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Cleanroom Software
Engineering

Software quality can be
engineered under
statistical quality control
and delivered with better
quality. The Cleanroom
process gives manage-
ment an engineering
approach to release
reliable products.
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ecent experience demonstrates
R that software can be engineered

under statistical quality control
and that certified reliability statistics can
be provided with delivered software.
IBM’s Cleanroom process' has uncovered
a surprising synergy between mathemati-
cal verification and statistical testing of
software, as well as a major difference
between mathematical fallibility and
debugging fallibility in people.

With the Cleanroom process, you can
engineer software updcr statistical quality
control. As with cleanroom hardware
development, the process’s first priority is
defect prevention rather than defect
removal (of course, any defects not
prevented should be removed). This first
priority is achieved by using human
mathematical verification in place of pro-
gram debugging to prepare software for
system test. '

Its next priority is to provide valid,
statistical certification of the software’s
quality through representative-user testing
at the system level. The measure of qual-
ity is the mean time to failure in appropri-
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ate units of time (real or processor time) of
the delivered product. The certification
takes into account the growth of reliabil-
ity achieved during system testing before
delivery.

To gain the benefits of quality control
during development, Cleanroom software
engineering requires a development cycle
of concurrent fabrication and certification
of product increments that accumulate
into the system to be delivered. This lets
the fabrication process be altered on the
basis of early certification results to
achieve the quality desired.

Cleanroom experience
Typical of our experience with the
Cleanroom process were three projects: an
IBM language product (40,000 lines of
code), an Air Force contract helicopter
flight program (35,000 lines), and a NASA
contract space-transportation planning
system (45,000 lines). A major finding in
these cases was that human verification,
even though fallible, could replace debug-
ging in software development — even
informal human verification can produce
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software sufficiently robust to go to sys-
tem test without debugging.

Typical program increments were 5000
to 15,000 lines of code. With experience
and confidence, such increments can be
expected to increase in size significantly.
All three projects showed productivity
equal to or better than expected for ordi-
nary software development: Human
verification need take no more time than
debugging (although it takes place earlier
in the cycle).

The combination of formal design
methods and mathematics-based verifica-
tion had a positive development effect:
More than 90 percent of total product
defects were found before first execution.
Thisis in marked contrast to the more cus-
tomary experience of finding 60 percent of
product defects before first execution.
This effect is probably directly related to
the added care and attention given to
design in lieu of rushing into code and rely-
ing on testing to achieve product quality.

A second encouraging trend is the drop
in total defect count (by as much as half),
which highlights the Cleanroom focus on
error prevention as opposed to error detec-
tion. With industry averages at 50 to 60
errors per 1000 lines of code, halving these
numbers is significant.

The IBM language product
(Cobol/SF?) experience is especially
instructive. This advanced technology
product, comparable in complexity to a
compiler, was formally specified and then
designed in a process-design language.
Specification text exceeded design text by
about four to one. Every control structure
in the design text was verified in formal,
mathematics-based group inspection, so
the product proved very robust. A first
phase of development (20,000 lines) had
just 53 errors found during testing.

Correctness verification was the corner-
stone of the project; many programs were
redesigned to permit simpler verification
arguments. Productivity averaged more
than 400 lines of code per man-month,
largely as a result of sharply reduced test-
ing time and effort compared to conven-
tional developments.

A controlled experiment at the Univer-

sity of Maryland, with student teams’

devzloping a commen project in message
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processing (1000 to 2000 lines), indicates
better productivity and quality with the
Cleanroom process than with interactive
debugging and integration — even the first
time you use it.}

Management
perspective

At first glance, statistical quality control
and software development seem incom-
patible. Statistical quality control seems to
apply to manufacturing, especially man-
ufacturing of multiple copies of a previ-
ously specified and designed part or
product. Software development seems to
be a one-of-a-kind logical process with no
statistical properties at all. After all, if the
software ever fails under certain condi-
tions, it will always fail under those con-
ditions.

Developing stable
specifications early
establishes clear
accountability.

However, by rethinking the process of
statistical quality control itself from a
management perspective, we can find a
way to put software development under
statistical quality control with significant
management benefits. .

But where do the statistics come from,
when neither software nor its development
have any statistical properties at all? The
statistics come from the usage of the soft-
ware, not from its intrinsic properties.
Engineering software under statistical
quality control requires that we not only
specify the functional behavior of the soft-
ware but also its statistical usage.

Cleanroom software engineering is a
practical process to place software devel-
opment under statistical quality control.
The significance of a process under statisti-
cal quality control is well-illustrated by
modern manufacturing techniques where
the sampling of output is directly fed back
into-the process to control quality. Once
the discipline of statistical quality control
isin place, management can see the devel-
opment process and can control process
changes to control product quality.

The Cleanroom process permits a
sharper structuring of development work
between specification, design, and testing,
with clearer accountabilities for each part
of the process. This structuring increases
management’s ability to monitor work in
progress. Inexperienced software
managers often fail to recognize and
expose early software problems (like hard-
ware or specification instability, inex-
perienced personnel, and incomplete
design solutions) and mistakenly think
they can resolve and manage these prob-
lems over time. The Cleanroom process
forces these early problems into the open,
giving all levels of management an oppor-
tunity to resolve them.

The Cleanroom process requires stable
specifications as its basis. Because speci-
fications are often not fully known or veri-
fied during initial development, it might
appear at first glance that the Cleanroom
process does not apply. But, in fact, the
discipline of the Cleanroom process is
most useful in forcing specification defi-
ciencies into the open and giving manage-
ment control of the specification process.

As long as development is treated as a
trial-and-error process, theincompleteness
of specification can be accommodated as
just one more source of trial and error. The
result is diluted accountability between
specifiers and developers. A better way is
to develop software to early, stable speci-
fications that remain stable in each itera-
tion. This establishes a clear accountability
between specification and development,
keeping management in control of speci-
fication changes.

Statistical quality
control

Statistical quality control begins with an
agreement between a producer and
receiver. A critical part of this agreement,
explicit or implicit, is how to measure qual-
ity, particularly statistical quality. For sim-
ple products with straightforward
physical, electrical, or other measure-
ments, the agreement may be simply stated
— for example, 99 percent of certain fila-
ments are to exhibit an electrical resistance
within 10 percent of a fixed value. How-
ever, software is complex enough to
require a new understanding on how
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statistical quality can be measured.

For even the simplest of products, there
\i§ no absolute best statistical measure of
quality. For example, a statistical average
can be computed many ways — an arith-
metic average, a weighted average, a geo-
metric average, and a reciprocal average
can each be better than the others in vari-
ous circumstances.

It finally comes down to a judgment of
business and management — in every case.
In most cases, the judgment is practically
automatic from experience and precedent,
but it is a judgment. In the case of soft-
ware, that judgment has no precedent
because the concept of producing software
under statistical quality control is just at
its inception.

A new basis for the certification of soft-
ware quality, given in Currit, Dyer, and
Mills,! is based on a new software-
engineering process.® This basis requires a
software specification and a probability
distribution on scenarios of the software’s
use; it then defines a testing procedure and
a prescribed computation from test data
results to provide a certified statistical
quality of delivered software.

This new basis represents scientific and
engineering judgment of a fair and
reasonable way to measure statistical qual-
ity of software. As for simpler products,
there is no absolute best and no logical
arguments for it beyond business and
management judgment. But it can provide
a basis for software statistical quality as a
contractual item where no such reasonable
item existed before.

The certification of software quality is
given in terms of its measured reliability
over a probability distribution of usage
scenarios in statistical testing. Certifica-
tion is an ordinary process in business —
evenin the certification of the net worth of
abank. Asinsoftware certification, there
is a fact-finding process, followed by a
prescribed computation.

In the case of a bank, the fact-finding
produces assets and liabilities, and the
computation subtracts the sum of the lia-
bilities from the sum of the assets. For the
bank, there are other measures of impor-
tance besides net worth — such as good-
will, growth, and security of assets — just
as there are other measures for software
than reliability — such as main:ainability
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and performance. So a certification of
software quality is a business measure,
part of the overall consideration in
producing and receiving software.

Once a basis for measuring statistical
quality of delivered software is available,
creating a management process for statisti-
cal quality control is relatively straightfor-
ward. In principle, the goal is to find ways
to repeatedly rehearse the final measure-
ment during software development and to
modify the development process, where
necessary, to achieve a desired level of
statistical quality.

The Cleanroom process has been
designed to carry out this principle. It calls
for the development of software in incre-
ments that permit realistic measurements
of statistical quality during development,
with provision for improving the measured

Statistical quality
measurements
ultimately come down
to management and
business judgments.

quality by additional testing, by process
changes (such as increased inspections and
configuration control), or by both
methods.

Mathematical
verification

Softwarq engineering without mathe-
matical verification is no more than a
buzzword. When Dijkstra introduced the
idea of structured programming at an early
software-engineering conference,’ his
principal motivation was to reduce the
length of mathematical verifications of
programs by using a few basic control
structures and eliminating gotos.

Many popularizers of structured pro-
gramming have cut out the rigorous part
about mathematical verification in favor
of the easy part about no gotos. But by cut-
ting out the rigorous part, they have also
cut out much of the real benefit of struc-
tured programming. As a result, a lot of
people have become three-day wonders in

having no gotos without acquiring the fun-
damental discipline of mathematical
verification in engineering software — of
even discovering that such a discipline
exists.

In contrast, learning the rigor of mathe-
matical verification leads to behavioral
modification in both individuals and
teams of programmers, whether programs
are verified formally or not. Mathemati-
cal verification requires precise specifica-
tions and formal arguments about the
correctness with respect to those specifi-
cations.

Two main behavioral effects are read-
ily observable. First, communication
among programmers (and managers)
becomes much more precise, especially
about program specifications. Second, a
premium is placed on the simplest pro-
grams possible to achieve specified func-
tion and performance.

If a program looks hard to verify, it is
the program that should be revised, not the
verification. The result is high productiv-
ity in producing software that requires lit-
tle or no debugging.

Cleanroom software engineering uses -
mathematical verification to replace pro-
gram debugging before release to statisti-
cal testing. This mathematical verification
is done by people, based on standard
software-engineering practices* such as
those taught at the IBM Software Engi-
neering Institute. We find that human
verification is surprisingly synergistic with
statistical testing — that mathematical fal-
libility is very different from debugging
fallibility and that errors of mathematical
fallibility are much easier to discover in
statistical testing than are errors of debug-
ging fallibility.

Perhaps one day automatic verification
of software will be practical. But there is
no need to wait for the engineering value
and discipline of mathematical verification
until that day.

Experimental data from projects where
both Cleanroom verification and more
traditional debugging techniques were
used offers evidence that the Cleanroom-
verified software exhibited higher quality.
For the verified software, fewer errors
were injected, and these errors were less
severe and required less time to find and
fix. The verified product aiso experienced
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better field quality, all of which was due to
the added care and attention paid during
design.

Findings from an early Cleanroom proj-
ect (where verified software accounted for
approximately half the product’s func-
tion) indicate that verified software
accounted for only one fourth the error
count. Moreover, the verified software
was responsible for less than 10 percent of
the severe failures. These findings substan-
tiate that verified software contains fewer
defects and that those defects that are pres-
ent are simpler and have less effect on
product execution.

The method of human mathematical
verification used in Cleanroom develop-
ment, called functional verification, is
quite different than the method of axio-
matic verification usually taught in univer-
sities. It is based on functional semantics
and on the reduction of software verifica-
tion to ordinary mathematical reasoning
about sets and functions as directly as
possible.

The motivation for functional verifica-
tion and for the earliest possible reduction
of verification reasoning to sets and func-
tions is the problem of scaling up. A set or
function can be described in three lines of
ordinary mathematics notation or in 300
lines of English text. There is more human
fallibility in 300 lines of English than in
three lines of mathematical notation, but
the verification paradigm is the same.

By introducing verification in terms of
sets and functions, you establish a basis for
reasoning that scales up. Large programs
have many variables, but only one func-
tion. Mills and Linger® gave an additional
basis for verifying large programs by
designing with sets, stacks, and queues
rather than with arrays and pointers.

While initially harder to teach than axio-
matic verification, functional verification
scales up to reasoning for million-line sys-
tems in top-level design as well as for
hundred-line programs at the bottom
level. The evidence that such reasoning is
effective is in the small amount of back-
tracking required in very large systems
designed top-down with functional verifi-
cation.’
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Cleanroom software
engineering

While it may sound revolutionary at
first glance, the Cleanroom software engi-
neering process is an evolutionary step in
software development. It is evolutionary
in eliminating debugging because, over the
past 20 years, more and more program
design has been developed in design lan-
guages that must be verified rather than
executed. So the relative effort for
advanced teams in debugging, compared
to verifying, is now quite small, even in
non-Cleanroom development.

It is evolutionary in statistical testing
because with higher quality programs at
the outset, representative-user testing is
correspondingly a greater and greater frac-
tion of the total testing effort. And, as

In verified software,
developers essentially
never resorted to
debugging.

already noted, we have found a surprising
synergism between human verification and
statistical testing: People are fallible with
human verification, but the errors they
leave behind for system testing are much
easier to find and fix than those left behind
from debugging.

Results from an early Cleanroom proj-
ect where verification and debugging were
used to develop different parts of the soft-
ware indicate that corrections to the veri-
fied software were accomplished in about
one fifth the average time of corrections to
the debugged software. In the verified
software case, the developers essentially
never resorted to debugging (less than 0.1
percent of the cases) to isolate and repair
reported defects.

The feasibility of combining human
verification with statistical testing makes
it possible to define a new software-
engineering process under statistical qual-
ity control.! For that purpose, we define
a new development life cycle of successive
incremental releases to achieve a struc-
tured specification of function and statisti-

cal usage. A structured specification is a
formal specification (a relation or set of
ordered pairs) for adecomposition into a
nested set of subspecifications for succes-
sive product releases. A structured speci-
fication defines not only the final software
but also a release plan for its incremental
implementation and statistical testing.

A stepwise refinement or decomposition
of requiremnents creates successive levels of
software design. At each level of decom-
position, mathematics-based correctness
arguments ensure the accuracy of the
evolving design and the continued integrity
of the product requirements. The work
strategy is to create specifications and the
design to those specifications, as well as to
check the correctness of that design before
proceeding to the next decomposition.

The Cleanroom design methods use a
limited set of design primitives to capture
software logic (sequence, selection, and
iteration). They use module and procedure
primitives to package software designs
into products. Decomposition of software
data requirements is handled by acompan-
ion set of data-structuring primitives (sets,
stacks, and queues) that ensure product
designs with strongly typed data opera-
tions. Specially defined design languages
document designs and provide a straight-
forward translation to standard program-
ming forms.

In the Cleanroom model, structural test-
ing that requires knowledge of the design
is replaced by formal verification, but
functional testing is retained. In fact, this
testing can be performed with the two
goals of demonstrating that the product
requirements are correctly implemented in !
the software and of providing a basis for
product-reliability prediction. The latter is
a unique Cleanroom capability that results
from its statistical testing method, which
supports statistical inference from the test
to operating environments.

The Cleanroom life cycle of incremen-
tal product releases supports software test-
ing throughout the product development
rather than only when it is completed. This
allows the continuous assessment of prod-
uct quality from an execution perspective
and permits any necessary adjustmentsin
the process to improve observed product
quality.

As each release becomes available,



statistical testing provides statistical esti-
\mates of its reliability. Software process
analysis and feedback can be used to meet
reliability goals (for example, by increased
verification inspections and by more inter-
mediate specification formality) for sub-
sequent releases. As errors are found and
fixed during system testing, the growth in
reliability of the maturing system can also
be estimated so a certified reliability esti-
mate of the system-tested software can be
provided at final release.

Cho® has also proposed the develop-
ment of software under statistical quality
control, using as a medsure the ratio of
correct outputs to total outputs. He
regards software as a factory for produc-
ing output, rather than for producing a
product itself. The ratio of correct outputs
to total outputs is directly related to the
mean time between failures, where time is
normalized to output production. Such a
normalization is one possibility in the
Cleanroom process, but other normaliza-
tions may be more meaningful in most sys-
tem applications.

A principal difference between the
Cleanroom and Cho'sideasistheuseofa
certification model to account for the
growthin reliability during development.
Another major difference is an insistence
on human mathematical verification with
no program debugging before
representative-user testing at the system
level. As Mills discussed,’ human mathe-
matical verification is possible and prac-
tical at high production rates. The time
spent on verification can be less than the
time spent on debugging.

Statistical basis

Software people customarily talk about
errors in the software, typically measured
in errors per thousand lines of code. Cur-
rent postdelivery levels in ordinary soft-
ware are one to 10 errors per thousand
lines. Good methodology produces post-
delivery levels under one error per thou-
sand lines. But such numbers are irrelevant
and misleading when you consider soft-
ware reliability. Users do not see errorsin
the software, they see failures in execution,
so the measurement of times between
failures is more relevant.

- If each error had the same or similar
failure rate, thers would be a direct rela-
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tionship between the number of errors in
software and the time between failures in
its execution. Half as many errors would
mean half the failure rate and twice the
mean time between failures. In this case,
efforts to reduce errors would automati-
cally increase reliability.

It turns out that every major IBM soft-
ware product — without exception — has
an extremely high error-failure rate vari-
ation. In stable released products, these
failure rates run from 18 months between
failures to more than 5000 years. More
than half the errors have failure rates of
more than 1500 years between failures.
Fixing these errors will reduce the number
of errors by more than half, but the
decrease in the product failure rate will be
imperceptible. More precisely, you could

Users do not see errors
in software, they see
failures in execution.

remove more than 60 percent of the errors
but only decrease the failure rate by less
than 3 percent.

These surprising refutations of conven-
tional wisdom in software reliability are
due to data painstakingly developed over
many years by Adams."®

To be more precise about software
errors and failures, assume that a specifi-
cation and its software exist. Then, when
tHe software is executed, its behavior can
be compared with its specification and any
discrepancies (failures). Such failures may
be catastrophic and prevent further execu-
tion (for example, by abnormal termina-
tion). Other failures may be so serious that
every response from then on is incorrect
(for example, if a database is com-
promised). Less serious failures represent
the case in which the software continues to
execute with at least partially correct
behavior beyond the failure.

These examples illustrate that failures
represent different levels of severity,
beginning with three major levels:

‘s terminating failures, )

= permanent failures (but not terminat-

ing), and

 sporadic failures.

Even terminating or permanent failures
may be followed by a restart of the soft-
ware, SO you can imagine a long history of
execution and, in this history, the failures
marked at each instant of time. Clearly,
this history will depend on the software’s
initial conditions (and data) and on the
subsequent inputs (as commands and
data) to it. Such a history can be very arbi-
trary, but suppose for argument’s sake
that representative histories (scenarios of
use) are conceivable.

The behavior of software is determinis-
ticin that repeating an initial condition and
history of use will reproduce the same out-
puts (with the same failures). But, in fact,
if software is used in more than one history
by more than one user, the histories of use
will usually be different. For that reason,
we consider as part of a structured speci-
fication a probability distribution of usage
histories, typically defined as a stochastic
process.

This probability distribution of usage
histories will, in turn, induce a probabil-
ity distribution of failure histories in which
statistics about times between failures,
failure-free intervals, and the like can be
defined and estimated. So, even though
software behavior is deterministic, its
reliability can be defined relative to its
statistical usage. Such a probability distri-
bution of usage histories provides a
statistical basis for software quality
control. :

Certifying statistical
quality

For software already released, it is sim-
ple to estimate its reliability in mean times
to failure: Merely take the average of its
times between failure in statistical testing.
However, for software under Cleanroom
development, the problem is more compli-
cated, for two reasons:

1. In each Cleanroom increment,
results of system testing may indicate soft-
ware changes to correct failures found.

2. With each Cleanroom increment
release, untested new software will be
added to software already under test.

In fact, each change or set of changes to
correct failures in a release creates a new
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software product very much like its
predecessor but with a different reliability
(intended to be better, but possibly worse).
However, each of these corrected software
products, by itself, will be subject to a
strictly limited amount of testing before it
is superseded by its successor, and statisti-
cal estimates of reliability will be cor-
respondingly limited in confidence.

Therefore, to aggregate the testing expe-
rience for an increment release, we define
a model of reliability change with
parameters M and R (as discussed in Cur-
rit, Dyer, and Mills') for the mean time to
failure after ¢ software changes, of the
form MTTF = MR‘ where M is the initial
mean time to failure of the release and
where R is the observed effectiveness ratio
for improving mean time to failure with
software changes.

Although various technical rationales
are given for this model by Currit, Dyer,
and Mills," it should be considered a con-
tractual basis for the eventual certification
of the finally released software by the
developer to the user. Moreover, because
there is no way to know that the model
parameters M and R are absolutely cor-
rect, we define statistical estimators for
them in terms of the test data. The choice
of these estimators is based on statistical
analysis, but the choice should also be a
contractual basis for certification.

The net result of these two contractual
bases — a reliability change model and
statistical estimators for its parameters —
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