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Abstract. This paper proposes a technique to minimize the makespan of DAGs 
under energy constraints on multi-core processors that often need to operate under 
strict energy constraints. Most of the existing work aims to reduce energy subject 
to performance constraints. Thus, our work is in contrast to these techniques, and 
it is useful because one can encounter numerous energy-constraint scenarios in 
real life. The algorithm, named Incremental Static Voltage Adaptation (ISVA), 
uses the Dynamic Voltage Scaling technique and assigns differential voltages to 
each sub-task to minimize energy requirements of an application. Essentially, 
ISVA is a framework, rather than yet another DAG scheduling algorithm, in that 
it can work with any efficient algorithm to generate the initial schedule under no 
energy constraints. Given the initial schedule, ISVA efficiently identifies tasks’ 
relative importance and their liabilities on energy. It then achieves the best possi-
ble new schedule by observing its energy budget. The algorithm marginally  
degrades the schedule length with extensive reduction in energy budgets. 

Keywords: Parallel processing, multi-cores, scheduling, energy. 

1   Introduction 

Multi-core processors are becoming increasingly popular. By integrating several cores 
on a single chip and by running multiple threads in parallel on the same chip, consid-
erable performance gains are expected. However, the lack of generally applicable 
software and tools for allocating tasks to cores remains a key challenge. With an in-
creasing number of cores, multi-core processors are becoming progressively complex 
and heterogeneous in nature. Moreover, aggressive scalability of these architectures 
can lead to significant power and heat dissipation, making the adjustment of the volt-
age and frequency of cores essential considerations in scheduling. For these reasons, 
research is now being done to design energy-aware scheduling algorithms that rely on 
voltage scaling to reduce processors’ power usage.  

In this paper, we address the problem of power-aware scheduling/mapping of tasks 
onto homogeneous processor architectures. The objective is to minimize the energy 
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Fig. 1. Sample task graph with the 
critical path in bold 

consumption and the makespan of complex computationally intensive scientific prob-
lems, subject to energy constraints. Most of the existing work aims to reduce energy 
subject to performance constraints. Thus, our work is in contrast to these techniques, 
and it is useful because one can encounter numerous energy-constraint scenarios in 
real life. Energy-constraints are often the result of limited battery supply in mobile 
environments where multi-core processors are being launched. Moreover, there are 
thermal constraints that can also place a limit on the maximum energy consumption.  

Most energy minimization techniques are based on Dynamic Voltage Scaling 
(DVS) [3]. Specifically, we propose an algorithm by utilizing DVS and evaluate its 
effectiveness. The algorithm, named Incremental Static Voltage Adaptation (ISVA), 
uses the DVS technique and assigns differential voltages to each sub-task to minimize 
energy requirements of an application. Given the initial schedule, ISVA efficiently 
identifies tasks’ relative importance and their liabilities on energy. It then achieves the 
best possible new schedule by observing its energy budget. 

The rest of the paper is organized as follows. In Section 2, we present related work 
on scheduling and energy optimization techniques. In Section 3, we present task and 
energy models as well as existing scheduling algorithms. Section 4 describes the pro-
posed energy constrained scheduling methodology. Section 5 discusses the testing 
methodology. In Section 6 we present our experimental results and give some con-
cluding remarks in Section 7. 

2   Related Work 

Static scheduling of a parallel application on a multiprocessor system for minimizing 
the total completion time (or meeting deadlines) is a well-known problem that is 
known to be NP-complete. Researchers have devised a plethora of heuristics using a 
wide spectrum of techniques, including branch-and-bound, integer-programming, 
searching, graph-theory, randomization, genetic algorithms, and evolutionary methods 
[10]. Furthermore, there has been recent 
research on DVS scheduling algorithms 
for assigning tasks on parallel processors 
[1, 5, 16], but mostly for real-time sys-
tems where performance constraints are 
given. Recently, several DVS-based al-
gorithms for slack allocation have been 
proposed for independent tasks and 
DAGs in a multiprocessor system [6, 10, 
12, 14]. We have proposed static DVS 
scheduling algorithms for slack alloca-
tion on parallel machines and multi-core 
processors [7], outperforming other tech-
niques, and in terms of time and memory 
requirements over Linear Programming 
based formulations for minimizing the 
energy presented in [15]. A few runtime 
approaches for slack allocation have 
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been studied in the literature for precedence-free tasks and for tasks with precedence 
relationships in a real-time system [1, 5, 10, 12, 16]. 

However, this work differs from existing research in that we approach the issue of 
energy efficiency from a different perspective. We consider an initial valid schedule 
and an energy constraint, and then optimize to reduce the increase in schedule length 
given that we have a limit on energy. Such a scenario is useful when one is working 
under energy budgets. 

3   Task and Energy Model 

The task model is a directed, acyclic graph (DAG) in which the nodes represent tasks, 
and the edges represent dependencies [9]. Tasks which have no predecessors are 
called entry nodes, and those which have no successors are called exit nodes. Addi-
tionally, each task has an associated computation cost, which is an estimate of the 
amount of time required to complete the task. There is also a communication cost for 
tasks with dependencies, which represents an estimate of the amount of time required 
for a task to send the results of its computation to a successor if the two tasks are 
scheduled to separate processors. In our model, we make the common assumption that 
when a task and its successor are scheduled to the same processor the communication 
cost becomes zero. Refer to Figure 1 for a sample task graph. Each task has a specific 
level in the graph, which is the maximum number of nodes from it to an entry node. 
Entry nodes have level 0. In the sample task graph in Figure 1, n4 is at level 1, and n9 
is at level 3. The critical path of a task graph is the longest path from an entry node to 
an exit node, including communication costs. In Figure 1 the critical path (in bold) 
has length 23 and consists of nodes n1, n7, and n9. 

The general problem of finding an optimal schedule is NP-complete, except for a 
few special cases [9]. Although several algorithms that create initial schedules based 
on task graphs have been proposed, this paper will focus on two of them: the tradi-
tional Level by Level algorithm (LBL) described later and the Dynamic Critical Path 
(DCP) algorithm described in [8]. A summary of these algorithms is presented below.  

Dynamic voltage scaling (DVS) technique, available on most current and emerging 
processors, reduces the energy dissipation by dynamically scaling the supply voltage 
and the clock frequency of processing cores [3]. Mathematically, energy is simply a 

product of power and time. Power dissipation, Pd, is represented by fVCP ddefd ⋅⋅= 2
, 

where Cef is the switched capacitance, Vdd is the supply voltage, and f is the operating 
frequency. The relationship between the supply voltage and the frequency is repre-

sented by ( ) ddtdd VVVkf /2−⋅= , where k is a constant of the circuit and Vt is the 
threshold voltage. The energy consumed to execute task Ti, Ei, is expressed by 

iddefi cVCE ⋅⋅= 2
, where ci is the number of cycles to execute the task. The reduced 

supply voltage can decrease the processor speed in a linear manner, consequently re-
ducing the energy requirement in a quadratic fashion [1].   

3.1   LBL Algorithm 

The LBL algorithm assigns tasks to processors level by level, so that all predecessors of 
a task have already been assigned to a processor when the task is being scheduled. If a 
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task has no predecessors, it will be scheduled to the processor that finishes first. If in-
stead a task has one or more predecessors, then the critical predecessor is identified as 
the one with the maximum value of end time + communication cost, referred to later as 
the latest start time. If the critical predecessor is scheduled to the processor that finishes 
first, then the task is scheduled to that processor. Otherwise, two processors are consid-
ered for scheduling the task: the one that finishes first and the one containing the critical 
predecessor. The potential start time of the task is calculated for each of the two (taking 
into account end times and communication costs for all predecessors), and the task is 
scheduled to the processor which allows for an earlier start time. 

The advantage of LBL is its simplicity and speed. It requires O(v(v + p)) time to 
complete, where v is the number of tasks, and p is the number of processors. This is 
because finding the critical predecessor has complexity O(v) in a graph with v nodes, 
and locating the first ending processor has complexity O(p), where p is the number of 
processors. In comparison, some similar algorithms described in [9] have complexi-
ties O(v(v + e)) or O(e(v + e)), and DCP has complexity O(v3). The disadvantage is 
that the schedules generated by LBL use a simple heuristic that yields suboptimal 
schedules. The pseudo-code for the LBL algorithm is shown in Figure 2. 

  

Fig. 2. Pseudo code for the LBL scheduling algorithm 

3.2   DCP Algorithm 

Rather than scheduling tasks level by level, DCP schedules tasks in their order of im-
portance, which is determined by calculating the dynamic critical path. Furthermore, 
tasks’ start times are not fixed until all tasks are scheduled, which allows for more 
flexibility in determining start times. 

First, the absolute earliest start time (AEST) and the absolute latest start time (ALST) 
are calculated for each task. These values take into account the start and end times of 
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predecessors and successors and also the communication costs if tasks are scheduled to 
different processors. Tasks that are on the dynamic critical path have AEST = ALST. 
Such tasks are scheduled first, with priority going to those that have the smallest 
AESTs. AEST and ALST values are recomputed after each task is scheduled. 

If a task is on the dynamic critical path, then the only processors considered as 
candidates for scheduling the task are those containing its predecessors and successors 
and one additional processor. Otherwise, if the task is not on the dynamic critical 
path, the only processors considered are those that already have tasks scheduled on 
them. Each processor in the list of candidates is considered to determine whether or 
not there is room for the task. If there is space, the task is tentatively scheduled there, 
and then the task’s critical child is determined. This is the successor with the smallest 
difference between ALST and AEST (i.e., closest to the dynamic critical path). Then, 
a composite AEST is computed, which is the sum of the task’s AEST on the candi-
date processor and the critical child’s AEST on the same processor. The task will be 
scheduled to the processor which offers the best (i.e., the lowest) composite AEST. 
According to [8], the complexity of the DCP algorithm is O(v3). The advantage is that 
it produces much shorter schedules than many other scheduling algorithms. The cor-
responding pseudo-code is illustrated in Figure 3. 

 

 
Fig. 3. Pseudo code for DCP algorithm 

4   ISVA Techniques 

The Incremental Static Voltage Adaption algorithm (ISVA) is proposed as an energy-
aware scheduling technique. The goal is to minimize as much as possible the schedule 
length degradation caused by having to execute tasks with a reduced energy budget. 
Dynamic voltage scaling is used to adjust the voltage levels at which individual tasks 
are executed.  

The algorithm initially takes a DAG, the number of processors, the available voltage 
levels, and an energy budget. An initial schedule is created at the lowest voltage using a 
scheduling algorithm such as LBL or DCP. The energy consumed is computed and, if 
the energy budget has not been exceeded, the algorithm proceeds. The processor that 
finishes last in the generated schedule is identified, we call this processor the critical 
processor. A list L is constructed with the tasks in the critical processor. For each task 
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on list L, a list of parent tasks is constructed, which includes the task’s predecessor. If a 
task has multiple predecessors, only the one with the latest end time is added to the list, 
we call this the immediate predecessor task. Once we have finished processing all tasks 
in list L, we move the contents of L to the beginning of list E and store the predecessor 
tasks onto list L. We repeat this process of processing tasks on list L until no tasks are 
available in L. This will happen when we reach the entry nodes of the DAG. From the 
list E of parent tasks, a task is selected which has the lowest voltage level and is as high 
as possible in the graph. If the selected task is not running at the maximum voltage 
level, then its voltage level is incremented. The task incremented is called the candidate 
task. If there is no candidate task for voltage adjustment, the algorithm will select the 
earliest starting task that is at the lowest voltage level from within all processors as the 
candidate task and adjust this one. The algorithm eventually stops when any task volt-
age adjustment would cause us to exceed the energy budget.  The corresponding 
pseudo-code is illustrated in Figure 4. 

 

Fig. 4. Pseudo code for ISVA algorithm 
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5   Testing Methodology 

In order to test the ISVA algorithm, we propose a comparison of schedule length in-
crease to energy budget used for a series of DAGs. The energy budgets used for the 
test ranged from 40% - 80% and the schedule of tasks to processors was generated by 
using the LBL and DCP algorithms. The ISVA algorithm was used in order to iden-
tify the order and tasks whose voltage levels would be adjusted. The method chosen 
to test this algorithm was to generate several task graphs based on a series of input 
parameters and to compare the results generated by using different scheduling algo-
rithms, different voltage levels, and different energy budgets. 

5.1   Workload Generation 

In generating task graphs, there are two primary aspects to be considered, namely: the 
characteristics relevant to the graphs and the method for ensuring that graphs are 
acyclic. The first parameter is the number of nodes in the graph. It is important to test 
the algorithm on a wide range of graph sizes to ensure that it is scalable. Another im-
portant variable is the communication to computation ratio (CCR). Graphs which are 
communication-intensive will tend to have longer schedules because either processors 
will have longer idle time slots waiting for communication to complete or more tasks 
will be scheduled to a single processor in an attempt to avoid creating idle time slots. 

The branching factor is the average number of successors per node. This value re-
flects the number of edges in the graph relative to the number of nodes. Graphs with 
large numbers of edges can be more limited in terms of the order in which nodes are 
scheduled, and this reduction in flexibility could result in an increase in the schedule 
length. The overall “shape” of the graph is described by α. For graphs with α = 1.0, 
the shape will be approximately “square.” That is, the graph will have √v levels and 
√v nodes per level, where v is the number of nodes. This concept of α is described in 
[8]. In general, the number of levels in the graph is equal to α√v. For smaller values of 
α, the graph will have fewer levels, which will mean that more tasks may be executed 
in parallel, allowing for shorter schedules. 

In addition to variables related to the graphs generated, there are certain parameters 
describing the hardware that could be used, and these parameters should also be 
tested. One of these is the number of processors (cores) used. Ideally, as the number 
of processors increases, the schedule length will decrease because more tasks will be 
executed simultaneously. The performance of a scheduling algorithm should scale 
with the number of processors. The final variable considered in these tests is the num-
ber of voltage levels available to the processors. The question is whether or not 
schedule length varies when processors have several voltage levels to choose from. 

When one generates task graphs randomly, it is vital that graphs remain acyclic; 
otherwise, it will be impossible to honor the dependencies, and the algorithms will 
probably not complete as expected. In these tests, the graph generator was given four 
parameters: number of nodes, CCR, branching factor, and α. The number of levels 
was calculated first (using α), and a random number of nodes was chosen for each 
level, so that the total number of nodes was equal to that specified. Next, nodes were 
each assigned an identification number in ascending order by level. Thus, all nodes on 
the same level have consecutive IDs, and nodes with higher level numbers (closer to 
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the exit nodes) have larger IDs than nodes near the top of the graph (with lower level 
numbers). With this structure, maintaining an acyclic graph is simple: a node may not 
have a successor with ID less than its own ID or that is on the same level that it is. 

5.2   Variable Values Used in Testing 

In choosing the ranges of values to test, the goal is to try as wide a range as possible; 
however, time limitations constrained the addition of more values. A compromise has 
to be made between choosing several values and being able to complete the tests in a 
reasonable amount of time. 

The ranges of values that are used for the graph variables are as follows: Number 
of nodes = {50, 100, 150}; Branching factor = {4}; CCR = {0.1, 1.0, 10.0}; α = {2.0}. 
The ranges of values that are used for the system variables are as follows: Number of 
voltage levels = {2, 3, 4, 5} and Number of processors = {Unbounded}. 

The actual voltage levels ranged from 2 to 8V, and the value for each correspond-
ing level was calculated based on how many voltage levels are being used. For exam-
ple, with 2 voltage levels, we use {2V, 8V}, with 3 voltage levels, we use {2V, 5V, 
8V}, and so on. The experiments were run on a 2.4 GHz PC. 

6   Experimental Results 

The results collected indicate that on average, running ISVA on DCP results in less 
schedule length degradation when compared to ISVA on LBL. Overall, using DCP as 
the scheduling algorithm resulted in 3-6% smaller schedules than using LBL. As ex-
pected, greater energy budgets results in shorter schedule length degradation when 
compared to lower energy budgets. Results show that operating at lower energy budg-
ets has a small impact on schedule length degradation. For example, while an 80% 
energy budget produces a 20% schedule degradation, operating at half (40%) energy 
budget results in roughly an additional 10% in degradation increase. This can be ex-
plained from the linear relationship between energy and time, and the quadratic rela-
tionship between voltage level and energy.  
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Fig. 5. Overall Schedule Length Degradation for ISVA on LBL and ISVA on DCP 
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Running at higher voltage levels increases power consumption quadratically but 
produces only a linear improvement in execution time. Results for various energy 
budgets are illustrated in Figure 5 with details of different energy budgets applied to 
task sizes of 50, 100, and 150 shown in Figure 6. 

Furthermore, we observed no significant correlation between the number of volt-
age levels and the schedule length increase. However, operating with 4 voltage levels 
created significantly different results from the other configurations.  Resulting sched-
ule length increases using DCP and LBL variations of ISVA are shown with 2, 3, 4, 
and 5 available voltage levels in Figure 7.   

As for the number of processors used by both algorithms, we noticed that ISVA on 
DCP used significantly less processors than ISVA on LBL and achieved better results. 
This is illustrated in Figure 8. 
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Fig. 6. Schedule length degradation of 50, 100, and 150 tasks with 80% energy 
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Fig. 7. Schedule length increase by number of available voltage levels 

Finally, we analyzed the effect of CCR on schedule length degradation. As illus-
trated in Figure 9, the schedule length degradation was inversely proportional to the 
CCR value. The reason for this is that large CCR values tend to cause any schedule to  
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Average Processors Used
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Fig. 8. Average number of processors used 

 

be longer because there are large idle time slots for communication costs and larger 
numbers of tasks clustered on a single processor. This leaves more room for voltages 
to decrease, causing individual tasks to execute more slowly, without causing an 
overall increase in schedule length. In contrast, schedules that have lower communi-
cation costs are more easily parallelizable in the sense that tasks will require very  
little additional time to complete when they are on different processors than their 
predecessors. Such graphs will be more prone to increases in schedule length when 
task execution time increases, as tasks are assigned to lower voltage levels. 
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Fig. 9. Schedule length increase by communication to computation ratio 

7   Future Research and Conclusions 

Clearly, the ideal energy-aware algorithm would allow for reduced energy consump-
tion while maintaining or only slightly increasing schedule length. Although this may 
seem like a goal unlikely to be achieved, there are some ways in which this algorithm 
might be improved. First, the algorithm works by choosing a task, incrementing its 
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voltage level, and then rescheduling all tasks. However, task scheduling tends to be a 
complex operation. Although it would not reduce the length of the schedule produced, 
a significant amount of computation time could be saved if several tasks were ad-
justed before rescheduling. Another possibility is to exploit idle time slots. Tasks 
whose execution is followed by an idle time slot may be able to run at lower voltage 
levels without increasing the total schedule length. This could occur if the task has no 
successor, or if its successor’s start time is delayed waiting for results from another 
one of its predecessors. 

The ISVA algorithm offers a spur for future research into energy-aware scheduling 
algorithms. Further testing and research needs to be conducted to design more effi-
cient energy-aware scheduling algorithms that provide schedules of equal or only 
slightly greater length in comparison with non-energy-aware scheduling algorithms. 
Small decreases in voltage levels can have a larger impact on energy usage, and even 
small but consistent energy savings can accumulate over time. For this reason, it is 
important to continue searching for better energy-aware algorithms. 
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