: empty (add(A, x)) – > false;
3: Iargest(create) – > – co;

4: largest(add(A,x)) – >
if x > largest(A) then x

eke largest (A);

5: delete (create) – > create;
6: delete(add(A,x)) – >

if x > largest(A) then A

else add(delete (A) ,x);

7: eqn(A,B) – >

if empty(A) and empty(B) then true

else if (empty(A) and not empty(B)) or

(not empty(A) and empty(B))

then false

else if largest(A) = largest (B)

then eqn(delete(A),delete (B))

else fake

end

(b) Specification in functional notation

Fig. 1. Specifications of the priority queue.

tions. Furthermore, testing each method individually necessitates the con-

struction of complicated drivers and output-checking mechanisms. For exam-

ple, a test case for the add operation in a priority queue would consist of a

priority queue and an item, and the output would be another priority queue.

Thus the driver would have to initialize the input priority queue, and

checking the output would entail examining the output priority queue to see

if it is ;he correct result. In contrast, our approach to testing classes focuses

on the interaction of operations.

In this section, we restrict attention to classes intended to implement

ADTs. We require that

(1) operations have no side effects on their parameters,

(2) functions (observers) have no side effects,

(3) functions (observers) can only appear as the last operation of a sequence,
and

(4) when a sequence is passed as a parameter to an operation it must not

contain any functions (observers).

The main reason for placing restrictions 1 and 2 is that we cannot specify

these kinds of side effects by using either LOBAS or purely algebraic

ACM TransactIons on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

108 . R.-K, Doong and P. G, Frankl

languages. The reason behind restriction 3 is that sequences that mix func-

tions and procedures are not syntactically valid in LOBAS or other algebraic

specification languages [Mclean 1984]. Restriction 4 makes it easier to gener-

ate test cases using ASTOOT. Note that restriction 4 does not hinder our

ability to express test cases involving any parameters to an operation, since

when function f has no side effects on its target object (the object to which

the message is sent), the target object of a sequence S.f will be observation-

ally equivalent to the target object of S. Techniques for relaxing restrictions

2, 3, and 4 are discussed in Doong [1993].

3.1 Correctness of an ADT Implementation

Consider a class C, intended to implement abstract data type T. Each

function in T corresponds to a method of C’, and inputting a value of type T

to a function corresponds to sending a message to an object of class C. In

Eiffel, constructors and transformers are typically coded as procedures; rather

than explicitly returning an object of class C, such a procedure “returns” a

value by modifying the state of the object to which it has been applied. An

observer can be coded as a function which explicitly returns an object of

another class. We will refer to the object which a function or procedure

message is sent as the target object and to the object returned as the returned

object. For procedures, the target object and the returned object are the same

(though typically the value of the target object will be changed by the
procedure call). Notice that in addition to explicitly returning an object, a

function also implicitly “returns” its target object. If the function is side effect

free then the value of the target object will be unchanged by the function call.

The syntax of LOBAS, unlike the functional syntax of most algebraic

specification languages, allows us to differentiate between the target and

returned values. For example, in the sequence create. add (5) add(3) .Iargest the

final value of the target is a priority queue whose elements are 5 and 3, and

the returned value is 5.

We will say that objects 01 and Oz of class C are observationally equiva-

lent if and only ifi

—C is a built in class, and 01 and Oz have identical values; or

—C is a user-defined class, and for any sequence S of operations of C ending

in a function returning an object of class C’, O1. S is observationally

equivalent to Op .S as objects of class C’.

Thus, 01 is observationally equivalent to Oz if and only if it is impossible to

distinguish 01 from Oz using the operations of C and related classes. Two

observationally equivalent objects are in the same “abstract state,” even

though the details of their representations may be different. For example,

consider a circular array implementation of a first-in-first-out (FIFO) queue.

Two arrays containing the same elements in the same order would be

observationally equivalent (as queues), even though the elements could oc-

cupy different portions of the underlying arrays.

We now define the notion of correctness that underlies our approach.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, Aprd 1994.

The ASTOOT Approach to Testing . 109

A class C is a correct implementation of ADT T, if there is a signature-pre-

serving mapping from operations of T to those of C such that

—for any pair (Sl, Sz) of sequences of operations of T, S1 is equivalent to S2

if and only if the corresponding sequences of messages give rise to obserua-

tionally equivalent returned objects.

In other words, there is a one-to-one correspondence between the “abstract

states” of T and the “abstract states” of C, which preserves the transitions

between abstract states. Note that, based on the definition of returned object,

our definition of correctness demands that operation sequences consisting

entirely of constructors and transformers give rise to observationally equiva-

lent target objects and that operation sequences ending in observers return

observationally equivalent objects.

Other notions of correctness, some corresponding to other specification

methodologies, have also been investigated [Bartussek and Parnas 1986;

Gannon et al. 1987; Goguen et al. 1978; Guttag et al. 1978]. Our definition,

based on observational equivalence, is similar to that corresponding to trace

specifications [Bartussek and Parnas 1986], but is based on the more limited

algebraic specification methodology. It is a pragmatic and intuitively appeal-

ing one, which lends itself to a convenient testing strategy.

3.2 Test Case Format

This definition of correctness gives rise in a natural way to a framework for

testing. If we had an infinite amount of time and a way to check whether two

objects were observationally equivalent, we could exhaustively test class C as

follows:

—Consider the set % consisting of all 3-tuples (S1, S2, tag), where S1 and S2

are sequences of messages, and tag is “equivalent” if S’l is equivalent to S’z

according to the specification, and is “not equivalent,” otherwise.

—For each element of %, send message sequences S1 and S2 to objects 01

and 02 of C, respectively, then check whether the returned object of 01 is

observationally equivalent to the returned object of 02.

—If all the observational equivalence checks agree with the tags, then the

implementation is correct; otherwise it is incorrect.

Unfortunately, we have neither an infinite amount of time for testing, nor a

fool-proof way of checking observational equivalence. Nonetheless, this scheme

suggests an approach to testing. We demand that C and each class that is

returned by a function of C include a method called EQN which approxi-

mates an observational equivalence checker, and we select elements of ???as

test cases. In addition to shifting the emphasis of testing from functionality of

individual methods to the notion of state, this approach to testing facilitates

automation of many aspects of the testing process.

Note that the elements of % can be viewed as “self-checking” test cases.

That is, each test case includes information, in the form of the tag, describing

the expected result of execution. Furthermore the format of this expected

result (a single Boolean) is very concise and is independent of the particular

class being tested and of the pair of sequences to be executed. This facilitates

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, Aprd 1994.

110 . R.-K, Doong and P. G Frankl

automated execution and checking of test cases. Of course, when generating

such test cases, it is necessary to consider the specification of the ADT in

order to derive the tags. This can either be done semiautomatically by

manipulating a formal specification, as described in Section 4, or manually by

reasoning about a formal or informal specification.

For example, consider a priority queue of integers, whose functions are

described informally as follows:

create—creates an empty priority queue,

add—adds an integer to the priority queue,

delete—removes the largest element of the priority queue,

largest—returns the value of largest element of the priority queue, without

modifying the contents of the priority queue, and

empt y—determines whether the priority queue is empty.

By reasoning about this informal specification, a person can generate test

cases such as,

(1) (create. add(5) .add(3).delete, create. add(3), equivalent),

(2) (create. add(5) .add(3).delete.largest, create. add(3) .largest, equivalent),

(3) (create. add(5) .add(3).delete, create. add(5), not-equivalent), and

(4) (create. add(5) .add(3), create. add(3) .add(5), equivalent).

Test case 1 says that creating an empty priority queue, adding 5 then 3, then

applying delete should be the same as creating an empty priority queue and

adding 3 to it. Test case 2 says that the objects returned by applying largest to

those two priority queues should be equivalent. Test case 3 says that if we

create an empty priority queue add 5 and 3, then delete, it should not be the

same as if we create an empty priority queue and add 5 to it. Test case 4 says

that a priority queue obtained by adding 5 then adding 3 should be observa-

tionally equivalent to one obtained by adding 3 then adding 5. Unlike the

previous three test cases, this test case captures an aspect of the informal
specification that is not expressed in the formal specification, and thus it

cannot be derived from the formal specification by using term rewriting.3

This indicates that, even when a formal specification that partially describes

the intended semantics of an ADT is available, manual generation of addi-

tional test cases may be useful.

We refer to test cases consisting of a pair of sequences along with a tag as

mstrict~d-format test cases. More general test case formats which are useful

for testing classes involving side effects and dynamic binding are introduced

in Doong [1993].

3.3 The EQN Method

We now discuss the EQN operation. Ideally, the EQN operation in class C
should check whether two objects 01 and Oz of class C are observationally

31f an axiom such as A add(x) add(y) + A add(y) .add(x) were added to the specification, this
aspect of the informal specification would be captured. However, the resulting specification
would no longer satisfy the finite termination condition,

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994

The ASTOOT Approach to Testing . 111

equivalent; that is, it should check whether any sequence of messages ending

in an observer yields the same result when sent to 01 as when sent to Oz.

Since it is clearly impossible to send every such message sequence to the

objects, in practice EQN will approximate a check for observational equiva-

lence.

It is often quite easy to produce a recursive version of EQN from the

specification of the AD’I’ which C is intended to implement. For example,

axiom 7 of Figure 1 specifies such an EQN function based on the priority

queue specification. Note that this is actually only an approximation of true

observational equivalence because it neglects the possible effects of “building

up” the priority queues, then removing elements. Thus, it might say that two

objects are equivalent when they are not.4 Also, since EQN calls largest, and

delete, an error in one of these operations may propagate to EQN, causing it

to mask out the error. On the other hand, the error propagation can also help

in error detection, as demonstrated in Section 5.1.

Another approach to developing the EQN function is to write it at the

“implementation level.” In this approach, EQN is based on detailed knowl-

edge of how data is represented and manipulated in the class body. For

example, knowing that a FIFO queue is represented as a linked list, one can

traverse the two lists comparing the elements. In general, if sufficient atten-

tion is paid to the details of the representation, EQN can implement observa-

tional equivalence exactly. On the other hand, it is possible that the same

misconceptions which lead to implementation errors in C’s other methods

may lead to errors in EQN. Furthermore, for some representations of some

data structures, writing an implementation-level EQN operation may be

extremely difficult and error prone, even when the other methods are rela-

tively simple.

It is also sometimes possible to use a very coarse approximation of observa-

tional equivalence as the EQN function. For example, we might consider two

FIFO queues to be equivalent if they have the same number of elements, or if

they have the same front element. This version of EQN may consider two

inequivalent objects to be equivalent. Naturally, using a coarser approxima-

tion of observational equivalence will lead to less accuracy in the test results.

Bernet et al. [1991] discuss a closely related problem and suggest that an

“oracle hypothesis” be explicitly stated. In the context of our approach to

testing, such a hypothesis would describe the conditions under which the

implementation of EQN is equivalent to an actual check for observational

equivalence.

4. THE TOOLS

ASTOOT is a set of tools based on the approach described in Section 3. The

current prototype, which handles test cases in the restricted format, has

4 For example consider an implementation which completely empties the priority queue when-

ever the total number of adds performed reaches a parl~icular number N >2. The recursive EQN
would consider 01 ,create.add (1) add (2) ,delete equivalent to 02.create,add (1), but in fact, perform-
ing an additional N – 2 adds followed by N – 2 deletes on each object would leave 01 empty and
leave 02 nonempty.

ACM Transactions on Software Engmeermg and Methodology, Vol. 3, No, 2, April 1994,

112 . R.-K. Doong and P. G. Frankl

1 7.,

I : Compiled ~I
I : Axioms ~ :
1

:...
I --1---”--”-----””’ 1

- I
~ Test Driver ~

1! Source ~
..........

1 1
I 1 I

1 i

1

I SOURCE
1 TEST
1 LANGUAGE
1 COMPILER

RESULTS
I
1 I
L——__ —__ ________ ________ ____

Fig. 2, Components of ASTOOT

three components: the driver generator, the compiler, and the simplifier. The

driver generator takes as input the interface specifications of the class under

test (CUT) and of some related classes and outputs a test driver. This test

driver, when executed, reads test cases, checks their syntax, executes them,

and checks the results, The compiler and simplifier together form an interac-

tive tool for semiautomatically generating test cases from an algebraic speci-

fication. Note that when no algebraic specification is available, the drivers

produced by the driver generator can be used to execute test cases which
have been derived by a person reasoning about an informal specification. The

structure of ASTOOT is illustrated in Figure 2, and a screen dump of an

ASTOOT session is shown Figure 3.

4.1 The Driver Generator

Our approach to testing leads to relatively simple test drivers, which operate

by reading in test cases of the form (Sl, Sz, Tag), one at a time, checking that

the sequences are syntactically valid, sending sequences S’l and Sz to objects

01 and Oz of CUT, comparing the returned objects of SI and Sz with EQN,

and checking whether the value returned by EQN agrees with Tag. On the

ACM Transactions on Software Engmeermg and Methodology, Vol 3, No. 2, Aprd 1994

The ASTC)OT Approach to Testing . 113

other hand, drivers are complicated enough that writing them manually is a

tedious and error-prone task. In particular, checking the syntactic validity of

the operation sequences involves complicated parsing and type checking. For

example, our driver for the priority queue class has over 400 lines of code (not

counting inherited classes), most of which deals with checking the syntax of

the operation sequences. Luckily, drivers for testing different classes are very

similar to one another in structure. This has allowed us to write a tool, the

driver generator, which automatically generates test drivers. The driver

generator can be viewed as a special-purpose parser generator, which, based

on the syntax described in the class interfaces, generates test drivers that

parse test cases, as well as executing and checking them.

The driver generator, DG, operates in three phases. The first phase is to

collect information about interfaces of the CUT, its ancestors, and all the

classes which are parameter types or return types of CUT’s operations. DG

first checks whether each of these classes has an exported EQN operation.5

(If, like Eiffel, the implementation language has the facility of selective

export then we can let EQN be exported only to the test driver, so the

integrity of the implementation can be preserved.) In the second phase, DG

builds a test driver, which is a class in the implementation language. The

current version of the driver generator is targeted to Eiffel 2.1, but the

underlying ideas can be applied to other 00 languages. In the third phase,

DG compiles and executes the test driver with test cases supplied by the user.

4.2 Test Generation Tools

ASTOOT’s test generation component has two parts, the compiler and the

simplifier, both of which are based on an internal representation called an

ADT tree. The compiler reads in a specification written in LOBAS and does

some syntactic and semantic checking on the specification, then translates

each axiom into a pair of ADT trees.

An ADT tree is a tree in which nodes represent operations along with their

arguments. Each path from the root to a leaf of an ADT tree represents a

possible state of the ADT. The branching of an ADT tree arises from axioms

having IF_ THEN_ELSE expressions on the right-hand side. Each edge of

the ADT tree has a Boolean expression, called the edge condition, attached to

it. The path condition of a path from the root to a leaf is the conjunction of all

the edge conditions on that path; it indicates the conditions under which the

operation sequence on that path is equivalent to the original sequence. The

path conditions in a given tree are mutually exclusive. Figure 4 illustrates

the ADT tree pair of Axiom 6 in Figure 1. For clarity, the edge conditions are

5For ASTOOT to access functions that are hidden in the implementation, the CUT should export

these functions to the test driver generated by ASTOOT. In Eiffel this can be achieved by
“selective export” to the test driver; in C + + this can be achieved by making the test driver a
friend class of the CUT.
6Because the simplifier and the driver generator operate under the assumption that create is the
instantiation operation, the compiler makes sure there is a constructor named create in the
specification. Also, the simplifier will insist that the first operation of a sequence is the create
operation.

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 2, April 1994.

114 . R.-K, Doong and P, G Frankl

,:,j;f {;,,);,:’,:~~‘jj -~;,;;; ‘!: ‘t~’$,,11 ,~:!”j~ ,:; ” ;/j ,,J,l,

p“d% C,t pq. seg
; create .add(a) add(b) add(c) add(d) deleta

, P“c,3% b,teks, mp 1 {fy Pq

S,mpl>fy?w pq
puc, s% cat pq.,, m

,: (meats add(a) add(b) .add<c). add(,) d’alete, mats add(a)
,dO(h). add(c) ad,(d))
credit, om cre, ts largest > a & meats add(a) largest > b
& meat. acid(a) add(b) largest) c & mea+. add(a) add(b)

‘ add(,).l,rw,t > d

‘,
(mmte ddd(a).sad(b) add(c) add(dl. delete, create add(b)

~~: add(c) .add(d))
cmd, t>o”, meat, add(a) largest ~ b & crmts. add(a) add[l

),1..3 ,8, ~ c G create add(,) add(b), add(c) largest > d

(cwt. add(a) add(b) add(c) addid) delete, create add(s)
add(c) add(d))

cmd, t,on create add(.) add(b) .larmst > c & create add!

).add(b) add(c) .lar9e9t > 6
,:,

(CPe*te add[a~ add(b) add(c> add, 0, delete> create add(a)
add(b), add(c))
cond+ t i on - (create add(a) add(b) add(=) largest ; d)

~~ (=H.+. add(al add(b) add(c) add(d) delete, mate. add(a)
add(b) add(d))

cmd, t,m crmte, add(a), add(bl add(c) lamest > d

pucs3% (j

I
,nhar, i

LSVWAX. ERROR, E_TOKEV_CONST, CHECK. E. CONST,
bRGLMENTS

:eatu. =

s. EIFFEL– SCANMER>

w=. lNTEGE@.
laet.claas.”me STRING,
O.1.pq, D_2_pq pq,
O.l.bml em, 0-2. boolsw bools an,

1
--

create Is
10..1

tag, O1->s-”o, d, ok BOOLEAN,
ob, i, p

. .

CONVERT.S

Z,

U.*3X cat pq Seq

-- Test ,,,.s can b, ,“ on. of the ho [.,.s --

(ORIG1tlbL-SEQ, SIMPLIFIED.SEO, EQUAL) or --
(ORIGINbL_sEO, 51 MPL1FLED.SEU NOT)

(treat. @d(4) .dd(3) zdd(?) add(l) d.lets, c.eate. add C31. add(2) .dd(l), EouAL)

(Crests add(3) aad[4J add(2) add(l) delate, .mts .dd(3) ldd(2) add(l), EQuAL1
(cw=+e a0d(3) =dd(2) .dd(~) add(1) delet~, create &aa(3) adO(2) .dd[l J, EQUALJ
(create add(3) add(2) add(l) add(4) d.le*s, =...+, =dd(3) add(2) .dd(l), EQUAL)

1
“.. S% DG Pq
,,”s!’ Gwm,atorfor F, ffel

v.,, >.” (1 2)
,ss 1 on c1 ass p
.ss 2 . . ,1.ss pq
.ss 3 .“ .1. = p

as. 4 . . class p
en.rating test–drl”er

cw 11.9 *e, *-d., v*,
,s S“stm a**e.bl v cowl ate

1’
Wl;g

(~N: ;:(.) .dd(31 old(2) add(l) d.lst., cr.. +.. *old(3) adO(21, add\ 1,, ..”,1

(y:$;#(3~ add(.) .W21 add(l) deletz. c-ate add&3, add!>) add<ll, ewal

(:;je add(3) add(2) add(4) add[ll delete, c-rote add(3) &dd:Z) add(l), equal

(y;;e add[J) add:?) add(l) addf4) dslete, craa+e .dd(31 add(>) .dd! l), q.,

Fig. 3. Screen dump of an ASTOOT session. The upper left window shows the execution of the

test generator in batch mode on a priority queue specification. The file pqseq contains an initial
sequence, supplied by the user. The test generator generates five test cases based on this initial
sequence and writes them, along with the corresponding constraints on the free variables, to the
file pq,sim. The constraint on each test case is obtained by conjoining the condition for that test
case with the negations of the conditions on previous test cases. The upper right window shows

the four test cases the user has developed by instantiating the free variables with values that
satisfy the constraints. (The first of the generated test cases has an unsatisfiable constraint, so it
is eliminated by the user). The driver generator is then invoked on an incorrect implementation
of the priority queue (described in Section 5.1). It invokes Eiffel to compile the class under test,
generates a test driver for the class, compdes it, then executes the given test cases. The first two
test cases detect a bug, while the second two do not. The lower left window shows a small portion
of the test driver which was automatically generated by the driver generator.

shown in rectangles in the figure; in the implementation, parameters of

operations and the operands in the Boolean expressions are, themselves,

represented by ADT trees.

The simplifier inputs an operation sequence, supplied by the user, trans-

lates it into an ADT tree, and applies the transformations to obtain equiva-

lent operation sequences. The process of simplification is as follows:

(l) Search through the axioms to find an axiom with a left-hand side that
matches some partial path of the ADT tree (ignoring the edge conditions).

(2) If an axiom is found, bind all the variables in the axiom to the proper
arguments in the partial path of the ADT tree and simplify the argu-

ACM Transactions on Software Engineering and Methodology, Vol. 3, No !2, April 1994,

The ASTOOT Approach to Testing . 115

YAzadd(x)

delete

&EE@l ’01”m
A A

9delete

(m)

Fig. 4. Axiom 6 of the priority queue in ADT tree form.

ments; then replace the partial branch with the right-hand side of the

axiom.

(3) Repeat steps 1 and 2 until there is no matching axiom.

In the worst case, the ADT tree arising from a sequence of # operations

may have m~’ paths, where m is the maximum number of branches in any

axiom. To deal with this complexity, the current prototype can operate either

in batch mode, which builds the entire equivalent ADT tree, or in interactive

mode, which allows the user to selectively guide the construction of a particu-

lar path through the tree.

In order for the simplifier to work properly, the set of axioms in the

specification must be convergent, i.e., the axioms must have the properties of

finite and unique termination [Musser 1980]. The property of finite termina-

tion ensures the process of simplification will not go into infinite loop. The

property of unique termination makes sure that any two terminating se-

quences starting from the same operation sequence have the same results, no

matter what choice is made as to which axiom to rewrite or which axiom to

apply first.

An example, involving batch-mode simplification of the sequence

create. add (x) add(y). delete for the priority queue is shown in Figure 5. The

simplifier will generate test cases of the form:

(create. add(x) .add(y).delete, create. add(x). equivalent) with the path condi-

tion “y > x,” and

(create. add(x) .add(y).delete, ueate.add(y). equivalent) with the path condi-
tion “y < x.”

Note that the simplifier also suggests test cases with not-equivalent tags. For

instance, we can exchange the path conditions and the test cases from above

to get the following test cases:

(create. add(x) .add(y).delete, create. add(x), not-equivalent) with the con-

straint ‘<y < x ,“ and

(create .add(x) add (y).delete, Create. add(y), not-equivalent) with the con-
straint “y > x.”

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 2, April 1994.

116 . R.-K. Doong and P, G. Frankl

E
VOID

create

add(x)

add(y)

delete

TVOID

I
/ .

(create)

+

m
add(x) add(x)

m

zdelete

add(y)

&
VOID

m
y<x

crest e create

E!@ @b
1

Fig, 5. Simplification of the sequence create. add(x) add (y) delete.

For an ADT tree with n paths, the simplifier will generate n test cases that

have equivalent tags. In principle, the simplifier could also generate n(n – 1)

test cases that have not-equivalent tags, where n. is 0(mz’), # is the length of

the original sequence, and m is the maximum number of branches in any

axiom. Because there are too many such cases in an ADT tree, the current

version of the simplifier leaves selection of such test cases to the user.

Note that the test cases generated by the simplifier contain symbolic

values. To make them acceptable to the test driver, the user has to resolve

the path conditions (constraints) and instantiate the symbolic values with the

corresponding actual values. In principle, this could sometimes be done

automatically by a constraint-solving system. In the current prototype, con-

straint solving is left to the user.

Two important questions remain: how should one select original sequences

to input to the simplifier, and how should one select paths through the

resulting ADT trees, in order to increase the likelihood of exposing errors?

5. CASE STUDIES

To gain insight into what kind of original sequences the person using the test

generation tools should select and what kind of paths through the ADT tree

should be generated in interactive mode, we performed two case studies,

involving generation of many tests for a buggy priority queue implementation

and for a buggy sorted-list implementation. We choose the priority queue

ADT because we knew it to be sufficiently complicated to exhibit many

interesting phenomena. We purposely introduced the bug, but believe that it

is one which could easily occur in practice. The sorted list was based on a 2-3

tree, implemented for a graduate algorithms class. The bug was a slight

variation on one which had actually occurred during program development.

ACM TransactIons on Software Engineering and Methodology, Vol. 3, No 2. Aprd 1994

The ASTOOT Approach to Testing . 117

We wished to gain insight into the following questions:

(%) How does the length of the original sequence affect the likelihood that a
test case will detect an error?

(P) How does the selection of parameters for operations in the original
sequence affect the likelihood that a test case will detect an error?

(r) How does the ratio of adds to deletes in the original sequence affect the

likelihood that a test case will detect an error?

We addressed these questions by randomly generating and executing several

thousand test cases with various original sequence lengths, various ranges in

which parameters could lie, and various frequencies of occurrence of different

operations. For each original sequence we generated the corresponding sim-

plified sequence, then executed the test case (original sequence, simplified

sequence, equivalent). Note that it would have been extremely difficult to

execute and check so many test cases, had it not been for ASTOOT’s “self-

checking” test case concept.

5.1 Testing A Buggy Implementation of Priority Queue

In this case study, the CUT was a priority queue, implemented using a heap

with a bug in the delete operation. ~ Specifically, the Downheap (or sift)

operation performed by delete has an off-by-one error which causes it to

sometimes fail to swap with the bottom row. The erroneous delete code is
shown in the Appendix.

In Figure 6, (a) is the heap resulting from sequence create. add(5).

add(4) add(3) add(2) .add(l); (b) is the heap resulting from applying a correct

delete to (a); (c) is the resulting heap when the incorrect delete is applied to

(a); note that 1 has failed to swap with 2 in the bottom row.
As discussed in Section 3.3, since EQN calls delete, the bug in delete is

propagated to EQN. Even though the original sequence in test case

(create. add(5) .add(4).add(3). add(2) .add(l).delete, create. add(4) .add(3).add(2).
add(l), equivalent) produces an incorrect heap (Figure 6(c)), EQN reports that

the original sequence and the simplified sequence are equivalent due to the

bug in delete. Thus, in this case, the error is masked by the propagation of

the bug from delete to EQN.

On the other hand, consider the test case (create .add(4).add(3).
add(2) .add(l).delete, create. add(3) .add(2).add(l), equivalent). The original se-

quence produces a heap with 3 in the root, 1 in the root’s left child, and 2 in

the root’s right child. The simplified sequence produces a heap with 3 in the

root, 2 in the root’s left child, and 1 in the root’s right child. These two heaps

are both correct and should be observationally equivalent. However in check-

ing executing EQN to check observational equivalence, we call the erroneous

7Recall that a heap is a complete binary tree in which each node is greater than or equal to its
children; in the heap implementation of a priority queue, the delete operation is performed by
removing the root, replacing it by the rightmost leaf, then “sifting” that element down to its
proper position.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994.

118 . R.-K. Doong and P. G. Frankl

Mmm
(a) Original (b) Correct (c) Incorrect

Fig. 6. Illustration of the buggy priority queue

delete routine. After the first call to delete the original heap has 2 in the root

and 1 in the left child, while the (incorrect) “heap” resulting from the

simplified sequence has 1 in the root and 2 in the left child. After one more

call to largest, which compares the roots, EQN reports that these two se-

quences are not equivalent, so the bug is detected. Thus, in this case,

propagation of the error to EQN helps in error detection.

In order to carry out these case studies, we needed to generate tens of

thousands of test cases. In principle, we could have done this using the

ASTOOT test case generator by randomly generating original sequences with

symbolic values as parameters, and sending each original sequence to the

simplifier to generate test cases. This would give O(2Z) test cases for each

original sequence with # operations. Each test case would have symbolic

values constrained by the path condition of the corresponding path. To be

realistic, we would have to randomly choose some test cases and would have

to randomly instantiate the symbolic values of each test case with actual

values that satisfy the constraint of that test case either manually or with the

aid of a constraint solver.

Note that the number of test cases needed for these experiments is several

orders of magnitude larger than the number of test cases one would typically

use in practice to test an implementation of this size. In order to generate this

huge number of test cases efficiently and to do a broad range of testing with

the three variables, /’, p, and r of a test set R, we used a C program to

randomly generate test cases with actual values of those three variables,

rather than using the ASTOOT test generator. This C program consists of

three modules. The first module generates original sequences one at a time

according to the three parameters of R, which are

Z—the number of operations (excluding create) in an original sequence,

p—the parameter to add is an integer in the range [1. . . p], and

r—the ratio of adds to deletes appearing in the original sequences.

Operations of an original sequence are read in by the second module one at a

time and applied to a priority queue that is implemented by a list. The third

module inspects the contents of the list, generates a simplified sequence, and

outputs an appropriate test case. Note that the simplified sequences are the

same as if they were generated the test case generator of ASTOOT and

instantiated with real values that satisfy the constraints.

ACM Transactions on Software Engineering and Methodology, Vol 3, No 2, April 1994,

The ASTOOT Approach to Testing . 119

For each test set we generated 1000 test cases. The average number of adds
in simplified sequences is approximately

[

&’(r-l)
ifrzl

r+l

o OSr <l.

Results of Priority Queue Case Study

The percentages of test cases that expose the bug in each test set are shown

in Figure 7. Inspection of these graphs shows the following:

(~)

(p)

(r)

For large values of p, the parameter range, long original sequences are

better than short ones. However, if the parameter range is too small,

longer original sequences may do worse than shorter ones. In fact, the

results of test sets R(IOO lo ~,, R(IOO lo ~}, and R(IOO lo ~, are the worst in

r = 3, r = 6, and r- = 9 respectively, despite the fact that they have long

original sequences.

As the parameter range p increases, test cases tend to get better.

However, in each case there appears to be a threshold above which the

error detection probability levels off.

Likelihood of exposing an error depends somewhat on r.

In this buggy implementation, failure only occurred when it was necessary

to swap with the rightmost element in the bottom row of the heap. Appar-

ently, the long sequences were potentially more likely to cause the object to

enter such a state, either during application of the original or simplified

sequences, or through propagation of the error to the EQN operation. How-

ever, simply using a long sequence, without regard to the parameters chosen

could lead to objects that never get into these “interesting” states. If the

range of parameter values is too small, there will be many duplicates in the

heap, so when an item is deleted, it is less likely that the sifted item will be

strictly smaller than all of the elements it is compared to; thus it is less likely

that it was supposed to swap with the bottom row.

5.2 Testing a Buggy Implementation of Sorted List

The second case used an abstract data type, sorted list of integer, with six

operations, create, add, delete, find, nb_elements, and eqn. The interfaces,

preconditions, and informal specification of the sorted list are shown in

Figure 8. The EQN operation compared the lengths of the lists, then com-

pared them element by element. Note that we did not use any formal

specification for this sorted list. The test cases were generated by using a C
program similar to the one in the case study of priority queue.

The sorted list was implemented using a 2-3 tree (a special case of B-tree).

The implementation has approximately 1000 lines of Eiffel 2.1 code, and the

buggy version was produced by deleting one particular line from the correct

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994

120 . R.-K. Doong and P, G. Frankl

%
t

oo~
10 50 100 !500 1000!500010000

Range of Parameters (p)

(T=l)

E 50

r

**
r

*

; 40 *O 0
r o 0

~ 30 ‘2
a

; 20

./

● *..
s ● e

10 -:

oo~
10 !50 100 .500 1000500010000

Range of Parameters (P)

(r= 6)

%

60 -
*

E 50 -
r 000

: 40 - 0
r ‘2

c 30 -
a 9

: 20 -
s ●

0

10 -

oo~
10 50 100 !500 1000!500010000

Range of Parameters (p)

(r =3)

E 50
r

: 40
r

10

0

Ir ***
0000

*O

0

kL__Ll-
0 10 .50 100 .500 1000.50001000b

Range of Parameters (p)

(r= 9)

Fig, 7. Results of testing the priority queue using randomly generated test suites.

version of implementation. The absence of this statement affects the state

the

(1)

(2)

2-3 tree only when the following situation occurs:

A node ((0) in Figure 9(a)) has three children, such that the first child (

of

a!)
has three children, and both the second child (~) and the third child (y)

have two children.

One of of y’s children is then deleted.

For example, after deleting 6 of y from the 2-3 tree in Figure 9(a), the correct

procedure is:

(1) copy 5 from /? to y,

(2) delete 5 from ~,

ACM Transactions on Software Engineering and Methodolo~, Vol 3, No 2, April 1994

The ASTOOT Approach to Testing . 121

-- Sorted list without duplicated elements

class SO RTED.LIST export
create, add, delete, nb.elements, find, eqn

constructor

create;
——create an empty list

add[x: INTEGER)
-- If x is not in the list
——then add x to the list in the proper order

transformer

delete(i: INTEGER)

– – If 1 < i < nb.elements then

-- delete the i-th element
observer

nb.elements: INTEGER:
– – Number of elements in the list

find(i: INTEGER): INTEGER;
-- Return value of the i-th element

– – precondition: 1 < i < nb.elements
eqn (other: SORTED-LIST): BOOLEAN

-- Is other equivalent to the list’?

end

Fig. 8. Specification of the sorted list.

(a) Original

m] [*I
(b) Correct (c) Incorrect

Fig. 9. Illustration of the buggy 2-3 tree.

(3) copy 3 from a to P, and

(4) delete 3 from a.

The line that is missing from the buggy version does step (4) in the above

procedure. As illustrated in Figure 9, deleting 6 from (a) will get 2-3 tree (c).

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, Aprd 1994.

122 . R.-K. Doong and P. G. Frankl

%

oo~
10 50 100 500 1000500010000

Range of Parameters (P)

(r’ =1)

6 +0 -
r

~ 30 -
a

: ’20-
s

10 -

000000
0 *

o 10 50 100 !500 1000.500010000
Range of Parameters (P)

(r= 6)

%
t

60 -

E 50 -
r

; 40 -
r

~ 30 -
a

; 20 -
s

.* ***,
*

10 -
00000° 0

0 * a * h 9 e ●

o 10 .50 100 500 1000500010000
Range of Parameters (P)

(r= 3)

%

60
I

E 50
r

& 40
r

I
~ :30-
a

; 20 -
s

10 -
0000

00 b-
10 50 100 500 1000500010000

Range of Parameters (P)

(T= 9)

Fig, 10, Resulting of testing 2-3 tree using randomly generated test suites.

As in the priority queue case study, test sets were randomly generated with
various original sequence lengths, various parameter ranges, ancl various

ratios of adds to deletes. The original sequences contained create, add, and

delete operations, and the simplified sequences contained only create and add

operations.

Results of Sorted-List Case Study

The results, shown in Figure 10, exhibit similar phenomena to those dis-

cussed for the priority queue example. Since the number of elements in a
sorted list is at most equal to the range of parameter values, only long

sequences of operations with a large range of parameter values will produce

ACM Transactions on Software Engmeermg and Methodology. Vol. 3, No 2, April 1994

The ASTC)OTApproach to Testing . 123

2-3 trees with a large number of leaves. The error in this program is such

that failure only occurs when a deletion is performed on a 2-3 tree in a

particular kind of state. Apparently, 2-3 trees with a large number of leaves

are more likely to enter such a state.

5.3 Discussion of Case Studies

These case studies were intended to provide insight into the effects of such

factors as the length of the original sequence, the relative frequencies of

different operations in the original sequence, and the range of parameters to

operations. In both of the case studies, the results showed that long original

sequences do better than short ones, provided that the range of parameters is

large enough to take advantage of the length. Additionally, different ratios of

adds to deletes in the original sequence gave different results.

We certainly do not want to overgeneralize from these two small examples.

However it seems safe to say that the potential that the relative values of the

parameters would be important was apparent from the specification. In both

of these cases, the specification involved comparison of items, using the less

than operator. It is thus very reasonable to expect that different orderings of

the parameters added would lead to different states, some of which might be

more likely than others to expose the error. On the other hand, had we been

testing a stack or queue ADT, we would not expect that the particular

parameters would matter at all, and had we been testing a set ADT, we

would expect the number of duplications to be important, but would not

necessarily expect the relative order of parameters to be important (unless of

course the set was implemented using an AIDT based on comparison, such as

a 2-3 tree).

Another phenomenon we noticed was that different ratios of adds to deletes
led to different probabilities of error detection. When the ratio is one, it is

unlikely that the objects will grow very large in the course of testing. In our

examples, small objects were apparently not usually complicated enough to

excite the failure.

We offer the following tentative guidelines as to how to generate test cases:

—Use (at least some) long original sequences, with a variety of relative

frequencies of different constructors and transformers.

—If the specification has conditional axioms (with comparison operators)

choose a variety of test cases for each original sequence, with various

parameters chosen over a large range. Equivalently, choose a variety of

different paths through the ADT tree arising from each original sequence.

While these guidelines might seem obvious, previous research has suggested

limiting the complexity of sequences8 [Choquet 1986; Gaudel and Marre

‘Gaudel’s group suggests using relatively simple sequences but including a “regularity hypothe-
sis” asserting that if the simple sequences (such as those with length less than some n) give
correct outputs, so will more complex sequences. Our results can be interpreted as saying that
8uch regularity hypotheses do not hold for the ADTs examined for small n. Similar observations
lead Gaudel et al. to introduce additional “uniformity hypotheses.”

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 2, April 1994

124 . R.-K. Doong and P. G, Frankl

1988] and ignoring the semantics of the specification [Jalote 1989; Jalote and

Caballero 1988].

6. RELATED WORK

We now compare our approach to related work on testing data abstractions.

Previous systems generally fall into one of two categories—test execution

tools and test generation tools. In contrast, our approach gives rise to both

test generation and test execution tools.

6.1 Test Execution Tools

One of the first systems to address the question of testing data abstractions

was DAISTS (Data Abstraction Implementation Specification and Test Sys-

tem) [Gannon et al. 1981]. DAISTS uses the axioms of an algebraic specifica-

tion to provide an oracle for testing implementations of the ADT, A test case

is a tuple of arguments to the left-hand side of an axiom. DAISTS executes a

test case by giving it as input to the left-hand side and right-hand side of an

axiom, then checks the output by invoking a user-supplied equality function

(similar to our EQN).
Our test execution tool can be considered to be a generalization of DAISTS.

For example, recall that Axiom 6 of the priority queue specification shown in

Figure 1 says,

A.add(x).delete ~ if x > A.largest then A

else A.delete.add(x).

Executing the DAISTS test case (A = create .add(l) add (2), x = 3) on this ax-

iom is equivalent to our test case (create. add(l) .add(2).add(3).
delete, create. add(l).add(2), equivalent), in which the second sequence is ob-

tained by using axiom 6 to rewrite the first sequence.

However, DAISTS has no analog of our test cases of the form (Sl, Sz,

not-equivalent). This has significant ramifications-even exhaustive testing

with DAISTS may fail to detect an error that results in two states being

erroneously combined into a single state. As an extreme example, consider an

erroneous implementation in which none of the operations changes the state

of the object. The two sides of each axiom will return the same state on any

input, and thus the error will not be detected.

A second distinction between DAISTS and our approach is that DAISTS

requires the availability y of a formal specification, while our test execution
tools, i.e., the drivers produced by the driver generator, can be used when

only an informal specification is available, as in our second case study.

Hoffman and Brealey [1989] and Hoffman and Strooper [1991] have devel-

oped several test execution tools for abstract data types, based on trace

specifications [Bartussek and Parnas 1986]. Their most recent system,

Protest, consists of two subsystems:

(1) Protest \ 1 tests C implementation using test cases containing the ex-
pected output.

(2) Protest / 2 compares the behavior of a C implementation to that of a
user-supplied oracle written in Prolog.

ACM TransactIons on Software Engineering and Methodology, Vol 3, No 2, Aprd 1994.

The ASTOOT Approach to Testing . 125

A test case of Protest/1 is a 5-tuple (trace, expexc, actual, expual, type) where

trace is a sequence of operations which puts the ADT into some state; expexc

is the exception raised by the trace; actual is an observer; expval is the

expected value of applying the observer to that state; and type is the data

type of actual and expval. In Protest/2 the values expexc and expval are

generated by a Prolog oracle written by the user.

Protest, which is a program written in Prolog, executes test cases by calling

the operations in the implementation under test through an interface sup-

plied by the user. For each operation, the interface defines a Prolog predicate

which calls the corresponding C function in the implementation. The user

also needs to write functions that can be called to construct objects of

user-defined classes to be passed as parameters to the operations in the

implementation. Like ASTOOT and DAISTS, Protest uses functions supplied

by the user to check the equivalence between objects of corresponding ADTs.

But, unlike ASTOOT and DAISTS, which use the specification under test to

generate expected outputs, Protest/2 uses Prolog oracle to produce expected

outputs. This oracle is another program that needs to be tested on its own.

Another distinction between this approach and ours is that by using the

EQN function to check outputs, in effect, we combine many Protest test cases

into a single test case. On the other hand, Protest’s handling of exceptions is

certainly an important idea, which we. would like to try to incorporate into

future versions of ASTOOT.

Antoy and Hamlet [1992] have proposed a system that compares a class

implementation to a more abstract representation which is based on term

rewriting and is derived directly from the specification. The user supplies an

explicit representation function mapping the concrete representation to the

abstract representation. The code is instrumented to check that diagrams

corresponding to each method commute, i.e., that applying the representation

function then the abstract analog of the method gives rise to an abstract state

that is equivalent to the one obtained by applying the method then applying

the representation function. Such a system would, in some cases, give more

accurate checks for correctness than would our approach of using an approxi-

mation of observational equivalence (the EQN function) to compare concrete

representations. However, it imposes on the programmer the highly nontriv-

ial task of writing a correct representation function.

6,2 Test Case Generation

Two previous approaches to generating test cases from algebraic specifica-

tions have been reported. Gaudel’s research group [Bernet et al. 1991; Cho-

quet 1986; Gaudel and Marre 1988] has developed a general theory of testing

based on testing contexts, which are triples consisting of a set of hypotheses

about the program, a set of test data, and an oracle. This approach has the

nice property that if it can be established that the hypotheses hold, and if the

test set exposes no errors, then the program is guaranteed to be correct. (But

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994

126 . R.-K. Doong and P, G. Frankl

of course, establishing that the hypotheses is a nontrivial task, involving

analysis of the program text). Our approach provides test data and oracles;

furthermore, the oracles appear in a simple and uniform format. An interest-

ing direction for future research would be to extend our approach to include

hypotheses, perhaps by deriving conditions under which one sequence pair

can be used to represent a class of sequence pairs and conditions under which

one instantiation of parameters can be used to represent a class of instantia-

tion.

Gaudel’s group has also built a tool for testing data abstractions based on

the theory of testing contexts. The tool inputs a specification written in a

dialect of Prolog, and, based on some definition of the complexity of se-

quences, uses a Prolog interpreter to generate sequences of operations of

given complexities, sometimes subject to additional constraints. This ap-

proach might provide a useful means to generate interesting original se-

quences for our simplifier.

Jalote [1989] and Jalote and Caballero [1988] suggest that effective test

cases can be generated from the syntactic part of an algebraic specification,

without reference to the semantics. Experience with our tools indicates that

in fact, it is very important to consider the semantic part as well, since

different instantiations of arguments in a sequence, corresponding to differ-

ent paths through the ADT tree, can lead to profoundly different abstract

states of the specification. Thus, it is necessary to select many different paths

through the ADT tree arising from a given original sequence, or, equiva-

lently, to choose values of parameters that exhibit different relationships to

one another. This phenomenon was demonstrated in our case study of prior-

ity queue, where failure only occurred when it was necessary to swap with

the bottom row of the heap.

7. CONCLUSION

We have described a new approach to testing classes which places emphasis

on the fact that classes are implementations of data abstractions, a set of

tools based on this approach, and two case studies. In this approach, each test

case consists of a tuple of sequences of messages, along with tags indicating

whether these sequences should put objects of the class under test into

equivalent states and/or return objects which are in equivalent states. A test
case in the restricted format consists of a single pair of sequences with a tag

indicating whether the two objects resulting from application of these se-

quences should be observationally equivalent. Tests are executed by sending

the sequences to objects of the class under test, then invoking a user-supplied

equivalence-checking mechanism. This approach allows for substantial au-

tomation of many aspects of testing, including test case generation, test

driver generation, test execution, and test checking.

ASTOOT is a set of tools based on this approach. ASTOOT consists of a tool

which automatically generates test drivers from class interface specifications

and a tool which semiautomatically generates test cases from an algebraic

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 2, April 1994

The ASTOOT Approach to Testing . 127

specification of the class under test. The drivers generated by ASTOOT’s

driver generator automatically execute and check test cases which have been

supplied either by the test generator or by manual generation. Consequently

ASTOOT allows for substantial automation of the entire testing process.

We performed two case studies, one using a buggy implementation of a

priority queue, and the other using a buggy 2-3 tree implementation of a

sorted list. These case studies provided some insight into the effects of such

factors as the length of the original sequence, the relative frequencies of

different operations in the original sequence, and the range of parameters to

operations.

The approach and tools described in this article assume that the specifica-

tion and implementation satisfy several restrictions which limit the kind of

side-effects operations may have. Several extensions to the basic model,

intended to make this testing scheme more applicable to “real-world” object-

oriented programs, rather than just “pure” abstract data type implementa-

tions, are described elsewhere [Doong 1993; Doong and Frankl 1991]. These

include a general format for test cases, which allows testing of classes whose

methods have side effects, and a dynamic format that allows testing of

virtual classes and some observations on the impact of inheritance on testing.

Directions for future research include the following:

—Interface the test generator with a constraint-solving system in order to

decrease the need for manual intervention in test generation.

—Perform additional case studies, including exploration of more complicated

ADTs and implementations with a larger variety of errors. While the

particular errors in each of these case studies tended to be exposed when

the number of duplicate elements in the sequence of insertions was low, it

is easy to envision other errors for which the opposite would be true. Much

more experience is needed in order to develop better intuition into what

kind of test sequences should be generated for arbitrary classes with

unknown errors. ?Jltimately, such intuition can be incorporated into

heuristics to guide the selection of initial sequences and paths through the

ADT trees, thus enhancing the test generator.

—Explore whether various strategies involving picking “special values” as

parameters (such as inserting elements in ascending or descending order)

help or hinder.

—Develop specification languages which are better able to express such

aspects of object-oriented programming as side-effects, inheritance, and

dynamic binding, then building tools based on them.

—Explore the impact of inheritance on testing.

While we have focused so far on unit testing, there are also many interesting

questions pertaining to how to system-test object-oriented software. We hope

to address these questions in the future, and ultimately, to use the results to

expand and improve ASTOOT.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 2, April 1994

128 . R.-K. Doong and P, G. Frankl

APPENDIX

-- Buggy delete

delete IS

local

parent_ptr, child.ptr,

l_chlld_ptr, r_ch~ld_ptr: INTEGER;

parent , child: INTEGER;

stop: BOOLEAN

do

If length > 0 then

-- Move the last element to the first

array. enter(1, array. entry (length)) ;

length := length - 1;

from

parent_ptr := 1 ;

l_chlld_ptr : = 2 * parent _ptr;

r_child_ptr : = 2 * parent_ptr + 1

Unt 11

stop or l_chlld_ptr >= length
--- ——----------- —-------------------
-- The correct statement IS --

-- stop or l_chlld_ptr > length --
---------- .__-------- _——-------__— —-

loop

-- fmd proper child

If ((l_chlld_ptr = length) or

(array. entry (l-chlld_ptr) >

(array. entry (r-chlld_ptr)))) then

chlld_ptr : = l_chlld_ptr

else

child_ptr : = r_chLld_ptr

end; -- if

parent : = array. entry (parent_ptr) ;

child : = array. entry (child_ptr) ;

If parent < child then

-- swap

array. ent er(parent_ptr, child) ;

array. enter (child_ptr, parent) ,

parent_ptr : = chlld_ptr;

l_chlld_ptr :. parent_ptr * 2;

r.ch~ld.ptr : = l.ch=ld_ptr + i

else

StOp : = true

end; -– If

end; –– loop

end; –- If

end; -– delete

ACKNOWLEDGMENTS

The authors would like to thank Dan Hoffman and the anonymous referees

for several useful suggestions.

ACM Transactions on Software Engmeermg and Methodology, Vol 3, No 2, April 1994

The ASTOOT Approach to Testing . 129

REFERENCES

ANTOY, S. 1989. Systematic design of algebraic specifications. In Proceedings of the 5th

International Workshop on Software Specification and Design. ACM, New York, 278-280.
ANTOY, S. AND HAMLET, D. 1992. Automatically checking animplementation against its formal

specification. Tech. Rep. TR 91-1, Rev. 1, Portland State Univ., Portland, Ore.

BARTUSSEK, W. AND PARNAS, D. L. 1986. Using assertions about traces to write abstract
specifications for software modules. In Software Specification Techniques. Addison-Wesley,

Reading, Mass., 111-130.
BERNOT, G., GAUDEL, M. C., AND MARRE, B. 1991. Software testing based on formal specifica-

tions:A theory andatool. Softw. Eng. J. 6,6(Nov.),387-405.

CROQUET, N. 1986. Test data generation using aprolog with constraints. In Proceedings of the

Workshop on Software Testing. IEEE Computer Society, Washington, D. C., 132-141.
DooNG, R.-K. 1993. kapproach totesting object-oriented programs. Ph. D.thesis, Polfiechnic

Univ., Brooklyn, N.Y. Also appeared as Computer Science Dept. Tech. Rep. No. PUCS-1 10-92.
DOONG, R.-K, AND Fwm, P. G. 1991. Case studies on testing object-oriented programs. In

Proceedings of the Symposiumon Testing, Analysis, and Verification (TAV4). ACM, New York,

165-177.

GANNON, J. D., HAMLET, R. G., AND MILLS, H.D. 1987. Theory ofmodules. ZEEETrans. Softw.
Eng. 13, 7 (July), 820-829.

GANNON, J. D., MCMULLIN, P. R., AND HAMLEr, R. 1981. Data-abstraction implementation,

specification, and testing. ACM Trans. Program. Lang. Syst. 3, 3 (July), 211–223.

GAUDEL, M. AND MARRE, B. 1988. Generation of test data from algebraic specifications. In
Proceedings of the 2nd Workshop on Software Testing, Verification, and Analysis. IEEE

Computer Society, Washington, D. C., 138-139.

GOGUEN, J, A. AND WINKLER, T. 1988. Introducing 0BJ3. Tech. Rep. SRI-CSL-88-9, Computer

Science Lab., SRI Int., Menlo Park, Calif.
GOWEN, J. A., THATCHER, J. W., AND WAGNER, E. G. 1978. An initial algebra approach to the

specification, correctness, and implementation of abstract data types. Current Trends Program.

Meth. 4, 80-149.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk-80: The Language and its Implementation.

Addison-Wesley, Reading, Mass.

GUTTAG, J. J. 1980. Notes on type abstraction (version 2). IEEE Trans. Softw. Eng. 6, 1 (Jan.1,
13-23.

GUTTAG, J. J. 1977. Abstract data types and the development of data structures. Commun.

ACM 20, 6 (June)j 396-404.

GUTTAG, J. J. AND HORNING, J. J. 1978. The algebraic specification of abstract data types. Acts

Inf. 10, 1,27-52.

GUTTAG, J. J., HOROWITZ, E., AND MUSSER, D. R. 1978. Abstract data types and software

validation. Commun, ACM 21, 12 (Dec.), 1048–1064.

GUTTAG, J. J., HOROWITZ, E., AND MUSSER, D. 1%. 1977. Some extensions to algebraic specifica-

tions. In Proceedings of Language Design for Reliable Software. ACM, New York, 63-67.
HOFFMAN, D. AND BREALEY, C. 1989. Module test case generation. In Proceedings of ACM

SIGSOFT ’89 3rd Symposium on Software Testing, Analysis and Verification. ACM Press,

New York, 97-102.
HOFFMAN, D. AND SNODGRASS,R. 1988. Trace specifications: Methodology and models. IEEE

Trans. Softw. Eng. 14, 9 (Sept.), 1243-1252.
HOFFMAN, D. M. AND STROOPER,P. 1991. Automated module testing in Prolog. IEEE Trans.

Softw. Eng. 17, 9 (Sept.), 934-943.

JALOTE, P. 1989. Testing the completeness of specifications. IEEE Trans. Softzo. Eng. 15, 5

(May), 526-531.
JALOTE, P. AND CABALLERO,M. G. 1988. Automated testcase generation for data abstraction. In

Proceedings of COMPSAC 88. IEEE Computer Society, Washington, D C., 205–210.
KNUTH, D. E. AND BENDIX) P. B. 1970. Simple word problems in universal algebras. In

Computational Problems in Abstract Algebra. Pergamon Press. Elms ford, N.Y., 263-297.
LISKOV, B. H. AND ZILLES, S. N. 1975. Specification techniques for data abstractions. IEEE

Trans. Softw. Eng. 1, 1 (Mar.), 7-19.

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 2, Aprd 1994.

130 . R.-K. Doong and P. G, Frankl

MCLEAN, J. M. 1984. A formal method for the abstract specification of software. J. ACM 31, 3

(July), 600-627.
MEYER, B. 1988. Ob~ect-Orzented Software Construction. Prentice-Hall International, New

York.

MUSSER, D. R. 1980. Abstract data type specification in the AFFIRM system, LEEE Trans.

Softz.u. Eng. 6, 1 (Jan.), 24-32.

STROUSTRUP,B. 1991. The C + + Programm zng Language. 2nd ed, Addison-Wesley, Reading,
Mass

WEYUKER, E. J. 1982. On testing non-testable programs. Comput. J. 25, 4, 465-470.

Received December 1991; revised August 1993; accepted December 1993

ACM Transactions on Software Engineering and Methodology, Vol 3, No 2, Aprd 1994

