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1. INTRODUCTION

A common source of software failure is the incorrect sequencing of program

events. Even when the specification of software functionality hides or omits

explicit specification of legal or illegal sequences of events, specifications on

sequencing are still inherent. The problems we use computers to solve are

complex and require decomposition into smaller components. Solutions to

these subproblems must cooperate in the solution of the overall task by

sharing information in some way. This sharing creates a necessary partial

order on the sequencing of computations, as the information must be pro-

duced before it can be used. Thus, some constraint on the sequencing of

software events is necessary to properly specify (at some level of abstraction)

a solution to the original problem.
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Even when the sequencing information is explicit, as in imperative pro-

gramming languages like Pascal and in design notations like the structure

charts used in the structured design methodology, the sheer size and volume

of the software components can hide important sequencing phenomena, and

consequently make more difficult the detection of violations of the con-

straints on this sequencing.

We can often detect violations of sequencing constraints automatically

with static analysis. A number of tools have been built that statically

uncover violations of a fixed set of sequencing constraints on a fixed set of

program events, most commonly static data flow anomalies such as dead

definitions or undefined references. In past work [22], we have argued that

this kind of automatic static data-flow-based analysis can be extended to

cover a much wider range of sequencing phenomena where the events of

interest and the sequences themselves are specified not by the tool but by the

program analyst. Such a capability appears to us to be an important addition

to a software testing, analysis and verification environment.

While our previous work described a specification notation for sequencing

constraints and gave an algorithm for their verification, we made some

simplifying assumptions that must be overcome if we hope to analyze real-

world programs. Such programs contain procedures, but our original algo-

rithm assumed intraprocedural analysis. Real-world programs also contain

many variables or program data objects upon which sequencing constraints

may be individually applicable. Our original algorithm assumed just one

such object.

This paper describes our solutions to these difficulties. After a brief review

of our specification formalism, we relate our extensions to the algorithm of

Olender and Osterweil [22] to handle interprocedural analysis and multiple

objects on which the constraints must be verified. We also describe Cesar, our

prototype analyzer that performs interprocedural static sequencing analysis

on FORTRAN programs. We relate our experiences to date with the system,

compare Cesar to some other static analysis systems, and finally outline our
future plans.

2. CECIL: A SEQUENCING CONSTRAINT LANGUAGE

It will help the reader understand the purpose and context of the remainder

of this paper if we first give a brief, intuitive overview of the language we use

to specify sequencing constraints. Further detail can be found presented by

Olender and Osterweil [22].

Cecil is a notation for expressing sequencing constraints based on regular

expressions that is specifically oriented toward constraints that can be stati-

cally verified. A single term of a Cecil expression is an anchored, quantified,

regular expression (AQRE). Each AQRE term consists of an alphabet of events

for which sequencing is significant, the valid sequences or traces of those

events, the events that bound or anchor the subtraces that must be con-

strained, and a quantifier of the possible bounded subtraces that must satisfy

the constraint.
An example will make these ideas more concrete. Suppose we have a
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program that requires a queue to store data. We construct an abstract data

type (ADT) module that hides the implementation details of the queue and

exports only the name of the type and a set of operations to insert a data

element at the back the queue, remove the element at the front of the queue,

return the element at the front of the queue, create an empty queue, and

determine if a given queue is empty. Note that we follow Guttag’s advice [151

and avoid operations that both change and query the state of the queue. Thus

we define separate operations to tell us the next element in the queue and to

remove that element from the queue.

A queue object must be created before any other operation can lbe per-

formed on it. Additionally, removal or query of the front element fails if the

queue is empty; there is nothing there. One possible sequencing constraint on

queues, then, is that the first operation to be performed must be create and

that every removal or front query must be preceded by an is.empty check

that returns false or by an insert operation. Under these circumstances, we

can be sure the queue is not empty. Obviously, it would be more accurate to

constrain the number of insertions to be strictly greater than the number of

removals. We know, however, that such a constraint cannot be statically

checked as it requires knowledge of the number of executions of every loop, so

we make a safe approximation that can be statically checked.

We might also want to prevent constructions that, while not failure-

causing themselves, are frequently symptomatic of code defects. We might be

suspicious, for example, if an element is removed from the queue before its

value was queried by a front operation. This will not directly cause a failure,

but why bother to store data in the queue if we never use the values we

store? Perhaps the relevant code was mistakenly omitted. Perhaps we do not

need the queue at all. In both cases, we would prefer to know this situation

exists. We must be careful though. Front queries need not occur before every

removal. We can easily imagine a program where elements might be re-

moved without being used in certain situations. Our suspicions are raised

only if there are no front queries on any execution path leading to the

removal.

A Cecil constraint that expresses these concerns for a queue ADT is given

in Figure 1. Events s and t respectively indicate the start and termination of

program execution. The curly braces contain the alphabet, or the set of

events whose sequencing we wish to constrain, the square brackets list the

anchors, the events that bound the subtraces that will be constrained, and

the quantifier (forall or exists) describes whether every possible bounded

subtrace or at least one bounded subtrace must be in the language denoted by

the regular expression.

Note that in the regular expression, a semicolon represents concatenation,

a vertical bar represents union, an asterisk is reflexive-transitive closure,

and a question mark is a wild card ranging over all single events in the

alphabet (like the “any single character” wildcard used for file name “glob-

bing” by the Unix command shell).

Since the events that bound subtraces need not necessarily be the same

operations whose sequencing is constrained, events in the anchors need not
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{insert, remove, create, front, empty, notempty} (

[s] forall (create; ?*) [t]

and [s1 forall (?*; (notempty I insert)) [front,removel

and [s] exists (?*; front; notempty*) [remove]

)

Fig. 1, A Cecil constraint for a queue ADT

be in the alphabet. Our example uses the start and termination ofprogram

execution as anchors, but these events do not operate directly on a queue

data object, and soare not listed in the alphabet.

Inour example the is.empty predicate becomes two events, one forthe true

result and one for the false. It might seem that knowing the result requires

run-time information. However, the typical use of such predicates is in the

Boolean expression controlling a loop or conditional statement. The value is

encoded directly into the control flow as we know which branches are taken

under each condition, so we can statically distinguish between the empty and

notempty events in our example under those conditions.

The first AQRE term requires that the create operation come first. We can

read the AQRE as: “Every possible subtrace from program start to termina-

tion (uninclusive) must start with a create operation”. We don’t care what

follows the create, as long as it comes first, so we allow any subsequent

sequence of operations.

The second AQRE term prohibits front queries and removals from a (possi-

bly) empty stack. We can read it as: “Every possible subtrace from program

start ending at either a front or remove operation (uninclusive) must end

with either an insert operation or an is_empty check that returns false. Since

again we don’t care what comes before that insert or nonemptiness check,

effectively we have stated that the last queue operation before a front or

remove event must be an insertion or nonemptiness check in every execution.
The third AQRE term requires that each removal be preceded on at least

one execution path by a front query. We allow any number of nonemptiness

checks after the front query as these do not change the state of the queue.

3. INTERPROCEDURAL SEQUENCING ANALYSIS

3.1 Background

Before launching into the details of our interprocedural sequencing analysis

method, we will first briefly review some data flow analysis basics and

introduce our notation.

A data flow analysis framework is a formal characterization of a class of

data flow problems on a flowgraph that permits us to interpret the execution

of the program in some abstract domain. Formally, let A = (v, C , m ) be a

meet semilattice. The set of values in the lattice is v, partially ordered by
E with a binary commutative, associative, and idempotent operation, m .

~l~o let F be an operation space composed of a set of unary operations on v.
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Then D = (A, F) is a data flow analysis framework if F satisfies certain

conditions (discussed later) with respect to A. To satisfy these cond~itions,

lattice A must contain a least, or bottom element, .1 . It may also contain a

greatest, or top element, T. Without loss of ;generality, we assume all lattices

have a top element. We can always add an “artificial” top value to any set, if

necessary.

Intuitively, v forms the set of possible answers that we want to compute at

each vertex in a flowgraph. We assume that program statements are associ-

ated with edges in the flowgraph. The vertices then represent control points

between program statements. The value at any vertex is a function of the

values at the predecessor vertices as transformed by the effects of the

statements on the incoming edges. The operation space F describes the

possible effects of statements in the abstract interpretation for the problem at

hand, while the meet operation, n , describes how values from multiple

incoming edges should be combined.

As an example, suppose we want to compute the smallest possible execu-

tion time for a given program. v is the set of nonnegative real numbers 9?+

plus a special “infinite” value, co, to represent nontermination. The partial

order is the usual “less than” operation, augmented so w is greater than all

other values. Since we want the smallest execution time, if two execution

paths converge at a particular vertex, we take the minimum of the times for

all converging paths. Thus, in this example, A = ( ~+ U { co}, ~ , rein). The

lattice bottom is O and the top is m. Each statement, regardless of its other

computational effects, increases execution time by some amount, so F is the

set of functions that adds a particular nonnegative real number to another

value, that is,

F={~r:~e%+U{m}A~,(X)=X+~}.

We assume that for all values r e 9+U { co},, r + m = m.

An instance, I, of framework D is a specific flowgraph with eac~h edge

mapped to its proper effect. Formally, let G be a single-exit flowgraphl

(V, s, t, E) where V is the set of vertices, s is the entry vertex, t is the exit

vertex, and E is the set of directed edges. Each edge starts at a source

vertex, and ends at a target vertex. Also let H: E + F map each edge to its

effect from the operation space. An instance 1 is the pair (G, H) which

effectively defines a set of simultaneous equations for the lattice values to be

computed for each vertex given by

Value(s) = 1

Value(u) = ~~(v) H(e)(Value(source( e))), u # s

1This is not a serious restriction as we can always aid an extra vertex to create a single exit
when necessary.
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where E,(U) is the set of incoming edges to u in the flowgraph. A solution to

these equations is a solution to the original data flow problem for that

instance. There may be many solutions to this set of equations, but in

general, we want to compute a solution that is at least a maximal fixed point

(MFP).

There are a number of algorithms that compute the MFP solution. A

simple one is to set Value(s) to 1 and Value(u) to T for all other vertices u,

and iterate through the equations in some order recomputing Value until no

changes occur through a complete iteration. Improvements in efficiency arise

if we select the order wisely.

The best solution to the equations is the meet ouer all paths (MOP)

solution. We can extend the mapping H from edges to paths by composing

the individual edge effect functions in path order. Thus, we can describe the

effect of an entire execution path by a single function. The MOP solution at a

vertex is the combination of the effects of all paths entering that vertex, or

more formally,

L’(L))= p, H(p)(l)

“

where H” is the set of paths from s to u in G, and H is extended as described

above. If F is closed under composition, contains the identity function,

contains some function to transform the bottom element of the semilattice

into each other semilattice value, and each function in F’ distributes over the

meet operation, the framework is distributive and the MOP solution equals

the MFP solution. Any MFP algorithm can be used to solve for it.

Our original sequencing analysis framework used a deterministic finite

state acceptor (DFSA) as the basis for the lattice and operation space defini-

tions. Each Cecil expression contains a regular expression, which can be

converted to a DFSA accepting the same language. Let a DFSA be defined as

the tuple (Z, S, A, L, 6) where Z is the alphabet of the Cecil AQRE plus a null

event ~, S is the set of states, A is the subset of accepting states, ~ is the

initial state, and 6: Z + S + S is the state transition function.

If Y(S) is the power set of 13FSA states, then the lattice A is ( .9(S), = , U ).

The operation space F is the set of total unary functions ove~ S extended to

Y’($) in the conventional way and augmented by function f): P(S) + Y(S)

that returns the empty set regardless of its argument. An instance flowgraph
is generated from the source for a given routine so that the edges are labeled

by the events from Z that correspond to the source statement for that edgez.

So in an instance flowgraph, we associate events with edges by a labeling

function, L: E ~ 2. If L(e) = e for some edge e, then H(e) is the identity

function Is. If L(e) is some other event u, then H(e) = 6(a).

We showed [221 that this framework satisfies the appropriate conditions

and so can be used to statically determine satisfaction of a Cecil constraint by

computing the MOP solution to an instance and subsequently comparing that

2 We discuss how this is done in Cesar in SectIon 4
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MOP value to A at the source vertex of each edge u labeled by an end anchor

event. If the AQRE quantifier is forall then the constraint is violated at u if

Jt (u) is not contained in A. When the quantifier is exists, the constraint is

violated at u if J(u) is disjoint from A.

Olender and Osterweil’s method [22] assumes the program can be repre-

sented by a single flowgraph and that the statements in the program either

represent events appearing in the Cecil constraint or are ignored. Unfortu-

nately, virtually all real, nontrivial programs contain calls to procedures and

functions, which may contain statements that directly represent Cecil events

or may call still other routines, and which may use various methods to pass

information through the procedure call. An evaluation of such a program

against a Cecil constraint must take these situations into account.

In the remainder of this section, we introduce the enhancements necessary

to deal with these complications in stages, first allowing procedures while

retaining a single implicit global object, ancl then adding multiple objetcts and

allowing for parameter passing mechanisms.

3.2 The Interprocedural Analysis Framework

In an interprocedural setting, we have two sorts of events that may label

edges in our flowgraph. Primitiue events alre those listed in a Cecil expres-

sion’s alphabet or anchor set. They represent the basic events of interest.

Procedures and functions may represent arbitrarily complex combinations of

events, however, and a call to a routine invokes the combined effect of all

these events. We name these call events.

3.2.1 Summary Analysis. We could evaluate a program with call events

against a Cecil constraint by substituting a copy of the routine’s flowgraph

for an edge labeled by a call to that routine. The Omega data flow analysis

system for C used this approach for example [31].

This is often not a practical choice. Calls may be nested or even recursive,

potentially resulting in a combinatorial explosion in the size of the flowgraph

to be analyzed, and consequently in the time required to do the analysis. It is

preferable to perform only a single analysis of a routine and use the result in

the analyses of routines that call it.

Just as we can define the effect of a single control flow path by a fhnction

from F, we can define the effect of a set of paths (including an entire routine)

as a function from F. We define a summary function 9’ : V + (,@(S) + Y(S))

to describe the combined effect of all paths frolm flowgraph entry to each

vertex u in the flowgraph. The application of that effect to the semilattice

value at the entry vertex gives the value clf .(/ at u. For framework D, the

summary function is given by

Y(i)) == (J H(p)
pa “

since the union of two functions over a set is defined to return the union of

the images of the functions. Under these circumstances, we can use the value

of S at the exit vertex of a routine as the effect of the routine as a whole.
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Such unions of functions are not in the original sequencing framework

operation space, so we create a new operation space by closing F under union

of functions, thereby also creating a new data flow analysis framework. This

new framework still satisfies the conditions for distributivity, so we have not

lost the ability to compute the MOP solution. From this point onward, D and

F will refer to the new framework and operation space.

A function from sets to sets can also be considered a relation over pairs of

the elements. It will be more convenient if we think of S(U) as a relation over

S x S that defines the possible state transitions that might be taken by the

DFSA along the paths of the flowgraph terminating at u. By the same token,

the functions in F’ are also relations.

To compute Y’ we use an adaptation of the functional interprocedural data

flow analysis procedure of Sharir and Pnueli [24], a scheme similar to that

independently developed by Fairfield and Hennell [11] for traditional data

flow analysis of recursive procedures. Let R be a set of routines forming a

program, { RJ :1< j < n}. Features of a particular routine are denoted by

subscripting. The entry vertex for the flowgraph of routine R ~ is s~, while

..(LI is the MOP solution for routine RJ. Flowgraph edges labeled by primi-

tive or null events have the same H values in an instance as before.

Flowgraph edges labeled by call events however are assigned a relation from

F that describes the possible state transitions from the entry of the routine to

its exit. Thus when ~(e) = call~ for e in E~, H~(e) = YJ(tJ).

The system of equations to be simultaneously solved is the union of the

equations for all routines R, in the program. Sharir and Pnueli give an

iterative algorithm to compute each Y; when the semilattice is finite and

the operation space forms a bounded semilattice itself. Framework D fits

these conditions exactly. The set of relations over a finite set is a finite (and

therefore bounded) semilattice.

There are some dependencies among the equations of this system that can

be exploited to reduce the size of the system to be solved at any one time. Any

program consisting of multiple routines has a calling structure that can be

described by a labeled flowgraph known as the call graph. The labeling

function is a bijection from vertices to routines. Routine R] precedes R ~ in

the call graph if RI calls R ~. Routines at the leaves of the call graph call no

other routines. The system of equations for each leaf routine can be solved

without reference to the equations for any other routine as if it were an

intraprocedural problem. Given the summary data for the leaves, routines

that call only leaf routines can be solved, and so on. The reverse of a

topological sort of the call graph vertices defines an ordering sufficient to

assure the solution of the equation systems for each routine when the call

graph is acyclic. This is sometimes called a leaves-up order, or a postorder.
If the call graph contains cycles,3 the acyclic condensation formed by the

strongly connected components (SCC) of the call graph can be used to order

3 There may be a group of mutually recursive routines, for example,
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the solutions. Y for the routines in each SCC can be computed with an

iterative data flow analysis algorithm. 4

3.2.2 State Propagation. After the summary analysis phase, the values of

the possible DFSA states at each vertex in all routines are computed during a

state propagation phase. The value of .4’ in each routine depends cm the

states in effect at the call sites; these are called the initial states, Y, so that

For the routine at the entry of the ca 11 gralph (the main routine), Y

contains only the initial state of the DFSA. ~rhe value of Y for other routines

depends on the values of .i( at the call sites in the calling routines. l~et %J

be the set of all sources of edges labeled with event call, paired with the

index of the routine in which the event occurs. These are the vertices whose

values of .l will be passed to RJ by the call events.

%; = {(i, u,)l~e: source(e) = u, A~,(e) = call,}.

Both Y and ..@ can be computed for the routines in topsort order given %; for

each routine l?].

The set %J is likely to contain more than one element since routine RJ

may be called from several sites in the program. .,( must reflect the possible

states a DFSA might be in over all paths into a vertex. What does a vertex in

a routine called from several places represent? The answer will affe(ct the

definition of the paths into such a vertex and consequently our analysis.

One view is that a vertex in a routine shoudd represent a unique location to

which all calls lead. Thus, “all paths” includes all paths from all possible call

sites, while “at least one path” is defined as at least one path from at least

one call site. We let Jj be the union of the states obtained from all possible

calls of RJ.

~ = IJ .-l,(~,).
(k, uk)G’/j

A Cecil constraint is satisfied in this view if the lWOP solution at the end

anchor vertices has the desired relation to the accepting states of the DFSA.

An alternate interpretation is that a vertex in the flowgraph of a routine

represents many vertices, one for each call, as if a copy of the flowgraph of

the routine were substituted at each call edge to create a single flowgraph for

the program. The set of all paths into one of these “replicated” vertices is the

set of all paths that pass through one particular ca 11 site. Since each call site

may be embedded in a routine that is in turn called from multiple sites, we

must maintain a separate .YJ for each possible chain of calls leading into RJ

and compute a separate value of ..4] for each of these chains. This appears to

provide the same potential for combinatorial explosion caused by direct

substitution of flowgraphs for call events. l[t is not necessary, however, to

4 Since F forms a bounded semilattice itself, we can eas]ly form a dataflow framework with F as
the lattice component.
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Fig. 2. A program with multiple procedures.

PROCEDUREP IS

BEGIN

create;

insert(i);

IF Condition THEN

J := front;

Compute(j);

Q; -- 1
ELSE

Q; -- 2
ENDIF;

END P;

PROCEDUREQ 1S

BEGIN

remove;

END Q;

distinguish among call chains that provide thesame valueof Y to aroutine.

we can maintain a set of Y values and compute the resulting set of .([

values. Y, is defined as in the above equation, but the values become power

sets of states. The values of ./i/J must also become power sets of states. The

maximum size of these power sets depends only on the number of states in

the DFSA and not on the number of calls to a given routine. A Cecil

constraint would be violated at some end anchor vertex u in V] if some

element of .fl~( u) failed to have the proper relation to the set of accepting

states in the DFSA.

These two views are equivalent when the Cecil constraint is universally

quantified, but not when it is existentially quantified. Under the first inter-

pretation, an existentially quantified Cecil constraint is satisfied if at least

one call chain causes an accepting state in ../,(u). The second requires that

every call chain have that effect.

The second view appears to be more in line with our usual expectations.

Procedure P in Figure 2 satisfies our Cecil constraint for queues under the

first interpretation. A front query precedes the call to Q at statement 1 and

therefore precedes the close event it encapsulates. It is more probable,

though, that an analyst would prefer to consider the call at statement 2 a

violation of our constraint. It is still impossible for a write event to precede

the close event at this point, and therefore possible either that the call to Q is

superfluous or that code to query front was unintentionally omitted in the

else clause of P’s if statement.

Thus we must extend our data flow analysis framework again. Our new

framework has lattice values ?Z( # ( S)), and the functions in F must be

extended in the natural way to this new lattice. Since we have simply

extended the framework to sets of the original values, the conditions for a

distributive data flow analysis framework remain satisfied.
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begin

- Summary analysis

for each SCCj, in reverse topsort order loop

Compute {S~lR~ESCC3};

end loop;

- State Propagation

for each SCCj} in topsort order loop

Compute {C~l R~6SCCj};

COIUPUte {~klRk~SCCj};

Compute {Mklh?k EscCj};

end loop;

– Violation Detection

for each routine Rk in the call graph in any order loop

for each w such that ze:v=source(e) ALk(e)C a loop

if 3mE&fk(v):m$A then

Report a violation at v;

end if;

end loop;

end loop;

end:

Fig. 3. An interprocedural analysis algorithm

When the call graph contains cycles, the computation of Y can be done

simultaneously for all routines in a SCC of the call graph using an iterative

method, since some of these routines call others within the SCC. New state

sets addedto Y in one routine may cause new values of Y tobe propagated

to the routines it calls. This algorithm must terminate since it would never

remove state sets from Y. In effect, this is a data flow subproblem, and an

appropriate data flow algorithm will compute the result.

Our interprocedural dataflow analysis method is briefly sumrnarizedasthe

program of Figure 3. In that algorithm, SCC~ is the jth strongly connected

component of the call graph. Yh? .Yh, %k and . [[k are respectively the

summary relation, initial state set, call location set, and MOP solution for a

routine Rk in SCC~. A is the set of accepting states for the DFSA generated

from the AQRE, a is the set of end anchor events from that AQRE, and < is

either set containment or nondisjointness depending on the AQRE quantifier.

3.2.3 An Example. We will evaluate the program of Figure 2 against the

third AQRE in the Cecil constraint of Figure 1 to illustrate our interprocedu-

ral algorithm.

{Insert, remove, create, front, empty, notempty}
[s] exists (?*; front; notempty*) [remove]

The DFSA for the regular expression is in Figure 4, while Figure 5 gives the

flowgraph for this program with edges labeled by the appropriate events, and
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Fig, 4. DFSA for (?”; front, notempty”)

create,

insert,

remove,

empty

front

create,

insert,

remove,

notempty,

empty

notempty,

front

Procedure P Procedure Q

!!a { (1,1), (2,2)} i { (1,1), (2,2)}

create remove

b { (1,1), (2,1)} j { (1,1), (2,1)}

insert

front

Q

Fig 5, Example program summary data,

vertices labeled by the state transition relations computed for Y. Any edge

not marked in the figure is assumed to be labeled with the null event.

In Figure 5 we see that the entry vertices to each routine are labeled with

the identity relation. The routine can have no effect before it begins. Each

value at a succeeding vertex is the union of the values at their respective

ACM Transactions on Software Engineering and Methodology, Vol 1, No 1, January 1992



Interprocedural Static Analysis of Sequencing Constraints ● 33

Procedure P

6a {{l}}

&
create

b {{l}}

I insert

Procedure Q

!

i {{1}{ 2]]

remove

j {{l}}

{{l}}

Q

Fig. 6. Example state propagation data

predecessors composed with the relation for the possible state transitions of

the primitive or call event labeling the edge. Vertex b has only one predeces-

sor, a. From the DFSA diagram in Figure 4, the possible state transitions

that can be taken for the incoming create event, d(create), are {(1, 1), I(2, 1)}.

Thus, .Y’P(a)” ti(create) gives us the value of 7P( b’) in Figure 5.

The computation of YP( h) is slightly more complicated. Vertex h has two

predecessors. By coincidence, both incoming edges are labeled with call

events for procedure Q. We use the summary relation value previously

computed for the exit vertex of Q, .Y&~), as the effect of this call, so

~P(h) = (7P(d)” .yQ(~)) U (Y}(g) 0 Y’~(j)), algain leading to the value shown
in Figure 5.

Figure 6 gives the values of the state sets computed during state propaga-

tion. Since P is the root of the call graph for this example and the DFSA

initial state is 1, YP = {{1}}. We apply that value as argument to tYG)(U) for

each vertex u in Q to obtain the sets of possible states the DFSA might be in

when scanning the sequence of events along any path into that vertex. For

procedure Q, we note that YQ = {(P, g), (P, d)}. Thus .Y~ = { [P(g), .,iP(d)}

and ti~~(j) = ~Q(j)( ‘Q)
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We detect violations of the sequencing constraint by examining the ele -

ments of . [[ at the sources of edges labeled by end anchor events, remove in

the example. Vertex i in procedure Q is the sole end anchor vertex, so we

examine the elements of ~fl~( i) = { { 1},{2}}. Since the AQRE quantifier is

exists, we check each of these elements for disjointness with A = {2} and

note that a violation does occur. We trace the source of this violation back to

its location in P by noting that it is the call on edge dh that passes {1} to Q.

3.3 Selection of an MFP algorithm

From an intraprocedural standpoint, the selection of a specific MFP algo-

rithm is relevant only for efficiency; all produce the same result. We selected

the fast path algorithm of Tarjan [26] for implementation in Cesar.

Tarjan’s algorithm is efficient, with an almost linear time complexity in

the number of vertices in the flowgraph when the flowgraph is reducible.

This algorithm offers other technical advantages as well. Some forms of Cecil

expressions are more efficiently analyzed by propagating sequencing infor-

mation in reverse, i.e., from the exit to the entry of the flowgraph. Tarjan’s

algorithm makes this easier and also requires only that the flowgraph or its

reverse be reducible. Programs with single entry, multiple exit loops are

reducible themselves, but have reverses that are not reducible. Some other

methods would not permit the analysis of these irreducible reverses. We may

also implement this algorithm generically as an algebra over A with union,

concatenation, and closure operators, making our analysis code more reusable.

3.4 Objects

The analysis of real programs raises important issues other than multiple

procedures. Sequencing constraints are defined in terms of events, which are

actions performed on objects. A real program contains specific data objects on

which specific operations are performed. A sequencing constraint must be

satisfied for each of these objects independently. Thus, a program containing

several queues must satisfy our Cecil constraint for each individual queue.
The events whose sequencing we analyze define a view of the behavior of

the program. To select an analysis view, we must define not only the

operations of interest, but also the objects on which they act. The data flow

anomaly detection performed by Fosdick and Osterweil’s DAVE system [13]

considered every variable, regardless of type, to be an object. Freudenberger’s

SETL data flow anomaly system defined an object (in the context of finding

potentially nonterminating loops) as a variable referenced in the loop control

predicate [14]. The constraint of sequences of operations on an AllT like a file

or a stack requires that an object be defined as the data structure that

implements an instance of the AllT.

It is conceptually straightforward to analyze pro~ams under such circum-

stances by creating a different copy of the flowgraph of a subprogram for each

distinct object, where the flowgraph’s edges are labeled only by events that

act on that object. ‘This is essentially the program slicing notion introduced

by Weiser [29]. We can analyze each slice of a program that affects an

individual object independently.
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This approach is not necessarily inefficient. In a typical program any

single object will be affected only by some small subset of program state-

ments. We can eliminate single-entry, single-exit subflowgraphs where all

the edges are labeled by the null event for some particular object. Thus, each

slice will have an associated flowgraph much smaller than the original

flowgraph. The cumulative size of all flowgraph slices, and consequently the

cost of analysis, will be a function only of the totall number of events and not

of the total number of objects.

Thus, we consider a routine to represent the slice of a particular subpro-

gram for a distinct object. Each routine’s effect is computed from the corre -

spending flowgraph slice. We can construct a new slice call graph from the

call relationships among the routine slices. The slice call graph is larger than

the original, but has important redeeming properties. A single subprogram

call typically does not affect every object in the calling subprogram, and so

will not generate a call event in every slice. Mutually recursive groups of

subprograms need be iteratively solved only for those slices that have recur-

sive dependencies. Slices for local objects not affected by a recursive call are

leaves in the new call graph, even if the original subprogram was recursive.

Thus the slice call graph has a larger proportion of leaves and smaller

strongly connected components, thereby decreasing the dependencies among

the equation systems.

Early data flow analysis tools did not exploit these properties because the

use of bit vector operations made the analysis independent of the number of

progam objects. The data flow analysis framework required for Cesar’s more

general sequencing evaluation cannot use bit vectors to represent the data

flow summaries computed for all objects, but this slicing scheme makes the

cost of our more general sequencing analysis independent of the number of

program objects as well.

3.5 Objects in an Interprocedural Setting

The method in which an object is passed between two subprograms affects

how we treat the call event during sequencing analysis. We classify c)bjects

either as global (passed implicitly via scoping rules) or parameter objects

(passed explicitly in the call statement). Parameter objects are affected by

the programming language’s parameter passing mechanism. While various

languages may have different parameter passing mechanisms, in the absence

of aliasing, we can classify them as either in, out, or in-out. In the following,

let P be a subprogram that calls Q such that objeet co in F’ is potentially

affected by the call. We will denote the routine corresponding to the slice of P

for a as Pa. We also assume that no aliasing takes place.

If co is global to Q, then the summary relation for Q. at Q’s exit vertex

describes the effect of Q on co in any calling routine, so ,7’Q(t~o) is the effect

of any edge labeled by a call to Q@ used during computation of .YP . During
state propagation, 9Q

d
is obtained from all calls of Q. in all routines.

If a is passed inste~d through an in-out parameter ~ of Q, the computation

is identical, except that we consider P@ to call (& and so during summary

analysis we use YQ ( tQ ) as the effect of Q on co in Pa.fifi
ACM Transactions on Software Engineering and Methodology, Vol. 1, No 1, January 1992.



36 . K, M. Olender and L J. Gterwell

If p is an in parameter, u cannot be affected in P by the call, The

sequencing effect in P. is the identity relation. During summary analysis we

can ignore a call to a subprogram with LOmatched to an in parameter. In Q,

p receives the state of a, however, so during state propagation it is treated

the same as an in-out parameter object.

The last situation is when p is an out parameter. Object o is affected in PO

by the call to QP, but Q& does not receive initial states from any of its callers;

it always begins wit~, the initial state of the DFSA just as the main routine

does. Because of this, the sequencing effect of an out parameter overrides

any accumulated effect on paths leading up to the call site. It cannot simply

be composed into Y during summary analysis. Out parameters therefore

require more than a cosmetic alteration to the treatment of call events. They

require a new definition of summary to incorporate this overriding effect—

effectively the definition of a new algebra for interpretation by Tarjan’s

algorithm.

Suppose the values in this new algebra are pairs of relations (~, O) with

operations of composition, union, and closure defined in terms of relational

composition, union, and closure as follows

(N,,01)”(N2 ,02) = (( N1” N2), (01” N2) u 02)

(N,, OJ u (N2,02) = ((iv, UN,), (O1 u 02))

(N,, O,)* = (N,*, (O,” N,*))

The N relation represents a normal effect that is composed into the sequenc-

ing effect of a path as described previously. The O relation represents

overriding effect that replaces any sequencing effect from prefixes of the path

with itself.

Let (N, O) be the computed sequencing effect of Q on formal parameter ~

at the exit vertex for slice QW and let X = N U O. Then we take the effect of

Qp in a caller PO as

I
( X,f)), if w is in-out

‘QjtQ&) = (lS, ~), ifpis in

(d, X), if pis out.

From the definition of composition for these relation pairs, we can see that

the O component erases any N component and asserts itself. This pair

algebra, fortunately, is required only during summary analysis. During state

propagation and when we pass a summary relation upward in the call graph

to a caller during summary analysis, we use N U O as the sequencing

summary relation. At any given vertex, it is possible that only some incom-

ing execution paths contain out parameter call events, so the cumulative

effect must be the union of the two components. State propagation for slices

corresponding to out formal parameters must take Y from the DFSA initial

state rather than from the MOP values from the call sites.
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We can see that the slice call graph used for ~state propagation could be

different than the one used for summary analysis, when we take parameter

modes into account. Slices for out parameters could become roots in a forest

of call relationships in the state propagation graph. Slices for in parameters

could be eliminated from the summary analysis call graph. This separation

would help avoid some recomputation of sequencing effects when a program

is changed, as we shall see later.

3.6 Pragmatic Considerations and Limitations

Given these enhancements to the interprocedural evaluation methc~d dis-

cussed in Section 3. !2, programs containing procedure calls and multiple

instances of objects can be evaluated against a sequencing constraint ex-

pressed in Cecil. There are some pragmatic considerations, however, that

place restrictions on this analysis.

A major consideration is the representation of the state transition relations

that form Y, This representation must be compact and yet allow an efficient

implementation of union, composition, and closurle. One possible representa-

tion is a Boolean adjacency matrix. If the DFSA has n states, Y requires n2

bits per object per vertex. Union of two Boolean matrices take unit time if bit

vector operations are used and the elements of the matrix are stored ccmtigu -

ously. Composition and closure take 0 ( nz /log( n)) time using bit vector

operations and the “Four Russians” Boolean matrix multiplication algorithm

[21. In addition, the number of state sets that must be maintained in Y and

../f to handle multiple call sites in exponential in n. This places a practical

limit on the size of the DFSA and therefore on the regular expressions in the

Cecil constraint. The current implementation of Cesar, for example, limits n

to 8, requiring 64 bits per flowgraph vertex for the representation of Y> and

256 bits per vertex for ..@and R.

We must also realize that parameter modes cannot be recognized solely by

examination of the mode specifier in the procedure or function definition. The

data type of the parameter must also be considered. Pointer types passed as

in parameters are effectively in-out parameters for the data pointed to.

Aliasing is a third major consideration, one that is a common concern of all

static analysis and evaluation methods. A parameter object may represent

the same object as another global or parameter object for one particular call,

but not for others. The analysis method defined here summarizes the se-

quencing effects of a routine in a way that yielck inaccurate results in the

presence of aliasing. The summary analysis algorithm assumes that the

objects are distinct. The summary relations reflect the relative sequencing of

events acting only one one object. If two objects are sometimes aliases for one

another, we must create a new slice for each aliasing pattern to compute the

proper summary relation. This may be expensive, but we have no data as it

was not implemented in Cesar. A related problem concerns arrays and
pointer variables. In general, an array must be considered a single object

since one cannot always statically determine which element a given array

reference may denote [13]. Pointer variables may also represent sets of
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objects, although data flow analysis methods can be used to determine those

sets [311.

4. CESAR: A STATIC SEQUENCING EVALUATION SYSTEM

Cesar is an experimental implementation of the static interprocedural se-

quencing analysis algorithm described in Section 3. Given a program, a Cecil

constraint, and some additional information, it can determine if (and where)

a violation of that Cecil constraint occurs.

Cesar now supports sequencing evaluation of FORTRAN programs. Addi-

tional tools to support analysis and evaluation of C and Ada programs are

under construction. The system consists of 45 tool fragments comprising over

30,000 lines of Ada and 5,000 lines of FORTRAN, coordinated by the Odin

system [81, which is used both as an object manager and user interface. Of

those tool fragments, 14 implement the language independent analysis and

evaluation system comprising the heart of Cesar. The remainder are either

tools to support a particular programming language or to view the data

structures produced.

4.1 The Architecture of Cesar

Figure 7 shows the organization of the tool fragments comprising Cesar. The

tools grouped in the PL front end subsystem produce parse trees, attribute

tables or other information from program source code that might be used for

a variety of tools in an environment, such as pretty printers, compilers or

debuggers. The FORTRAN front end tools were obtained from the Toolpack

project [231 and are written in FORTRAN. Sequencing evaluation of FORTRAN

programs was supported first because of the ready availability of these tool

fragments and interfaces to the data structures they produce.

From that front end information, the graphing subsystem produces the

labeled flowgraph upon which our interprocedural sequencing analysis is

based. Since the front end tools and their results may vary for different

programming languages, each language will require its own set of graphing

subsystem tools. The Cecil subsystem produces a syntax tree and semantic

information necessary to drive our interprocedural algorithm, such as the

deterministic finite state acceptors for the regular expressions in the AQRE

terms.

Since a Cecil constraint is language independent, the analyst must specify

which programming language constructs cm-respond to the events in a Cecil
constraint. An event is specified as a pattern to be matched in a syntax tree

of the program to be analyzed. The Tepee tree pattern specification language

associates these patterns with the event identifiers used in a Cecil expres-

sion. The Tepee subsystem produces the internal form for these pattern

associations required by the graphing and analysis subsystems.

Cesar must also be capable of dealing with programs for which not all

source code is available. Real programs often use predefined subprograms

from object libraries, which fall into this category. Programs still under

development may have some subprograms stubbed and so full source is again
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Fig. 7. Top-level Cesar architecture.

unavailable. The Excess language allows the assertion of a sequencing ef-

fect for these “external” procedures. The Excess subsystem produces the

necessary labeled flowgraph information for inclusion in the analysis of

a program.

The analysis subsystem performs the sec(uencing analysis as described in

Section 3. It is based on the labeled flowgraph information produced by the

graphing tools and is independent of the programming language used to

write the programs to be analyzed.

4.2 Tool Integration and Object Management Through Odin

Cesar’s fine scale architecture is heavily influenced by the Odin system and

the desire to limit the amount of recomputation required when a change is

made to the source code of a program. While a static analysis system tends to

be less expensive to execute than a mechanical formal verification system or

full suite of dynamic tests, it is still not cheap. It is advantageous to reuse as

much still-valid information as possible during reanalysis when source code

changes are made.

Odin is a tool integration system that facilitates the elimination of unnec-

essary recomputation of derived information. Odin supports the straightfor-
ward and effective introduction of new tools into that environment (even

though those tools may not have been specifically designed for use within an

environment) through the management of the data objects created and used
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by those tools. A command to Odin is a request for a data object. Knowledge

of how an object is derived from some set of base source objects is encoded in

a derivation graph specified as an extended production system. When a

request for an object is received, Odin checks an object repository (its cache)

for the presence of the object. If the object is present and has not been made

obsolete by the alteration of the objects on which it is based, the object is

fetched to satisfy the request. If the object does not exist or is obsolete, Odin

requests the data needed to build it. If one or more of the required input

objects are nonexistent or obsolete, Odin recursively requests the objects

necessary to build them. Once all data required to build a product object are

available, Odin invokes the proper tool, traversing up the tree of requests

building new objects and maintaining them in its cache until the initially

requested product is built.

Like make [12], Odin will only rederive objects that have been made

obsolete by alteration of their respective base source objects. Unlike make, it

will recognize when one of these rederived objects is identical to its previous

incarnation and halt the rederivation at that point. It also creates key object

dependencies automatically from information in the derivation graph and

possibly in the source objects themselves. The Odin system thus provides a

simple user model for an arbitrary suite of software tools (specifiable by the

user) with object management that limits rederivation in the face of change.

5. EXPERIENCE WITH CESAR

5.1 Effectiveness of Cesar

As we shall see later, our prototype implementation of Cesar is not yet

adequate to provide the wide base of analysis results necessary to reach a

definitive conclusion about its effectiveness as a sequencing evaluation sys-

tem in a real software development setting. Some indications can be obtained

from an analysis of the errors that were detected during the testing of the

components of the Cesar system itself. Since the necessary Ada graphing

tools are not yet available, we cannot apply Cesar to itself. We can, however,

examine the errors found during development of Cesar to determine if they

could be characterized by statically detectable sequencing constraints.

We kept a comprehensive log of the faults discovered during development

of the Cesar component tools recording their location, effect and cause. These

faults were classified as

(A) Statically detectable as classical data flow anomahes
(B) Stahcally detectable, program independent sequencing anomalies
(C) Stahcally detectable, but program specific anomalies
(D) Not sequencing errors, or not statically detectable errors.

Faults were considered statically detectable sequencing faults if they were

caused by incorrect or anomalous sequences of program operations which are

themselves statically recognizable. Thus both the event and the sequence

must be statically apparent. If the definition of an event includes information

that can be known only at run-time (e. g., an argument to a procedure call
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Error Class I Number ~1

=Tm=l Fig. 8. Faults found during Cesar development.

_L1--&-l-a
must have some predefined value and the actua 1 argument is a variable),

then the event was not considered statically recognizable.

The class A faults were traditional data flow anomalies such as undefined

references and dead definitions which have been statically detected by other

tools as well as by Cesar. Class B faults were statically detectable sequencing

faults where the sequencing constraint is independent of the program or

algorithm implemented, essentially sequencing constraints on operations

that implement an ADT. Counted in this groul?, for example, were null

pointer references that could have been detected statically by constraining

every pointer deference to be preceded either by an allocation (Ptr := new

Block) or predicate test for inequality to the null pointer (if Ptr /•= null

then. . .).
Class C reflects sequencing constraints that are dependent on the particu-

lar algorithm being implemented. The sequencing of operations necessary to

correctly perform a master file update from a transaction file is one example.

This could certainly be encoded as a regular expression, and the operations

on the master and transaction files are statically recognizable.

The class D faults were those that were either not sequencing faults (e.g.,

an incorrect constant or arithmetic operator in an expression) or where the

events were not statically recognizable as defined above.

Faults from classes A, B, and C are statically detectable. Our current

implementation, however, is oriented towarcl constraints that apply across all

programs that use some set of operations. A][gorithlm-specific constraints tend

to have larger defining DFSA’S, and as mentioned above, the size of the

DFSA is critical to the performance of Cesar. Thus, while our algorithms

could detect class C faults, given an appropriate constraint and definitions of

the events, we take the conservative view and consider Class C faults

impractical for Cesar and do not count them as Cesar-detectable.

Figure 8 summarizes the results of this a.nalysis on the 223 faults cliscov -

ered during testing. Faults discovered as a result olf the type checks andl other

analyses performed by the Ada compiler are not counted among these. All

compiler detected faults are statically detectable by nature, but since they

were detected by a tool other than Cesar, we count them neither i%r nor

against Cesar.

The number of class A faults found roughly corresponds to that found by

previous data flow anomaly systems [131. The number is perhaps somewhat
less than usual, but we attribute that to Ada’s strong typing. A typical source

of data flow anomalies is a misspelled variable name. An Ada compiler would

detect many of these as undeclared variables or type clashes, and we clid not
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record compiler-detected faults. Our analysis of the faults discovered that a

further 27,8% of them were characterized by program-independent sequenc-

ing constraints where the events are statically recognizable. Thus, a Cesar

for Ada could have detected 39.9% of the faults discovered during testing of

the Cesar system given the proper Cecil specifications for the abstract data

types or data flow anomalies involved.

While this fault analysis is far from conclusive proof that Cesar can add a

significant capability to software evaluation, it does encourage us to continue

experimentation. Forty percent is a significant proportion of faults.

5.2 Performance of Cesar

Figure 9 gives representative timings on a Sun 3/260 workstation running

SunOS 4.1 for an analysis of a selection of FORTRAN programs. The executa-

ble of the Cesar tools were produced by the Alsys version 5.2 Ada compiler.

The “dave” and “matrix” examples are analyses of a Cecil description of

traditional data flow anomalies as described by Fosdick and Osterweil [131.

The “load-ur” example is similar, except that the analysis is only of unde-

fined references. The “file”, “load-ion, and “stack” examples demonstrate

Cesar’s abilities to detect violations of sequencing constraints on user-defined

abstract data types. The two “load” examples are analysis of different

sequencing constraints within the same program, one of data flow anomalies

and the other of operations on files. They differ in number of routines

because six of the routines implement primitive events in the “load-ion view,

and Cesar need not examine their internal structure.

In Figure 9, the first block of lines gives information about each test case.

The middle block lists the important resources, CPU time and disk space,

consumed by the analysis. The last block breaks the time measurement into

the proportion used directly by Cesar tools to perform the analysis, that used

by Odin for object management (Odin direct), and the time used by Cesar

tools required to generate the dynamic data dependencies needed by Odin to

control the data derivations (Odin indirect) as described in Section 5.3. Since

we use the term “object” in two senses in this paper, we will distinguish

between them by referring to an external data object generated by a Cesar

tool and managed by Odin as an Odin object, while an internal program data

object on which an event acts will be called a Cescw ob~’ect, unless it is clear

by context which sense is intended.

Figure 10 gives some typical performance results for reanalysis necessi-

tated by small source changes once a full-run analysis has been completed.

All examples are reanalyses of the “load-io” test. The “dual” test changes

one of the Cecil AQRE terms to its dual, effectively switching only the

quantifier in the term. In this case summary analysis and state propagation

need not be redone; only comparison of the state sets to the DFSA accepting

states is necessary. Case “top-l” changes the main program’s summary

relation, but not its flowgraph, while “top-2” changes the flowgraph, but not

the summary relation. Cases “leaf-l” and “leaf-2” do respectively the same

for a frequently called leaf routine in the call graph. In these cases, the

front-end, graphing, and resolution subsystem tools must also be rerun, but

ACM Transactions on Software Engmeerlng and Methodology, Vol 1, No 1. January 1992



Interpf’ocedural Static Analysis of Sequencing Constraints . 43

stack dave

:

file matrix load-io load-ur-

Lines of Code 38 12 18 130 6557 6557-

No. of Routines 2 2 4 4 134 142

No. of Cesar Objects 1 4 :2 22 67 715

No. of Odin Objects 136 178 381 307 11691 7147

No. of AQRE’S 1 2 3 2 3 1

CPU time (see) 114 143 276 40.5 11100 19500-

Disk space (kB) 161 151 284 750 10612 29148

Cesar (%] 41.2 43.3 43.8 68.1 39.7 81.1-

Odin direct (%) 50.9 47.6 46.1 ;!6.9 51.7 15.9

Odin indirect (%) 7.9 9.1 10.1 5.7 8.6 3.0

Fig. 9. Sun-3/260 full-run performance data for Cesar.

Fig. 10. Sun-3/260 reanalysis performance data for Cesar

for only some routines. The table summarizes the time required to reamalyze

the source code, apportioned between Cesar and Odin, along with the relative

number of routines ir~ the call graph affected by the change. Since Ociin can

detect when an intermediate result is identical to its previous incarnation,

the number of routines for which different tools must be rerun will vary. We

report the relative percentage of routines for which the final report is

regenerated.

Object management time dominates unless the number of Cesar objects

becomes large. Overall, the number of tool invocations and Odin objects is

proportional to the nlUmber of routines in the program and the number of
AQRE terms in the Cecil expression. Each AQRE requires a separate invoca-

tion of the analysis phase described in Section 4, and a consequent multipli-

cation of the number of data objects generated during that phase.

The number of Cesar objects affects the running time of each analysis

phase that occurs. Oum prototype implements neither the flowgraph sljces nor

the different call graphs for summary analysis and state propagation as
described in Section 3.4. Rather, we implemented a single flowgraph for each

routine, labeled by events acting on all objects in the routine, with a single

call graph used for all analysis phases. This strategy increased the size of the

flowgraphs that must be analyzed, but decreased the number of Odin objects
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stack dave file mat rix load-io load-ur

Lines of Code 38 12 18 130 6557 6557

No. of Routines 2 2 4 4 134 142

No. of Odin Objects 62 34 50 50 1416 1458

CPU time (see) 27 28 28 40 767 823

Disk space (kB) 71 34 51 750 3320 3584

Cesar (%) 44.4 39.1 42.8 57.5 70.9 72.2

Odin direct (%) 55.6 57.2 57.2 42.5 29.1 27.8
Odin indirect (%) 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 11. Sun-3/260 performance data for FORTRAN front-end

that must be managed, in an attempt to balance the tradeoff between the

savings obtained in reanalysis and the reduced object management overhead

discussed later in Section 5.3. A proper implementation would treat each

flowgraph slice as an independent Odin object and would have dramatically

increased the number of Odin objects, and consequently, the object manage-

ment overhead. Depending on the density of Cesar objects and events in a

program, the number of Cesar objects and events acting on them can increase

to the point that the data flow algorithms dominate the running time. We see

this effect begin to occur in the “load-io” and “matrix” cases and dominate

the “load-ur” case of Figure 9. If we had implemented slices, both the CPU

time and data disk space consumed by Cesar would be smaller by a factor of

the average number of objects accessed per subprogram, but we believe that

the Odin object management overhead would have more than erased any

gains, at least in total execution speed.

The reanalysis figures are as expected. When a routine at the bottom of the

call graph has its summary sequencing effect changed, this alteration can

propagate widely up the call graph, potentially changing the effects of a large

number of other routines. The “leaf-2” case changed only the flowgraph. This

can only alter the location of call sites for routines lower in the call graph.

Since the routine is at the bottom, no effects are propagated. This effect also

accounts for the comparatively long reanalysis time for case “top-2”. The

altered flowgraph changed the flowgraph location of call sites for other

routines, and this propagates itse~f down one level in the call graph during

state propagation. All routines directly called by the main program, which
are numerous in this example, must redo state propagation analysis. Odin

then notes that few routines have new state propagation data and continues

recomputation only for those few.

Overall, these results show our prototype analysis tool to be slow and

storage-consuming. Not all this lack of performance can be attributed to

Cesar, however. For comparison purposes, Figure 11 lists the performance

data to run only the FORTRAN front end and graphing tools, which should be

roughly comparable to the speed of compilation under the same object man-

agement environment. The use of Odin has a large impact on the running

times, both because of the overhead of Odin’s object management and
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because of architectural and implementation constraints necessitated by the

use of Odin. We discuss the effect of Odin further in Section 5.3. In Section 7

we describe how performance of the Cesar tools themselves could be improved

by as much as an order of magnitude or more.

5.3 Object Management

Odin was selected as the object manager and user interface for Cesar because

it provides flexibility in environment definition and a partly incremental

approach to recomputation in the face of change. It provides these benefits,

but not without some drawbacks.

The current implementation of Odin is limited in three major ways. First,

Odin stores each data object as a separate operating system file and cannot

cache a recently or colmmonly used data in main lmemory between execution

of tool fragments. The high volume of disk operations slows the computation.

Second, to obtain the necessary flexibility to add arbitrary new tools, Odin

invokes tools with a Unix shell script, generated for each invocation by macro

substitution from a telmplate. The process of generating and invoking a Unix

command script, which in turn invokes a number of subprocesses, some of

which must individually initialize the Ada run-time system also slows the

computation. Third, to determine if an existing object is obsolete, Odin must

determine and update dependencies throughout its object store. Odin can be

swamped when a request involves the production or update of a large number

of objects all derived from a common source object. The savings Odin achieves

in avoiding recomputation of unchanged objects must be balanced against

these costs. An Odin environment designed to minimize recomputation n typi-

cally generates mamy small objects by many tool invocations, while an

environment that avoids object management overhead manipulates few large

objects with comparatively few tool invocations. Clemm’s experience with

Odin has shown that the optimum size of an Odin object is about five

kilobytes [71.

The problem is exacerbated by the need to dynamically determine depend-

encies among the data objects generated by Cesar tools. Analysis of any

given routine will often require analysis results from called or calling proce-

dures. These relationships cannot be encoded directly into the derivation

graph since they depend on the call graph. Additional tools are needed to

determine the data dependencies. These tools use call graph information to

generate requests that force Odin to derive data appropriately. Besides the

computation time needed to generate the data dependencies themselves,

these additional tools tend to produce a large number of small objects,

increasing object mamlagement overhead.

All these problems are reflected in the la:rge and complex derivation. graph

that captures the relationships among the tools comprising Cesar. The

derivation graph specification was a significant part of the development

effort. A 565-line specification that defines 66 Odin tools is needed to cwches-

trate the application of Cesar’s 45 tool fragments. Environments with static

dependencies among data objects have a much smaller expansion factor and

are simpler to integrate with Odin.
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6. COMPARISON OF CESAR TO OTHER WORK

As mentioned earlier, data flow anomaly detection tools can be considered

sequencing evaluation tools for a fixed sequencing constraint [5, 13, 14, 311.

These tools are based on data flow analysis frameworks where the informa-

tion propagated is the answer to a simple question, “Does a variable have an

anomaly at this vertex?” Only a single bit is required per variable per vertex

to answer this question. The mechanism for interprocedural static sequenc-

ing evaluation described in this work potentially requires much more space.

Traditional data flow anomalies can be described as event sequences of

length two. Thus, for example, a Cecil constraint that can be used to study

certain kinds of undefined reference phenomena is

{ref, clef, undef} [undef] forall clef,?* [t]

This constraint requires every undefinition event to be followed on all paths

by a definition. The DFSA for this regular expression is a simple two-state

automaton in which the initial state is also the sole accepting state. In this

case and when the quantifier is known (or predetermined as in DAVE), a

significant optimization can be made. It is no longer necessary to propagate

information on both states throughout the graph. For any universally quanti-

fied Cecil expression (where the evaluation comparison is set containment),

one need only note that it is possible to be in a nonaccepting state to

determine that a violation exists. The DFSA state transitions can be com-

puted with only that Boolean datum if there is only one possible accepting

state and one possible nonaccepting state. For the same reason, existentially

quantified constraints require knowledge only of whether it is possible to be

in an accepting state. Again, the simple DFSA permits us to simplify the

data propagated to a single Boolean per object. Earlier data flow analyzers

exploited this property. Since Cesar permits specification of longer event

sequences, which may have DFSA’S with multiple accepting and nonaccept-

ing states, this optimization is in general not possible.

In the special case when the sequence specified is of length two, we could

produce a more efficient algorithm based on propagating bit vectors rather

than summary relation data. This, however, requires knowledge of the AQRE

quantifier during summary analysis as we must know which state is impor-

tant, as described above. Cesar does not require that knowledge until after

both summary analysis and state propagation have been performed. The

advantage of this deferral is that the summary analysis and state propaga-
tion results need not be recomputed when analysis is performed for the dual

constraint, one where only the quantifier is different. As we can see above,

reanalysis for the dual constraint takes comparatively little time. This is

expected to be a useful feature, since evaluation of the dual constraint for a

Cecil AQRE term can often eliminate the necessity for further evaluation to

determine executability or nonexecutability of paths. Thus, the higher cost of

the initial analysis may often be counterbalanced by the lower cost of later

reanalysis.

As an example, consider the Cecil specification for queues given earlier in

Figure 1. Suppose a program violates the first ACIRE term, so that there is
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some flowgraph path on which a creation is not Lhe first queue event. The

flowgraph path or paths on which the violation occurs may be unexecutable.

The program in this case is correct, although our static analysis says not. If

we change the quantifier to exists and reanalyze, we can obtain more

information about the possibility that an erroneous sequence of operations

may occur during some execution of the program. l[f the program still violates

this altered constraint then every path through the flowgraph violates our

constraint, and the failure must occur on some execution. If the quantifier is

not needed until after summary analysis and state propagation, we :save a

considerable amount of reanalysis, and obtain the additional information at

low cost. Further experimentation will show whether higher efficiency dur-

ing the initial analysis or during reanalysis of altered specifications is more

important.

Howden’s functional analysis work [17, 18] is also comparable to Cesar. His

original general static analysis paper [161 was the source of our notion to base

sequencing analysis on propagation of DFSA states through a flowgral?h. He

proves that under certain conditions a language generated by a flowgraph

can be determined to be a subset of a language defined by a DFSA by

examining the set of all label pairs on adjacent edges. This set can be found

with a simple and normally efficient algorithm based on depth first search.

In such cases, the constraints are sets of sequences of length two. Our

experimentation with Cesar supports his claim that sequences of this type

will form the bulk of the constraints one will use. Howden’s method does not,

however, provide support for analyses of constraints that incorporate existen-

tial quantification over flowgraph paths as Cesar does. It is unknown whether

a concrete implementation of Howden’s method for functional analysis in

these situations, extended to an interprocedural framework, would ble more

efficient in practice than the data flow analysis algorithm used by Cesar or

whether the increased flexibility and generality of Cesar are worth whatever

extra cost might be incurred. Again, only further experimentation will tell.

As with bit vector data flow analysis algorithms, it may be possible to

incorporate Howden’s algorithm, should it prove more efficient, into Cesar’s

scheme, when the form of the constraints permits.

Werner and Howden have implemented some of these ideas in a sequenc-

ing analysis system for COBOL programs [30]. Their system permits user

definition of the events, but not the constraints. The sequencing constraint

used is a generalization of the traditional data flow analysis constraint to
sequences involving initialization, use and finalization operations. These

events are inserted into the code at appropriate locations as special com-

ments. This scheme allows anal ysis of this fixed constraint in a more

algorithm-specific manner than Cesar and also permits the analysis algo-

rithm (a variant of that used by DAVE) to account for some unexecutable

paths, something of which Cesar is currently incapable.
Howden has recently extended this approach with his comments analysis

[20]. This notion is based on a thorough and explicit annotation of a program

with a special comment language intended for later static analysis. Corn-

ments may assert t-hat particular events take place at a given program
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location, that certain events must have taken place beforehand, or may make

other statements about the control or data flow of the program. With this

approach, I-Iowden hopes to avoid the difficulties discussed in Section 3.6

involved with statically recognizing events (including dealing with aliasing,

arrays and pointers), in creating algorithm-specific constraints rather than

general constraints on abstract data types and in handling infeasible paths.

This approach has been implemented and applied to an assembly language

real-time control system [191.

Strom and Yemini [251 included a mechanism for enforcement of sequenc-

ing constraints directly into the compiler for their programming language,

NIL. Their mechanism is rather similar to that of Werner and Howden above

in that the constraints were based on the same initialize, use, finalize

paradigm and annotations in the program were used to signal state changes.

The NIL mechanism, however, was more sophisticated in that it allowed

several levels of initialization. A dynamically allocated record, for example,

could be unallocated, allocated with various combinations of fields undefined,

or be allocated with all fields defined. Finite state machines were constructed

by the compiler from the data structure definitions to take this substructure

into account. The DFSM states were partially ordered so that the meet

operation would select the greatest lower bound of the DFSM states at

flowgraph vertices where execution paths come together. The NIL compiler

then statically computed this “best possible guaranteed state” during compi-

lation based on the control flow and annotations. The mechanism did not

allow user defined or existentially quantified constraints. Procedures were

handled by annotations that asserted the sequencing effect of the procedure

at a call site rather than by using a computed effect, so that NIL would be

independently compilable.

The work on constrained expressions by Avrunin et al. [3, 4] and Dillon et

al. [91 takes an entirely different approach to analysis than Cesar. Since this

work is aimed at analysis of distributed systems, the methods proposed must

handle the iterated shuffle operator which extends the specifiable sequences

to the recursively enumerable languages. Thus there is no general algorithm

for their evaluation. So far, the work has concentrated on solving systems of

inequalities between the numbers of occurrences of specific events in a

constrained expression. The analysis and evaluation methods used in Cesar

could be used to evaluate a constrained expression representing a program

against another expression representing a constraint as long as neither

contains the iterated shuffle operator.

7. FUTURE WORK

Our experience with Cesar has shown that general static sequencing evalua-

tion can be performed in an interprocedural setting, and suggests that it can

provide a significant addition to a software analysis and evaluation capabil-

ity. The poor performance, the primitive nature of the user interface provided

by Odin, and the current limitation to analysis of FORTRAN make the proto-

type unsuitable for large scale experimentation with Cesar as a component of

a software analysis environment.
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7’.1 Improvements to Cesar

An important performance improvement would come from implementation of

the sliced flowgraphs described in Section 3.4. As noted earlier, the time to

analyze a single AQRE term can be reduced at least by the average number of

Cesar objects accessed per subprogram. Given that some Cesar objects are

accessed in more than one routine, this would be more than a factor of ten in

the “load-ur” example above, and of about five in the “load-io” case. Addi-

tional work to tune the implementation will also improve performance,

though not by such large factors.

A second effective improvement to Cesar would be a more efficient object

management system, capable of caching objects in memory, efficient y stor-

ing and retrieving obj(ects from disk, and invoking tool components through a

more efficient mechanism than command scripts. We can then avoid much of

the current 1/0 overhead as well as that generated by invoking Unix

processes and run-time initialization for each tool fragment invocation.

An alternative is to implement Cesar as a monolithic tool that does no

object management. We find that unattractive as it makes reanalysis of a

slightly altered software system as costly as the initial analysis. Object

management systems for software environments are under investigation by

other researchers. We shall select an appropriate object management ~system

when one that meets our needs becomes available.

In retrospect, given the use of Odin as the object manager, an intermediate

strategy of storing all the slices from a single routine in a single Odin object

may be a reasonable near-term alternative. While this would not give the full

potential savings during reanalysis we might otherwise expect, it would

decrease the size of the flowgraphs in the analysis and evaluation phases,

improving performance during those stages, and would also eliminate flow-

graph vertices and edges that have no effect on the computation, assisting

Odin’s ability to detect unnecessary recomputation.

The text-based user interface provided by Odin is also a barrier to more

widespread use and experimentation. Since Cesar is based on a flowgraph

model, a more reasonable interface might display the information obtained

by Cesar graphically, using Odin or some other object manager as a data

server. We are currently investigating means to make the user interface

more friendly and effective with graphical information displays.

Finally, we must support analysis of languages other than FCIRTRAN.

Currently, work is proceeding on the necessary graphing subsystem

tools to permit anallysis of C and Ada programs. This will give Cesar

a wider audience and allow more data to be collected on its usefulness and

applicability.

‘7.2 Mixed Language Program Analysis

Given the language-independent nature of the labeled flowgraphs used by

Cesar, it should be possible to evaluate a single program that has components

written in different languages [10]. Some of Cesar’s current tool fragments

are themselves mixed language programs. Ada programs call FORTRAN
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subprograms to access data provided by the Toolpack tools. In one sense,

Cesar already performs mixed language analysis. An Excess specification can

be used to represent the behavior of a subprogram for which no source code is

available. During analysis, flowgraph data derived from Excess stubs are

indistinguishable from the data derived from FORTRAN subprograms.

An obstacle to a more realistic mixed language analysis capability is the

need to use Tepee to recognize the events. Tepee itself is independent of

programming language, but the statements that correspond to a particular

event may have different syntactic forms in different languages and conse-

quently have different representations in the respective intermediate forms.

In Ada, a file is opened by a procedure with four parameters, in C by a

function with two, and in FORTRAN the necessary statement is not a subpro-

gram call at all. Different Tepee specifications for each language will be

necessary. It should be possible to alter the Odin specification of Cesar to

ensure that a program source file written in a particular language is mated

with the appropriate Tepee pattern specification during event recognition.

A more difficult problem is that different languages require different

actions from the run-time system on invocation and termination of a pro-

gram. A mixed language program requires a mix of these actions. Thus,

Cesar would require a simple abstraction of the concept of a run-time system

that is sufficiently general to cover the actions performed by a wide range of

programming languages.

7.3 Concurrent Program Evaluation

The sequencing evaluation of concurrent programs has received attention

from both static and dynamic analysts. TSL is one example of a dynamic

analyzer for event sequencing [21]. Other work has addressed the static

detection of data flow anomalies in concurrent programs [5, 28]. The con-

strained expression work cited earlier is also intended primarily for the

analysis of concurrent programs. This concurrent static sequencing analysis

is performed either by creating a single flowgraph that reflects all possible

interleavings of the atomic actions in the program, or by using special

concurrent fork and join nodes to connect flowgraphs for the individual

processes. These concurrent flowgraphs require that the fork and join ver-

tices be treated differently from other vertices, complicating the data flow

analysis. It is possible to use Cesar in its current state to perform analysis on

flowgraphs that reflect all possible interleavings of atomic actions in the

concurrent program. It is also possible to modify Cesar to account for these

special fork and join nodes. The tradeoff here is between the cost of analysis

of potentially combinatorially large, interleaved flowgraphs and the in-

creased cost and complexity of a modified Cesar that treats some flowgraph

vertices differently than others. Experimentation can establish which of
these choices is most worthwhile.

A second approach to concurrent program evaluation was proposed inde-

pendently by Apt [1] and Taylor [27]. These methods build a state graph of a

concurrent system from which such information as absence of deadlock can

be deduced. Taylor and Young propose an integrated static and symbolic
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evaluation method to extend the usefulness of this analysis [32, 331. Since

Cesar is based on a graph model of execution, it may prove useful for certain

kinds of analyses on these concurrent state graphs.

The form of Cecil expressions is reminiscent of interval formulations of

temporal logic in some respects. Thus, a third possible direction in the

application of Cesar to concurrent and distributed programs is the applicat-

ion of Cesar to finite state protocol models in the same way that Clalrke et

al, have applied a data flow analysis algorithm to model checking [6]. The

relationship of Cecil to interval logics themselves is also an interesting topic

for further research.

7.4 Summary

Cesar provides a flexible, interprocedural, static sequencing evaluating capa-

bility that has not previously existed. It allows evaluation of analyst-clefined

sequencing constraints on analyst-defined events. This prototype system will

provide a basis for further development and experimentation in sequencing

analysis as an evaluation technique for both sequential and concurrent

systems and in the effective integration of different evaluation and analysis

techniques. Other issues on the periphery of these topics, such as graphical

user interfaces for evaluation tools, can also be investigated.
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