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ABSTRACT
In the study of emotion recognition, relatively few efforts
have been made to compare classification results across dif-
ferent emotion induction methods. In this study, we at-
tempt to classify emotional arousal using physiological sig-
nals collected across three stimulus types – music, videos,
and games. Subjects were exposed to relaxing and excit-
ing music and videos and then asked to play Tetris and
Minesweeper. Data from GSR, ECG, EOG, EEG, and PPG
signals were analyzed using machine learning algorithms.
We were able to successfully detect emotion arousal over
a set of contiguous multimedia activities. Furthermore, we
found that the patterns of physiological response to each
multimedia stimuli are varying enough, that we can guess
the stimulus type just by looking at the biosignals.

CCS Concepts
•Human-centered computing→ Empirical studies in
ubiquitous and mobile computing; Empirical studies in
HCI;
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1. INTRODUCTION
The classification of human emotional states from phys-

iological signals is an active area of research. It has been
shown previously that physiological signals can be reliable
indicators of affective states [5]. Presently, however, emotion
recognition is done mostly in laboratory settings. Widespread
applicability of emotion classification techniques based on
biosignals would increase dramatically if a robust framework
for emotion recognition were developed using a small num-
ber of noninvasive sensors.

Computers’ ability to recognize emotions in humans can
be applied to the domain of human-computer interaction to
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develop more nuanced communication between computers
and users. Computer agents capable of recognizing different
emotional states have the ability to react contextually based
on how a user is feeling, potentially improving user experi-
ence in a variety of applications. One possible use of emotion
recognition is in the development of more effective intelligent
teaching systems [8]. An emotionally-aware digital teacher
would have the ability to recognize frustration or boredom
in a student, signaling that it slow down or accelerate the
pace of learning accordingly.

Additionally, a reliable emotion recognition scheme could
open the door to standardization in the study of emotion
theory. This would enable studies improving the diagnosis
and treatments of mood disorders, like depression or post-
traumatic stress disorder (PTSD).

Studies of emotion recognition often differ in their ap-
proaches to labeling affective states, with some using dis-
crete categories [9] while others use continuous spectra. One
popular model of emotion uses dimensions of valence (how
pleasant the emotion is) and arousal (how strongly the emo-
tion is felt) [6]. One benefit of using a dimensional model is
that no specific categories for emotions need to be hypoth-
esized a priori.

One open question in emotion research is whether phys-
iological responses are consistent when different modalities
are employed to evoke a particular emotion [10]. Previous
studies have separately considered emotion recognition us-
ing music [10,12], images [6, 8], videos [9] and games [4]. In
each of these studies, emotional states were successfully dis-
criminated, but no effort was made to compare classification
results across different stimulus types.

In this study, we assume the valence-arousal model and at-
tempt to discriminate low and high arousal emotional states
using a combination of multimedia stimuli, including mu-
sic, videos, and computer games. Based on a set of col-
lected physiological biosignals, we are able to successfully
discriminate between states of high and low arousal. In ad-
dition, we show that we can recognize what type of stim-
uli was the subject exposed to, just by looking at the col-
lected biosignals. Our methodology follows the standard
supervised learning process of feature extraction, feature se-
lection, training and testing, with special attention on the
feature extraction stage.

In the following sections, we first explain our experimental
procedure and elaborate on our methodology. Subsequently,
we present our experimental results. Finally, we conclude
with a summary and the benefits of this study.



Figure 1: Subject playing Tetris during the experi-
ment. The laptop on the left is running the BioCap-
ture software to record physiological signals while
the subject uses a different laptop to play.

2. EXPERIMENTAL PROCEDURE
To evoke relaxed and excited emotional states, subject

were presented a series of music and video clips. Imme-
diately afterwards, subjects played Tetris and Minesweeper
using a keyboard and touchpad. When music was presented,
subjects were asked to keep their eyes closed. Five male vol-
unteers participated in the experiment. Figure 1 shows the
setup while a subject is playing Tetris.

The order in which the stimuli were presented was as fol-
lows:

1. Relaxing Music - Living Transparent by Reasoner
2. Relaxing Video - Mountain Stream Video by 4K
3. Exciting Music - Good Feeling by Flo Rida
4. Exciting Video - Club Scene from John Wick movie
5. Tetris (∼ 4.5 minutes on average)
6. Minesweeper (∼ 4.5 minutes on average)
Music and video stimuli were presented consecutively with

a 35-second clip of a flowing creek shown in between each,
to bring the subject back to a neutral emotional state. The
subjects played each game until their first loss. Stimuli were
deliberately presented in order from relaxing to exciting be-
cause it was assumed that it would take less time for subjects
to become excited when relaxed than it would for subjects
to calm down to a relaxed state after being excited.

2.1 Data Collection
Biosignals were recorded at a sampling frequency of 250

Hz, from 5 male volunteers of varying ages, using the Great
Lakes Neurotech BioRadio [1] device with adhesive pre-gelled
electrodes and the pulse oximeter attachment. The following
five signals were considered:

Galvanic Skin Response (GSR): GSR measures the
electrical resistance of the skin, and has been noted to be
highly indicative of changes in arousal [7]. Electrodes were
placed on the left hand, on the middle and index finger.

Electrocardiogram (ECG): ECG measures the changes
in electrical activity of the heart that result from heartbeats.
One electrode was placed on the left wrist, and the other on
the right wrists

Electroencephalogram (EEG): EEG measures electri-
cal activity in the brain can be measured through electrodes
placed on the scalp. The 10-20 system is a configuration
of 64 electrodes on the head to place electrodes for a com-
plete picture of the electrical activity of the brain [14]. In
order to maintain a minimal number of electrodes, only one
position was selected. The F4 spot located at the top of

Figure 2: A sample from a subject’s GSR and EEG
(channel F4) recordings during the Minesweeper
session. The vertical markers represent points in
time where the subject clicked on a bomb and lost
the game. There appear to be some noteworthy
spikes in both signals in response to losses.

the right forehead was selected. Electrodes in the frontal
lobe have been found to be important in the measurement
of emotional activity [11, 13]. Furthermore, a study by Liu
et al used an electrode in the F4 position as one of only three
EEG electrodes used to recognize emotions [12].

Electrooculogram (EOG): EOG measures the differ-
ence in electrical potential between the front and back of
the eye. The cornea is more positively charged and the
retina more negatively charged, creating an electric field that
changes as the eye moves [3]. The original purpose of col-
lecting EOG data was to facilitate artifact removal in the
EEG signal. However, after some visualization of the sig-
nal, EOG features seemed to contain useful information for
arousal classification.

One electrode was placed above/to the right of the right
eye, and another was placed below/to the left of the left eye.

Photoplethysmogram (PPG): PPG measures changes
in blood flow in the body. A pulse oximeter collected PPG
data from the index finger.

2.2 Questionnaire Analysis
Following the experiment, subjects were asked to rate

their perception of emotions experienced following exposure
to each stimuli. Two questions were asked for each stim-
ulus. The first question asked the subject how strong of
an emotion they felt after a particular stimulus on a scale
of 1-5, 1 being “Very slightly to none at all” and 5 being
“Extremely.” The second question asked the subject how
positive they felt, 1 being ”Negative” and 5 being ”Positive.”
On the arousal-valence scale, the relaxed emotion is consid-
ered a moderately high valence and low arousal emotion,
while the excited emotion is a moderately high valence and
high arousal emotion. A two-sample t-test was performed
between the survey results of the relaxed stimuli and those
of the excited stimuli, and a statistically significant differ-
ence between the arousal ratings at the 0.05 level was found.
This result validates the assumption that the relaxing stim-
uli evoked relaxed feelings in the subjects, and the same for
the exciting stimuli.

An interesting fact is that in certain situations, simple vi-
sual inception of the biosignals revealed interesting patterns
of emotional arousal, e.g. see Figure 2.



3. CLASSIFICATION
After the data was collected, two off-line experiments were

performed:
1. Arousal Classification - distinguishing between relax-

ing or exciting stimuli
2. Stimulus Classification - distinguishing stimulus type

(music, video, game)
Data was labeled according to the stimulus type, and self-

reports of arousal levels. Feature extraction was performed
followed by feature selection. The final subset of features
were then used to train models and generate predictions.
Models were validated using leave-one-subject-out cross val-
idation.

3.1 Preprocessing
A linear detrend was applied to all signals measured to

normalize each signal around a mean of zero. The normal-
ized mean should correct for differences in sensor placement
and skin conductivity profile across different subjects, while
the linear detrend should remove an drift in the signal ac-
cumulated during the recording.

To give physiological responses enough time to manifest
following exposure to a given stimulus, the last 30 seconds of
data collected while the subject was exposed to a a particular
stimulus were used for classification. This also ensured that
there were an equal number of samples from music listening,
video watching, and gaming.

Data was split into segments of a fixed length of 20 seconds
with a 16-second (80%) overlap between segments. Different
values for segment length and overlap were tested, as well
as different lengths of time from the end of the signal from
which data should be used. The above values were found
to yield the greatest accuracy. It is hypothesized that long
time slices yielded greater accuracy because physiological
signals are subject to instantaneous fluctuations that may
result in incorrect classifications of short segments. Longer
segments allow the classifier to see a trend in the biosignals
that emerges over a longer period of emotional experience.
This is an avenue for future research.

3.2 Feature Extraction
A total of 98 features were extracted from the data, includ-

ing features in both the time and frequency domains. Time
domain features included included variance, RMS, skewness,
kurtosis, and the mean of the first and second derivatives [7].
Frequency domain features included spectral centroid and
spectral spread.

Power in the delta (1-3Hz), theta (4-7Hz), alpha (8-12Hz),
beta(13-30Hz), and gamma (31-50Hz) frequency bands was
calculated using the EEG signal. Feature selection con-
cluded that power in the delta band was useful for both
arousal and stimulus classification while gamma band en-
ergy was specifically useful for arousal classification while
theta band energy was useful for classifying arousal.

Excepting EEG frequency band powers, features were ex-
tracted from all channels.

3.3 Feature Selection
A wrapper-based sequential forward selection was per-

formed to identify a key subset of features for both experi-
ments.

Originally, a total of 98 features were extracted from the
5 signal channels. Feature selection reduced the number of

features to 21 for arousal classification and to 26 for stimulus
classification. A total of 9 features were shared between the
two classification experiments.

The selected features are summarized as follows:
Common Features: ECGSpecCentroid, ECGEnergy-

Entropy, ECGHjorthMobility, EOGSkewness, F4Delta,
F4FirstDiff, F4HjorthComplexity, GSRSpectralEntropy,
PPGSpectralRolloff.

Arousal Classification: ECGHjorthComplexity, ECG-
Kurtosis, ECGSpecSpread, ECGVariance, EOGFirstDiff,
EOG-SpecCentroid, F4EnergyEntropy, F4Gamma, GSREn-
ergyEntropy, GSRVariance, PPGKurtosis, PPGSkewness.

Stimulus Classification: ECGSecDiff, ECGSpectralEn-
tropy, ECGZeroCrossRate, EOGSpecCentroid, EOGKurto-
sis, EOGSpecSpread, EOGSpecEntropy, F4Skewness,
F4Theta, F4Variance, GSRFirstDiff, GSR-RMS, GSRSecD-
iff, GSRSpecCentroid, GSRSpecSpread, PPGZeroCrossRate.

A noteworthy observation about the feature sets selected
for both classification experiments is the prevalence of ECG
based features. Of the features selected, 9 were extracted
from ECG, with the next most useful signal being EOG
with 7 useful features across both experiments.

One interesting difference between the arousal and stimu-
lus classification feature sets is that while delta band power
from the F4 EEG electrode was found useful for both, the
gamma band power was found useful for arousal classifica-
tion while theta band power was found useful for stimulus
classification. In order to validate that one frequency band
really contains more useful information about a particular
activity, however, future experimentation must be done with
more sensitive EEG equipment and more electrodes.

3.4 Classification Algorithms
Previous studies have used different classification algo-

rithms to discriminate between emotions. Some have found
success using KNN classifiers, decision trees, and SVM clas-
sifiers, e.g. [8, 11]. However, there is no current standard
algorithm or feature selection procedure in the domain of
emotion recognition [2]. As a result, four different classifi-
cation algorithms were used for both arousal and stimulus
classification. MATLAB implementations of the following
four algorithms were used: Medium KNN, Complex Tree,
Medium Gaussian SVM, and Bagged Trees.

Models were trained and validated using a 5-fold leave
one subject out cross validation scheme. Each model was
trained using data from four out of the five subjects, and
then tested on the data from the remaining subject. This
ensured that testing results were not inflated due to the
models being overfit to idiosyncrasies in the signals for a
particular subject.

4. RESULTS
Overall accuracy and recall for arousal and stimulus classi-

fication are shown in Table 1 and Table 2, respectively. The
reported statistics are for subject independent classification,
meaning that during both training and testing, the model
did not know what data had been collected from which par-
ticipant.

Subject independent arousal classification was achieved
with 88.9% accuracy and an average recall of 83.3%. Dis-
crimination between the relaxing and exciting videos was
achieved with 100% accuracy while accuracy of 78.8% was
achieved between the different musical stimuli.



Table 1: Confusion matrix for Arousal Classification
using SVM. Classification accuracy was 88.9%

True Class
Predicted Class

Recall
Relaxed Excited

Relaxed 16 8 66.67%
Excited 0 48 100%

Table 2: Confusion matrix for stimulus classifica-
tion using bagged trees. Classification accuracy was
80.6%

True Class
Predicted Class

Recall
Music Video Game

Music 24 0 0 100.00%
Video 5 14 5 58.33%
Game 0 4 20 83.33%

It is noteworthy that arousal classification for emotions in-
duced from videos appears to be better than classification for
emotions induced from music. There are multiple possible
explanations, which present directions for future research.

One possible reason for better classification accuracy of
videos is because of salient features extracted from the EOG
signal. As was mentioned earlier, subjects had their eyes
closed while listening to music, so any features from the
EOG signal would likely not be registered during music lis-
tening. We see that feature set useful for arousal classifica-
tion includes the first difference of the EOG signal (EOG-
FirstDiff) and the spectral centroid of the EOG signal (EOG-
SpecCentroid). Another possible explanation could be that
for the specific music and video selections presented, the
video clips elicited a stronger emotional response in partici-
pants, resulting in more pronounced differences in extracted
features. In order to correct for this, future studies may need
to present multiple different samples of music and video for
each emotional class.

Stimulus classification was achieved with 80.6% accuracy
and an average recall of 80.6%.

5. CONCLUSION
Our findings show that biosignal-based emotion classifi-

cation is possible. Consumer grade wearables already exist
capable of measuring GSR, PPG and other types of physi-
ological biosignals, and there are some relatively affordable
EEG headsets available in the market. EEG and EOG may
be able to be embedded in a single head set. Future re-
search could look into using these consumer grade sensors
to advance the ways humans interact with computers in their
everyday lives. Such research could also consider using other
signals these devices collect, such as accelerometer and gy-
roscope data.

This study focused on classifying arousal level of a sub-
ject after exposure to stimuli intended to evoke a particular
emotional state. In the future, research is needed to classify
valence according to a minimum number of signals.
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