
Model driven paradigm

• a) The system is defined as an executable specification which
is an object-oriented analysis model.

• b) The system is validated at the analysis model level.
• c) A software and execution architecture is defined as a set of

class templates in an object-oriented programming system.
• d) The executable system is realized by compilation of the

validated analysis model to the software execution architecture.

Why

Using models to design complex systems is de
rigeur in traditional engineering disciplines. No one
would imagine constructing an edifice as complex
as a bridge or an automobile without first
constructing a variety of specialized system models.
from using models and modeling techniques.
Models help us understand a complex problem and
its potential solutions through abstraction.
Therefore, it seems obvious that software systems,
which are often among the most complex
engineering systems, can benefit greatly

Why

MDD’s defining characteristic is that software
development’s primary focus and products are
models rather than computer programs.The
major advantage of this is that we express
models using concepts that are much less
bound to the underlying implementation
technology and are much closer to the problem
domain relative to most popular programming
languages. This makes the models easier to
specify, understand, verify and maintain.

Requirement – code generation

If models are merely documentation, they are
of limited value, because documentation all
too easily diverges from reality. A key premise
behind MDD that programs are automatically
generated from their corresponding models.

Therefore
Models must be executable.

Further
The resulting executable must be reasonably competitive
wrt resource consumption.

Classes, Attributes and Relationships

Model Specification – Structure + Behavior

Structure – Classes + Relationships/Associations -> Information Model
Classes – entities in the application
Attributes – properties of classes
Associations/Relationships among classes – “has_a”,”is_a”, etc.
Constraints – quantification of relationships among attributes, etc.

Behavior – Transitions among states of entities -> State Model
States – defined by assignments of values to attributes
Transitions – governed by state machines
Events – cause transitions

Analysis process

1. Define Information Model
1. Define classes and select attributes
2. Define associations/relationships among classes
3. Construct associative classes
4. Iterate steps 1,2 & 3 until consistent

2. Construct State Models
1. Construct state model for each object with multiple states
2. For each state model, define actions effecting state changes

3. Iterate until consistent

Development of Information Model

Methods for recognizing classes, attributes and relationships
1. Linguistic analysis of requirements specification
2. Operational analysis of system behavior (OBA, Use Cases)

Apply both methods and compare resulting information model

Linguistic Analysis Method

1. Write requirements specification
2. Generate Class Diagram (except for state models) from

requirements specification
3. Construct Use Cases from requirements
4. Generate state model from Information Model and Use Cases

Information Models via Semantic Analysis

1. Identify the classes. The classes derive from noun phrases. Go
through the requirements statement and pick out all of the
important nouns. Categorize these nouns into tangible items or
devices, physical classes, roles, interactions, instance
specifications, etc.. Decide which ones are significant and which
ones are redundant and select classes.

2. Define attributes for each object. Attributes come from possessive
phrases, as descriptions of the nouns. Recall that the attributes
define the identity and the state of an object.

3. Define relationships. Relationships can be derived by looking at the
verb phrases of the requirements analysis. Verb phrases include
such things as the PC board “is made up of” chips and connectors,
etc..

4. Specialize and generalize classes into subtypes and supertypes
and create associations, create object definitions for m to n
associations or dynamic associations which fall under the heading
of events, interactions which have to be remembered.

Classes candidates

Tangible entity or device – airplane
Role – professor, student
Incident or persistent event – car registration
Interaction – contract terms
Specification – sets of entities with related characteristics
Organization - university

Classes candidates

Tangible entity or device – airplane
Role – professor, student
Incident or persistent event – car registration
Interaction – contract terms
Specification – sets of entities with related characteristics
Organization - university
External systems – sensor drives

Attributes and Attribute Types

Naming – unique identifier for instances of object types.
may be single or multiple attributes

Descriptive – intrinsic properties of classes – color, size, etc.
Referential – specifies relationships, identifies partners in “has_a”

relationships
State or Status – values define current state of object.

may be changed during lifetime of object instance.
status – on/off, position of robot arm, etc.

Test planning

Requirements
Specification

Architecting Implementation
Designing Coding

System
Testing

Integration
Testing Unit Testing

System Test
Plan

Integration
Test Plan Unit

Test
Plan

Software
Sys Testing

Software Sys.
Test Plan

	Model driven paradigm
	Why
	Why
	Requirement – code generation
	Classes, Attributes and Relationships
	Analysis process
	Development of Information Model
	Linguistic Analysis Method
	Information Models via Semantic Analysis
	Classes candidates
	Classes candidates
	Attributes and Attribute Types
	Test planning

