IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 9, SEPTEMBER 1990

965

A Formal Model of Program Dependences and Its
Implications for Software Testing, Debugging,
and Maintenance

ANDY PODGURSKI anp LORI A. CLARKE

Abstract—A formal, general model of program dependences is pre-
sented and used to evaluate several dependence-based software testing,
debugging, and mai Two generalizations of con-
trol and data flow dependence, called weak and strong syntactic de-
pendence, are introduced and related to a concept called semantic de-
pendence. Semantic dependence models the ability of a program
statement to affect the execution behavior of other statements. It is
shown, among other things, that weak syntactic dependence is a nec-
essary but not sufficient condition for semantic dependence and that
strong syntactic depend is a y but not sufficient condition
for a restricted form of semantic dependence that is finitely demon-
strated. These results are then used to support some proposed uses of
program dependences, to controvert others, and to suggest new uses.

-
e techniq

Index Terms—Data flow testing, program analysis, program depen-
dences, program slicing, software debugging, software maintenance,
software testing.

I. INTRODUCTION

OGRAM dependences are relationships, holding be-
tween program statements, that can be determined
from a program’s text and used to predict aspects of the
program’s execution behavior. There are two basic types
of program dependences: ‘‘control dependences,’’ which
are features of a program’s control structure, and ‘‘data
flow dependences,’” which are features of a program’s use
of variables. Informally, a statement s is control depen-
dent on the branch condition ¢ of a conditional branch
statement if the control structure of the program indicates
that ¢ potentially decides, via the branches it controls,
whether s is executed or not. For example, in the program
of Fig. 1, statements 3 and 4 are control dependent on the
branch condition at line 2. Informally, a statement s is
data flow dependent on a statement s’ if data potentially
propagates from s’ to s via a sequence of variable assign-
ments. For example, in the program of Fig. 1, statement
5 is data flow dependent on statement 1, since data poten-
tially propagates from statement 1 to statement 5. Depen-
dence analysis, the process of determining a program’s
dependences, combines traditional control flow analysis

Manuscript received October 15, 1989; revised May 1, 1990. Recom-
mended by N. G. Leveson.

A. Podgurski is with the Department of Computer Engineering and Sci-
ence, Case Western Reserve University, Cleveland, OH 44106.

L. A. Clarke is with the Software Development Laboratory, Department
of Computer and Information Science, University of Massachusetts, Am-
herst, MA 01003.

IEEE Log Number 9037077.

and data flow analysis [2], and hence can be implemented
efficiently.

Until recently, most proposed uses of program depen-
dences have been justified only informally, if at all. Since
program dependences are used for such critical purposes
as software testing [15], [16], [19], [22], debugging 31,
[28], and maintenance [23], [28], code optimization and
parallelization [8], [20], and computer security [71,' this
informality is risky. This paper supplements other recent
investigations of the semantic basis for the uses of pro-
gram dependences [4], [13], [25] by presenting a formal,
general model of program dependences and by using it to
evaluate several dependence-based software testing, de-
bugging, and maintenance techniques. The results sup-
port certain proposed uses of program dependences, con-
trovert others, and suggest new ones.

One example of our results involves the use of program
dependences to find ‘‘operator faults’ in programs. An
operator fault is the presence of an inappropriate opera-
tor? in a program statement. For instance, accidental use
of the multiplication operator ‘‘*"" instead of the addition
operator ‘‘+’" in the assignment statement “X:=Y*
7’ results in an operator fault. It would be useful to be
able to automatically detect and locate operator faults; un-
fortunately, as with many other semantic questions about
programs, the question of whether a program contains an
operator fault or not is undecidable. This paper shows,
however, that there is an algorithm, in fact an efficient
one, that detects necessary conditions for an operator fault
at one statement to affect the execution behavior of an-
other statement. These necessary conditions are expressed
in terms of program dependences. Consequently, depen-
dences can be used to help locate the statements that might
be affected by an operator fault at a given statement.

To determine some of the implications of program de-
pendences, we relate control and data dependence to a
concept called ‘‘semantic dependence.”’ Informally, a
program statement s is semantically dependent on a state-
ment s’ if the semantics of s’, that is, the function com-
puted by s', potentially affects the execution behavior of
s. The significance of semantic dependence is that it is a

'The term ‘*dependence”” is not used in all the references given.
>The term *‘operator’ refers to both the predefined operators of a pro-
gramming language and to user-defined procedures and functions.

0098-5589/90/0900-0965$01.00 © 1990 IEEE

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

1. input (X, Y);
2. if X > Y then
3. Max := X;
else
4. Max := Y; .
endif; Ulvs) = {X)
5. output (Max); D(v3) = {(Max)

D(v1) = (X.Y)

Ulva) - (X, Y}

Ulve) = (Y)
D(v4) = {(Max}
U(vs) = (Max)

Fig. 1. Max program and its def/use graph.

necessary condition for certain interstatement semantic
relationships. For example, if s and s’ are distinct state-
ments, then s must be semantically dependent on s’ for an
operator fault at s’ to affect the execution behavior of s.
Similarly, some output statement must be semantically
dependent on a statement s for the semantics of s to affect
the output of a program.

Three main results are presented in this paper:

1) A generalization of control and data dependence,
called ‘‘weak syntactic dependence,’’ is a necessary con-
dition for semantic dependence.

2) A commonly used generalization of control and data
dependence, which we call ‘‘strong syntactic depen-
dence,’’ is a necessary condition for semantic dependence
only if the semantic dependence does not depend in a cer-
tain way on a program failing to terminate.

3) Neither data flow, weak syntactic, nor strong syn-
tactic dependence is a sufficient condition for semantic
dependence.

We use these results to evaluate several dependence-
based testing, debugging, and maintenance techniques.

Section II defines some necessary terminology and Sec-
tion III defines control, data, and syntactic dependence.
Semantic dependence is informally defined in Section IV
and then related to syntactic dependence in Section V. In
Section VI, the implications of the results of Section V
for software testing, debugging, and maintenance are de-
scribed. In Section VII, related work not already consid-
ered in Section VI is surveyed. Section VIII presents a
summary and discussion of possible future research direc-
tions. In the Appendix, the formal definition of semantic
dependence is presented, and the proofs of the two most
significant results of Section V are sketched.

II. TERMINOLOGY

In this section we define control flow graphs, some
dominance relations, and def/use graphs.

A directed graph or digraph G is a pair (V(G),
A(G)), where V(G) is any finite set and A(G) is a sub-
setof V(G) X V(G) — {(v, v)|ve V(G)}. The ele-
ments of V(G) are called vertices and the elements of

A(G) are called arcs. If (u, v) € A(G) then u is adjacent
to v and v is adjacent from u; the arc (u, v) is incident
to v and incident from u. A predecessor of a vertex v is
a vertex adjacent to v, and a successor of v is a vertex
adjacent from v. The indegree of a vertex v is the number
of predecessors of v, and the outdegree of v is the number
of successors of v.

A walk W in G is a sequence of vertices v, v, - * * v,
such that » = 0 and (v;, v;.,) € A(G) fori =1, 2,
-, n — 1. The length of a walk W = v,v, - -+ v,

denoted | W |, is the number n of vertex occurrences in W.
Note that a walk of length zero has no vertex occurrences;
such a walk is called empry. A nonempty walk whose first
vertex is # and whose last vertex is v is called a u—v
walk. If W = ww, +++ w,and X = x;x, * - x, are
walks such that either W is empty, X is empty, or w,, is
adjacent to x,, then the concatenation of W and X, de-
noted WX, is the walk wyw, - - - w,x;x;, - - - x,.

All the types of dependence considered in this paper are
directly or indirectly defined in terms of a ‘‘control flow
graph,’’ which represents the flow of control in a sequen-
tial, procedural program.

Definition 1: A control-flow graph G is a directed graph
that satisfies each of the following conditions:

1) The maximum outdegree of the vertices of G is at
most two”.

2) G contains two distinguished vertices: the initial
vertex v;, which has indegree zero, and the final vertex
v, which has outdegree zero.

3) Every vertex of G occurs on some v,— vy walk.

A vertex of outdegree two in a control flow graph is
called a decision vertex, and an arc incident from a deci-
sion vertex is called a decision arc. The set of decision
vertices of G is denoted V.. (G).

Here, the vertices of a control flow graph represent sim-
ple program statements (such as assignment statements
and procedure calls) and also branch conditions, while the
arcs represent possible transfers of control between these.
The program’s entry point and exit point are represented
by the initial vertex and final vertex, respectively. A de-

This restriction is made for simplicity only.

PODGURSKI AND CLARKE: FORMAL MODEL OF PROGRAM DEPENDENCES

input (N);
Fact := 1;
vhile not N = 0 loop
Fact := Fact * N;
N := N~ 1;
end loop;
output ("The factorial is ");
output (Fact);

o WN -

~ O

967

@ D(v1) = (N)
é D(vz) - (Fact)

Utvs) = (N) o Q

é 6’5 U(vr) = (Fact)

U{vs¢) = {Fact. N)

D{v4) = (Fact)
Uvs) - 0 Q
D(vs) = {N)

Fig. 2. Factorial program and its def/use graph.

cision vertex represents the branch condition of a condi-
tional branch statement. The definition given here of a
control flow graph is somewhat restricted, to simplify the
presentation of results. This definition can be used to rep-
resent any procedural program, however, by employing
straightforward representation conventions involving the
use of dummy vertices and arcs.

The control flow graph of the program in Fig. 1 is
shown alongside the program; the annotations to this
graph are explained subsequently.

The next three definitions are used in defining types of
control dependence.

Definition 2: Let G be a control flow graph. A vertex
u € V(G) forward dominates a vertex v € V(G) iff every
v—uvp walk in G contains u; u properly forward dominates
viff u #+ v and u forward dominates v.

Definition 3: Let G be a control flow graph. A vertex
u € V(G) strongly forward dominates a vertex v € V(G)
iff u forward dominates v and there is an integer k = 1
such that every walk in G beginning with v and of length
=k contains u.

In the control flow graph of Fig. 1, vs (strongly) for-
ward dominates each vertex, whereas v; and v, forward
dominate only themselves. In the control flow graph of
Fig. 2, vs strongly forward dominates v,, but v does not
strongly forward dominate v,, because there are arbitrar-
ily long walks from v, that do not contain vs.

While control dependence has been defined in terms of
forward dominance before [7], [8], the use of strong for-
ward dominance for this purpose is apparently new.

We state the following theorem without proof.

Theorem 1: Let G be a control flow graph. For each
vertex u € (V(G) — {vr}), there exists a proper forward
dominator v of u such that v is the first proper forward
dominator of u to occur on every u— v walk in G.

The ‘‘immediate forward dominator’’ of a decision ver-
tex d is the vertex where all walks leaving d first come
together again. More formally:

Definition 4: Let G be a control flow graph. The im-
mediate forward dominator of a vertex v € (V(G) —
{vr}), denoted ifd(v), is the vertex that is the first proper
forward dominator of v to occur on every v—uvy walk in

G.

For example, in the control flow graph of Fig. 1, vs is
the immediate forward dominator of v,, v, and v;,. In the
control flow graph of Fig. 2, v is the immediate forward
dominator of v;.

Data, syntactic, and semantic dependence are defined
in terms of an annotated control flow graph called a **def/
use graph.”” For each vertex v in a def/use graph, D(v)
denotes the set of variables defined (assigned a value) at
the statement represented by v, and U(v) denotes the set
of variables used (having their values referenced) at that
statement. A def/use graph is similar to a program schema
[11], [17] and is essentially the program representation
used in data flow analysis [2]. ,

Definition 5: A def/use graph is a quadruple G = (G,
T, D, U), where G is a control flow graph, L is a finite
set of symbols called variables, and D: V(G) = ®(X),
U: V(G) »> ®(L) are functions.*

The def/use graphs of the programs in Figs. 1 and 2 are
shown alongside the programs.

Definition 6: Let G = (G, L, D, U) be a def/use graph,
and let W be a walk in G. Then

D(W) = UWD(v).

For example, referring to the def/use graph of Fig. 1,
D(v,vyv305) = {Max, X, Y}.

As usual in the static analysis of programs, exactly what
constitutes a variable, definition, or use is sometimes a
subtle issue [2]. In the model of computation we adopt
(see Section IV), values are associated with the variables
(names) in I, and a vertex v can interrogate only the val-
ues of variables in U(z) and modify only the values of
variables in D(v). In representing a program with our
formalism, this means that if the statement represented by
a vertex v reads or writes a storage element, or if this is
uncertain, then a variable name that denotes the poten-
tially accessed storage element should be included in
U(v) or D(v), respectively. When the accessed storage
element cannot be determined until runtime, it is permis-
sible to include either a distinct name for each storage
element that might be accessed or one name denoting all

*We denote the power set (set of all subsets) of a set Sby ®(S).

968 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

such elements, provided the same representation is used
consistently. When the same storage element is accessed
via different names in the program, all of these names can
be included or a single name can be used in place of them.
These are the conventions usually adopted in static anal-
ysis, where, for example, an access through a pointer is
often treated as an access to all the objects that might be
pointed to, and an access to an array element is often
treated as an access to the entire array. These conventions
are conservative, in that they may indicate data flow that
cannot actually occur, but are safe, in that they will not
fail to indicate any data flow that does occur.

III. CoNTROL, DATA, AND SYNTACTIC DEPENDENCE
A. Control Dependence

The concept of control dependence is used to model the
effect of conditional branch statements on the behavior of
programs. Control dependence is a property of a pro-
gram’s control structure alone, in that it can be defined
strictly in terms of a control flow graph. Various formal
and informal definitions of control dependence are given
in the literature. Usually these are expressed in terms of
“‘structured’’ control statements of a particular language
or class of languages. Such definitions have limited ap-
plicability, because control statements vary across lan-
guages and because ‘‘unstructured’’ programs occur in
practice. Indeed, even judicious use of the goto statement
or the use of restricted branch statements such as Ada’s
exit, raise, and return statements can result in programs
that are, strictly speaking, unstructured. It is therefore de-
sirable to have a language-independent definition of con-
trol dependence that applies to both structured and un-
structured programs. Two definitions that satisfy these
requirements are those of ‘‘weak control dependence’’ and
‘‘strong control dependence.”’

Strong control dependence was originally defined in the
context of computer security [7]°, and this definition has
been used by several authors [15], [20], [28]. To our
knowledge, it was the first graph-theoretic, language and
structure-independent characterization of control depen-
dence to appear in the literature.

Definition 7: Let G be a control flow graph, and let «,
v € V(G). Then u is strongly control dependent on v iff
there exists a v—u walk vWu not containing the imme-
diate forward dominator of v.

For example, in the control flow graph of Fig. 1, the

immediate forward dominator of the decision vertex v, is_

vs; therefore v; and v, are strongly control dependent on
v;. In the control flow graph of Fig. 2, the immediate
forward dominator of the decision vertex v is vg; there-
fore v3, v4, and vs are strongly control dependent on v;.
Note that the statements that are strongly control depen-
dent on the branch condition of a structured if-then or
if-then-else statement are those in its ‘‘body.’’ The state-
ments that are strongly control dependent on the branch
condition of a structured while or repeat-until loop are the

*In [7] the concept is called **implicit information flow.”"

~ dependent on v;,, fori = 1,2, - - -

branch condition itself and the statements in the loop’s
body.

Weak control dependence [21] is a generalization of
strong control dependence in the sense that every strong
control dependence is also a weak control dependence.

Definition 8: Let G be a control flow graph, and let u,
v € V(G). Vertex u is directly weakly control dependent
on vertex v iff v has successors v’ and »” such that u
strongly forward dominates v’ but does not strongly for-
ward dominate v"; u is weakly control dependent on v iff
there is a sequence vy, v,, - * * , U, of vertices, n = 2,
such that u = v,, v = v, and v; is directly weakly control
,n— 1.

Informally, u is directly weakly control dependent on v
if v has successors v’ and " such that if the branch from
v to v’ is executed then u is necessarily executed within
a fixed number of steps, while if the branch from v to v”
is taken then u can be bypassed or its execution can be
delayed indefinitely.

The essential difference between weak and strong con-
trol dependence is that weak control dependence reflects
a dependence between an exit condition of a loop and a
statement outside the loop that may be executed after the
loop is exited, while strong control dependence does not.
For example, in the control flow graph of Fig. 2, v is
(directly) weakly control dependent on v; (because vg
strongly forward dominates itself, but not v,), but not
strongly control dependent on v; (because v is the im-
mediate forward dominator of v3). In addition, v, v4, and
vs are (directly) weakly control dependent on v;, because
each strongly forward dominates v4 but not vs. The ad-
ditional dependences of the weak control dependence re-
lation are relevant to program behavior, because an exit
condition of a loop potentially determines whether exe-
cution of the loop terminates.

The weak and strong control dependence relations for
a control flow graph G can be computed in O(|V(G)|*)
time [21].

B. Data Flow Dependence

Although several other types of data dependence are
discussed in the literature, we require only data flow de-
pendence [8], [20].

Definition 9: Let G = (G, L, D, U) be a def/use graph,
and let u, v € V(G). Vertex u is directly data flow de-
pendent on vertex v iff there is a walk vWu in G such that
(D(v) N U(u)) — D(W) # &; u is data flow depen-
dent on v iff there is a sequence vy, v, * * * , v, of ver-
tices, n = 2, such that u = v|, v = v, and v; is directly
data flow dependent on v;,; fori = 1,2, -+ ,n — 1.

Note that if u is data flow dependent on v then there is
awalk o, W,v, W, - - v, _W,_,v,, n = 2, such that v
= v, u =v, and (D(v;) N U(v;+y)) — D(W) # &
fori = 1,2, ---,n — 1. Such a walk is said to dem-
onstrate the data flow dependence of u upon v.

Referring to the def/use graph of Fig. 1, vs is directly
data flow dependent on v, because the variable X is de-
fined at v, used at v;, and not redefined along the walk

PODGURSKI AND CLARKE: FORMAL MODEL OF PROGRAM DEPENDENCES 969

v, v, v3; s is directly data flow dependent on v, because
the variable Max is defined at v;, used at vs, and not re-
defined along the walk v; vs. It follows that vs is data flow
dependent on v; the walk v, v, v3 v5s demonstrates this de-
pendence.

The direct data flow dependence relation for a control
flow graph can be computed efficiently using a fast algo-
rithm for the “‘reaching definitions’” problem [2]. The data
flow dependence relation can then be efficiently computed
using a fast algorithm for transitive closure [1].

C. Syntactic Dependence

To evaluate uses of control and data dependence, it is
necessary to consider chains of such dependences, that is,
sequences of vertices in which each vertex except the last
is either control dependent or data dependent on the next
vertex. Informally, there is a ‘‘weak syntactic depen-
-dence’’ between two statements if there is a chain of data
flow and/or weak control dependences between the state-
ments, while there is a ‘‘strong syntactic dependence’’
between the statements if there is a chain of data flow
dependences and/or strong control dependences between
them. Weak syntactic dependence apparently has not been
considered before in the literature; the notion of strong
syntactic dependence is implicit in the work of several
authors [3], [7], [8]. [13], [15], [20], [28].

Definition 10: Let G = (G, £, D, U) be a def/use
graph, and let u, v € V(G). Vertex u is weakly syntacti-
cally dependent (strongly syntactically dependent) on ver-
tex v iff there is a sequence vy, vy, * * - , v, Of vertices,
n=2,suchthatu = v, v = v,, and fori = 1, 2,

, n 1, either v; is weakly control dependent
(strongly control dependent) on ;. or v; is data flow
dependent on v; .

Since the weak and strong control dependence and data
flow dependence relations for a def/use graph can be com-
puted efficiently, the weak and strong syntactic depen-
dence relations can be computed efficiently by using a fast
algorithm for transitive closure.

Referring to the def/use graph of Fig. 2, ve is weakly
syntactically dependent on vs, because v, is weakly con-
trol dependent on v; and v; is data flow dependent on vs;
vs is strongly syntactically dependent on v, because vs is
strongly control dependent on v; and v; is data flow de-
pendent on v,. Note that v is not strongly syntactically
dependent on vs.

IV. SEMANTIC DEPENDENCE

Recall that, informally, a statement s is semantically
dependent on a statement s’ if the function computed by
s' affects the execution behavior of s. In this section, a
more precise but still informal description of semantic de-
pendence is given. The formal definition is presented in
the Appendix.

We first informally define the auxiliary terms necessary
to define semantic dependence. A sequential procedural
program can be viewed abstractly as an interpreted def/
use graph. An interpretation of a def/use graph is an as-

signment of partial computable functions to the vertices
of the graph. The function assigned to a vertex v is the
one computed by the program statement that v represents;
it maps values for the variables in U(v) to values for the
variables in D (v) or, if v is a decision vertex, to a suc-
cessor of v. An interpretation of a def/use graph is similar
to an interpretation of a program schema [11], [17]. An
operational semantics for interpreted def/use graphs is de-
fined in the obvious way, with computation proceeding
sequentially from vertex to vertex along the arcs of the
graph, as determined by the functions assigned to the ver-
tices. A computation sequence of a program is the se-
quence of states (pairs consisting of a vertex and a func-
tion assigning values to all the variables in the program)
induced by executing the program with a particular input.
An execution history of a vertex v is the sequence whose
ith element is the assignment of values held by the vari-
ables of U(v) just before the ith time v is visited during
a computation. An execution history of a vertex is an in-
terpreted def/use graph abstracts the ‘‘execution behav-
ior’” of a program statement.

A more precise description of semantic dependence can
now be given.

Definition 11 (Informal): A vertex u in a def/use graph
G is semantically dependent on a vertex v of G if there
are interpretations I, and I, of G that differ only in the
function assigned to v, such that for some input, the ex-
ecution history of u induced by I, differs from that in-
duced by L,.¢

For example, if the branch condition X > Y in the pro-
gram of Fig. 1 were changed to X < Y, then the program
would compute the Min function instead of the Max func-
tion. Hence, for all unequal values of X and Y, this change
demonstrates that vertex vs of the def/use graph of Fig. |
is semantically dependent on vertex v,. As another ex-
ample, if the statement N := N — 1 in the program of
Fig. 2 were changed to N := N — 2, the while-loop would
fail to terminate for the input N = 5, preventing statement
6 from executing. Hence, this change demonstrates that
vertex vg of the def/use graph of Fig. 2 is semantically
dependent on vertex vs.

Note that a pair of execution histories that demonstrate
a semantic dependence can differ in two ways: a) the his-
tories have corresponding entries that are unequal and b)
one history is longer than the other. Informally, the se-
mantic dependence is said to be finitely demonstrated if
either:

1) Condition a) holds; or

2) Condition b) is demonstrated by finite portions of
the computation sequences that caused the execution his-
tories.

Semantic dependence demonstrated by a pair of halting
computations is, of course, finitely demonstrated. For ex-

%The formal definition of semantic dependence, given in the Appendix,
contains conditions to ensure that a semantic dependence is not caused by
the value of the function assigned to a vertex being undefined for some
input. This is done to avoid trivial semantic dependences. When we infor-
mally refer to (the semantics of) one program statement affecting the exe-
cution behavior of another statement, this restriction is implied.

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 9, SEPTEMBER 1990

ample, the semantic dependence of vertex vs upon vertex
v, in the def/use graph of Fig. 1 is finitely demonstrated,
because the Min and Max functions are defined for all pairs
of integers. The semantic dependence of vertex vg upon
vertex vs in the def/use graph of Fig. 2 is not finitely dem-
onstrated, because the only way vs can affect the execu-
tion behavior of vy is by determining whether execution
of the cycle vy v, vsv; terminates. Note that even nonter-
minating computations can finitely demonstrate semantic
dependence, via their finite initial segments. For exam-
ple, despite the fact that it makes the program fail to ter-
minate, changing the statement N := N — 1 in the pro-
gram of Fig. 2 to N := N — 2 finitely demonstrates that
vertex vs of the programs’ def/use graph is semantically
dependent on itself, because the change alters the argu-
ment to the second execution of statement 5 for the input
N =35.

V. RELATING SEMANTIC AND SYNTACTIC DEPENDENCE

In software testing, debugging, and maintenance, one
is often interested in the following question:

When can a change in the semantics of a program
statement affect the execution behavior of another
statement?

This question is, however, undecidable in general. De-
pendence analysis, like data flow analysis, avoids prob-
lems of undecidability by trading precision for (efficient)
decidability. During dependence analysis, programs are
represented by def/use graphs, which contain limited se-
mantic information but are easily analyzed. Dependence
analysis allows semantic questions to be answered ‘‘ap-
proximately,’’ because a program’s dependences partially
determine its semantic properties. To evaluate the useful-
ness of dependence analysis in ‘‘approximately’’ answer-
ing the question above, we frame the question in terms of
def/use graphs, by asking ‘“When is one statement se-
mantically dependent on another?’’. This leads to our
main results.

(The proofs of Theorems 2 and 4 below are sketched in
the Appendix. The proofs of Theorems 3 and 5 are given
informally with the theorems. Formal versions of all these
proofs are found in {21].)

Theorem 2: Let G = (G, E, D, U) be a def/use graph,
and let u, v € V(G). If u is semantically dependent on v
then u is weakly syntactically dependent on v.

It was shown in Section IV that vertex v in the def/use
graph of Fig. 2 is semantically dependent on vertex vs.
This is reflected by the fact that vg is weakly syntactically
dependent on vs, as shown in Section III-C. However, vg
is not strongly syntactically dependent on vs.

Theorem 3: Strong syntactic dependence is not a nec-
essary condition for semantic dependence.

The next theorem shows that strong syntactic depen-
dence does have semantic significance. The theorem in

D(vi} = (o) o
U(vi) - (o) 0.0 D(v2) = (1)
U(ve) = {7) °

Fig. 3. Direct data flow dependence without semantic dependence.

Weak
Syntactic

Weak
Control

Strong
Syntactic

Semantic

Finitely Data Flow Strong Direct
Dem. Control Weak
Semantic Control

Direct
Data Flow

Fig. 4. Relationships of dependence types.

fact justifies some informally-posed applications of de-
pendence analysis (see Section VI).

Theorem 4: Let G = (G, L, D, U) be a def/use graph,
and let u, v € V(G). If u is semantically dependent on v
and this semantic dependence is finitely demonstrated then
u is strongly syntactically dependent on v.

It was shown in Section IV that vertex vs in the def/use
graph of Fig. 1 is semantically dependent on vertex v, and
that this semantic dependence is finitely demonstrated.
This is reflected by the fact that vs is strongly syntacti-
cally dependent on v, (vs is directly data flow dependent
on v, which is strongly control dependent on v,).

Theorem 5: Neither direct data flow dependence nor
data flow dependence is a sufficient condition for semantic
dependence.

In the def/use graph of Fig. 3, vertex vr is directly data
flow dependent on vertex v,. However, vy is not semant-
ically dependent on v,. This is because no computation
of any program with this def/use graph visits both v, and
vr, since the ‘‘loop control variable’’ o is not redefined
in the cycle v, v, v,.

Corollary 1: Neither weak nor strong syntactic depen-
dence is a sufficient condition for semantic dependence.

Fig. 4 shows the dependence relations considered in this
paper, ordered by set inclusion. There is an arrow from a
relation R, to a relation R, if R} € R;.

PODGURSKI AND CLARKE: FORMAL MODEL OF PROGRAM DEPENDENCES 971

VI. IMPLICATIONS OF THE RESULTS

The results of Section V support the following general
conclusions about the use of dependence analysis to ob-
tain information about relationships between program
statements:

1) The absence of weak syntactic dependence between
two statements precludes all relationships between them
that imply semantic dependence.

2) The absence of strong syntactic dependence be-
tween two statements does not necessarily preclude all re-
lationships between them that imply (nonfinitely-demon-
strated) semantic dependence.

3) The absence of strong syntactic dependence be-
tween two statements precludes all relationships between
them that imply finitely demonstrated semantic depen-
dence.

4) The presence of direct data flow dependence, data
flow dependence, or weak or strong syntactic dependence
between two statements does not necessarily indicate any
relationship between the statements that implies semantic
dependence.

Conclusion 1 follows from Theorem 2; any relationship
between two statements that implies semantic dependence
also implies weak syntactic dependence. Conclusion 2
follows from Theorem 3 and Theorem 4; nonfinitely-dem-
onstrated semantic dependence does not imply strong syn-
tactic dependence. Conclusion 3 follows from Theorem
4; any interstatement relationship that implies finitely
demonstrated semantic dependence also implies strong
syntactic dependence. Finally, conclusion 4 follows from
Theorem 5 and Corollary 1.

Note that conclusion 1 implies that the weak syntactic
dependence relation for a program is an ‘‘upper bound’’
for (contains) any relation on the program’s statements
that implies semantic dependence. Similarly, conclusion
3 implies that the strong syntactic dependence relation for
a program bounds any relation on the program’s state-
ments that implies finitely demonstrated semantic depen-
dence. Since the syntactic dependences in a program can
be computed efficiently, these bounds can be determined
easily and used to narrow the search for statements having
certain important relationships. For example, if an oper-
ator fault at a statement s affects the execution behavior
of a statement s’, this demonstrates that s’ is semantically
dependent on s; therefore, only those statements that are
weakly syntactically dependent on s could be affected by
an operator fault at s. Consequently, weak syntactic de-
pendences can be used to help locate statements that can
be affected by an operator fault at a given statement. Of
course, whenever a relation R on the statements of a pro-
gram implies finitely demonstrated semantic dependence,
the strong syntactic dependence relation for the program
is a ‘‘tighter’” bound on R than the weak syntactic depen-
dence relation is.

In the sequel, we use the results of Section V to eval-
uate the semantic basis for several proposed uses of de-

pendences in testing, debugging, and maintenance and to
suggest new uses. The results suggest that some proposed
uses are mistaken, but provide partial justification, in
terms of facilitating search, for other uses.

A. Dependence-Coverage Criteria

In software testing, a dependence-coverage criterion is
a test-data selection rule based on ‘‘covering’’ or ‘‘exer-
cising’’ certain program dependences. Several coverage
criteria have been defined that call for exercising the data
flow dependences in a program [10], [16], [19], [22];
these are called ‘‘data flow coverage criteria.”” They re-
quire the execution of program walks’ that demonstrate
certain data flow dependences. One rationale for the data
flow coverage criteria is that they facilitate the detection
of incorrect variable definitions [16], [22], which may be
caused by mistaken use of operators and/or variable
names. Another is that they facilitate the detection of
faults that cause missing and spurious data flow depen-
dences [16]. These two rationales are related, since an
incorrect variable definition can cause missing or spurious
data flow dependences. In Section VI-A-1 below we use
the results of Section V to evaluate the use of dependence
coverage criteria for the detection of those incorrect vari-
able definitions that arise from operator faults. In Section
VI-A-2, we use the results of Section V to evaluate the
use of dependence coverage criteria for the detection of
faults that cause missing and spurious dependences.

1) Detection of Operator Faults: The data flow cov-
erage criteria address operator faults by exercising data
flow dependences upon potentially faulty variable defini-
tions. This may cause erroneous values produced by an
operator fault to propagate, via the sequence of assign-
ments represented by a data flow dependence, and pro-
duce an observable failure. The data flow coverage cri-
teria differ with regard to the number and type of data flow
dependences exercised and with regard to the number of
walks executed that demonstrate a given dependence. For
example:

e Rapps and Weyuker’s All-Defs criterion [22] exer-
cises one direct data flow dependence, if possible, upon
each variable definition in a program.

e Rapps and Weyuker’s All-Uses and All-DU-Paths
criteria [22] exercise all direct data flow dependences in
a program.

o Laski and Korel’s Strategy II [16] exercises all direct
data flow dependences, but exercises them in combina-
tion.

e For a fixed k, Ntafos’s Required k-Tuples criterion
[19] exercises all chains of k direct data flow depen-
dences; that is, all sequences of k + 1 vertices such that
each vertex in the sequence except the last is directly data
flow dependent on the next.

"That is, sequences of statements corresponding to walks in a program’s
control flow graph.

972

It is plausible that the propagation of erroneous values
via data flow dependences alone is sufficiently common
to make data flow coverage criteria worthwhile, even
though, by conclusion 4, that fact that a statement s is
data flow dependent on a faulty statement s’ does not im-
ply that an erroneous value propagates from s’ to s. How-
ever, when an operator fault causes a conditional state-
ment to make an incorrect branch, control dependence can
be critical to the ability of the fault to affect the execution
behavior of a particular statement. For example, changing
the branch predicate X > Y in the program of Fig. 1 to
X < Y changes the number of times statement 3 is exe-
cuted for the inputs X = 5, Y = 2 because statement 3 is
strongly control dependent on statement 2. Hence, no
coverage criterion based only on exercising data flow de-
pendences can, in general, exercise all the syntactic de-
pendences associated with erroneous information flow
produced by operator faults. Correspondingly, it is easily
seen that data flow dependence is not a necessary condi-
tion for even finitely demonstrated semantic dependence.

Some of the data flow coverage criteria mentioned
above, such as the All-Uses and Required k-Tuples cri-
teria, incorporate limited forms of control dependence
coverage. However, even these criteria do not exercise all
syntactic dependences associated with the erroneous in-
formation flow produced by operator faults, because the
type of syntactic dependences they exercise are still re-
stricted. For any sequence of the letters *‘C’” and “‘D”’,
it is simple to construct an example of finitely demon-
strated semantic dependence for which the corresponding
strong syntactic dependence is realized by only one chain
of direct data flow dependences and direct strong control
dependences, whose ith dependence is a direct strong
control dependence (direct data flow dependence) if the
ith letter of the sequence is *‘C’’ (is ‘‘D’’). This means
that, in general, almost arbitrarily complex chains of data
flow and control dependences may have to be exercised
to reveal operator faults.

As noted at the beginning of Section VI, it follows from
conclusions 1 and 3 that syntactic dependences provide a
nontrivial bound on the set of statements that can be af-
fected by an operator fault at a given statement. One might
think that to remedy the aforementioned weakness of the
data flow coverage criteria it is only necessary to extend
them to exercise all syntactic dependences upon a poten-
tially faulty definition, instead of just data flow depen-
dences. However, the number of tests required to ade-
quately exercise all syntactic dependences can be
impractically large, for the following reasons:

¢ The number of syntactic dependences in a program
can be quadratic in the number of statements.

® A given syntactic dependence may be demonstrated
by many program walks (even infinitely many), only one
of which is associated with erroneous information flow.

® Erroneous information flow via a particular syntactic
dependence may depend not only on which walk is exe-
cuted, but also on the particular input used.

At the very least, the bounds on erroneous information

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 9. SEPTEMBER 1990

flow that are implied by a program’s syntactic depen-
dences can be used to filter out test data, selected without
regard to the dependences, that cannot possibly reveal
certain faults. More ambitiously, it may be possible to
base test data selection on the determination of syntactic
dependences, by analyzing individual syntactic depen-
dences to determine which dependences, which walks
demonstrating them, and which inputs executing these
walks are most likely to be associated with erroneous in-
formation flow. Implementing this approach might re-
quire the development of techniques for more precise se-
mantic analysis of programs and for acquiring reliable
statistical information about programmer error-making
behavior.

2) Detection of Dependence Faults: Dependence anal-
ysis has something to say about other kinds of faults be-
sides operator faults. A dependence fault is a fault causing
different dependences to exist in an incorrect version of a
program than in the correct program. A dependence fault
may cause either ‘‘missing’’ or ‘‘spurious’’ dependences
or both. A dependence is missing if it occurs in the correct
program but not in the faulty one; it is spurious if the
reverse is true. For example, if the wrong variable name,
say X, is used on the left-hand side of an assignment
statement, this makes every use of X reached by this def-
inition of X spuriously data flow dependent on it. This
fault may also cause data flow dependences upon defini-
tions killed by the erroneous definition of X to be missing
from the faulty program, although missing and spurious
dependences do not always accompany each other. De-
pendence faults may also involve control dependence, as
when a statement is erroneously placed in the body of a
conditional branch statement, causing a spurious control
dependence. In a sense, dependence faults are the com-
plement of operator faults. Operator faults change only
the semantics of a single statement; they do not change a
program’s def/use graph. Under certain assumptions, it
can be shown that any fault that does change a program’s
def/use graph changes the program’s syntactic depen-
dences as well, and is therefore a dependence fault.

The data flow coverage criteria address dependence
faults by exercising potentially spurious data flow depen-
dences. To evaluate the soundness of this approach, it is
necessary to relate the semantic and syntactic effects of
dependence faults. The results of Section V do this for
certain types of dependence faults. If a fault causes the
function computed by a statement s to be erroneously rel-
evant to the execution behavior of a statement s', it fol-
lows from Theorems 2 and 4 that s’ is syntactically de-
pendent on s, since s’ is semantically dependent on s. If
this syntactic dependence exists only by virtue of the fault,
then it is spurious. A fault may also cause the function
computed by a statement to be erroneously irrelevant to
the execution behavior of another statement, with the re-
sult that a syntactic dependence between the statements is
missing by virtue of the fault. By conclusions 1 and 3, if
a statement s is not syntactically dependent on a statement
s', then the semantics of s’ is irrelevant to the execution

PODGURSKI AND CLARKE: FORMAL MODEL OF PROGRAM DEPENDENCES 973

behavior of s. Thus, the presence or absence of syntactic
dependences may be evidence of erroneous semantic re-
lationships.

Exercising syntactic dependences, as the data flow cov-
erage criteria do, may reveal when the function computed
by one statement is erroneously relevant on the execution
behavior of another statement, by exercising a spurious
syntactic dependence associated with this fault and thereby
eliciting the fault’s effects. Of course, it is not sure to.
Exercising syntactic dependences may also reveal when
the function computed by a statement is erroneously ir-
relevant to the execution behavior of another statement,
particularly if, as is often the case, missing syntactic de-
pendences caused by this fault are accompanied by spu-
rious ones. However, because the data flow coverage cri-
teria exercise only restricted types of syntactic depen-
dences, the results of Section V imply that these criteria
do not necessarily exercise all missing and spurious syn-
tactic dependences. In the absence of additional infor-
mation, the only way to remedy this is to exercise every
syntactic dependence in a program. For the reasons given
in Section VI-A-1, we believe that this approach is unten-
able. Nevertheless, determination of syntactic depen-
dences might be used to guide more discriminating meth-
ods for detecting dependence faults, in ways similar to
those proposed in Section VI-A-1 for the detection of op-
erator faults.

B. Anomaly Detection

A program anomaly is a syntactic pattern that is often
evidence of a programming error, irrespective of a pro-
gram’s specification [9]—for example, a variable being
used before it has been defined. Korel [15] proposes using
program dependences for the detection of ‘‘useless’
statements, a type of anomaly detection. Useless state-
ments are ones that cannot influence the output of a pro-
gram and can be removed without changing the function
the program computes. Korel claims that a statement is
useless if there is no output statement strongly syntacti-
cally dependent upon it.

Korel did not prove this informal claim. Nevertheless,
conclusion 3 supports a version of it: if no output state-
ment in a program is strongly syntactically dependent on
s, then the semantics of s is irrelevant to the values of
variables output by the program. This is because if a
change to the semantics of s affected the value of a vari-
able output at statement s’, then this would finitely dem-
onstrate that s’ was semantically dependent on s. A
change to the semantics of a statement can affect the out-
put of a program in ways that imply nonfinitely-demon-
strated semantic dependence, however. By conclusion 2,
nonfinitely-demonstrated semantic dependence might not
be accompanied by strong syntactic dependence. In the
factorial program of Fig. 2, changing the branch condi-
tion of the while-loop to N = N causes the loop to execute
forever; consequently, statement 6 is not executed. Thus
vertex vg of the program’s def/use graph is semantically
dependent on vertex v;. However, this semantic depen-

dence is not finitely demonstrated, and v is not strongly
syntactically dependent on v;. Hence, the fact that an out-
put statement is not strongly syntactically dependent on a
statement s does not imply that the semantics of s is ir-
relevant to the behavior of the output statement. How-
ever, if no output statement in a program is weakly syn-
tactically dependent on s then, by conclusion 1, the
semantics of s is irrelevant to the program’s output.

C. Debugging and Maintenance

In both software debugging and maintenance, it is often
important to know when the semantics of one statement
can affect the execution behavior of another statement. In
debugging, one attempts to determine what statement(s)
caused an observed failure. In maintenance, one wishes
to know whether a modification to a program will have
unanticipated effects on the program’s behavior; to deter-
mine this, it is helpful to know what statements are af-
fected by the modified ones and what statements affect the
modified ones. There are no general procedures for deter-
mining absolute answers to these questions, but depen-
dence analysis can be used to answer them approximately.

In his work on program slicing, Weiser proposes that
program dependences be used to determine the set of
statements in a program—called a ‘‘slice’” of the pro-
gram—that are potentially relevant to the behavior of
given statements [26]-[28]. Weiser demonstrates how
program slices can be used to locate faults when debug-
ging. He claims that if an incorrect state is observed at a
statement s, then only those statements that s is strongly
syntactically dependent upon could have caused the in-
correct state. He argues that by (automatically) determin-
ing those statements and then examining them the debug-
ging process can be facilitated.

While most investigators who proposed uses for pro-
gram dependences made no attempt to justify these uses
rigorously, Weiser [26] did recognize the need to do this
for the use of dependences in his program slicing tech-
nique, and he attempted to provide such justification via
both mathematical proofs and a psychological study. To
this end, Weiser implicitly defined a type of semantic de-
pendence and examined its relationship to syntactic de-
pendence. Unfortunately, the mathematical part of Weis-
er’s work is flawed. In his dissertation [26], Weiser states
a theorem similar to Theorem 2.% In his attempted proof
of this theorem, Weiser actually assumes, without proof,
that strong syntactic dependence is a necessary condition
for semantic dependence. Besides being very close to what
Weiser is trying to prove, this assumption is false. Weiser
does not address the issue of formal justification for slic-
ing in his subsequent writings.

If a program failure observed at one statement is caused
by an operator fault at another statement, it follows from
conclusion 1 that the search for the fault can be facilitated

%The theorem is stated in terms of Weiser’s problematic *‘color domi-
nance'’ characterization of control dependence, which he abandoned in his
later writings on slicing, in preference to strong control dependence.

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

by determining weak syntactic dependences, since the
statement where the failure was observed is weakly syn-
tactically dependent upon the faculty statement. If the
failure implies finitely demonstrated semantic depen-
dence, it follows from conclusion 3 that strong syntactic
dependence can be used to help locate the fault. However,
if the failure implies a semantic dependence that is not
finitely demonstrated, then strong syntactic dependence
cannot necessarily be used to locate the fault. This is il-
lustrated by the example in Section VI-B. Hence, for lo-
cating operator faults, Weiser’s use of strong syntactic
dependence in slicing is justified only when the faults
cause failures that finitely demonstrate semantic depen-
dence. In his thesis [26], Weiser does not restrict the type
of semantic dependence he attempts to localize with slic-
ing to be finitely demonstrated. In [28], however, Weiser
defines slicing for terminating programs only. In general,
of course, faulty programs may fail to terminate, so this
restriction limits the applicability of slicing.

The implications of conclusions 1-4 for maintenance
are similar to those for debugging. If a modification in-
volves only the semantics of a single statement, then, by
conclusions 1 and 3, only those statements that are syn-
tactically dependent on the statement to be modified could
be affected by the modification. Similarly, only those
statements that a modified statement is syntactically de-
pendent on could be relevant to the behavior of the mod-
ified statement.

VII. OTHER RELATED WORK

In this section we briefly survey related work, not con-
sidered above, on the use of program dependences in test-
ing, debugging, and maintenance.

Bergeretti and Carré [3] present a variant of dependence
analysis, called ‘‘information flow analysis,’’ that applies
to structured programs. They suggest several uses for it,
including testing and debugging. They define, by struc-
tural induction on the syntax of a programming language,
three information flow relations that are similar to strong
syntactic dependence.

Recently, several papers have investigated the semantic
basis for proposed uses of program dependences [4], [13],
[14], [23], [25]. Some of these papers address the use of
dependences in software debugging and maintenance.
Horwitz er al. [13] present a theorem that characterizes
when two programs with the same dependences compute
the same function. Reps and Yang [23] use a version of
this result to prove two theorems about program slicing.
One of these states that a slice of a program computes the
same function as the program itself on inputs for which
the computations of both the program and its slice ter-
minate. The second theorem states that if a program is
decomposed into slices, the program halts on any input
for which all of the slices halt. The latter two theorems
are used by Horwitz et al. [14] to justify an algorithm for
integrating versions of a program.

This paper differs in three respects from the other recent
work on the semantic basis for the use of dependences.

First, the other work does not address the concept of se-
mantic dependence. Second, while the results in those pa-
pers are proved for a simple, structured programming lan-
guage, we adopt a graph-theoretic framework for our
results, similar to that in [26], that makes them applicable
to programs of any procedural programming language and
to unstructured programs as well as structured ones.
Third, this paper considers the semantic significance of
both weak and strong control dependence, while the above
papers consider only strong control dependence.

VIII. CoONCLUSION

In summary, we have presented several resuits clarify-
ing the significance of program dependences for the exe-
cution behavior of programs. We have shown that two
generalizations of both control and data flow dependence,
called weak and strong syntactic dependence, are neces-
sary conditions for certain interstatement relationships in-
volving the effects of program faults and modifications.
This implies that weak and strong syntactic dependences,
which can be computed efficiently, may be used to guide
such activities as test data selection and program debug-
ging. On the other hand, we have also shown that neither
data flow nor syntactic dependence is a sufficient condi-
tion for the interstatement relationships in question. This
result discourages the use of such dependences, in the ab-
sence of additional information, as evidence for the pres-
ence of these relationships. Finally, we have shown that
strong syntactic dependence is not a necessary condition
for some interstatement relationships involving program
nontermination, and this suggests that some proposed uses
of strong syntactic dependence in debugging and anomaly
detection are unjustified.

There are several possible lines of further investigation
related to the use of program dependences in testing, de-
bugging, and maintenance. For example, our results could
be usefully extended to provide information about the ef-
fects of larger classes of faults and program modifica-
tions. Another possible line of investigation is the devel-
opment of testing methods that exploit the fact that
syntactic dependence bounds the statements that are af-
fected by certain type of faults. For example, Morell [18],
Richardson and Thompson [24], and Demillo et al. [6]
propose test data selection methods that might be adapted
to do this, since their methods are based on determining
conditions for erroneous program states to occur and then
propagate to a program’s output. A third possible line of
investigation is the development of more sophisticated se-
mantic analysis techniques to complement dependence
analysis.

APPENDIX
SKETCH OF THE PROOFs OF THEOREMS 2 AND 4

The proofs of Theorems 2 and 4 are lengthy, so we only
sketch them here; complete proofs are found in [21].

To describe the proofs of Theorems 2 and 4, it is nec-
essary to present the complete definition of semantic de-
pendence. This definition uses some notation that we now

PODGURSKI AND CLARKE: FORMAL MODEL OF PROGRAM DEPENDENCES 975

informally define. An interpretation I of a def/use graph
G = (G, L, D, U) is triple (D, F, N). D is the set of
objects which serve as the inputs, outputs, and interme-
diate results of a computation, and is called the domain
of I. F is function that associates with every vertex v €
V(G) a partial recursive function F(v) that maps an as-
signment of values for the variables in U(v) to an assign-
ment of values for the variables in D(v). F represents the
ability of a program statement to alter the value of vari-
ables. N is a function that associates with every decision
vertex d € V,,.(G) a function N(d) mapping an assign-
ment of values for the variables in U(d) to a successor
of d. N represents the ability of a branch condition of a
conditional branch statement to determine the order of
statement execution. The pair P = (G, I) is called a pro-
gram. The computation sequence induced by executing P
on an input d € D is denoted Cp(d) = {(v;, val;)}.}
The execution history of v € V(G) induced by Cp(d) is
denoted 3Cp(v, d), and its ith element, if it exists, is de-
noted ICp(v, d)(i).

We are now ready to present the formal definition of
semantic dependence.

Definition 12: Let G = (G, I, D, U) be a def/use
graph, and let u, v € V(G). Vertex u is semantically de-
pendent on vertex v iff there exist interpretations I, =
(D,F,NpD)and I, = (D, F5, N,) of G and an input d €
DT such that, letting P, = (G, I,) and P, = (G, L),
both of the following conditions are satisfied:

1) Forall we V(G) — {v}, Fi(w) = F,(w) and if
w € V,,.(G) then Ny (w) = Np(w).

2) Either of the following conditions is satisfied:

a) There is some i = 1 such that 3Cp, (u, d) (i) and
3Cp,(u, d) (i) are both defined but are unequal.
b) 3Cp,(u, d) is longer than ICp,(u, d), and either
Cp,(d) = {(v;, val;)} is infinite or it visits some
vertex v; from which u is unreachable.
1,, I, and d are said to demonstrate that u is semantically
dependent on v. If condition 1 holds and either condition
2(a) holds or both of the following conditions are true:

1) 3Cp (u, d) is longer than JCp, (u, d),

2) u is unreachable from some vertex of Cp,(d),
then I, I,, and d are said to finitely demonstrate that u is
semantically dependent on v.

The last part of condition 2(b) may be intuitive. It re-
quires that if a semantic dependence is demonstrated by
the fact that one execution history is longer than another,
then the computation sequence corresponding to the
shorter history must be infinite or must contain a vertex
from which the dependent vertex is unreachable. This re-
quirement prevents a semantic dependence from being
demonstrated solely as the result of the divergence of a
function assigned to a vertex. Such divergence can cause
an execution history to be shorter than it would be if the
divergence did not occur, by terminating a computation.
The reason this possibility is disallowed is that if it were
not, then each vertex would be semantically dependent on

The symbol D* denotes the set of functions from L into .

every other vertex from which it is reachable via an acyclic
initial walk (path), trivializing the semantic dependence
relation. If the shorter of two execution histories demon-
strating a semantic dependence corresponds to either an
infinite computation or to a computation containing a ver-
tex from which the dependent vertex is unreachable, then
divergence at a vertex either does not occur or is irrele-
vant to the demonstration of the dependence, respec-
tively.

The proofs of Theorems 2 and 4 have the following
basic form. First, a graph-theoretic structure is defined
which represents the potential flow of data to a vertex v
along an initial walk Wv in a def/use graph G. This struc-
ture is called the ‘‘context’” of v with respect to Wv. It is
then shown that in any execution of a program with def/
use graph G, the arguments to an execution of v [that is,
the values of the variables in U(v)] are completely de-
termined by its context. Next, necessary conditions for
semantic dependence are given in terms of walks and con-
texts. These are obtained by analyzing the pair of possibly
infinite “‘walks’” executed by a pair of interpretations and
an input that demonstrate semantic dependence. Finally,
these conditions are used to prove Theorems 2 and 4. We
now describe each of these steps in more detail.

The context CON (v, Wv) of a vertex v with respect to
an initial walk Wv in a def/use graph G = (G, L, D, U)
is a directed tree (technically an ‘‘in-tree’’ [12]) that rep-
resents the cumulative flow of data to v along W. CON (v,
Wuv) contains a distinguished vertex of outdegree zero,
called its sink. Each vertex of CON(v, Wv) is labeled
with a vertex of G and each arc of CON (v, Wv) is labeled
with a variable of £. CON (v, Wv) is defined inductively
as follows. If W is empty then CON (v, Wv) consists of
a single vertex labeled ‘‘v’’. Otherwise, CON (v, Wv)
consists of

1) A sink s labeled ‘v’

2) For each variable ¢ € U(v) such that W = XuY with
o € D(u) — D(Y), a copy of CON(u, Xu) and an arc
from its sink to s labeled ‘‘o”’.

To see the significance of a context CON (v, Wv), no-
tice that if G represents a ‘‘real”’ program P then CON (v,
Wo) is analogous to the set of symbolic values held by
the variables of U (v) after the instruction sequence /(W)
of P corresponding to W is symbolically executed [5]
(equivalently, executed under a Herbrand interpretation
[11], [17]). These symbolic values define the actual val-
ues of the variables in U(v), as functions of the inputs to
P, when I(W) is executed normally; hence, the symbolic
values determine the actual ones. In the same way, the
interpretation of the vertex labels of the context CON (v,
Wv) determines the values of the variables in U(v) when
Wu is executed for a given input and (abstract) interpre-
tation of G. This is demonstrated formally by induction
on the length of W.

To state necessary conditions for semantic dependence
in terms of walks and contexts, it is necessary to introduce
three auxiliary concepts: ‘‘hyperwalks,”’ ‘‘consistency,”’
and ‘‘reciprocal consistency.’’” Since program computa-

976 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 9. SEPTEMBER 1990

tions may fail to terminate, it is necessary to consider in-
finite ‘‘walks’’ in def/use graphs; a hyperwalk in a def/
use graph G is sequence of vertices that is either an or-
dinary walk or an infinite one. A hyperwalk W is consis-
tent if there are no two occurrences of a decision vertex
d in W that have the same context but are followed by
different successors of d. This notion is analogous to the
notion of path consistency in program schema theory [11].
Because the context CON (d, Xd) determines the values
of the variables in U(d) when Xd is executed, and hence
determines the branch taken at d, an executable hyper-
walk must be consistent.'® Reciprocal consistency is sim-
ilar to consistency, but is a necessary condition for a pair
of hyperwalks to be executed by a pair of interpretations
I, and I, that differ at only one vertex—such as a pair of
interpretations that demonstrate semantic dependence. A
pair of hyperwalks W and X is reciprocally v-consistent
if

W= Wuu'W, and X = Xjuu"X,

implies that either CON (u, W u) # CON (u, X, u) or that
CON (u, W, u) contains a vertex labeled ‘‘v’’. Intuitively,
if W and X are executed by I, and I, respectively, the
only way that CON(u, W u) = CON(u, X,u) can hold
is if v is the vertex whose interpretation differs between
I, and I, and data flows from v to u via CON(u, W u)
and CON(u, X, u).

Having defined contexts, hyperwalks, consistency, and
reciprocal consistency, and having established their rele-
vance to program execution, it is possible to establish
necessary conditions for semantic dependence in terms of
walks and contexts.

Theorem 6: Let G = (G, £, D, U) be a def/use graph
and u, v € V(G). Then u is semantically dependent on v
iff there exist initial hyperwalks W and X in G such that
each of the following is true:

1) W and X are algorithmically listable; and

2) W and X are consistent and reciprocally v-consis-
tent; and

3) At least one of the following conditions holds:

a) W= W,uW, and X = X, uX,, where u occurs the
same number of times in W, u as in X, u, and where
either CON (u, W,u) #+ CON (u, X,u) or CON(u,
W, u) contains a vertex other than its sink that is
labeled “‘v’’.

b) W contains more occurrences of u than X does,
and either X is infinite or X contains a vertex from
which u is unreachable.

It is interesting to note that these conditions are also
sufficient for semantic dependence [21], although this fact
is not used in proving the results stated in Section V. Con-
dition 1 of Theorem 6, which means that there are some
(possibly nonterminating) algorithms for listing W and X,
is required for proving the sufficiency of the conditions

and u' + u”

'°It can also be shown that every consistent hyperwalk is executed by
some interpretation, using what is essentially a Herbrand interpretation of
a def/use graph.

but not for proving the results of Section V; hence, we do
not discuss it further.

To prove that the conditions of Theorem 6 are neces-
sary for semantic dependence, one lets the hyperwalks W
and X of the theorem be the walks executed by interpre-
tations I, and I, of G, respectively, that, in conjunction
with some input ¢, demonstrate that u is semantically de-
pendent on . Since these walks are executed by I, I,
and d, they must be consistent and reciprocally v-con-
sistent, for the reasons given above; hence W and X sat-
isfy condition 2 of Theorem 6. Note that condition 3 of
Theorem 6 mirrors condition 2 of the definition of seman-
tic dependence; however, the former condition is syntac-
tic, whereas the latter is semantic. Let P, = (G, I,) and
P, = (G, L).

Suppose that condition 2(a) of the definition of seman-
tic dependence is satisfied:

There is some i = 1 such that 3Cp, (1, d)(i) and
3Cp,(u, d) (i) are defined and unequal.

Let W = W,uW, and X = X, uX,, where u occurs exactly
i times in W, u and X, u. Suppose v is not a vertex label
in CON(u, W,u). Intuitively, then, data does not flow
along W, from v to the last occurrence of u in W, u. Since
v is the only vertex whose interpretation changes between
I, and I,, and since the interpretation of the vertex labels
of CON(u, W,u) and CON (u, X,u) determines the val-
ues of the variables in U(u«) when W;u and X, u, respec-
tively, are executed for a particular input, CON (u, W,u)
CON(u, X,u). Otherwise, we would have JCp (u,
d)(i) = Xp,(u,d)(i). If v is a vertex label in CON(u,
W,u), then it is possible that CON(u, W u) = CON(u,
X, u), since different data could flow from v to u via this
context under I, than under I,. Thus, if condition 2(a) of
the definition of semantic dependence is satisfied then
condition 3(a) of Theorem 6 is also satisfied.

On the other hand, suppose that condition 2(b) of the
definition of semantic dependence is satisfied:

3Cp, (u, d) is longer than JCp,(u, d), and either
Cp,(d) is infinite or it visits a vertex from which u
is unreachable.

Then clearly condition 3(b) of Theorem 6 is satisfied.

Having established Theorem 6, we show that various
subconditions of condition 3 of the theorem, taken to-
gether with condition 2, imply various types of syntactic
dependence. We assume henceforth that condition 2 is
satisfied by W and X.

It is easy to see that if condition 3(a) of Theorem 6 is
satisfied by W and X because CON(u, W u) contains a
vertex other than its sink that is labeled ‘»’’, then u is
data flow dependent on v. This is because the head of an
arc of CON (u, W, u) is directly data flow dependent on
its tail, as is clear from the definition of a context. The
other subcondition of 3(a), CON(u, W,u) + CON(u,
X,u), implies that u is strongly syntactically dependent
on v, but this is more difficult to see. The proof of this

PODGURSKI AND CLARKE: FORMAL MODEL OF PROGRAM DEPENDENCES 977

fact is a pivotal element in establishing the results of Sec-
tion V, since a generalization of condition 3(a) arises in
considering condition 3(b).

Let us refer to the subcondition CON(u, Wyu) #
CON (u, X,u) of condition 3(a) in Theorem 6 as subcon-
dition 3(a)’. The first step in showing that 3(a)’ implies
that u is strongly syntactically dependent on v is to show
that 3(a)’ implies that some vertex-label of CON (u, W, u)
or CON(u, X,u) is strongly control dependent on a de-
cision vertex d having kth occurrences in Wyu and X, u
that are followed by different successors. Intuitively, d
makes branches that cause CON(u, W u) and CON(u,
X, u) to differ. Since u is data flow dependent on the ver-
tex labels of its contexts, u is strongly syntactically de-
pendent on d. The existence of d is established by Lemma
1 below. Since W and X are reciprocally v-consistent, it
follows either that d is data flow dependent on v or that
the initial walks W, | d and X, ,d of the lemma, which are
shorter than W, u and X, u, themselves satisfy the hypoth-
esis of the lemma. Since strong syntactic dependence is a
transitive relation, it is evident that an inductive proof that
u is strongly syntactically dependent on v can be framed
using the lemma. The formalization of this proof is rela-
tively straightforward; hence we focus on the lemma and
its proof.

Lemma 1: Let G = (G, L, D, U) be a def/use graph
with u € V(G), and let W,u and X, u be initial walks in
G containing the same number of occurrences of u. If
CON(u, Wu) + CON(u, X,u), then there is a vertex d
€ V(G) such that a vertex-label of CON(u, W u) or
CON (u, X, u) is strongly control dependent on d and such
that Wiu = W, dd'W, , and X,u = X, ,dd"X, ,, where
d’ # d" and d occurs equally often in W, ,d and X, ,d.

This lemma is proved by assuming that no such vertex
d exists, and then showing that this implies that W,u and
X, u have a special structure which precludes u having dif-
ferent contexts with respect to them, which would of
course be a contradiction. More precisely, we show, by
induction on the length of the longer of W, u and X, u, that
if there is no such vertex d then there are walks R,, R,
e VRS, Sy, L S and Ty, Ty, - - -, T, satistying
each of the following conditions:

l) W,u = R()S]R]SQRQ s S,IR,,,

2) Xlu = ROT|R| Tsz A T"R".

3) Fori =1, 2, - - -, n, R, begins with ifd(r;_),
where r;_, is the last vertex of R, _,, and ifd(r;_,) does
not occur in S; or T;.

4y Fori =1, 2, +++ , n, the first vertex of S;R, is
different from the first vertex of T;R;.

It follows that fori = 1,2, - -+ | n, §; and T, consist of
vertices that are strongly control dependent on r; _;. It is
not difficult to show, using induction and the transitivity
of strong control dependence, that if a vertex label of
CON(u, W yu) or CON(u, X,u) occurred in S, or 7;, then
we could let d in the statement of Lemma | be some r;,
where j < i, to obtain a contradiction. Intuitively, this
means that the only part of W,u that is relevant to the

structure of CON (u, W u), namely the subsequence Ry,
R,, - -+ , R,, is identical to the only part of X, u that is
relevant to the structure of CON(u, X,u). This implies
that the two contexts are identical—which we show for-
mally by induction on the length of W,u, exploiting the
inductive definition of a context. Since this contradicts the
hypothesis of the lemma, we conclude the lemma is true.
This concludes our sketch of the proof that condition 3(a)
of Theorem 6 implies that u is strongly syntactically de-
pendent on v.

Suppose that condition 3(b) of Theorem 6 is satisfied
by W and X. This condition is the disjunction of two sub-
conditions, which we will denote 3(b)’ and 3(b)". Sub-
condition 3(b)’ is

W contains more occurrences of u than X does, and
X is infinite

while subcondition 3(b)" is

W contains more occurrences of u than X does, and
X contains a vertex from which u is unreachable.

We show that 3(b)’ implies, in conjunction with condition
2 of Theorem 6, that u is weakly syntactically dependent
on v (it may or may not be strongly syntactically depen-
dent on v) and that 3(b)” implies that u is strongly syn-
tactically dependent on v. We now sketch these proofs,
beginning with that of the second result.

Suppose that subcondition 3(b)” is satisfied. To deal
with this case, we prove Lemma 2 below. Note that if we
identify the vertex u of 3(b)” with the vertex w of the
lemma and let the walks Yw and Zx of the lemma be ap-
propriate prefixes of W and X, respectively, then the
lemma applies. The reciprocal v-consistency of W and X
implies that either the vertex d of the lemma is data flow
dependent on », which implies that u is strongly syntact-
ically dependent on v, or the walks Y,d and Z,d of the
lemma satisfy the hypothesis of Lemma 1. Since Y, d and
Z,d are shorter than Yw and Zx, respectively, this allows
us to frame an inductive proof that u is strongly syntact-
ically dependent on v, similar to that discussed with re-
gard to subcondition 3(a)’ of Theorem 6.

Lemma 2: Let G be a control flow graph, w, x € V(G),
and Yw and Zx walks in G. If 1) w is unreachable from x,
2) Yw and Zx begin with the same vertex, and 3) w has
more occurrences in Yw than in Zx, then there is a vertex
d such that a) w is strongly control dependent on d, b) Yw
= Y,dd’Y,, and ¢) Zx = Z,dd"Z,, where d' # d" and d
has the number of occurrences in Y,d as in Z,d.

The proof of this lemma implicitly demonstrates that if
no such vertex d exists, then Yw and Zw have a special
structure similar to that discussed above in regard to the
proof of Lemma 1, although the proof of Lemma 2 pro-
ceeds directly instead of by contradiction. It is shown that
if R is the longest common prefix of Yw and Zx then Yw
= RY'w and Zx = RZ'x, where the first vertex of Y'w is
different from that of Z'x. If w is strongly control depen-
dent on the last vertex r of R then we may let d = r.

978 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

Suppose that w is not strongly control dependent on r. It
is shown that in the case ifd(r), the immediate forward
dominator of r, occurs in both Y'w and Z'x. Thus, Y'w =
Y,ifd(r)Y, and Z'x = Z,ifd(r)Z,, where ifd(r) does not
occur in Y; or Z,. Each vertex in Y, and Z, is strongly
control dependent on r, so w cannot occur in either walk.
This implies that there are more occurrences of w in
ifd(r)Y, than in ifd(r)Z,. Since these walks satisfy the
hypothesis of Lemma 2 and are shorter than Yw and Zx,
respectively, we may frame an inductive proof of the
lemma. By assuming the truth of the lemma for ifd(r) Y,
and ifd(r)Z,, we conclude that ifd(r)Y, = §,dd 'S, and
ifd(r)Z, = T,dd "T,, where d + d" and d has the same
number of occurrences in S,d as in T)d. The vertex d
must also have the same number of occurrences RY, S,d
as in RZ, T, d—for otherwise d occurs in Y, or Z, and so
is strongly control dependent on r, which, by the transi-
tivity of strong control dependence, implies that w is
strongly control dependent on r.

To demonstrate the implications of subcondition 3(b)’
of Theorem 6 it is necessary to introduce a new type of
control dependence, called ‘‘exit dependence.’’ The exit
dependence relation represents the potential ability of a
loop exit condition to determine whether a statement out-
side the loop is executed, by determining whether the loop
terminates.

Definition 13: Let G be a control flow graph, and let
u, v e V(G). Vertex u is exit dependent on vertex v iff
there is a cycle C and a walk vWu in G such that v occurs
in C and such that Wu is vertex-disjoint from C.

For example, in the def/use graph of Fig. 2, vertex v,
is exit dependent on vertex v, as can be seen by letting
u=v;, 0 =10; C=uvv,050;3, and vWu = v3v407.

In [21], it is shown that the weak control dependence
relation of a control flow graph G is the transitive closure
of the union of the exit dependence and strong control
dependence relations of G. That is, the existence of a
chain of exit dependences and strong control dependences
from u to v indicates u is weakly control dependent on v,
and conversely if u is weakly control dependent on v then
such a chain exists. We very briefly describe the basis for
this result. A preliminary step in establishing the result is
showing that the strong control dependence relation is the
transitive closure of the ‘‘direct strong control depen-
dence’’ relation.

Definition 14: Let G be a control flow graph, and let
u, v € V(G). Vertex u is directly strongly control depen-
dent on vertex v iff v has successors v’ and v” such that
u forward dominates v’ but u does not forward dominate
v".

The similarity between this definition and that of direct
weak control dependence is obvious, as is the similarly
between the definition of weak control dependence and
the characterization of strong control dependence in terms
of direct strong control dependence. The difference be-
tween direct weak and direct strong control dependence,
and therefore between weak and strong control depen-
dence, is that u can be directly weakly control dependent

on v because there are infinite walks not containing u that
begin with one successor of v but no such walks that be-
gin with the other successor. It can be shown that any
such infinite walk contains a cycle that demonstrates that
u is exit dependent on either v or some vertex strongly
control dependent on v.

Suppose now that subcondition 3(b)’ of Theorem 6 is
satisfied by W and X, along with condition 2 of that theo-
rem. The following lemma, which is proved by an argu-
ment similar to those used to establish Lemmas 1 and 2,
shows that subcondition 3(b)’ reduces to condition 3(a) of
Theorem 6.

Lemma 3: Let G be a control flow graph with w €
V(G), and let Yw and Z be hyperwalks in G such that Yw
and Z begin with the same vertex, w has more occurrences
in Yw than in Z, Z is infinite, and w is reachable from
every vertex in Z. Then there is a vertex d € V(G) such
that each of the following is true:

1) Either w is strongly control dependent on d, w is exit
dependent on d, or there is a vertex x € V(G) such that
x is strongly control dependent on 4 and such that w is
exit dependent on x.

2) Yw = Y,dd'Y, and Z = Z,dd "Z,, where d’ # d"
and d has the same number of occurrences in Y,d as in
Z\d.

Because the weak syntactic dependence relation for G
is the transitive closure of the union of the exit depen-
dence and strong control dependence relations for G, the
vertex w of the lemma is weakly control dependent on the
vertex d whose existence the lemma asserts. Suppose that
w is identified with the vertex u of subcondition 3(b)’, and
that the lemma is applied to Z = X and a prefix of Yw of
W that contains more occurrences of u than X does. Then
either the vertex d whose existence the lemma asserts is
data flow dependent on v and therefore u is weakly syn-
tactically dependent on v, or the walks Y,d and Z, d sat-
isfy the hypothesis of Lemma 1. Thus, using the fact that
strong syntactic dependence is transitive and implies weak
syntactic dependence, we can frame an inductive proof
that u is weakly syntactically dependent on v.

REFERENCES

(1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Anal-
ysis of Computer Algorithms. Reading, MA: Addison-Wesley, 1974.

{2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Reading, MA: Addison-Wesley, 1986.

[3] J. F. Bergeretti and B. A. Carré, ‘‘Information-flow and data-flow
analysis of while-programs,”’ ACM Trans. Program. Lang. Syst., vol.
7, no. 1, pp. 37-61, Jan. 1985.

{4] R. Cartwright and M. Felleisen, ‘*The semantics of program depen-
dence,”” in Proc. SIGPLAN '89 Conf. Programming Language De-
sign and Implementation, ACM, New York, 1989, pp. 13-27.

{5] L. A. Clarke and D. J. Richardson, **Symbolic evaluation methods—
Implementations and applications,”” in Computer Program Testing,
B. Chandrasekaran and S. Radicchi, Eds. Amsterdam, The Neth-
erlands: North-Holland, 1981, pp. 65-102.

{6] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and
A. J. Offutt, **An extended overview of the Mothra software testing
environment,’” in Proc. Second Workshop Software Testing, Verifi-
cation and Analysis, Banff, Alberta, July 1988, pp. 142-151.

[71 D. E. Denning and P. J. Denning, *‘Certification of programs for
secure information flow.'” Commun. ACM, vol. 20, no. 7. pp. 504-
513, July 1977.

PODGURSKI AND CLARKE: FORMAL MODEL OF PROGRAM DEPENDENCES 979

18]

[9]

{10}

1]

(12}
(13]

(14]

{15)

(16]

(171
[18]
[19]

120]

[21]

(22]

23

[24]

J. Ferrante. K. J. Ottenstein, and J. D. Warren. “*The program de-
pendence graph and its use in optimization.”” ACM Trans. Program.
Lang. Syst.. vol. 9. no. 5. pp. 319-349. July 1987.

L. D. Fosdick and L. J. Osterweil. “"Data flow analysis in software
reliability.”” ACM Comput. Surveys. vol. 8. no. 3. pp. 306-330. Sept.
1976.

P. G. Frankl. **The use of data flow information for the selection and
evaluation of software test data,” Doctoral dissertation, New York
Univ., New York. 1987.

S. A. Greibach, Theory of Program Structures: Schemes. Semantics.
Verification. Berlin: Springer-Verlag. 1975.

E. Harary, Graph Theory. Reading. MA: Addison-Wesley. 1969.
S. Horwitz, J. Prins. and T. Reps. ~*On the adequacy of program
dependence graphs for representing programs.’’ in Proc. Fifteenth
ACM Symp. Principles of Programming Languages. ACM, New
York, 1988. pp. 146-157.

——. “‘Integrating non-interfering versions of programs.’’ in Proc.
Fifteenth ACM Symp. Principles of Programming Languages. ACM.
New York, 1988. pp. 133-145.

B. Korel. "*The program dependence graph in static program test-
ing."" Inform. Processing Lett.. vol. 24, pp. 103-108. Jan. 1987.

J. W. Laski and B. Korel. "*A data flow oriented program testing
strategy.’’ IEEE Trans. Software Eng.. vol. SE-9. no. 3. pp. 347-
354. May 1983.

7. Manna, Mathematical Theory of Computation. New York:
McGraw-Hill. 1974.

L. J. Morell, “*A theory of error-based testing.”’ Doctoral disserta-
tion, Univ. Maryland, College Park. 1984.

S. C. Ntafos. *On required element testing.”” [EEE Trans. Software
Eng.. vol. SE-10, no. 6, pp. 795-803, Nov. 1984.

D. A. Padua and M. J. Wolfe. ~*Advanced compiler optimizations
for supercomputers.”” Commun. ACM. vol. 29. no. 12, pp. 1184-
1201. Dec. 1986.

A. Podgurski, “*The significance of program dependences for soft-
ware testing, debugging. and maintenance.”” Doctoral dissertation,
Dep. Comput. Inform. Sci.. Univ. Massachusetts. Amherst, 1989.
S. Rapps and E. J. Weyuker. “*Selecting software test data using data
flow information.”” IEEE Trans. Software Eng.. vol. SE-11. no. 4,
pp. 367-375. Apr. 1985.

T. Reps and W. Yang. “"The semantics of program slicing,”” Univ.
of Wisconsin-Madison, Tech. Rep.. 1989.

D. J. Richardson and M. C. Thompson, **The RELAY model of error
detection and its application.”” in Proc. Second Workshop Software
Testing. Verification. and Analysis. IEEE Computer Society. Los An-
geles, CA, 1988.

[25] R. P. Selke. A rewriting semantics for program dependence graphs.”
in Conf. Rec. 16th ACM Symp. Principles of Programming Lan-
guages. ACM. New York. 1989, pp. 12-24.

[26] M. Weiser, *"Program slices: Formal. psychological. and practical
investigations of an automatic program abstraction method.”” Doc-
toral dissertation. Univ. Michigan, Ann Arbor, 1979.

[27) —. **Programmers use slices when debugging.”” Commun. ACM.
vol. 25. no. 7. pp. 446-452, July 1982.
28] —. **Program slicing.” IEEE Trans. Software Eng.. vol. SE-10.

no. 4. pp. 352-356, July 1984.

Andy Podgurski received the M.S. and Ph.D.
degrees in computer science from the University
of Massachusetts at Amherst in 1985 and 1989,
respectively.

He is currently an Assistant Professor at the
Department of Computer Engineering and Sci-
ence, Case Western Reserve University. Cleve-
land. OH. His research interests include software
engineering. software validation, programming
languages and translators. and the automated se-
mantic analysis of programs.

Lori A. Clarke received the B.A. degree in math-
ematics from the University of Rochester, Roch-
ester. NY. and the Ph.D. degree in computer sci-
ence from the University of Colorado, Boulder.

She worked as a programmer for the University
of Rochester. School of Medicine, and for the Na-
tional Center for Atmospheric Research. Since
1975 she has been on the facuity in the Depart-
ment of Computer and Information Science at the
University of Massachusetts, where she currently
holds the rank of professor. She is Director of the
University's Software Development Laboratory. which is exploring a range
of software engineering issues. Her primary research areas are software
testing and validation and software development environments.

Dr. Clarke is a former IEEE Distinguished Visitor and ACM National
Lecturer. Currently she is Vice-Chair of SIGSOFT. a member of the IEEE
Technical Committee on Software Engineering, and an Associate Editor of
TOPLAS.

