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Abstract

The basic unit of testing in an object-oriented pro-
gram is a class. Although there has been much recent
research on testing of classes, most of this work has fo-
cused on black-box approaches. However, since black-
box testing techniques may not provide sufficient code
coverage, they should be augmented with code-based
or white-box techniques. Dataflow testing is a code-
based testing technique that uses the dataflow relations
in a program to guide the selection of tests. Existing
dataflow testing techniques can be applied both to indi-
vidual methods in a class and to methods in a class that
interact through messages, but these techniques do not
consider the dataflow interactions that arise when users
of a class invoke sequences of methods in an arbitrary
order. We present a new approach to class testing that
supports dataflow testing for dataflow interactions in a
class. For individual methods in a class, and methods
that send messages to other methods in the class, our
technique is similar to existing dataflow testing tech-
niques. For methods that are accessible outside the
class, and can be called in any order by users of the class,
we compute dataflow information, and use it to test
possible interactions between these methods. The main
benefit of our approach is that it facilitates dataflow
testing for an entire class. By supporting dataflow test-
ing of classes, we provide opportunities to find errors in
classes that may not be uncovered by black-box testing.
Our technique is also useful for determining which se-
quences of methods should be executed to test a class,
even in the absence of a specification. Finally, as with
other code-based testing techniques, a large portion of
our technique can be automated.

*This work was partially supported by NSF under Grants
CCR-9109531 and CCR-9357811 to Clemson University.

1 Introduction

One of the most important benefits of object-
oriented programming is the ability to reuse classes.
A class is an instantiable, information-hiding module
that defines the data (instance variables) and operations
(methods) that an object of that class will contain!. A
class is often considered to be the basic unit of testing in
an object-oriented program. Although there has been
much research recently on testing of classes, most of this
work has focused on black-box techniques [4, 11, 12, 21]
that do not use the class’s code to select tests. How-
ever, since black-box techniques may not provide suffi-
cient coverage of the code, these techniques should be
augmented with code-based or white-box approaches.

One type of code-based testing is dataflow test-
ing [2, 6, 9, 15, 16, 17, 20], which uses the dataflow
relationships in a program to guide the selection of
tests. Several dataflow testing tools have been devel-
oped [5, 7, 13, 17], and some of these tools have been
used to investigate the effectiveness of dataflow test-
ing in uncovering program errors [3, 14, 22]. However,
no technique has been presented that applies dataflow
testing to object-oriented programs. Existing dataflow
testing techniques can be applied to both individual
methods and methods in a class that interact through
messages (procedure calls between methods), but these
techniques do not consider the dataflow interactions
that arise when users of a class invoke sequences of
methods in an arbitrary order.

To address this problem, we present a new ap-
proach that supports dataflow testing for all types of
dataflow interactions in a class. For individual meth-
ods in a class, and methods that interact with other
methods in the class through procedure calls, our tech-
nique is similar to existing dataflow testing techniques
[6, 9, 15, 16, 17, 20]. For methods that are accessible
outside the class, and can be called in any order by users
of the class, we compute dataflow information, and use
it to test the possible interactions between these meth-
ods. To compute this dataflow information, we develop
a new graph representation for a class, the class control
flow graph, that “connects” all methods in the class. We
then adapt an existing dataflow analysis algorithm [18]

1When we test a class, we actually test the objects that are
instantiations of that class. However for our discussion we use
class and object synonymously.



to the class control flow graph to compute the dataflow
information required for dataflow testing.

The main benefit of our approach is that we pro-
vide a way to use dataflow testing to test an entire
class. By supporting dataflow testing of classes, we pro-
vide opportunities to find errors in classes that may not
be uncovered by black-box testing. Our technique is
also useful for determining which sequences of methods
should be executed to test a class, even in the absence of
a specification. When used in conjunction with black-
box techniques, our technique also helps reduce testing
of unnecessary sequences of methods, since it provides
information about sequences in which methods do not
interact. Finally, as with other code-based testing tech-
niques, a large portion of our technique can be auto-
mated.

In the next section, we briefly overview both
dataflow analysis and dataflow testing. In Section 3,
we describe class testing and the application of dataflow
testing to classes. Section 4 outlines our requirements
for dataflow testing of classes. In Section 5, we present
our technique for computing the dataflow information
required for dataflow testing of classes. Section 6 dis-
cusses other issues relevant to dataflow testing of classes,
Section 7 compares our work with related work, and
Section 8 presents our conclusions.

2 Dataflow Analysis and Testing

In dataflow testing [6, 15, 16, 20], an assignment
to a variable in a program is tested by executing sub-
paths from the assignment (definition) to points where
the variable is used {use). Uses in the program are ei-
ther computation uses (c-uses) or predicate uses (p-uses)
[20]. A c-use occurs whenever a value is used in a com-
putation or output statement; a p-use occurs whenever
a value is used in a predicate statement. A definition-
use pair (def-use pair) is an ordered pair (d, ), where d
is a statement containing a definition of a variable v and
u is a statement containing a use of v, or some memory
location bound to v, that can be reached by d over some
path in the program.

Test data adequacy criteria are used to select par-
ticular def-use pairs or subpaths that are identified as
the test requirements for a program; tests are gener-
ated that, when used in a program’s execution, satisfy
these requirements. A test satisfies a def-use pair if ex-
ecuting the program with the test causes traversal of
a subpath from the definition to the use without any
intervening redefinition of that memory location. For
c-uses, traversal must be from the statement contain-
ing the definition to the statement containing the use,
while for p-uses, tests must traverse subpaths from the
statement containing the definition to both successors
of the statement containing the use. Many different
dataflow testing criteria have been defined and com-
pared [2, 6, 15, 16, 20]. One criterion, the ‘all-uses’
criterion, requires that each feasible def-use pair in the
program be tested?. The ‘all-uses’ criterion has been

2 A def-use pair is feasible if there is some program input that
will cause it to be executed, and infeastble otherwise.

shown to be practical since typically, relatively few tests
are required for its satisfaction [23].

When dataflow testing is used for unit testing of
individual procedures, def-use pairs are computed using
traditional iterative or interval-based dataflow analysis
methods [1]. These analysis methods use a control flow
graph to represent the program. Nodes in a control flow
graph represent program statements and edges repre-
sent the flow of control between statements; each graph
is augmented with a single entry node and a single exit
node. To apply dataflow testing to interacting proce-
dures [9], and to test C programs [13, 17], more precise
dataflow analysis is required. Interprocedural dataflow
analysis [10] computes def-use pairs whose definition is
in one procedure and whose use is in a called or call-
ing procedure. This technique computes def-use pairs
for global variables and reference parameters using a
form of the call graph to propagate dataflow informa-
tion throughout the program. Dataflow analysis for C
programs [18] also considers the effects of pointer vari-
ables and aliasing in computing the def-use pairs for
testing; for discussion, we call this technique, developed
by Pande, Landi and Ryder, the PLR algorithm.

The PLR algorithm constructs an interprocedural
control flow graph for a program, which combines con-
trol flow graphs of individual procedures. Each call site
is replaced by a call and a return node. The control flow
graphs are connected by adding edges from call nodes
to entry nodes and from exit nodes to return nodes, to
represent procedure calls in the program. A special en-
try node p is used to represent the entry to the “main”
procedure of the program. The PLR algorithm first
computes conditional alias and definition information
for each procedure. Then, using a dataflow framework,
it propagates the local information to obtain interpro-
cedural reaching definitions from which interprocedural
def-use pairs are calculated.

3 Classes and Class Testing

A class defines the data relevant to an object of
that class, and a set of operations that may be per-
formed on that data; class data are referred to as in-
stance vartables, and class operations are called meth-
ods. Without loss of generality, we use a model for
a class that contains only two levels of access to the
class’s instance variables and methods: public and pri-
vate. Public instance variables and methods can be
accessed by users of the class, while private instance
variables and methods are accessible only within the
class. A class may contain a constructor method that
is executed whenever an object of that class is instanti-
ated, and a destructor method that is executed when
the object is destroyed. Figure 1 presents a partial
C++ listing for a SymbolTable class, which serves as
an example throughout this paper. The SymbolTable
class contains public methods SymbolTable (the con-
structor), ~SymbolTable (the destructor), AddtoTable,
and GetfromTable, and private methods Lookup, Hash,
GetSymbol, GetInfo, AddSymbol, and AddInfo.
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// symboltable.h: definition of SymbolTable class
#include "symbol.h"

class SymbolTable {
private:
TableEntry *table;
int numentries, tablemax;
int *Lookup( char *);
public:
SymbolTable(int n) {
tablemax = n;
numentries = 0;
table = new TableEntry[tablemax]; };
“SymbolTable() { delete table; };
int AddtoTable(char *symbol, char *syminfo);
int GetfromTable(char *symbol, char *syminfo);

¥

// symboltable.c: implementation of SymbolTable class
#include "symboltable.h"

int SymbolTable: :Lookup{char *key, int index) {
int saveindex;
int Hash(char *);
saveindex = index = Hash(key);
wvhile ( strcmp(GetSymbol (index),key) '= 0) {
index++;
if (index == tablemax) /* wrap around */
index = 0;
if (GetSymbol(index)==0 || index==saveindex)
return NOTFOUND;
¥
return FOUND;
¥

int SymbolTable::AddtoTable (char *symbol,
char *syminfo) {
int index;
if (numentries < tablemax) {
if (Lookup(symbol,index) == FOUND)
return NOTOK;
AddSymbol(symbol,index);
AddInfo(syminfo,index);
numentries++;
return 0K;
t
return HOTOK;
}

int SymbolTable: :GetfromTable(char *symbol,
char **syminfo) {
int index;
if (Lookup(symbol,index
return NOTOK;
*syminfo = GetInfo(index);
return 0K;

== NOTFOUND)

}
void SymbolTable::AddInfo(syminfo,index) {

strcpy(tablel[index].syminfo,syminfo);
¥

char *SymbolTable::GetInfo(index) {

return table[index].syminfo;

¥
Figure 1: Partial listing for the SymbolTable class.

We represent the call structure of a class using a
class call graph. A class call graph is a directed graph
in which nodes represent methods, and edges represent
procedure calls between methods. Figure 2 displays
the class call graph for class SymbolTable. Because
GetfromTable calls Lookup and GetInfo, the graph
contains edges from the GetfromTable node to the
Lookup and GetInfo nodes. Figure 2 also depicts edges,
shown as dashed lines, ending at each of the class’s pub-
lic methods. The dashed edges represent messages sent
to these public from outside the class.

We test classes at three “levels”, which we define
as follows:

Intra-method testing tests methods individually.
This level of testing is equivalent to unit testing of
individual procedures in procedural-language pro-
grams.

Inter-method testing tests a public method together
with other methods in its class that it calls directly
or indirectly. This level of testing is equivalent
to integration testing of procedures in procedural-
language programs.

Intra-class testing tests the interactions of publie
methods when they are called in various sequences.
Since users of a class may invoke sequences of meth-
ods in indeterminate order, we use intra-class test-
ing to increase our confidence that sequences of
calls interact properly. However, since the set of
possible public method call sequences is infinite,
we can only test a subset of this set.

To illustrate each of these levels of testing, consider
the SymbolTable class, shown in Figure 1. We per-
form intra-method testing on the SymbolTable class by
testing each of the ten methods in the class separately.
We perform inter-method testing on the AddtoTable
method by integrating the AddtoTable, AddSymbol,
Lookup, AddInfo, GetSymbol, and Hash methods, and
testing various calls to AddtoTable. Similarly, we per-
form inter-method testing on the GetfromTable method
by integrating the GetfromTable, Lookup, GetInfo,
GetSymbol, and Hash methods, and testing various calls
to GetfromTable. Since the constructor and destructor
methods in the SymbolTable class (SymbolTable and
~SymbolTable) do not call other methods, intra- and
inter-method testing of these routines are equivalent.
For intra-class testing, we may select test sequences
such as <SymbolTable, AddtoTable, GetfromTable>>
and <SymbolTable, AddtoTable, AddtoTable>. In all
cases, we may require stubs and/or driver procedures to
perform the testing; we may also require a technique to
inspect the state of the object after the method sequence
invocation.

Previous research on class testing has focused on
techniques for selecting sequences of methods for intra-
class testing[3, 11, 12, 19, 21]. However, existing tech-
niques suffer from two drawbacks. First, most existing
techniques select tests on the basis of specifications, or
from state graphs constructed solely from specifications.
Since most software systems are not formally specified,
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Figure 2: Class call graph for the SymbolTable class.

and many are not even informally specified, these meth-
ods are frequently not applicable. Furthermore, even
when a program is specified, specification-based test-
ing may not detect errors caused by implementation de-
tails not addressed in the specifications. For example, if
the specification for SymbolTable does not require that
table be implemented as an array and maintained by
linear hashing, we cannot know from the specifications
that we should test whether the table search method,
Lookup, successfully wraps around (line 29).

The second drawback of existing intra-class test-
ing techniques, including code-based techniques, is that
they simply specify sequences of methods to execute,
without requiring coverage of particular code compo-
nents. However, we would not have confidence in our
class testing if the class contains code that has not been
exercised sufficiently.

In Section 7 we discuss related research in greater
detail.

4 Dataflow Testing of Classes

To supplement the existing intra-class testing
techniques, we require a code-based testing technique
that identifies components of a class that should be
tested. One such technique is dataflow testing, which
considers all class variables, and program-point-specific

def-use pairs. There are three types of def-use pairs in
classes that should be tested. These types correspond
to the three levels of testing defined above. We define
the three types formally first, and then describe them
informally and with examples.

In the following definitions, let C" be the class be-
ing tested. Let d represent a statement containing a
definition, and » represent a statement containing a use.

Intra-method def-use pairs. Let M be a method in
C. If d and u are both in M, and there exists a
program P that calls M such that in P, (d,u) is a
def-use pair exercised during a single invocation of
M, then (d,u) is an intra-method def-use pair.

Inter-method def-use pairs. Let M, be a public
method in C, and let {M;, Ms, ..., M,} be the
set of methods in C called, directly or indirectly,
when My is invoked. Suppose that d is in M;
and » is in Af;, where both A; and M; are in
{ My, M1, Ms, ..., M,}. If there exists a program
P that calls My such that in P, (d,u)} is a def-use
pair exercised during a single invocation by P of
My, and such that either M; # M;, or M; and M;
are separate invocations of the same method, then
(d,u) is an inter-method def-use pair.

Intra-class def-usc pairs. Let M, be a pub-
lic method in (', and let {M;, Ms, ..., M, } be the
set of methods in ' called, directly or indirectly,



when My is invoked. Let Ny be a public method
in C' (possibly the same method as M), and let
{N1, N3, ..., N, } be the set of methods in C called,
directly or indirectly, when Ny is invoked. Suppose
disin some method in { My, My, My, ..., M, }, and u
is in some method in {Ng, Ny, Na, ..., N, }. If there
exists a program P that calls My and Ny, such that
in P, (d,u)1s a def-use pair, and such that after d
is executed and before u is executed, the call to My
terminates, then (d,u) is an inter-method def-use
pair.

Informally, intra-method def-use pairs occur
within single methods, and test def-use interactions
that are limited to those methods. For example, in
the SymbolTable class, the Lookup method contains
intra-method def-use pair (27,28) with respect to vari-
able index, because the definition of index in node 27
reaches the use of index in node 28.

Inter-method def-use pairs occur when methods
within the calling context of a single public method in-
teract, such that a definition in one method reaches
across method boundaries to a use in some method
called, directly or indirectly, by the public method.
For example, in the SymbolTable class, public method
AddtoTable invokes the Lookup method, and receives
an index value back, which it uses in the call to
AddSymbol. Def-use pair (29,41) is an inter-method
pair, because the definition of index at line 29 in Lookup
reaches the use of index at line 41 in AddtoTable.

Finally, intra-class def-use pairs occur when se-
quences of public methods are invoked. For ex-
ample, consider the method sequence <AddtoTable,
AddtoTable>. In the first call to AddtoTable, if a
symbol is added to table, line 43 sets numentries.
In the second call to AddtoTable, line 38 fetches the
value of numentries. Thus (43,38) is an intra-class def-
use pair. As a second example, consider the sequence
<AddtoTable, GetfromTable>. AddtoTable may add
symbol information to table, by calling the AddInfo
routine; GetfromTable then accesses table by calling
GetInfo. The definition of the table entry at line 73 in
AddInfo and the use of the table at line 82 in GetInfo
form an intra-class def-use pair.

All three types of def-use pairs are useful for test-
ing classes. For example, if we use the ‘all-uses’ dataflow
coverage criteria, then intra-method def-use pair (27,28)
tests whether Lookup successfully “resets” to the start
of the table when it reaches the end of the table array3.
Inter-method def-use pair (29,41) tests whether we can
add a symbol at the Oth location of table. Intra-class
def-use pair (43,38) tests whether AddtoTable acts cor-
rectly when table is full. Finally, intra-class def-use
pair (73,82) tests whether information added to the
symbol table can be fetched.

Intra-class pairs have the further advantage of
guiding testers in the selection of sequences of meth-
ods that should be run, and sequences of methods

3Recall from Section 2 that the ‘all-uses’ criteria requires us
to test each feasible def-use pair in a program. Testing a def-use
pair when the use is a p-use requires that we test both branches
out of the p-use.

that need not be run. For example, to exercise the
intra-class pair (73,82) we must test method sequence
<AddtoTable, GetfromTable>. However, there are no
intra-class pairs originating within the GetfromTable
method (or methods it invokes) and terminating within
the AddtoTable method (or methods it invokes). This
suggests that GetfromTable cannot affect AddtoTable,
and that we do not need to test method sequence
<GetfromTable,AddtoTable>>.

To further illustrate the advantages of intra-class
dataflow testing, suppose the conditional in line 38 of
the SymbolTable program is changed (erroneously) to
the following statement.

if (numentries <= tablemax)

Suppose we have tablemax+1 distinct symbols, and
we insert all but one into table by making tablemax
calls to AddtoTable. Now suppose we call AddtoTable
with the final symbol, “s”. On this call, numentries
equals tablemax, so AddtoTable enters its outermost
then clause and calls Lookup at line 39. Lookup does
not find “s” in table, but finds no empty table loca-
tions either. Thus, after examining every table entry,
Lookup exits because of the test at line 30 and returns
NOTFOUND. AddtoTable then inserts “s” at the location
pointed to by index, overwriting the table entry cur-
rently in that location.

To detect this fault, we must make tablemax+1
calls to AddtoTable. Recall that class SymbolTable
contains intra-class def-use pair (43,38). To achieve ‘all-
uses’ adequacy for this pair, we must find a sequence (or
sequences) of method invocations that execute(s) line 43
and then line 38, such that both branches from 38 are
taken. By calling AddtoTable twice, we exercise (43,38)
and take the true branch from 38. However, to force
the false branch to be taken, we must first fill the ta-
ble by making tablemax calls to AddtoTable, and then
make an additional call to AddtoTable. In other words,
if we require ‘all-uses’ testing of pair (43,38), we neces-
sarily execute the sequence of methods that exposes the
fault.

5 Computing Dataflow Information for
Classes

To support dataflow testing of classes, we must
compute all types of def-use pairs for classes; we re-
quire intra-method, inter-method, and intra-class def-
use pairs. The PLR algorithm [18], described in Section
2, can be used to compute intra/inter-method def-use
pairs, but cannot be used directly to compute intra-class
def-use pairs, because it requires a complete program
from which to construct an interprocedural control flow
graph. To compute intra-class def-use pairs, we must
consider the interactions that occur when sequences of
public methods are invoked. We require a graph that
lets us consider all such interactions, and lets us apply
algorithms such as PLR.



algorithm ConstructCCFG(C):G

input C: a class.
output G: the CCF@G for C
declare frame : set of frame nodes and edges

begin ConstructCCFaG

/* Step 1: Construct the class call graph for the class */

G = Construct the class call graph for €

/* Step 2: Add the frame to the class call graph */
G =G U frame

/* Step 3: Replace each call graph node with the corresponding control flow graph */

foreach mcthod Min ¢ do

Replace W’s class call graph node in G with M’s control flow graph

Update edges appropriately

/* Step 4: Replace call sites with call and return nodes */

foreach call node S in G, representing a call to method Min C do

Replace S with a call and a return node
Update edges appropriately

/* Step 5: Connect the individual control flow graphs */

foreach method Min 6 do

Add an edge from frame call node to the entry node of M’s control flow graph in G
Add an edge from the exit node of M’s control flow graph in G to the frame return node

/* Step 6: Return the completed class control flow graph G */

return G

end ConstructCCFG

Figure 3: Algorithm to construct a class control flow graph (CCFQG).

To compute all three types of def-use pairs for a
class, we construct a class control flow graph (CCFG).
Our algorithm, ConstructCCFG, for constructing a
CCF@, is given in Figure 3. ConstructCCFG inputs a
class C and outputs G, the CCFG for C. In Step 1 of
ConstructCCFG, we construct the class call graph for C
and initialize G to this graph. Step 2 encloses the class
call graphin a frame, which facilitates the dataflow anal-
ysis for the class. A frame represents a driver for the
class that lets us simulate arbitrary sequences of calls
to public methods. A frame contains five nodes: frame
entry and frame exit, which represent entry to and exit
from the frame, respectively; frame loop, which facili-
tates sequencing of methods; and frame call and frame
return nodes, which represent the call to and return
from any public method, respectively. A frame also con-
tains four edges: (frame entry, frame loop), (frame loop,
frame call), (frame loop, frame exit), and (frame return,
frame loop).

Figure 4 shows the class call graph for the
SymbolTable class along with its enclosing frame. In
the figure, frame nodes are shaded and frame edges are
shown as dashed lines. Note that at this point in the
construction of the CCFG, the frame and the class call
graph are not connected.

In Step 3 of ConstructCCFG, we replace each class
call graph method node M in the partially completed
CCFG G with the control flow graph for M; we also up-
date the class call graph edges in G so that there are
edges from call sites to entry nodes and from exit nodes
back to call sites. Then, in Step 4, we replace each call
site S in G with a call node and a return node; we up-
date the class call graph edges in G so that there are
now edges from call nodes to entry nodes and from exit
nodes to return nodes. In Step 5, we connect the frame
with the rest of the graph that it encloses. To do this,
we add edges from the frame call node to the entry node
of each public method, and add edges from the exit of
each public method to the frame return node. Finally,
in Step 6, we return the completed class control flow
graph G.

In Figure 5, we show part of the CCFG for the
SymbolTable class; portions of the graph shown in dot-
ted boxes are not expanded in the figure. Consider the
parts of the CCFG that represents methods AddtoTable
and Lookup. The call site to Lookup in AddtoTable has
been replaced by a call node, marked C, and a return
node, marked R.. There are edges from C in AddtoTable
to the entry node in Lookup and from the exit node in
Lookup to R in AddtoTable. In the complete CCFG,
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Figure 4: Frame enclosing the class call graph for class SymbolTable.

other call sites, such as those at statements 41 and 42 in
AddtoTable, are also replaced by call and return nodes.

A frame is an abstraction of a main program P in
which calls to public methods are selected randomly by
a switch statement S, where S is enclosed in a loop 7.
For programs without the possibility of aliasing®, exist-
ing interprocedural dataflow analysis techniques[9, 18]
can be used to get all def-use pairs in the class. When
programs contain aliases, analysis methods that do not
account for aliasing effects are imprecise in their iden-
tification of def-use pairs. For such programs, we can
use the PLR algorithm on the CCFG to identify def-
use pairs more precisely. Since P simulates a single
entry program in which all sequences of message calls
are possible, and since the PLR algorithm functions on
single entry programs, it follows that the PLR algo-
rithm can be applied to the CCFG. However, applied to
the CCFG, the PLR algorithm may miss some def-use
pairs that occur in the context of applications programs,
when those programs introduce specific aliases. We dis-
cuss this problem in Section 6.

To apply the PLR algorithm to the CCFG for C,

% An alias occurs when two names for the same memory loca-
tion are visible at a point in the program.

we do the following. First we compute conditional alias
and conditional reaching definitions information for '
in the CCFG. We then propagate the dataflow informa-
tion throughout the program using the CCFQG and the
propagation rules specified in [18], with the following
adjustments:

e process the frame call node like a call node
e process the frame return node like a return node

e process the frame loop node as a statement node
with no definitions or uses

e process the frame entry and exit nodes like program
entry and exit nodes

This analysis yields a set of def-use pairs consisting of
intra-method def-use pairs, inter-method def-use pairs,
and intra-class def-use pairs. Examples of these def-use
pairs are given in Section 3.

Similar approaches let us apply other dataflow
analysis algorithms to the CCFG. In general, the preci-
sion of the def-use information we compute depends on
the precision of the dataflow analysis algorithm we use.



6 Additional Considerations

There are several additional considerations related
to dataflow testing for classes. In this section, we briefly
discuss some of them.

First, when we perform dataflow analysis on the
CCFQ for a class, our analysis may miss some intra-
method, inter-method, or intra-class def-use pairs that
occur in the context of applications programs, when
those programs introduce specific aliases. For example,
consider a method M in class C. Suppose that M defines
public instance variable *a and uses another public in-
stance variable *b, and suppose there is a path in M from
*a to *b on which neither *a nor #b is defined, as shown
below:

method M

nl: *a :=
.. <== no definition of *a or *b
n2: = *b

Assume that in C, there is no point where *a and *b
are aliased. In this case, our analysis using the CCFQ
will not associate the definition of *a at n1 with the use
of *b at n2. However, suppose a program P that uses
C causes *a and *b to be aliased and then invokes M;
on this invocation of M, (n1,n2) is a def-use pair. We
are currently exploring ways to save alias and def-use
information gathered during our analysis of the CCFG,
so that we can easily recognize such def-use pairs when
we test a class in the context of other programs and
classes.

A similar consideration involves the use of
dataflow testing for integration of classes. When class
(1 sends messages to class C3, we may wish to test
dataflow interactions between (] and (5. To do this
we define a fourth level of dataflow testing, inter-class
testing. Inter-class testing considers def-use pairs (d,u),
such that d is in one class and w is in another class, to
guide the selection of test cases. For inter-class testing,
we can compute def-use pairs using interacting CCFG’s.
Experimentation is required to determine how well this
technique will scale to large programs or many interact-
ing classes.

A third issue involves derived classes that are ob-
tained using inheritance. A derived class is formed from
a base class, where some methods and data are modi-
fied, added or deleted. Experiments suggest that tests
and testing information originally used to test a base
class can be reused to test a derived class [8]. We can
also use incremental dataflow analysis algorithms to up-
date def-use pair information in derived classes, which
reduces the cost of analysis.

Finally, we are considering ways to handle object-
oriented features such as polymorphism and dynamic
binding in our dataflow testing approach. Currently, if
we encounter a call to a method that is bound at run-
time, we can either (1) test the calling method with all
possible called methods, or (2) select some representa-
tive from the inheritance hierarchy, and use 1t for the

testing. The first approach is precise but may be im-
practical; the second approach lets us test the calling
method with some, but not every, called method.

7 Related Research

Previous research on class testing addresses intra-
class testing, and focuses on selection of method se-
quences to be tested. Most existing techniques for
method sequence selection are based on specifications,
or on state diagrams constructed from specifications[3,
11, 12, 21]. As discussed in Section 3, these techniques
have drawbacks; code-based test selection techniques
are also necessary.

Little attention has been paid to code-based test
selection criteria for object-oriented software. Parrish,
Borie, and Cordes [19] present a “flow-graph-based” test
selection technique, that selects method sequences with
or without specifications. Given class €, their technique
constructs a graph G for C such that for each public
method M in C, ¢ contains node N. Given nodes N;
and N; in G, there is an edge from N; to N; if a user can
invoke M; followed by M;. If M; sets a condition ¢ such
that when ¢ is “true” (“false”), M; may be invoked,
then edge (N;,N;) is called a control edge and given
label “true” (“false”). We can design tests that cover
all nodes and/or edges in (.

This technique incorporates a limited form of
dataflow information, involving “types” rather than
variables. A method 3/ (node N) contains a defini-
tion (use) of type 7" if M contains a formal parameter
of type T'. A def-use edge is defined as a triple involving
a type 7', a node in which 7" is defined, and a node in
which 7" is used. If we insert def-use edges into GG, we
may apply dataflow-like coverage criteria to .

There are two drawbacks to this technique. First,
the technique considers only method parameters, ignor-
ing shared variables (variables global within the class).
Second, the technique is not fine-grained enough: if v is
a variable used in class C', the technique does not ensure
that we will test from each (or even any) definition of v
to each (or even any) use of v in class C'. These draw-
backs cause the technique to miss opportunities for se-
lection of significant tests. For example, given the error
that results when line 38 of SymbolTable is changed,
discussed in Section 4, this technique requires us to
test method sequence <AddtoTable, AddtoTable>>, but
does not necessarily require us to make tablemax-+1
calls to AddtoTable, and thus may not lead to discov-
ery of the error®.

8 Conclusions

We have presented a technique for applying
dataflow testing to classes. We define three levels of
dataflow class testing: (1) intra-method testing, which

5This technique also allows graphs to be constructed from spec-
ifications. If we do this in the case of this example, we may detect
this error.



tests individual class methods, (2) inter-method testing,
which tests methods in a class that interact through
procedure calls, and (3) intra-class testing, which tests
sequences of calls to methods. To identify def-use pairs
for these three levels of testing, we represent a class
as a single-entry, single-exit program, and construct a
class control flow graph for this program. We then per-
form interprocedural dataflow analysis on this graph. In
this paper we adapt an existing interprocedural dataflow
analysis algorithm [18] to perform analysis on the class
control flow graph. However, other dataflow analysis
techniques could similarly be adapted.

We have demonstrated, by example, the ability of
our technique to lead to construction of tests that un-
cover errors in a class. We are currently implementing a
prototype dataflow tester for classes in C4++, on which
to perform experimentation. We are also investigating
other issues related to dataflow testing for classes, such
as techniques for providing partial dataflow analysis on
classes that will permit users of the class to avoid com-
plete reanalysis during integration.
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Figure 5: Partial CCFG for the SymbolTable class. The large shaded areas outline (clockwise from upper left) the
control flow graphs for the AddtoTable, GetfromTable, and Lookup methods, respectively. Other methods are not
expanded. Dotted boxes outline portions of the graph that have not been expanded.



