
Incremental Testing of

Object-Oriented (Xass Structurest

Mary Jean Harrold, John D. McGregor and Kevin J. Fitzpatrick

Department of Computer Science

Clemson University

Clemson, SC 29634-1906

Abstract
Although there is much interest in creating libraries of

well-designed, thoroughly-tested classes that can be confi-

dently reused for many applications, few class testing

techniques have been developed. In this paper, we present

a class testing technique that exploits the hierarchical

nature of the inheritance relation to test related groups of

classes by reusing the testing information for a parent

class to guide the testing of a subclass. We initially test

base classes having no parents by designing a test sui~e

that tests each member fmction individually and also tests

the interactions among member functions. To &sign a

test suite for a subclass, our algorithm incrementally

up~tes the history of its parent to reject both the modi-

jied, inherited attributes and the subclass’s newly akjined

attributes. Only those new attributes or @’cted, inherited

attributes are tested and the parent class’ test suites are

reused, if possible, for the testing. Inherited attributes are

retested in their new context in a subclass by testing their

interactions with the subclass’s newly dejined attributes.

We have incorporated a data jlow tester into Free Soft-

ware Founalzion, Inc’s C-++ compilers and are using it

for our experimentation.

1. Introduction

One of the main benefits of object-oriented pro-

gramming is that it facilitates the reuse of instantiable,

information-hiding modules, or classes. A class is a tem-

plate that defines the attributes that an object of that class

will possess. A class’s attributes consist of (1) data mem-

bers or instance variables that implement the object’s

state and (2) member functions or methods that implement

t TM work was partially supported by the National Science Founda-
tion under Grant CCR-9 109531 to Clemson University.
@ Copyright (C) 1987, 1989 Free Software Fuundatinn, Inc, 675

Mass Avenue, Cambridge, MA 02139.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

61992 ACM 0-89791-504-61 921 0500- 0066 1.50

the operations on the object’s state. Classes are used to
define new classes, or subclasses, through a relation known
as inheritance. Inheritance imposes a hierarchical organi-

zation on the classes and permits a subclass to inherit

attributes fmm its parent classes and either extend, restrict

or redefine them. Subclasses may inherit attributes from a

parent class, cancel attributes in the parent, contain new

attributes not possessed by the parent, and/or redefine some

of the parent’s attributes. A goal of object-oriented pro-

gramming is to create libraries of well designed and thor-

oughly tested classes that can be confidently reused for

many applications.$

Although there is much interest in creating class

libraries, few class testing techniques have been developed.

One approach is to validate eaeh class in the library indi-

vidually. However, this approach requires complete retest-

ing of each subektss although many of its attributes were

previously tested since they are identical to those in the par-

ent class. Additionally, completely retesting each class

does not exploit opportunities to reuse and share the design,

construction and execution of test suites. Another approach

to class testing is to utilize the hierarchical nature of classes

related by inheritance to reduce the overhead of retesting

each sttbelass. However, Perry and Kaiser[16] have shown

that many inherited attributes in subclasses of well

designed and thoroughly tested classes must be retested in

the context of the sttbelasses. Thus, any subclass testing

technique must ensure that this interaction of new attributes

and inherited attributes is thoroughly tested. Fielder[3] pre-

sented a technique to test subclasses whose parent classes

have been thoroughly tested. Part of his test design phase

is an analysis of the effects of inheritance on the subclass.

He suggests that only minimal testing may be required for
inherited member functions whose functionality has not

changed. Cheatham and Mellinger[2] also discuss the

problem of subclass testing and present a more extensive
analysis of the retesting required for a subclass. However,

both of these sttbelass testing techniques require that the

$ More detailed discussion of object-oriented progratttming is given by

Korsurr and M®or[12].

68

analysis be performed by hand, which prohibits
automating the design phase of the testing. Addition-
ally, neither technique attempts to reuse the parent
class’s test suite to test the subclass.

In this paper, we present an incremental class

testing technique that exploits the hierarchical nature of

the inheritance relation to test related groups of classes

by reusing the testing information for a parent class and

incrementally updating it to guide the testing of the sub-

class. We initially test base classes having no parents

by designing a test suite that tests each member func-

tion individually and also tests the interactions among

member functions. A testing history associates each

test case with the attributes that it tests. In addition to

inheriting attributes from its parent, a newly defined

subclass “inherits” its parent’s testing history. Just as a

subclass is derived from its parent class, a subclass’s

testing history is derived from the testing history of its
parent class. The inherited testing history is incremen-

tally updated to reflect differences from the parent and

the result is a testing history for the subclass. A sub-
class’s testing history guides the execution of the test

cases since it indicates which test cases must be run to

test the subclass. With this technique, we automatically

identify new attributes in the subclass that must be

tested along with inherited attributes that must be
retested. We retest inherited attributes in the context of

the subclass by identifying and testing their interactions

with newly defined attributes in the subclass. We also
identify which of the test cases in the parent class’s test

suite can be reused to vali&te the subclass and which

attributes of the subclass require new test cases.

The main benefit of this approach is that com-

pletely testing a subclass is avoided since the testing

history of the parent class is reused to design a test suite

for a subclass, Only new or replaced attributes in the

subclass or those affected, inherited attributes are

tested. Additionally, test cases from the test suite of the

parent class are reused, if possible, to test the subclass.

Thus, there is a savings in the time to design test cases,

the time to construct a new test suite and the actual time

to execute the test suite since the entire subclass is not

tested. Since our technique is automated, there is lim-

ited user intervention in the testing process.

The next section gives background information

on procedural language testing. Section 3 discusses
inheritance in object-oriented programs as an incremen-

tal modification technique. Section 4 presents our
incremental testing technique by first giving an

overview, and then detailing, both base class testing and

subclass testing. At the end of this section, we discuss
our implementation, Section 5 discusses experimenta-

tion, and concluding remarks are given in Section 6.

2. Testing

The overall goal of testing is to provide confi-

dence in the correctness c)f a program. With testing, the

only way to guarantee a program’s correctness is to

execute it on all possible inputs, which is usually

impractical. Thus, systematic testing techniques gener-

ate a representative set of test cases to provide coverage

of the program according to some selected criteria.

There are two general forms of test case coverage:

specijcation-based and program-based[9]. In specifi-

cation-based or ‘black-box’ testing, test cases are gener-

ated to show that a program satisfies its functional and

performance specifications. Specification-based test

cases are usually developed manually by considering a
program’s requirements. In program-based or ‘white-

box’ testing, the program’s implementation is used to

select test cases to exercise certain aspects of the code
such as atl statements, branches, data dependencies or

paths. For program-based testing, analysis techniques

are often automated. Since specification-based and pro-

gram-based testing complement each other, both types

are usually used to test a program.

While most systematic testing techniques are

used to validate program units, such as procedures,

additional testing is required when the units are com-

bined or integrated. For integration testing, the inter-

face between the units is the focus of the testing. Inter-

face problems include errors in inputioutput format,

incorrect sequencing of subroutine calls, and misunder-
stood entry or exit parameter valueslll. Although
many of the integration testing techniques are specifica-

tion-based, some interprocedural program-based testing

techniques have recently been developed[8, 13].

A test set is adequate for a selected criterion if it

covers the program according to that criterion [20] and
a program is deemed to be adequately tested if it has

been tested with an adequate test set. Weyuker[20]

developed a set of axioms for test data adequacy that

expose insufficiencies in program-based ndequacy crite-

ria. Several of these axioms are specifically related to

unit and integration testing. The antiextensionality
axiom reminds us that two programs that compute the

same function may have entirely different implementa-

tions. While the same specification-based test cases
may be used to test each of the programs, different pro-

gram-based test cases may be required. Thus, changing

a program’s implementation may require additional test

cases. The antidecomposition axiom tellls us that ade-

quately testing a program P does not imply that each

component of P is adequately tested. Adequately test-

ing each program component is especially important for

those components that may be used in other environ-

ments where the input values may differ. Thus, each

69

unit that may bc used in another environment must be

individually tested. The anticompom”twn axiom tells us

that adequately testing each component Q of a program
does not imply that the program has been adequately
tested. Thus, after each component is individually
tested, the interactions among the components must
dSO be tested.

3. Inheritance in Object-Oriented Systems

Inheritance is a mechanism for both class specifi-

cation and code sharing that supports developing new

classes based on the implementation of existing classes.

A subclass’s definition is a modifier that defines
attributes that differ from, or alter, the attributes in the
parent class. The modifier and parent class along with

the inheritance rules for the language are used to define

the sukdass. The class designer controls the specifica-

tion of the modifier while the inheritance controls the

combination of the modifier and the parent class to get
the subclass. Figure 1 illustrates inheritance as an
incremental modification technique[18] that transforms

a parent class P with modifier M into a resulting class

R. The composition operator 63 symbolically unites M

and P to get R, where R = P 63 M.

R result class

c

P

parent class

e
~-. --__T
I M;

1 modifier ~
L ----- - -1

Figure 1. Incremental modification technique

The subclass designer specities the modifier,
which may contain various types of attributes that alter

the parent class. These include the redefined, virtual

and recursive attributes presented by Wegner[18] along

with an additional type of attribute, the new attribute.
We fbrther classify Wegner’s virtual attribute as virtual-

new, virtual-recursive and virtual-redefined. In the fol-

lowing discussion, we reference Figure 1 and define

these six types of attributes.

New attribute (1) A is an attribute that is defined in M

but not in P or (2) A is a member function

attribute in M and P but A’s argument list differs

in M and P. In this case, A is bound to the locally

defined attribute in the resulting class R but is not
in P.

Recursive attribute: A is defined in P but not in M. In

this case, A is bound to the locally defined

attribute in P and is available in R,

Redejined attribute: A is defined in both P and M where

A’s argument list is the same in M and P. In this

case, A is bound to the attribute definition in M

which blocks the definition of the simihtrly

named attribute in P.

V7rtual-new attribute (1) A is specified in M but its

implementation may be incomplete in M to allow

for later definitions or (2) A is specified in M and

P and its implementation maybe incomplete in P

to allow for later definitions, but A’s argument list

differs in M and P. In this case, A is bound to the

locally defined attribute in the resulting class R

but is not in P.

Wrtual-recursive attribute: A is specified in P but its
implementation may be incomplete in P to allow
for later definitions, and A is not defined in M. In

this ease, A is bound to the locally defined

attribute in P and is available in R.

Jlrtual-redejined attribute: A is specified in P but its
implementation may be incomplete in P to allow
for later definition, and A is defined in M with the
same argument list as A in P. In this case, A is
bound to the attribute definition in M which

blecks the definition of the similarly named

attribute in P.

Although the modifier M transforms a parent

class P into a resulting class R, M does not totally con-

strain R. We must also consider the inheritance relation

since it determines the effects of composing the

attributes of P and M and mapping them into R, The

inheritance relation determines the visibility, availabil-
ity and format of P’s attributes in R. A language may

support more than one inheritance mapping by atlowing
the specification of a parameter value to determine

which mapping is used for a particular definition. For

example, in C++, the public and private keywords as

part of the specification of the inheritance relationship
determine the visibility of the attributes in the subclass.

Since inheritance is deterministic, it permits the con-

struction of roles to identify the availability and visibil-

ity of each attribute. This feature supports automating

the process of analyzing a class definition and determin-
ing which attributes require testing. To illustrate some

of the different types of attributes, consider Figure 2,

where class P is given on the left, the modifier that

specifies R, a subclass of P, is given in the center, and

70

class P {

private:

irttL

intj;

public

PO{)

void A(int a,int b)

(i=& j=a+2*ix)

virtual intB()

{return i;)

int co

(return j;)

);

class R: public P (

private:

float ~

public

R(){)

void A(int a)

{P:A(a,O);)

virtual int B()

{return 3*P:B();)

int co

(return 2“P:C();]

);

R’s attributes after the mapping

private

float L lJnew

public:

void A(int a, int b) //recursive

(i=& j=a+2*&)

void A(int a) I/new

{P::A(a,O);)

virtual int B() //virtual-redefined

{return 3*P:B();)

int co //redefined

(return 2*P:C();)

hid&n
inti

intj;

Figure 2. Class P on the left, subclass R’s specification (modifier) in the center, subclass R’s attributes on the right,

the attributes for the resulting class R are given on the

right. P has two data members, i and j, both integers, and

three member functions, A, B and C, B is a virtual mem-

ber function. The modifier for class R contains one real

data member, i, and three member functions, A, B and C.
The modifier is combined with P under the inheritance

rules to get R. Data memberfloat i is a new attribute in R

since is does not appear in P. Member function A that is

defined in M, is a new attribute in R since its argument list

does not agree with A’s argument list in P. Member func-

tion A in P is recursive in R since it is inherited

unchanged from P. Thus, R contains two member func-

tions named A. Member function B is virtual in P and

since it is redefined in M, it is virtual-redefined in R.

Member function C is redefined in R since its implemen-

tation is changed by M and overrides member function C
from P. Finally, data members i and j in P arc inherited

but hidden in R, which means they cannot be aeeessed by

member function defined in the modifier.

The modifier approach permits a decomposition of

the inheritance structure into overlapping sets of class

inheritance relations. The left side of Figure 3 shows a

simple three-level chain of inheritance relations while the

center illustrates an incremental view of the relationship

among the classes. Class B can be replaced by A @ Ml

since A’s attributes and Ml’s attributes are combined to
form B. Once B is defined, there is no distinction in B

between A’s attributes and Ml’s attributes. To define a

subclass of B, the inheritance relation combines B and M2

in the same way. Thus, the three level inheritance relation

can be decomposed into independent structures as illus-

trated on the right side of Figure 3. Decomposition of

8

B

c

r+-
nA

@
r --,--

IMl~
L_., -_J

r
----, -- --

M21
L---.,--_- J

nB

❑A

63~----~
IMII
L---_J

L

•1B
e----

~M2]
L ----

Figure 3. The inheritance hieraxhy shown on the left

indicates that A is a class with subclasses B and C, B is a

class with subclass C. The figure in the center illustrates

the incremental format for the class inheritance hierarchy

where each new subclass is formed by combining the par-

ent class with some modilier. The figure on the right

shows how the class hierarchy can be decomposed into in-

dependent structures.

class hieramhies permits us to consider only the immedi-

ate parents and the modifier when testing a subclass.

The inheritance relation imposes an ordering on the
classes in an inheritance structure. Class C can be deter-

71

mined without considering class A but the relation from A

to B must be resolved prior to describing the relation from

B to C. The order in which the classes must be defined is

a partial ordering and any inheritance structure can

be decomposed into a set of partially ordered pairs of

classes. This permits us to consider only a class and its

immediate parents to fully constrain the definition of that

class.+

4. Hierarchical Incremental Class Testing

Our class testing technique initially tests a base

class by testing each member function individually and

then testing the interactions among the member functions.

The test case design and execution information is saved in

a testing history. Then, when a subclass is defined, the

testing history of its parent, the definition of the modifier

and the inheritance mapping of the implementation lan-

guage are used to determine which attributes to (re)test in

the subclass and which of the parent’s test cases can be
reused. The technique is hierarchical because it is guided

by the partiat ordering of the inheritance relation; it is
incremental because it uses the resutts from testing at one

level in the hiemrchy to reduce the efforts needed by sub-

sequent levels.

Our testing technique assumes a language model

that is a generalization of the 0-+[17] model but is suffi-

ciently flexible to support other languages such as Trel-

lis[lO] with similar features. Our language model is (1)

strongly typed and permits polymorphic substitution to

provide flexibility, (2) uses static binding whenever possi-

ble for efficiency, (3) supports three levels of attribute vis-
ibility with the same characteristics as C++’s private, pro-

tected and public, although the technique cart handle any
number of visibility levels, and (4) assumes a parametri-

zed inheritance mapping with the two parametric vahtes

used in C++, private and pubIic. The levels of visibility

for attributes are ordered from most visible (public) to

least visible (private) and the inheritance mapping maps

an attribute to a level of visibility in the subclass that is at
least as restrictive as its level in the parent class.

Our incremental testing technique addresses the test
data adequacy concerns expressed by Perry and

Kaiser[16]. The antidecomposition axiom cautions that

adequate testing of a class does not imply that individual

member functions have been adequately tested for use in
dl contexts. Our technique tests each member function

independent of its place in the class. Conversely, the artti-

composition axiom states that adequately testing a mem-

ber function in isolation is not sufficient to assume that it

j’ Although a class may have several parents from which it can in-

herit attributes, for our discussion, we assume that each class has

only one parent.

has been adequately tested as part of a set of interacting

member functions. Our technique uses integration testing

techniques to test the interactions between member func-

tions without retesting their internal implementations.

4.1. BaseClassTesting

We first test base classes using traditional unit test-

ing techniques to test individual member functions in the

class. The arttidecomposition axiom tells us that adequate

testing of the class does not guarantee adequate testing of

each member function. Adequately testing each member
function is particularly important since member functions

may be inherited by the subclasses and expected to oper-

ate in a new context. Thus, we individually test each

member function in a class using a test suite that contains

bch specification-based and program-based test cases.

The specification-based test cases can be constructed

using existing approaches such as the one proposed by

Frankl[4]. During this phase of testing, we follow the

standard unit testing practice of handling calls to other
member functions (procedures) by providing stubs repre-

senting called member functions and drivers representing

catling member functions. The testing history for a class

contains associations between each member function in

the class and both a spedtication-based and a program-

based test suite. Thus, the history contains triples,

{mi, (TSi, test?), ~i, test?)) where mi is the member
function, TSi is the specification-based &st suite, TPi is

the program-based test suite and ‘test?’ indicates whether

the test suite is to be (re)mn.

The anticomposition axiom implies that testing each

member function individually does not mean that the class

has been adequately tested. Thus, in addition to testing

each member function, we must test the interactions

among member functions in the same class, infra-class

testing; we must also test the interactions among member

functions that access member functions in other classes,

inter-class testing. Intra-class testing is guided by a class

graph where each node represents either a member func-

tion in the class or a primitive data member, and each edge

represents a message. The class graph may be dkcon-
nected where each connected subgraph represents those

attributes in the class that interact with each other. For

intra-class integration testing, we combine the attributes as

indicated by the class gmph and develop test cases that

test their interfaces. For intra-class testing, we develop

both speei!ication-based and program-based test suites.

The history for the class contains the root nodes of the

class graph subgraphs representing the interacting member

functions along with the test suites for each of them.
Thus, the second part of the history rdso consists of triples,

(mi,(TISi,tcst?),(TIPi,test?)) where mi is the root nodes of

the class ~:aph subgraph, TISi is the specification-based

integration test suite, and TIPi is the program-based inte-

72

class Shape {

private:

Point reference_WinG

public

void put_reference~int(Point):

point get_reference~into;

void move_to(Point);

void erase(j;

virtual void drawo = &

virtual float areao;

shape(point);

shapeo;

)

..............
I,t,

h,

‘\lll
I.-r 1 .L.--,,-,-.. I

-i 1 Snqqrolm) 1

put_le&rmce_point(POint)1

/
,)

,$
,,’

,,0

KI
.,,’

/,,,”,,..
..........

reference~oint 1111l--.....””’.

,11,
mOve_tOf,POint)

1

\

Iard)

~ Irma-class message

.......{l)..... Inter-class message

Figure 4. Definition for class Shape on the left and its class graph on the right.

gration test suite and ‘test?’ indicates if the test suite is to

be totally (re)run (Y), partially (re)run (P), or not (re)run

(N.

Inter-class testing is guided by the interactions of

the classes that result when member functions in one class
interact with member functions in another class. Inter-

class interactions occur when (1) a member function in

one class is passed an instance of another class as a

parameter and then sends that instance a message or (2)

when an instance of one class is part of the representation

of another class and then sends that instance as a message.

The application’s design provides a relationship among

the class instances that is similar to the class graph pro-

duced for intra-class testing. The techniques for handling

these interactions are like those deseribed above for intra-

class interactions except that interacting attributes are in

different classes. We omit the details for inter-class test-

ing since it is analogous to intra-class testing.

To illustmte our technique for testing base classes,

consider the simplified example of a hierarchy of graphi-

cal shape classes implemented in C++[17]. Class Shape,

given in Figure 4, is an abstract class that facilitates the

creation of classes of various shapes for graphics display.

The class definition is abbreviated for the purpose of illus-
tmting the testing algorithm and we omit the bodies of the
member functions. Each ‘shape’ that can be drawn in the

graphics system has a reference_point that is used to

locate the position where the shape is drawn in the pro-

gram’s coordinate system.

Class Shape defines several member functions that

describe the behavior of a shape and includes two virtual

member functions, areao and drawo, that contribute to the

common interface for all classes in the inheritance struc-

ture. Since drawo is a pure virtual member function, it

has an initial value of O and no implementation. Virtual

member function areao is assumed to have an initial

implementation that can be changed in subsequent sub-

class declarations. The put_reference_pinto and

get_reference_~into member functions provide con-

trolled access to the values of the data members, the

shape(point) and shapeo member functions are construc-

tors of instances of the class, and the move_too member

function moves the shape to a new Ioeation. Move_too

can be totally defined in terms of member functions in

class Shape even though some of these member functions

are virtual and have no implementation. The eraseo

member function may be implemented in seveml ways but

if an ‘xor’ drawing mode is used, erase only calls draw to

overwrite, and thus erase, the existing figure. The class

graph for Shape is also given in Figure 4. Rectangles rep-

resent member functions and ovals represent instances of
classes. Solid lines indicate intra-class messages while

dashed lines indicate inter-class messages. The table in

73

Testing History for Shape

specification-based program-based

attribute test suite test suite

individual member functions

put_reference_point (TS1,Y) mlsw
get_reference_point (TSZ,Y) m2,y)

move_to (TSS,Y) m3sy)

erase (TS,,Y) y$y

draw (TS~,Y) --

area (TS,,Y) ~6,~

shape (TS,,Y) (TP,,Y)

shape (TS8,Y) (TP,,Y)

interacting member functions

move_to (TIsg,Y) (TIPg,Y)

erase (TIs~@Y) Cmo,w

Figure 5. Testing history for Class Shape of Figure 4.

Figure 5 shows the testing history for class Shape. The

analysis of Shape is very straight forward. Since Shape is

a base class, we must test each of its available definitions.

The specification-based test suite for drawo can be gener-

ated but cannot be run since there is no implementation

for drawo. The program-bawd test suite for drawo can-

not be generated since no implementation exists. Since

there is an initial implementation for areao, both its speci-

fication-based and program-based test suites can be gener-

ated and mn. The spwification-based and program-based
test suites for move_too, eraseo and the two shapeo con-

structors are generated. The test suites for the construc-

tors are independently tested since they do not rely on the

implementations of either drawo or areao. The advantage

of developing the specification-based test suites for drawo

and areao in the base class is that these test suites can be

‘inherited’ in the histories of subclasses.

The class’s specification describes how the individ-

ual member functions are intended to work together. The

input values that test these interactions belong to the inte-

gration test suites TISi ~d TIPi that are pm of our intra-

class testing member functionality. In addition to the test

suites for the individual member functions in Shape, the

interface test suites are shown in the history in Figure 5.

Member functions move_too, eraseo, shapeo and

shape(point) call other class member functions move_too
calls both eraseo and drawo, eraseo also calls drawo,

shapeo and shape(point) both call put_reterence_pinto
and &awO. The class graph for Shape, shown in Figure 4,

illustrates these interactions. The class graph serves as a

guide for generating program-based test cases to test each
of the interactions.

There are several inter-class message% messages to

construct instances of shape as well as the messages

between member functions of class shape and refer-

ence@nt, which is an instance of class Point. Integra-

tion test cases are used to validate these messages but for

brevity, we omit them from this example.

4.2. Testing Subclasses

Our testing algorithm, TestSubclass given in Figure

6, uses an incremental technique that transforms the test-

ing history for the parent class P to the testing history for

the subclass R, TestSubclass inputs P’s history, HIS-
TORY(P), P’s class graph, G@), and moditler M and out-

puts an updated HISKIRY for the subclass R. The

actions taken by TestSubclass depend on the attribute type

and the type of modification made to that attribute by the

inheritance mapping. In section 3, we discussed six types

of attribute~ new, recursive, redefined, virtual-new, vir-

tual-recmwve and virtual-redefined. For each of these

types of attributes, different actions may occur. Algorithm

TestSubclass begins by initializing R’s history to that of its

parent class P, which has already been tested. The algo-

rithm then inspects each attribute A in the modifier M, and

takes appropriate action to update R’s history and deter-

mine the required testing.

Any NEW or VIRTUAL-NEW member function

attribute A must also be completely, individually tested
since it was not defined in P. Since the anticomposition
axiom tells us that it is necessary to retest each new mem-
ber function in its new context, A must be integration

tested with other member functions in R with which it

interacts. We thoroughly test A individually so that when

A is inherited by some subclass, only integration testing

will need to be repeated, To individually test A, new

specification-based and program-based test suites are

developed, added to R’s HISTORY and marked for testing

74

algorithm TestSubclass(HISTORY(P),G(P),M);

input HISTORY(P):P’S testing history; G(P):P’s class graph;

Mmodifier that specifies subclass R,

Output HISTORY(R) :testing history for R indicating what to rerun; G(R):class graph for subclass R,

begin

HISTORY(R) := HISTORY(P); /“ initialize R’s history to that of P”/

G(R) := G(P); /* initialize R’s class graph m that of P‘/

foreach attribute A ~ M do

case A is NEW or NEW-VIRTUAL: /*A is a new/virtual-new attribute*/

Generate TS , TP for A,

Add (A, (TS, Y), (TP,Y)) to HISl13RY(R);

Integrate A into G(R);

Generate any new TIS and ~,

Add {A, (TIS, Y), (TIP,Y)) to HISTORY(R);

case A is RECURSIVE or RECURSIVE-VIRTUAh

if A accesses data in R’s scope then

Identify interface tests to reu%,

Add (TISY) and (TIP$)) to I-IKIORY(R);

case A is REDEFINED or REDEFINED-VIRTUAL

Generate TP for A,

Reuse TS from P if it exists or Generate TS for A,

Add (A, (TS,Y), (TP,Y)) to HISTORY(R);

Integrate A into G(R);

Generate TIP for G(R) with respect to A,

Reuse TIS from P;

Add {A, (TIS,P), (TIP,P)) to HISTORY(R);

end TestSubclass.

I* A is recursive/virtual-recursive”/

/“A is redefined /virtual-redefined *I

F]gure 6. Algorithm TestSubclass that determines a testing HISTORY for R by incrementally updating the HISTORY for its

parent class. The HISTORY is used to test the subclass.

by setting the ‘test?’ field to ‘Y’. A new member function

may send messages to existing member functions of the

class or may reference existing data members. Thus, A is

tested with any other member functions in R with which it
interacts by tirst integrating it into the G(R). Then inte-

gration tests are generated, added to HISTORY(R) and

marked for testing by setting the ‘test?’ field to ‘Y’. A

new data attribute is tested during integration testing when

it is integrated into G(R) by testing A with member func-

tions with which it interacts.

A RECURSIVE or VIRTUAL-RECURSIVE mem-

ber function attribute A requires very limited retesting

since it was previously individually tested in P and the
specification and implementation remain unchanged.
Thus, the specification-based and program-based test

suites for A are not rerun. The antidecomposition axiom
reminds us that it is necessary to test A in its new context

in the subclass. Integration test cases arc not reused if

they only test the interaction of this recursive attribute
with other recursive attributes since this interaction has

also been previously tested. However, A may interact

with new or redefined attributes or access the same

instances in the class’s representation as other member

functions. A’s interaction with new or redefined attributes

is tested when those member functions are integrated into

the subclass so there is no need to retest here. This lim-

ited testing adequately tests the attributes in the subclass

because of the extensive testing that occurred when the

attribute was defined.

Consider the case in which a recursive member

function accesses the same data as a new attribute. The

recursive member function was tested in P and the specifi-

cation of the recursive member fumction remains

unchanged. Thus, specification-based and program-based

test cases need not be rerun. The only test cases that are
rerun are those that test the interactions between A and

any new member function(s). TestSubclass uses incre-
mental techniques to identify those test cases, marks them

for retesting by setting ‘test?’ to ‘P’ and updates HIS-

TORY(R) to reflect the changes. ‘Y’ indicates that the

entire test suite is reused while ‘P’ indicates that only the
test cases identified as testing affected parts of the sub-

class are reused.

75

class Triangle public Shape (

private

Point vertex2;

Point vertex3;

public

Point get_vertexlo; //new

Point get_vertex20; //new

Point get_vertex30; //new

void set_vertexl(Point); //new

void set_vertex2(Point); //new

void set_vertex3(Point); //new

void drawo; //virtual-redefined

float areao; //virtual-redefined

triangleo; //new

triangle(Point,Point20int); //new

Testing HBtory for Triangle

specification program-based
attribute test suite test suite

individual member functions

put_reference_point (TS1,N) (TPI,N)
get.reference~int (TS,,N) (TP,,N)
move_to (TS,,N) (TP,,N)
erase (TS,,N) (TP,,N)
draw (TS,,Y) (Tfi,Y)
area (TS6,Y) (T~,Y)
shape (TS,,N) (TP,,N)
shape (TS8,N) (TP8,N)
get.vertexl (TS:*,Y) (Tfi~,Y)
get_vertex2 (Ts:~,Y) (rfi~,Y)
get_vertex3 (Ts;yY) (-r~g,Y)
put_vertexl (TS:4,Y) (TP:4,Y)
put_vertex2 (Ts:~,Y) (T~,,Y)
put_vertex3 (Ts;~,Y) (Tfi~,Y)
triangle (TS;7,Y) (T~,,Y)
triangle (TS;8,Y) (TP;S,Y)

interacting member functions

move_to (rI&,P) (TW~,P)
erase (TI~,,P) (TI~,,P)
area (TIS;9,Y) (TIfi9,Y)
get_vertexl (TIs~,Y) (TIPm,Y)
put_vertexl (TIs~,Y) (TIfi,,Y)

Figure 7. Definition and History for Class Triangle. Test suites marked with ‘Y’ or ‘P’ are reused to test the subclass: those

marked with ‘N’ are not rerun. ‘Y’ indicates that all test cases in the test suite are reused, ‘P’ means that only part of that test

suite is reused. A comment with each of the public attributes indicates its t~, all other inherited attributes are recursive.

Both data member and member function attributes

are defined in the parent class and inherited by the sub-

class. The inheritance mapping from Pinto R may change

the visibility of a data member attribute. For example, if

the attribute has moved from a visible level to one that is

not visible then it cannot interact with any new or rede-

fined attribute. The &m attributes that are hidden and the

member functions on that data form a tested unit that need
not be retested. If the data attribute is visible to-any new

member functions that are defined in R, then the interfaces

between the new member functions and the existing mem-

ber functions that access the data attributes must be tested.

This testing is performed when a new member function

that interacts with &ta attributes accessed by existing
member functions is integrated into G(R).

A REDEFINED or VIRTUAL-REDEFINED

attribute A in M requires extensive retesting but many

existing specification-based test cases may be reused since
only the implementation has changed. The antiextension-

ality axiom tells us that since the the implementation has

changed, new program-based test cases may be required.

If A is a data member (i.e. an instance of a class) we

assume that the class to which the instance belongs has

been tested. No other individual testing is performed on

A although it may participate in the integration testing of

the member functions defined in M. If A is a member

function, the specification of A remains unchanged but

the implementation of A will have changed. Thus, A is

individually retested by generating new program-based

test cases to test the implementation of A. The specifica-

tion-based test cases stored in HISTORY(R) for the previ-
ous definition of A are still valid and are reused. HIS-
TORY(R) is updated to refleet the new test cases and

reused existing test cases, and these test cases are marked

for reusing by setting ‘test?’ to ‘Y’. Then, A is integrated

into G(R). New program-based interface test cases are

generated and marked for testing by setting ‘test?’ to ‘Y’
or ‘P’. HISTORY(R) is again updated to reflect the

changes.

To illustrate the way in which algorithm TestSub-

class works, we consider subclasses of Class Shape that
was given in Figure 4. The benefits of hierarchical incre-

mental testing can be seen in the testing history for class

Triangle, given in Figure 7. None of the test suites for the

put_() and get_() member functions for reference_point

are rerun because they are recursive attributes since no

76

class EquiTrianglcx public Triangle{

public:

float areao; //redefined
equi_triangle(Point20in@oint); I/new

equi.triangleo; Ihew

Testing History for EquiTriangle
—.

specification program-based

attribute test suite test suite

individual member functions

put_m.ference~int

get_reference~int

move.to

erase

draw
area

shape

shape

get_vwtexl

get_vertex2

get_vertex3

put_vertexl

put_vertex2

put_vertex3
triangle

triangle

equi_triangle

equi_triangle

(TS,JN)
(TSJN)
(H&N-)
(-&N)
(’rs,~
(TS,,Y)
(“&N)
(Ts,~
(Ts,,~
(Ts,,~
(TS,,w
(TS,.N

(’mm
(TS,,w
(TS,,JN)
(rs,,~
(Ts~,Y)
(Tsm,Y)

(TP1,N)

(TP2,N)

(TP,,N)

(TP,,N)

(TP,,N)
(T~,Y)

(TP,,N)

(TP@)

(TP,,N

(TP,,m

(TP,,~

(TP,,~

(TP,,~

(TP,,~

(TP1,$J)

(TP,*JN)

(TP~,Y)

(TP~,Y)

interacting znember.functions

move.to (TIS;,P) (1’Il?j’,P)

Figure 8. Definition and History for Class EquiTriang/e. Test suites marked with ‘Y’ or ‘P’ are reused to test the subclass;

those marked with ‘N’ are not rerun. ‘Y’ in~cates that all test cases in the test suite are reuse~ ‘P’ means that only part of

that test suite is reused. A comment with each of the public attributes indicates its typG all other inherited attributes are
recursive.

changes are made in their definitions. Virtual-redefined

member timctions drawo and areao are retested since

they have new implementations. However, only new pro-

gram-based test cases are developed since existing specifi-

cation-based test cases ean be reused. Test suites are

developed and run for the new member fimctions defined

in Triangle. Three member functions have been added to

the list of interacting member functiomx areao calls the

get_vertexo member functions and both get_vertexlo and

put_vertexlo call the get_() and put_() member functions
for reference_point respectively. The interfaces between

these pairs of member fimctions must be tested, but

get_reference_pointo and put_refezmwe_pointo need no

further individual testing. No member function-

interaction test suites for move_too and
get_referenee_pointo are executed since no member func-

tion defined in Triangle can directly access refer.

ence~int. In Figure 7, test suites marked with ‘ are

newly developed, test suites marked with “ may have
newly developed test cases, while all others are reused

from the parent.

The last class in the hierarchy is EquiTriangle

which adds no new member functions other than the con-

structors for the class. However, EquiTriangle redefines

the implementation of areao to provide more efficiency,

Only the program-based test cases for areao are regener-

ated, although all test cases for areao are rerun. Integra-

tion test cases to test the interactions of the new and rede-

fined memker functions with the inherited attributes are

also run. The definition of class EquiTriangle and its test-
ing history are given in Figure 8.

4.3. Implementation

The implementation of our testing system consists

of two main parts. The first part uses our algorithm Test-

SubClass to automatically identify the required retesting
in a subclass. The second part assists in performing the

subclass testing. Although, our hierarchical incremental

algorithm is independent of the testing methodology, we
are using a type of program-based testing known as data

77

Tablel: Intcractor Class Hierarchy

lines number of attributes of each type

class of code new recursive reakjined virtual virtual virtual

nw recursive redejined

Interactor 908 79 0 0 14 0 0

Scene 195 21 59 0 8 14 1

MonoScene 98 1 73 0 4 16 4

Dialog 84 3 74 0 1 24 0

flow testing[6, 11, 15] to demonstrate the feasibility of our

technique. The underlying premise of all of the data flow

testing criteria is that confidence in the correcmess of a
variable assignment at a point in a program depends on

whether some test data has caused execution of a path

from the assignment (i.e., definition) to points where the

variable’s value is used (i.e., use). Definition-use pairs are

determined by considering the reachable uses of each defi-

nition. Test data adequacy criteria are used to select par-

ticular definition-use pairs or subpaths that are identified

as the testing requirements for a program. Test cases are

generated that satisfy the testing requirements when used

in a program’s execution. One criterion, ‘all-uses’ [6],
requires that each definition of a variable be tested on

some path to each of its uses. The ‘all-uses’ criterion has

been shown to be effective in uncovering errors [5] and

feasible since relatively few test cases typically are

required for its satisfaction[19].

Data flow testing is also used to validate the inter-

faces between proeedures[7, 8]. When validating the

interface, the focus of the testing is the definitions and

uses of variables that extend across procedure boundaries

and includes global variables and reference parameters.

We use data flow testing to vali&te the class member

functions individually and to test the interface among the

member functions. Stubs and drivers are used to represent

any incomplete implementations. We are incorporating
our testing technique into the Free Software Foundation,

Inc’s C++ compiler” (g++) and are using it for our exper-

imentation. We have modified the data flow analysis per-

formed by the g++ compiler to gather the definition-use

pairs for the testing and we can currently test individual
member functions. Each member function is compiled
with the modified g++ compiler and stubs are used to

return appropriate values at runtime.

@ Copyright (C) 1987, 1989 Free Software Foundation, Inc, 675

Mass Avenue, Cambridge, MA 02139.

5. Experimentation

We are using a variety of existing C++ class hierar-

chies for our experiments to determine the savings in test-

ing gained using our technique. We are considering the

class hierarchies in InterViews 2.6 [14], which is a library

of graphics interface classes. One representative class

hierarchy in InterViews is base class Interactor, and its

subclasses, Scene, MonoScene and Dialog, where Scene is

a subclass of Znteractor, MonoScene is a subclass of

Scene, and Dialog is a subclass of MonoScene. Table 1
gives statistics about these classes.

We used our algorithm to determine which of the

methods in each class required retesting. The results of

that analysis are shown in Tables 2 and 3. The only com-

parison possible was with a technique that retests all

methods. The results show that for this particular path, in

one hierarchy, a significant amount of effort would be

saved with our technique. This is a reasonable result for a

well-designed hierarehy with a large amount of function-

ality defined at the top level and modifications and addi-

tions made in the lower levels,

This analysis did not consider another potential ben-

efit of the techniquty the benefits derived from reuse of the

parent tests suites. Many of the methods that must be

retested will reuse the specification-based test cases that

were developed for their parent class. Reusing test suites

from the parent class results in substantial additional sav-

ings of time for the testing process.

6. Conclusion

We have presented an incremental teehnique to vali-
date classes that exploits the hierarchical structure of

groups of classes related by inheritance. Our language
model is a generalization of the C++ [17] language. Base

classes arc initially tested using both specification-based

and program-based test cases, and a history of the testing

information is saved. A subclass is then tested by incre-

mentally updating the history of the parent class to reflect

the differences from the parent. Only new attributes or

those inherited, affected attributes and their interactions

78

Table 2: Number of member functions to be tested (specification/program-based) I

class retest all our technique ‘----1our methodlretest all

Interactor 93 ’93 ---i@zl

Scene 96 30 31%

MonoScene 99 9 9%

Dialog 103 4 4%

lTable3: Number ofmember functions to betested (interaction/interface)l

I class I retest all I our technique I ourmethodlretest all I,
Interactor 93 ’93 I ml

Scene 96 36

+

38%

MonoScene 99 9 9%

Dialog 103 6 6%

are tested. The benefit of this technique is that it provides

a savings both in the time to analyze the class to deter-

mine what must be tested and in the time to execute test

cases. We are initially incorporating data flow testing into

our hierarchical testing system for both individual mem-

ber functions and interacting member functions to provide

base class testing and subclass testing. Later, we will

include a specification-based testing technique in the test-

ing system.

References

1.

2.

3.

4.

5.

6,

7.

B, Beizer, in Software Testing Techniques, Van Nos-

trand Reinhold Company, Inc., New York, 1990.

T. J. Cheatham and L. Mellinger, “Testing object-

oriented software systems,” Proceedings of the

1990 Computer Science Conference, pp. 161-165,

1990.

S. P. Fielder, “Object-oriented unit testing,”

Hewlett-Packard Journal, pp. 69-74, April 1989.

P. Frankl, “A framework for testing object-oriented

programs,” Technical Report, Department of Elec-
trical Engineering and Computer Science, Polytech-
nic University, New York, 1989.

P. Frankl and S. Weiss, “Is data flow testing more
effective than branch testing? An emperical study,”

Proceedings of Quality Week 1991, May 1991.

P. G. Frankl and E. J. Weyuker, “An applicable

family of data flow testing criteria,” IEEE Transac-

tions on Software Engineering, vol. SE-14, no. 10,

pp. 1483-1498, October 1988.

M. J. Harrold and M. L. Soffa, “Interprocedural

data flow testing,” Proceedings of the Third Testing,

8.

9.

10.

11.

12.

13.

14.

15.

16.

Analysis, and Verification Symposium (TAV3 -

SIGSOFT89), pp. 158-167, Key West, FL, Dcceml-

ber 1989.

M. J. Harrold and M. L. Soffa, “Selecting Data for

Integration Testing,” IEEE SofWare, special issue

on testing and debugging, March 1991.

W. E. Howden, in Sofware Engineering and Tech-

nology: Functional Program Testing and Analysis,

McGraw-Hill, New York, 1987.

M. Killian, “Trellis: Turning designs into pro-

grams,” CACA4, vol. 33, no. 9, pp. 65-67, Septem-

ber 1990.

B. Korel and J. Laski, “A tool for data flow oriented

program testing,” ACM Soffair Proceedings, pp.

35-37, December 1985.

T. Korson and J. D. McGregor, “Understanding

object-oriented A unifying paradigm,” Communi-

cations of the ACM, vol. 33, no. 9, pp. 40-60,

September 1990.

U. Linnenkugel and M. Mullerburg, “Test data

selection criteria for integration testing,” Proceed-
ings of the 1990 Conference on Systems Integration,

pp. 45-58, April 1990.

M. A. Linton and P. R. Calder, “The design and

implementation of InterViews,” Proceedings of

USNIX C+ + Workship, pp. 256-267,1987.

S. C. Ntafos, “An evaluation of required element

testing strategies,” Proceedings of ;Vh International

Conference on Sofmare Engineering, pp. 250-256,

March 1984.

D. E. Perry and G. E. Kaiser, “Adequate testing and

object-oriented programming,” Journal of Object-

79

Oriented Programming, vol. 2, pp. 13-19, Jan-

uary/February 1990.

17. B, Stroustrup, in The C++ Programmz”ng Language,

Addison-Wesley Publishing Company,

Massachusetts, 1986.

18. P. Wegner and S. B. Zdonik, “Inheritance as an

incremental modification mechanism or what like is

and isn’t like,” Proceedings of ECOOP’88, pp.

55-77, Springer-Verlag, 1988.

19. E. J. Weyuker, “The cost of data flow testing An

empirical study,” IEEE Transactions on Sofware

Engineering, vol. SE-16, no. 2, pp. 121-128, Febru-

ary 1990.

20. E. J. Weyuker, “Axiomatizing software test data

adequacy,” IEEE Transactions on Software

Engineering, vol. SE-12, no. 12, pp. 1128-1138,

December 1986.

80

